linux_dsm_epyc7002/drivers/net/dsa/lan9303-core.c
Pan Bian 97438abcfb net: dsa: lan9303: correctly check return value of devm_gpiod_get_optional
Function devm_gpiod_get_optional() returns an ERR_PTR on failure. Its
return value should not be validated by a NULL check. Instead, use IS_ERR.

Signed-off-by: Pan Bian <bianpan2016@163.com>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-14 21:34:57 +09:00

1370 lines
39 KiB
C

/*
* Copyright (C) 2017 Pengutronix, Juergen Borleis <kernel@pengutronix.de>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/gpio/consumer.h>
#include <linux/regmap.h>
#include <linux/mutex.h>
#include <linux/mii.h>
#include <linux/phy.h>
#include <linux/if_bridge.h>
#include <linux/etherdevice.h>
#include "lan9303.h"
#define LAN9303_NUM_PORTS 3
/* 13.2 System Control and Status Registers
* Multiply register number by 4 to get address offset.
*/
#define LAN9303_CHIP_REV 0x14
# define LAN9303_CHIP_ID 0x9303
#define LAN9303_IRQ_CFG 0x15
# define LAN9303_IRQ_CFG_IRQ_ENABLE BIT(8)
# define LAN9303_IRQ_CFG_IRQ_POL BIT(4)
# define LAN9303_IRQ_CFG_IRQ_TYPE BIT(0)
#define LAN9303_INT_STS 0x16
# define LAN9303_INT_STS_PHY_INT2 BIT(27)
# define LAN9303_INT_STS_PHY_INT1 BIT(26)
#define LAN9303_INT_EN 0x17
# define LAN9303_INT_EN_PHY_INT2_EN BIT(27)
# define LAN9303_INT_EN_PHY_INT1_EN BIT(26)
#define LAN9303_HW_CFG 0x1D
# define LAN9303_HW_CFG_READY BIT(27)
# define LAN9303_HW_CFG_AMDX_EN_PORT2 BIT(26)
# define LAN9303_HW_CFG_AMDX_EN_PORT1 BIT(25)
#define LAN9303_PMI_DATA 0x29
#define LAN9303_PMI_ACCESS 0x2A
# define LAN9303_PMI_ACCESS_PHY_ADDR(x) (((x) & 0x1f) << 11)
# define LAN9303_PMI_ACCESS_MIIRINDA(x) (((x) & 0x1f) << 6)
# define LAN9303_PMI_ACCESS_MII_BUSY BIT(0)
# define LAN9303_PMI_ACCESS_MII_WRITE BIT(1)
#define LAN9303_MANUAL_FC_1 0x68
#define LAN9303_MANUAL_FC_2 0x69
#define LAN9303_MANUAL_FC_0 0x6a
#define LAN9303_SWITCH_CSR_DATA 0x6b
#define LAN9303_SWITCH_CSR_CMD 0x6c
#define LAN9303_SWITCH_CSR_CMD_BUSY BIT(31)
#define LAN9303_SWITCH_CSR_CMD_RW BIT(30)
#define LAN9303_SWITCH_CSR_CMD_LANES (BIT(19) | BIT(18) | BIT(17) | BIT(16))
#define LAN9303_VIRT_PHY_BASE 0x70
#define LAN9303_VIRT_SPECIAL_CTRL 0x77
#define LAN9303_VIRT_SPECIAL_TURBO BIT(10) /*Turbo MII Enable*/
/*13.4 Switch Fabric Control and Status Registers
* Accessed indirectly via SWITCH_CSR_CMD, SWITCH_CSR_DATA.
*/
#define LAN9303_SW_DEV_ID 0x0000
#define LAN9303_SW_RESET 0x0001
#define LAN9303_SW_RESET_RESET BIT(0)
#define LAN9303_SW_IMR 0x0004
#define LAN9303_SW_IPR 0x0005
#define LAN9303_MAC_VER_ID_0 0x0400
#define LAN9303_MAC_RX_CFG_0 0x0401
# define LAN9303_MAC_RX_CFG_X_REJECT_MAC_TYPES BIT(1)
# define LAN9303_MAC_RX_CFG_X_RX_ENABLE BIT(0)
#define LAN9303_MAC_RX_UNDSZE_CNT_0 0x0410
#define LAN9303_MAC_RX_64_CNT_0 0x0411
#define LAN9303_MAC_RX_127_CNT_0 0x0412
#define LAN9303_MAC_RX_255_CNT_0 0x413
#define LAN9303_MAC_RX_511_CNT_0 0x0414
#define LAN9303_MAC_RX_1023_CNT_0 0x0415
#define LAN9303_MAC_RX_MAX_CNT_0 0x0416
#define LAN9303_MAC_RX_OVRSZE_CNT_0 0x0417
#define LAN9303_MAC_RX_PKTOK_CNT_0 0x0418
#define LAN9303_MAC_RX_CRCERR_CNT_0 0x0419
#define LAN9303_MAC_RX_MULCST_CNT_0 0x041a
#define LAN9303_MAC_RX_BRDCST_CNT_0 0x041b
#define LAN9303_MAC_RX_PAUSE_CNT_0 0x041c
#define LAN9303_MAC_RX_FRAG_CNT_0 0x041d
#define LAN9303_MAC_RX_JABB_CNT_0 0x041e
#define LAN9303_MAC_RX_ALIGN_CNT_0 0x041f
#define LAN9303_MAC_RX_PKTLEN_CNT_0 0x0420
#define LAN9303_MAC_RX_GOODPKTLEN_CNT_0 0x0421
#define LAN9303_MAC_RX_SYMBL_CNT_0 0x0422
#define LAN9303_MAC_RX_CTLFRM_CNT_0 0x0423
#define LAN9303_MAC_TX_CFG_0 0x0440
# define LAN9303_MAC_TX_CFG_X_TX_IFG_CONFIG_DEFAULT (21 << 2)
# define LAN9303_MAC_TX_CFG_X_TX_PAD_ENABLE BIT(1)
# define LAN9303_MAC_TX_CFG_X_TX_ENABLE BIT(0)
#define LAN9303_MAC_TX_DEFER_CNT_0 0x0451
#define LAN9303_MAC_TX_PAUSE_CNT_0 0x0452
#define LAN9303_MAC_TX_PKTOK_CNT_0 0x0453
#define LAN9303_MAC_TX_64_CNT_0 0x0454
#define LAN9303_MAC_TX_127_CNT_0 0x0455
#define LAN9303_MAC_TX_255_CNT_0 0x0456
#define LAN9303_MAC_TX_511_CNT_0 0x0457
#define LAN9303_MAC_TX_1023_CNT_0 0x0458
#define LAN9303_MAC_TX_MAX_CNT_0 0x0459
#define LAN9303_MAC_TX_UNDSZE_CNT_0 0x045a
#define LAN9303_MAC_TX_PKTLEN_CNT_0 0x045c
#define LAN9303_MAC_TX_BRDCST_CNT_0 0x045d
#define LAN9303_MAC_TX_MULCST_CNT_0 0x045e
#define LAN9303_MAC_TX_LATECOL_0 0x045f
#define LAN9303_MAC_TX_EXCOL_CNT_0 0x0460
#define LAN9303_MAC_TX_SNGLECOL_CNT_0 0x0461
#define LAN9303_MAC_TX_MULTICOL_CNT_0 0x0462
#define LAN9303_MAC_TX_TOTALCOL_CNT_0 0x0463
#define LAN9303_MAC_VER_ID_1 0x0800
#define LAN9303_MAC_RX_CFG_1 0x0801
#define LAN9303_MAC_TX_CFG_1 0x0840
#define LAN9303_MAC_VER_ID_2 0x0c00
#define LAN9303_MAC_RX_CFG_2 0x0c01
#define LAN9303_MAC_TX_CFG_2 0x0c40
#define LAN9303_SWE_ALR_CMD 0x1800
# define LAN9303_ALR_CMD_MAKE_ENTRY BIT(2)
# define LAN9303_ALR_CMD_GET_FIRST BIT(1)
# define LAN9303_ALR_CMD_GET_NEXT BIT(0)
#define LAN9303_SWE_ALR_WR_DAT_0 0x1801
#define LAN9303_SWE_ALR_WR_DAT_1 0x1802
# define LAN9303_ALR_DAT1_VALID BIT(26)
# define LAN9303_ALR_DAT1_END_OF_TABL BIT(25)
# define LAN9303_ALR_DAT1_AGE_OVERRID BIT(25)
# define LAN9303_ALR_DAT1_STATIC BIT(24)
# define LAN9303_ALR_DAT1_PORT_BITOFFS 16
# define LAN9303_ALR_DAT1_PORT_MASK (7 << LAN9303_ALR_DAT1_PORT_BITOFFS)
#define LAN9303_SWE_ALR_RD_DAT_0 0x1805
#define LAN9303_SWE_ALR_RD_DAT_1 0x1806
#define LAN9303_SWE_ALR_CMD_STS 0x1808
# define ALR_STS_MAKE_PEND BIT(0)
#define LAN9303_SWE_VLAN_CMD 0x180b
# define LAN9303_SWE_VLAN_CMD_RNW BIT(5)
# define LAN9303_SWE_VLAN_CMD_PVIDNVLAN BIT(4)
#define LAN9303_SWE_VLAN_WR_DATA 0x180c
#define LAN9303_SWE_VLAN_RD_DATA 0x180e
# define LAN9303_SWE_VLAN_MEMBER_PORT2 BIT(17)
# define LAN9303_SWE_VLAN_UNTAG_PORT2 BIT(16)
# define LAN9303_SWE_VLAN_MEMBER_PORT1 BIT(15)
# define LAN9303_SWE_VLAN_UNTAG_PORT1 BIT(14)
# define LAN9303_SWE_VLAN_MEMBER_PORT0 BIT(13)
# define LAN9303_SWE_VLAN_UNTAG_PORT0 BIT(12)
#define LAN9303_SWE_VLAN_CMD_STS 0x1810
#define LAN9303_SWE_GLB_INGRESS_CFG 0x1840
# define LAN9303_SWE_GLB_INGR_IGMP_TRAP BIT(7)
# define LAN9303_SWE_GLB_INGR_IGMP_PORT(p) BIT(10 + p)
#define LAN9303_SWE_PORT_STATE 0x1843
# define LAN9303_SWE_PORT_STATE_FORWARDING_PORT2 (0)
# define LAN9303_SWE_PORT_STATE_LEARNING_PORT2 BIT(5)
# define LAN9303_SWE_PORT_STATE_BLOCKING_PORT2 BIT(4)
# define LAN9303_SWE_PORT_STATE_FORWARDING_PORT1 (0)
# define LAN9303_SWE_PORT_STATE_LEARNING_PORT1 BIT(3)
# define LAN9303_SWE_PORT_STATE_BLOCKING_PORT1 BIT(2)
# define LAN9303_SWE_PORT_STATE_FORWARDING_PORT0 (0)
# define LAN9303_SWE_PORT_STATE_LEARNING_PORT0 BIT(1)
# define LAN9303_SWE_PORT_STATE_BLOCKING_PORT0 BIT(0)
# define LAN9303_SWE_PORT_STATE_DISABLED_PORT0 (3)
#define LAN9303_SWE_PORT_MIRROR 0x1846
# define LAN9303_SWE_PORT_MIRROR_SNIFF_ALL BIT(8)
# define LAN9303_SWE_PORT_MIRROR_SNIFFER_PORT2 BIT(7)
# define LAN9303_SWE_PORT_MIRROR_SNIFFER_PORT1 BIT(6)
# define LAN9303_SWE_PORT_MIRROR_SNIFFER_PORT0 BIT(5)
# define LAN9303_SWE_PORT_MIRROR_MIRRORED_PORT2 BIT(4)
# define LAN9303_SWE_PORT_MIRROR_MIRRORED_PORT1 BIT(3)
# define LAN9303_SWE_PORT_MIRROR_MIRRORED_PORT0 BIT(2)
# define LAN9303_SWE_PORT_MIRROR_ENABLE_RX_MIRRORING BIT(1)
# define LAN9303_SWE_PORT_MIRROR_ENABLE_TX_MIRRORING BIT(0)
# define LAN9303_SWE_PORT_MIRROR_DISABLED 0
#define LAN9303_SWE_INGRESS_PORT_TYPE 0x1847
#define LAN9303_SWE_INGRESS_PORT_TYPE_VLAN 3
#define LAN9303_BM_CFG 0x1c00
#define LAN9303_BM_EGRSS_PORT_TYPE 0x1c0c
# define LAN9303_BM_EGRSS_PORT_TYPE_SPECIAL_TAG_PORT2 (BIT(17) | BIT(16))
# define LAN9303_BM_EGRSS_PORT_TYPE_SPECIAL_TAG_PORT1 (BIT(9) | BIT(8))
# define LAN9303_BM_EGRSS_PORT_TYPE_SPECIAL_TAG_PORT0 (BIT(1) | BIT(0))
#define LAN9303_SWITCH_PORT_REG(port, reg0) (0x400 * (port) + (reg0))
/* the built-in PHYs are of type LAN911X */
#define MII_LAN911X_SPECIAL_MODES 0x12
#define MII_LAN911X_SPECIAL_CONTROL_STATUS 0x1f
static const struct regmap_range lan9303_valid_regs[] = {
regmap_reg_range(0x14, 0x17), /* misc, interrupt */
regmap_reg_range(0x19, 0x19), /* endian test */
regmap_reg_range(0x1d, 0x1d), /* hardware config */
regmap_reg_range(0x23, 0x24), /* general purpose timer */
regmap_reg_range(0x27, 0x27), /* counter */
regmap_reg_range(0x29, 0x2a), /* PMI index regs */
regmap_reg_range(0x68, 0x6a), /* flow control */
regmap_reg_range(0x6b, 0x6c), /* switch fabric indirect regs */
regmap_reg_range(0x6d, 0x6f), /* misc */
regmap_reg_range(0x70, 0x77), /* virtual phy */
regmap_reg_range(0x78, 0x7a), /* GPIO */
regmap_reg_range(0x7c, 0x7e), /* MAC & reset */
regmap_reg_range(0x80, 0xb7), /* switch fabric direct regs (wr only) */
};
static const struct regmap_range lan9303_reserved_ranges[] = {
regmap_reg_range(0x00, 0x13),
regmap_reg_range(0x18, 0x18),
regmap_reg_range(0x1a, 0x1c),
regmap_reg_range(0x1e, 0x22),
regmap_reg_range(0x25, 0x26),
regmap_reg_range(0x28, 0x28),
regmap_reg_range(0x2b, 0x67),
regmap_reg_range(0x7b, 0x7b),
regmap_reg_range(0x7f, 0x7f),
regmap_reg_range(0xb8, 0xff),
};
const struct regmap_access_table lan9303_register_set = {
.yes_ranges = lan9303_valid_regs,
.n_yes_ranges = ARRAY_SIZE(lan9303_valid_regs),
.no_ranges = lan9303_reserved_ranges,
.n_no_ranges = ARRAY_SIZE(lan9303_reserved_ranges),
};
EXPORT_SYMBOL(lan9303_register_set);
static int lan9303_read(struct regmap *regmap, unsigned int offset, u32 *reg)
{
int ret, i;
/* we can lose arbitration for the I2C case, because the device
* tries to detect and read an external EEPROM after reset and acts as
* a master on the shared I2C bus itself. This conflicts with our
* attempts to access the device as a slave at the same moment.
*/
for (i = 0; i < 5; i++) {
ret = regmap_read(regmap, offset, reg);
if (!ret)
return 0;
if (ret != -EAGAIN)
break;
msleep(500);
}
return -EIO;
}
static int lan9303_virt_phy_reg_read(struct lan9303 *chip, int regnum)
{
int ret;
u32 val;
if (regnum > MII_EXPANSION)
return -EINVAL;
ret = lan9303_read(chip->regmap, LAN9303_VIRT_PHY_BASE + regnum, &val);
if (ret)
return ret;
return val & 0xffff;
}
static int lan9303_virt_phy_reg_write(struct lan9303 *chip, int regnum, u16 val)
{
if (regnum > MII_EXPANSION)
return -EINVAL;
return regmap_write(chip->regmap, LAN9303_VIRT_PHY_BASE + regnum, val);
}
static int lan9303_indirect_phy_wait_for_completion(struct lan9303 *chip)
{
int ret, i;
u32 reg;
for (i = 0; i < 25; i++) {
ret = lan9303_read(chip->regmap, LAN9303_PMI_ACCESS, &reg);
if (ret) {
dev_err(chip->dev,
"Failed to read pmi access status: %d\n", ret);
return ret;
}
if (!(reg & LAN9303_PMI_ACCESS_MII_BUSY))
return 0;
usleep_range(1000, 2000);
}
return -EIO;
}
static int lan9303_indirect_phy_read(struct lan9303 *chip, int addr, int regnum)
{
int ret;
u32 val;
val = LAN9303_PMI_ACCESS_PHY_ADDR(addr);
val |= LAN9303_PMI_ACCESS_MIIRINDA(regnum);
mutex_lock(&chip->indirect_mutex);
ret = lan9303_indirect_phy_wait_for_completion(chip);
if (ret)
goto on_error;
/* start the MII read cycle */
ret = regmap_write(chip->regmap, LAN9303_PMI_ACCESS, val);
if (ret)
goto on_error;
ret = lan9303_indirect_phy_wait_for_completion(chip);
if (ret)
goto on_error;
/* read the result of this operation */
ret = lan9303_read(chip->regmap, LAN9303_PMI_DATA, &val);
if (ret)
goto on_error;
mutex_unlock(&chip->indirect_mutex);
return val & 0xffff;
on_error:
mutex_unlock(&chip->indirect_mutex);
return ret;
}
static int lan9303_indirect_phy_write(struct lan9303 *chip, int addr,
int regnum, u16 val)
{
int ret;
u32 reg;
reg = LAN9303_PMI_ACCESS_PHY_ADDR(addr);
reg |= LAN9303_PMI_ACCESS_MIIRINDA(regnum);
reg |= LAN9303_PMI_ACCESS_MII_WRITE;
mutex_lock(&chip->indirect_mutex);
ret = lan9303_indirect_phy_wait_for_completion(chip);
if (ret)
goto on_error;
/* write the data first... */
ret = regmap_write(chip->regmap, LAN9303_PMI_DATA, val);
if (ret)
goto on_error;
/* ...then start the MII write cycle */
ret = regmap_write(chip->regmap, LAN9303_PMI_ACCESS, reg);
on_error:
mutex_unlock(&chip->indirect_mutex);
return ret;
}
const struct lan9303_phy_ops lan9303_indirect_phy_ops = {
.phy_read = lan9303_indirect_phy_read,
.phy_write = lan9303_indirect_phy_write,
};
EXPORT_SYMBOL_GPL(lan9303_indirect_phy_ops);
static int lan9303_switch_wait_for_completion(struct lan9303 *chip)
{
int ret, i;
u32 reg;
for (i = 0; i < 25; i++) {
ret = lan9303_read(chip->regmap, LAN9303_SWITCH_CSR_CMD, &reg);
if (ret) {
dev_err(chip->dev,
"Failed to read csr command status: %d\n", ret);
return ret;
}
if (!(reg & LAN9303_SWITCH_CSR_CMD_BUSY))
return 0;
usleep_range(1000, 2000);
}
return -EIO;
}
static int lan9303_write_switch_reg(struct lan9303 *chip, u16 regnum, u32 val)
{
u32 reg;
int ret;
reg = regnum;
reg |= LAN9303_SWITCH_CSR_CMD_LANES;
reg |= LAN9303_SWITCH_CSR_CMD_BUSY;
mutex_lock(&chip->indirect_mutex);
ret = lan9303_switch_wait_for_completion(chip);
if (ret)
goto on_error;
ret = regmap_write(chip->regmap, LAN9303_SWITCH_CSR_DATA, val);
if (ret) {
dev_err(chip->dev, "Failed to write csr data reg: %d\n", ret);
goto on_error;
}
/* trigger write */
ret = regmap_write(chip->regmap, LAN9303_SWITCH_CSR_CMD, reg);
if (ret)
dev_err(chip->dev, "Failed to write csr command reg: %d\n",
ret);
on_error:
mutex_unlock(&chip->indirect_mutex);
return ret;
}
static int lan9303_read_switch_reg(struct lan9303 *chip, u16 regnum, u32 *val)
{
u32 reg;
int ret;
reg = regnum;
reg |= LAN9303_SWITCH_CSR_CMD_LANES;
reg |= LAN9303_SWITCH_CSR_CMD_RW;
reg |= LAN9303_SWITCH_CSR_CMD_BUSY;
mutex_lock(&chip->indirect_mutex);
ret = lan9303_switch_wait_for_completion(chip);
if (ret)
goto on_error;
/* trigger read */
ret = regmap_write(chip->regmap, LAN9303_SWITCH_CSR_CMD, reg);
if (ret) {
dev_err(chip->dev, "Failed to write csr command reg: %d\n",
ret);
goto on_error;
}
ret = lan9303_switch_wait_for_completion(chip);
if (ret)
goto on_error;
ret = lan9303_read(chip->regmap, LAN9303_SWITCH_CSR_DATA, val);
if (ret)
dev_err(chip->dev, "Failed to read csr data reg: %d\n", ret);
on_error:
mutex_unlock(&chip->indirect_mutex);
return ret;
}
static int lan9303_write_switch_reg_mask(struct lan9303 *chip, u16 regnum,
u32 val, u32 mask)
{
int ret;
u32 reg;
ret = lan9303_read_switch_reg(chip, regnum, &reg);
if (ret)
return ret;
reg = (reg & ~mask) | val;
return lan9303_write_switch_reg(chip, regnum, reg);
}
static int lan9303_write_switch_port(struct lan9303 *chip, int port,
u16 regnum, u32 val)
{
return lan9303_write_switch_reg(
chip, LAN9303_SWITCH_PORT_REG(port, regnum), val);
}
static int lan9303_read_switch_port(struct lan9303 *chip, int port,
u16 regnum, u32 *val)
{
return lan9303_read_switch_reg(
chip, LAN9303_SWITCH_PORT_REG(port, regnum), val);
}
static int lan9303_detect_phy_setup(struct lan9303 *chip)
{
int reg;
/* depending on the 'phy_addr_sel_strap' setting, the three phys are
* using IDs 0-1-2 or IDs 1-2-3. We cannot read back the
* 'phy_addr_sel_strap' setting directly, so we need a test, which
* configuration is active:
* Special reg 18 of phy 3 reads as 0x0000, if 'phy_addr_sel_strap' is 0
* and the IDs are 0-1-2, else it contains something different from
* 0x0000, which means 'phy_addr_sel_strap' is 1 and the IDs are 1-2-3.
* 0xffff is returned on MDIO read with no response.
*/
reg = chip->ops->phy_read(chip, 3, MII_LAN911X_SPECIAL_MODES);
if (reg < 0) {
dev_err(chip->dev, "Failed to detect phy config: %d\n", reg);
return reg;
}
if ((reg != 0) && (reg != 0xffff))
chip->phy_addr_sel_strap = 1;
else
chip->phy_addr_sel_strap = 0;
dev_dbg(chip->dev, "Phy setup '%s' detected\n",
chip->phy_addr_sel_strap ? "1-2-3" : "0-1-2");
return 0;
}
/* Map ALR-port bits to port bitmap, and back */
static const int alrport_2_portmap[] = {1, 2, 4, 0, 3, 5, 6, 7 };
static const int portmap_2_alrport[] = {3, 0, 1, 4, 2, 5, 6, 7 };
/* Return pointer to first free ALR cache entry, return NULL if none */
static struct lan9303_alr_cache_entry *
lan9303_alr_cache_find_free(struct lan9303 *chip)
{
int i;
struct lan9303_alr_cache_entry *entr = chip->alr_cache;
for (i = 0; i < LAN9303_NUM_ALR_RECORDS; i++, entr++)
if (entr->port_map == 0)
return entr;
return NULL;
}
/* Return pointer to ALR cache entry matching MAC address */
static struct lan9303_alr_cache_entry *
lan9303_alr_cache_find_mac(struct lan9303 *chip, const u8 *mac_addr)
{
int i;
struct lan9303_alr_cache_entry *entr = chip->alr_cache;
BUILD_BUG_ON_MSG(sizeof(struct lan9303_alr_cache_entry) & 1,
"ether_addr_equal require u16 alignment");
for (i = 0; i < LAN9303_NUM_ALR_RECORDS; i++, entr++)
if (ether_addr_equal(entr->mac_addr, mac_addr))
return entr;
return NULL;
}
/* Wait a while until mask & reg == value. Otherwise return timeout. */
static int lan9303_csr_reg_wait(struct lan9303 *chip, int regno,
int mask, char value)
{
int i;
for (i = 0; i < 0x1000; i++) {
u32 reg;
lan9303_read_switch_reg(chip, regno, &reg);
if ((reg & mask) == value)
return 0;
usleep_range(1000, 2000);
}
return -ETIMEDOUT;
}
static int lan9303_alr_make_entry_raw(struct lan9303 *chip, u32 dat0, u32 dat1)
{
lan9303_write_switch_reg(chip, LAN9303_SWE_ALR_WR_DAT_0, dat0);
lan9303_write_switch_reg(chip, LAN9303_SWE_ALR_WR_DAT_1, dat1);
lan9303_write_switch_reg(chip, LAN9303_SWE_ALR_CMD,
LAN9303_ALR_CMD_MAKE_ENTRY);
lan9303_csr_reg_wait(chip, LAN9303_SWE_ALR_CMD_STS, ALR_STS_MAKE_PEND,
0);
lan9303_write_switch_reg(chip, LAN9303_SWE_ALR_CMD, 0);
return 0;
}
typedef void alr_loop_cb_t(struct lan9303 *chip, u32 dat0, u32 dat1,
int portmap, void *ctx);
static void lan9303_alr_loop(struct lan9303 *chip, alr_loop_cb_t *cb, void *ctx)
{
int i;
lan9303_write_switch_reg(chip, LAN9303_SWE_ALR_CMD,
LAN9303_ALR_CMD_GET_FIRST);
lan9303_write_switch_reg(chip, LAN9303_SWE_ALR_CMD, 0);
for (i = 1; i < LAN9303_NUM_ALR_RECORDS; i++) {
u32 dat0, dat1;
int alrport, portmap;
lan9303_read_switch_reg(chip, LAN9303_SWE_ALR_RD_DAT_0, &dat0);
lan9303_read_switch_reg(chip, LAN9303_SWE_ALR_RD_DAT_1, &dat1);
if (dat1 & LAN9303_ALR_DAT1_END_OF_TABL)
break;
alrport = (dat1 & LAN9303_ALR_DAT1_PORT_MASK) >>
LAN9303_ALR_DAT1_PORT_BITOFFS;
portmap = alrport_2_portmap[alrport];
cb(chip, dat0, dat1, portmap, ctx);
lan9303_write_switch_reg(chip, LAN9303_SWE_ALR_CMD,
LAN9303_ALR_CMD_GET_NEXT);
lan9303_write_switch_reg(chip, LAN9303_SWE_ALR_CMD, 0);
}
}
static void alr_reg_to_mac(u32 dat0, u32 dat1, u8 mac[6])
{
mac[0] = (dat0 >> 0) & 0xff;
mac[1] = (dat0 >> 8) & 0xff;
mac[2] = (dat0 >> 16) & 0xff;
mac[3] = (dat0 >> 24) & 0xff;
mac[4] = (dat1 >> 0) & 0xff;
mac[5] = (dat1 >> 8) & 0xff;
}
struct del_port_learned_ctx {
int port;
};
/* Clear learned (non-static) entry on given port */
static void alr_loop_cb_del_port_learned(struct lan9303 *chip, u32 dat0,
u32 dat1, int portmap, void *ctx)
{
struct del_port_learned_ctx *del_ctx = ctx;
int port = del_ctx->port;
if (((BIT(port) & portmap) == 0) || (dat1 & LAN9303_ALR_DAT1_STATIC))
return;
/* learned entries has only one port, we can just delete */
dat1 &= ~LAN9303_ALR_DAT1_VALID; /* delete entry */
lan9303_alr_make_entry_raw(chip, dat0, dat1);
}
struct port_fdb_dump_ctx {
int port;
void *data;
dsa_fdb_dump_cb_t *cb;
};
static void alr_loop_cb_fdb_port_dump(struct lan9303 *chip, u32 dat0,
u32 dat1, int portmap, void *ctx)
{
struct port_fdb_dump_ctx *dump_ctx = ctx;
u8 mac[ETH_ALEN];
bool is_static;
if ((BIT(dump_ctx->port) & portmap) == 0)
return;
alr_reg_to_mac(dat0, dat1, mac);
is_static = !!(dat1 & LAN9303_ALR_DAT1_STATIC);
dump_ctx->cb(mac, 0, is_static, dump_ctx->data);
}
/* Set a static ALR entry. Delete entry if port_map is zero */
static void lan9303_alr_set_entry(struct lan9303 *chip, const u8 *mac,
u8 port_map, bool stp_override)
{
u32 dat0, dat1, alr_port;
dev_dbg(chip->dev, "%s(%pM, %d)\n", __func__, mac, port_map);
dat1 = LAN9303_ALR_DAT1_STATIC;
if (port_map)
dat1 |= LAN9303_ALR_DAT1_VALID;
/* otherwise no ports: delete entry */
if (stp_override)
dat1 |= LAN9303_ALR_DAT1_AGE_OVERRID;
alr_port = portmap_2_alrport[port_map & 7];
dat1 &= ~LAN9303_ALR_DAT1_PORT_MASK;
dat1 |= alr_port << LAN9303_ALR_DAT1_PORT_BITOFFS;
dat0 = 0;
dat0 |= (mac[0] << 0);
dat0 |= (mac[1] << 8);
dat0 |= (mac[2] << 16);
dat0 |= (mac[3] << 24);
dat1 |= (mac[4] << 0);
dat1 |= (mac[5] << 8);
lan9303_alr_make_entry_raw(chip, dat0, dat1);
}
/* Add port to static ALR entry, create new static entry if needed */
static int lan9303_alr_add_port(struct lan9303 *chip, const u8 *mac, int port,
bool stp_override)
{
struct lan9303_alr_cache_entry *entr;
entr = lan9303_alr_cache_find_mac(chip, mac);
if (!entr) { /*New entry */
entr = lan9303_alr_cache_find_free(chip);
if (!entr)
return -ENOSPC;
ether_addr_copy(entr->mac_addr, mac);
}
entr->port_map |= BIT(port);
entr->stp_override = stp_override;
lan9303_alr_set_entry(chip, mac, entr->port_map, stp_override);
return 0;
}
/* Delete static port from ALR entry, delete entry if last port */
static int lan9303_alr_del_port(struct lan9303 *chip, const u8 *mac, int port)
{
struct lan9303_alr_cache_entry *entr;
entr = lan9303_alr_cache_find_mac(chip, mac);
if (!entr)
return 0; /* no static entry found */
entr->port_map &= ~BIT(port);
if (entr->port_map == 0) /* zero means its free again */
eth_zero_addr(entr->mac_addr);
lan9303_alr_set_entry(chip, mac, entr->port_map, entr->stp_override);
return 0;
}
static int lan9303_disable_processing_port(struct lan9303 *chip,
unsigned int port)
{
int ret;
/* disable RX, but keep register reset default values else */
ret = lan9303_write_switch_port(chip, port, LAN9303_MAC_RX_CFG_0,
LAN9303_MAC_RX_CFG_X_REJECT_MAC_TYPES);
if (ret)
return ret;
/* disable TX, but keep register reset default values else */
return lan9303_write_switch_port(chip, port, LAN9303_MAC_TX_CFG_0,
LAN9303_MAC_TX_CFG_X_TX_IFG_CONFIG_DEFAULT |
LAN9303_MAC_TX_CFG_X_TX_PAD_ENABLE);
}
static int lan9303_enable_processing_port(struct lan9303 *chip,
unsigned int port)
{
int ret;
/* enable RX and keep register reset default values else */
ret = lan9303_write_switch_port(chip, port, LAN9303_MAC_RX_CFG_0,
LAN9303_MAC_RX_CFG_X_REJECT_MAC_TYPES |
LAN9303_MAC_RX_CFG_X_RX_ENABLE);
if (ret)
return ret;
/* enable TX and keep register reset default values else */
return lan9303_write_switch_port(chip, port, LAN9303_MAC_TX_CFG_0,
LAN9303_MAC_TX_CFG_X_TX_IFG_CONFIG_DEFAULT |
LAN9303_MAC_TX_CFG_X_TX_PAD_ENABLE |
LAN9303_MAC_TX_CFG_X_TX_ENABLE);
}
/* forward special tagged packets from port 0 to port 1 *or* port 2 */
static int lan9303_setup_tagging(struct lan9303 *chip)
{
int ret;
u32 val;
/* enable defining the destination port via special VLAN tagging
* for port 0
*/
ret = lan9303_write_switch_reg(chip, LAN9303_SWE_INGRESS_PORT_TYPE,
LAN9303_SWE_INGRESS_PORT_TYPE_VLAN);
if (ret)
return ret;
/* tag incoming packets at port 1 and 2 on their way to port 0 to be
* able to discover their source port
*/
val = LAN9303_BM_EGRSS_PORT_TYPE_SPECIAL_TAG_PORT0;
return lan9303_write_switch_reg(chip, LAN9303_BM_EGRSS_PORT_TYPE, val);
}
/* We want a special working switch:
* - do not forward packets between port 1 and 2
* - forward everything from port 1 to port 0
* - forward everything from port 2 to port 0
*/
static int lan9303_separate_ports(struct lan9303 *chip)
{
int ret;
lan9303_alr_del_port(chip, eth_stp_addr, 0);
ret = lan9303_write_switch_reg(chip, LAN9303_SWE_PORT_MIRROR,
LAN9303_SWE_PORT_MIRROR_SNIFFER_PORT0 |
LAN9303_SWE_PORT_MIRROR_MIRRORED_PORT1 |
LAN9303_SWE_PORT_MIRROR_MIRRORED_PORT2 |
LAN9303_SWE_PORT_MIRROR_ENABLE_RX_MIRRORING |
LAN9303_SWE_PORT_MIRROR_SNIFF_ALL);
if (ret)
return ret;
/* prevent port 1 and 2 from forwarding packets by their own */
return lan9303_write_switch_reg(chip, LAN9303_SWE_PORT_STATE,
LAN9303_SWE_PORT_STATE_FORWARDING_PORT0 |
LAN9303_SWE_PORT_STATE_BLOCKING_PORT1 |
LAN9303_SWE_PORT_STATE_BLOCKING_PORT2);
}
static void lan9303_bridge_ports(struct lan9303 *chip)
{
/* ports bridged: remove mirroring */
lan9303_write_switch_reg(chip, LAN9303_SWE_PORT_MIRROR,
LAN9303_SWE_PORT_MIRROR_DISABLED);
lan9303_write_switch_reg(chip, LAN9303_SWE_PORT_STATE,
chip->swe_port_state);
lan9303_alr_add_port(chip, eth_stp_addr, 0, true);
}
static int lan9303_handle_reset(struct lan9303 *chip)
{
if (!chip->reset_gpio)
return 0;
if (chip->reset_duration != 0)
msleep(chip->reset_duration);
/* release (deassert) reset and activate the device */
gpiod_set_value_cansleep(chip->reset_gpio, 0);
return 0;
}
/* stop processing packets for all ports */
static int lan9303_disable_processing(struct lan9303 *chip)
{
int p;
for (p = 1; p < LAN9303_NUM_PORTS; p++) {
int ret = lan9303_disable_processing_port(chip, p);
if (ret)
return ret;
}
return 0;
}
static int lan9303_check_device(struct lan9303 *chip)
{
int ret;
u32 reg;
ret = lan9303_read(chip->regmap, LAN9303_CHIP_REV, &reg);
if (ret) {
dev_err(chip->dev, "failed to read chip revision register: %d\n",
ret);
if (!chip->reset_gpio) {
dev_dbg(chip->dev,
"hint: maybe failed due to missing reset GPIO\n");
}
return ret;
}
if ((reg >> 16) != LAN9303_CHIP_ID) {
dev_err(chip->dev, "expecting LAN9303 chip, but found: %X\n",
reg >> 16);
return ret;
}
/* The default state of the LAN9303 device is to forward packets between
* all ports (if not configured differently by an external EEPROM).
* The initial state of a DSA device must be forwarding packets only
* between the external and the internal ports and no forwarding
* between the external ports. In preparation we stop packet handling
* at all for now until the LAN9303 device is re-programmed accordingly.
*/
ret = lan9303_disable_processing(chip);
if (ret)
dev_warn(chip->dev, "failed to disable switching %d\n", ret);
dev_info(chip->dev, "Found LAN9303 rev. %u\n", reg & 0xffff);
ret = lan9303_detect_phy_setup(chip);
if (ret) {
dev_err(chip->dev,
"failed to discover phy bootstrap setup: %d\n", ret);
return ret;
}
return 0;
}
/* ---------------------------- DSA -----------------------------------*/
static enum dsa_tag_protocol lan9303_get_tag_protocol(struct dsa_switch *ds,
int port)
{
return DSA_TAG_PROTO_LAN9303;
}
static int lan9303_setup(struct dsa_switch *ds)
{
struct lan9303 *chip = ds->priv;
int ret;
/* Make sure that port 0 is the cpu port */
if (!dsa_is_cpu_port(ds, 0)) {
dev_err(chip->dev, "port 0 is not the CPU port\n");
return -EINVAL;
}
ret = lan9303_setup_tagging(chip);
if (ret)
dev_err(chip->dev, "failed to setup port tagging %d\n", ret);
ret = lan9303_separate_ports(chip);
if (ret)
dev_err(chip->dev, "failed to separate ports %d\n", ret);
ret = lan9303_enable_processing_port(chip, 0);
if (ret)
dev_err(chip->dev, "failed to re-enable switching %d\n", ret);
/* Trap IGMP to port 0 */
ret = lan9303_write_switch_reg_mask(chip, LAN9303_SWE_GLB_INGRESS_CFG,
LAN9303_SWE_GLB_INGR_IGMP_TRAP |
LAN9303_SWE_GLB_INGR_IGMP_PORT(0),
LAN9303_SWE_GLB_INGR_IGMP_PORT(1) |
LAN9303_SWE_GLB_INGR_IGMP_PORT(2));
if (ret)
dev_err(chip->dev, "failed to setup IGMP trap %d\n", ret);
return 0;
}
struct lan9303_mib_desc {
unsigned int offset; /* offset of first MAC */
const char *name;
};
static const struct lan9303_mib_desc lan9303_mib[] = {
{ .offset = LAN9303_MAC_RX_BRDCST_CNT_0, .name = "RxBroad", },
{ .offset = LAN9303_MAC_RX_PAUSE_CNT_0, .name = "RxPause", },
{ .offset = LAN9303_MAC_RX_MULCST_CNT_0, .name = "RxMulti", },
{ .offset = LAN9303_MAC_RX_PKTOK_CNT_0, .name = "RxOk", },
{ .offset = LAN9303_MAC_RX_CRCERR_CNT_0, .name = "RxCrcErr", },
{ .offset = LAN9303_MAC_RX_ALIGN_CNT_0, .name = "RxAlignErr", },
{ .offset = LAN9303_MAC_RX_JABB_CNT_0, .name = "RxJabber", },
{ .offset = LAN9303_MAC_RX_FRAG_CNT_0, .name = "RxFragment", },
{ .offset = LAN9303_MAC_RX_64_CNT_0, .name = "Rx64Byte", },
{ .offset = LAN9303_MAC_RX_127_CNT_0, .name = "Rx128Byte", },
{ .offset = LAN9303_MAC_RX_255_CNT_0, .name = "Rx256Byte", },
{ .offset = LAN9303_MAC_RX_511_CNT_0, .name = "Rx512Byte", },
{ .offset = LAN9303_MAC_RX_1023_CNT_0, .name = "Rx1024Byte", },
{ .offset = LAN9303_MAC_RX_MAX_CNT_0, .name = "RxMaxByte", },
{ .offset = LAN9303_MAC_RX_PKTLEN_CNT_0, .name = "RxByteCnt", },
{ .offset = LAN9303_MAC_RX_SYMBL_CNT_0, .name = "RxSymbolCnt", },
{ .offset = LAN9303_MAC_RX_CTLFRM_CNT_0, .name = "RxCfs", },
{ .offset = LAN9303_MAC_RX_OVRSZE_CNT_0, .name = "RxOverFlow", },
{ .offset = LAN9303_MAC_TX_UNDSZE_CNT_0, .name = "TxShort", },
{ .offset = LAN9303_MAC_TX_BRDCST_CNT_0, .name = "TxBroad", },
{ .offset = LAN9303_MAC_TX_PAUSE_CNT_0, .name = "TxPause", },
{ .offset = LAN9303_MAC_TX_MULCST_CNT_0, .name = "TxMulti", },
{ .offset = LAN9303_MAC_RX_UNDSZE_CNT_0, .name = "TxUnderRun", },
{ .offset = LAN9303_MAC_TX_64_CNT_0, .name = "Tx64Byte", },
{ .offset = LAN9303_MAC_TX_127_CNT_0, .name = "Tx128Byte", },
{ .offset = LAN9303_MAC_TX_255_CNT_0, .name = "Tx256Byte", },
{ .offset = LAN9303_MAC_TX_511_CNT_0, .name = "Tx512Byte", },
{ .offset = LAN9303_MAC_TX_1023_CNT_0, .name = "Tx1024Byte", },
{ .offset = LAN9303_MAC_TX_MAX_CNT_0, .name = "TxMaxByte", },
{ .offset = LAN9303_MAC_TX_PKTLEN_CNT_0, .name = "TxByteCnt", },
{ .offset = LAN9303_MAC_TX_PKTOK_CNT_0, .name = "TxOk", },
{ .offset = LAN9303_MAC_TX_TOTALCOL_CNT_0, .name = "TxCollision", },
{ .offset = LAN9303_MAC_TX_MULTICOL_CNT_0, .name = "TxMultiCol", },
{ .offset = LAN9303_MAC_TX_SNGLECOL_CNT_0, .name = "TxSingleCol", },
{ .offset = LAN9303_MAC_TX_EXCOL_CNT_0, .name = "TxExcCol", },
{ .offset = LAN9303_MAC_TX_DEFER_CNT_0, .name = "TxDefer", },
{ .offset = LAN9303_MAC_TX_LATECOL_0, .name = "TxLateCol", },
};
static void lan9303_get_strings(struct dsa_switch *ds, int port, uint8_t *data)
{
unsigned int u;
for (u = 0; u < ARRAY_SIZE(lan9303_mib); u++) {
strncpy(data + u * ETH_GSTRING_LEN, lan9303_mib[u].name,
ETH_GSTRING_LEN);
}
}
static void lan9303_get_ethtool_stats(struct dsa_switch *ds, int port,
uint64_t *data)
{
struct lan9303 *chip = ds->priv;
unsigned int u;
for (u = 0; u < ARRAY_SIZE(lan9303_mib); u++) {
u32 reg;
int ret;
ret = lan9303_read_switch_port(
chip, port, lan9303_mib[u].offset, &reg);
if (ret)
dev_warn(chip->dev, "Reading status port %d reg %u failed\n",
port, lan9303_mib[u].offset);
data[u] = reg;
}
}
static int lan9303_get_sset_count(struct dsa_switch *ds)
{
return ARRAY_SIZE(lan9303_mib);
}
static int lan9303_phy_read(struct dsa_switch *ds, int phy, int regnum)
{
struct lan9303 *chip = ds->priv;
int phy_base = chip->phy_addr_sel_strap;
if (phy == phy_base)
return lan9303_virt_phy_reg_read(chip, regnum);
if (phy > phy_base + 2)
return -ENODEV;
return chip->ops->phy_read(chip, phy, regnum);
}
static int lan9303_phy_write(struct dsa_switch *ds, int phy, int regnum,
u16 val)
{
struct lan9303 *chip = ds->priv;
int phy_base = chip->phy_addr_sel_strap;
if (phy == phy_base)
return lan9303_virt_phy_reg_write(chip, regnum, val);
if (phy > phy_base + 2)
return -ENODEV;
return chip->ops->phy_write(chip, phy, regnum, val);
}
static void lan9303_adjust_link(struct dsa_switch *ds, int port,
struct phy_device *phydev)
{
struct lan9303 *chip = ds->priv;
int ctl, res;
if (!phy_is_pseudo_fixed_link(phydev))
return;
ctl = lan9303_phy_read(ds, port, MII_BMCR);
ctl &= ~BMCR_ANENABLE;
if (phydev->speed == SPEED_100)
ctl |= BMCR_SPEED100;
else if (phydev->speed == SPEED_10)
ctl &= ~BMCR_SPEED100;
else
dev_err(ds->dev, "unsupported speed: %d\n", phydev->speed);
if (phydev->duplex == DUPLEX_FULL)
ctl |= BMCR_FULLDPLX;
else
ctl &= ~BMCR_FULLDPLX;
res = lan9303_phy_write(ds, port, MII_BMCR, ctl);
if (port == chip->phy_addr_sel_strap) {
/* Virtual Phy: Remove Turbo 200Mbit mode */
lan9303_read(chip->regmap, LAN9303_VIRT_SPECIAL_CTRL, &ctl);
ctl &= ~LAN9303_VIRT_SPECIAL_TURBO;
res = regmap_write(chip->regmap,
LAN9303_VIRT_SPECIAL_CTRL, ctl);
}
}
static int lan9303_port_enable(struct dsa_switch *ds, int port,
struct phy_device *phy)
{
struct lan9303 *chip = ds->priv;
return lan9303_enable_processing_port(chip, port);
}
static void lan9303_port_disable(struct dsa_switch *ds, int port,
struct phy_device *phy)
{
struct lan9303 *chip = ds->priv;
lan9303_disable_processing_port(chip, port);
lan9303_phy_write(ds, chip->phy_addr_sel_strap + port,
MII_BMCR, BMCR_PDOWN);
}
static int lan9303_port_bridge_join(struct dsa_switch *ds, int port,
struct net_device *br)
{
struct lan9303 *chip = ds->priv;
dev_dbg(chip->dev, "%s(port %d)\n", __func__, port);
if (dsa_to_port(ds, 1)->bridge_dev == dsa_to_port(ds, 2)->bridge_dev) {
lan9303_bridge_ports(chip);
chip->is_bridged = true; /* unleash stp_state_set() */
}
return 0;
}
static void lan9303_port_bridge_leave(struct dsa_switch *ds, int port,
struct net_device *br)
{
struct lan9303 *chip = ds->priv;
dev_dbg(chip->dev, "%s(port %d)\n", __func__, port);
if (chip->is_bridged) {
lan9303_separate_ports(chip);
chip->is_bridged = false;
}
}
static void lan9303_port_stp_state_set(struct dsa_switch *ds, int port,
u8 state)
{
int portmask, portstate;
struct lan9303 *chip = ds->priv;
dev_dbg(chip->dev, "%s(port %d, state %d)\n",
__func__, port, state);
switch (state) {
case BR_STATE_DISABLED:
portstate = LAN9303_SWE_PORT_STATE_DISABLED_PORT0;
break;
case BR_STATE_BLOCKING:
case BR_STATE_LISTENING:
portstate = LAN9303_SWE_PORT_STATE_BLOCKING_PORT0;
break;
case BR_STATE_LEARNING:
portstate = LAN9303_SWE_PORT_STATE_LEARNING_PORT0;
break;
case BR_STATE_FORWARDING:
portstate = LAN9303_SWE_PORT_STATE_FORWARDING_PORT0;
break;
default:
portstate = LAN9303_SWE_PORT_STATE_DISABLED_PORT0;
dev_err(chip->dev, "unknown stp state: port %d, state %d\n",
port, state);
}
portmask = 0x3 << (port * 2);
portstate <<= (port * 2);
chip->swe_port_state = (chip->swe_port_state & ~portmask) | portstate;
if (chip->is_bridged)
lan9303_write_switch_reg(chip, LAN9303_SWE_PORT_STATE,
chip->swe_port_state);
/* else: touching SWE_PORT_STATE would break port separation */
}
static void lan9303_port_fast_age(struct dsa_switch *ds, int port)
{
struct lan9303 *chip = ds->priv;
struct del_port_learned_ctx del_ctx = {
.port = port,
};
dev_dbg(chip->dev, "%s(%d)\n", __func__, port);
lan9303_alr_loop(chip, alr_loop_cb_del_port_learned, &del_ctx);
}
static int lan9303_port_fdb_add(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid)
{
struct lan9303 *chip = ds->priv;
dev_dbg(chip->dev, "%s(%d, %pM, %d)\n", __func__, port, addr, vid);
if (vid)
return -EOPNOTSUPP;
return lan9303_alr_add_port(chip, addr, port, false);
}
static int lan9303_port_fdb_del(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid)
{
struct lan9303 *chip = ds->priv;
dev_dbg(chip->dev, "%s(%d, %pM, %d)\n", __func__, port, addr, vid);
if (vid)
return -EOPNOTSUPP;
lan9303_alr_del_port(chip, addr, port);
return 0;
}
static int lan9303_port_fdb_dump(struct dsa_switch *ds, int port,
dsa_fdb_dump_cb_t *cb, void *data)
{
struct lan9303 *chip = ds->priv;
struct port_fdb_dump_ctx dump_ctx = {
.port = port,
.data = data,
.cb = cb,
};
dev_dbg(chip->dev, "%s(%d)\n", __func__, port);
lan9303_alr_loop(chip, alr_loop_cb_fdb_port_dump, &dump_ctx);
return 0;
}
static int lan9303_port_mdb_prepare(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_mdb *mdb,
struct switchdev_trans *trans)
{
struct lan9303 *chip = ds->priv;
dev_dbg(chip->dev, "%s(%d, %pM, %d)\n", __func__, port, mdb->addr,
mdb->vid);
if (mdb->vid)
return -EOPNOTSUPP;
if (lan9303_alr_cache_find_mac(chip, mdb->addr))
return 0;
if (!lan9303_alr_cache_find_free(chip))
return -ENOSPC;
return 0;
}
static void lan9303_port_mdb_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_mdb *mdb,
struct switchdev_trans *trans)
{
struct lan9303 *chip = ds->priv;
dev_dbg(chip->dev, "%s(%d, %pM, %d)\n", __func__, port, mdb->addr,
mdb->vid);
lan9303_alr_add_port(chip, mdb->addr, port, false);
}
static int lan9303_port_mdb_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_mdb *mdb)
{
struct lan9303 *chip = ds->priv;
dev_dbg(chip->dev, "%s(%d, %pM, %d)\n", __func__, port, mdb->addr,
mdb->vid);
if (mdb->vid)
return -EOPNOTSUPP;
lan9303_alr_del_port(chip, mdb->addr, port);
return 0;
}
static const struct dsa_switch_ops lan9303_switch_ops = {
.get_tag_protocol = lan9303_get_tag_protocol,
.setup = lan9303_setup,
.get_strings = lan9303_get_strings,
.phy_read = lan9303_phy_read,
.phy_write = lan9303_phy_write,
.adjust_link = lan9303_adjust_link,
.get_ethtool_stats = lan9303_get_ethtool_stats,
.get_sset_count = lan9303_get_sset_count,
.port_enable = lan9303_port_enable,
.port_disable = lan9303_port_disable,
.port_bridge_join = lan9303_port_bridge_join,
.port_bridge_leave = lan9303_port_bridge_leave,
.port_stp_state_set = lan9303_port_stp_state_set,
.port_fast_age = lan9303_port_fast_age,
.port_fdb_add = lan9303_port_fdb_add,
.port_fdb_del = lan9303_port_fdb_del,
.port_fdb_dump = lan9303_port_fdb_dump,
.port_mdb_prepare = lan9303_port_mdb_prepare,
.port_mdb_add = lan9303_port_mdb_add,
.port_mdb_del = lan9303_port_mdb_del,
};
static int lan9303_register_switch(struct lan9303 *chip)
{
chip->ds = dsa_switch_alloc(chip->dev, LAN9303_NUM_PORTS);
if (!chip->ds)
return -ENOMEM;
chip->ds->priv = chip;
chip->ds->ops = &lan9303_switch_ops;
chip->ds->phys_mii_mask = chip->phy_addr_sel_strap ? 0xe : 0x7;
return dsa_register_switch(chip->ds);
}
static void lan9303_probe_reset_gpio(struct lan9303 *chip,
struct device_node *np)
{
chip->reset_gpio = devm_gpiod_get_optional(chip->dev, "reset",
GPIOD_OUT_LOW);
if (IS_ERR(chip->reset_gpio)) {
dev_dbg(chip->dev, "No reset GPIO defined\n");
return;
}
chip->reset_duration = 200;
if (np) {
of_property_read_u32(np, "reset-duration",
&chip->reset_duration);
} else {
dev_dbg(chip->dev, "reset duration defaults to 200 ms\n");
}
/* A sane reset duration should not be longer than 1s */
if (chip->reset_duration > 1000)
chip->reset_duration = 1000;
}
int lan9303_probe(struct lan9303 *chip, struct device_node *np)
{
int ret;
mutex_init(&chip->indirect_mutex);
lan9303_probe_reset_gpio(chip, np);
ret = lan9303_handle_reset(chip);
if (ret)
return ret;
ret = lan9303_check_device(chip);
if (ret)
return ret;
ret = lan9303_register_switch(chip);
if (ret) {
dev_dbg(chip->dev, "Failed to register switch: %d\n", ret);
return ret;
}
return 0;
}
EXPORT_SYMBOL(lan9303_probe);
int lan9303_remove(struct lan9303 *chip)
{
int rc;
rc = lan9303_disable_processing(chip);
if (rc != 0)
dev_warn(chip->dev, "shutting down failed\n");
dsa_unregister_switch(chip->ds);
/* assert reset to the whole device to prevent it from doing anything */
gpiod_set_value_cansleep(chip->reset_gpio, 1);
gpiod_unexport(chip->reset_gpio);
return 0;
}
EXPORT_SYMBOL(lan9303_remove);
MODULE_AUTHOR("Juergen Borleis <kernel@pengutronix.de>");
MODULE_DESCRIPTION("Core driver for SMSC/Microchip LAN9303 three port ethernet switch");
MODULE_LICENSE("GPL v2");