mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-18 19:16:49 +07:00
6c84239d59
Cleanups: - huge cleanup of rtc-generic and char/genrtc this allowed to cleanup rtc-cmos, rtc-sh, rtc-m68k, rtc-powerpc and rtc-parisc - move mn10300 to rtc-cmos Subsystem: - fix wakealarms after hibernate - multiples fixes for rctest - simplify implementations of .read_alarm New drivers: - Maxim MAX6916 Drivers: - ds1307: fix weekday - m41t80: add wakeup support - pcf85063: add support for PCF85063A variant - rv8803: extend i2c fix and other fixes - s35390a: fix alarm reading, this fixes instant reboot after shutdown for QNAP TS-41x - s3c: clock fixes -----BEGIN PGP SIGNATURE----- iQIcBAABCgAGBQJXokhIAAoJENiigzvaE+LCZqQP+wWzintN/N1u3dKiVB7iSdwq +S/jAXD9wW8OK9PI60/YUGRYeUXmZW9t4XYg1VKCxU9KpVC17LgOtDyXD8BufP1V uREJEzZw9O7zCCjeHp/ICFjBkc62Net6ZDOO+ZyXPNfddpS1Xq1uUgXLZc/202UR ID/kewu0pJRDnoxyqznWn9+8D33w/ygXs2slY2Ive0ONtjdgxGcsj2rNbb2RYn2z OP7br3lLg7qkFh4TtXb61eh/9GYIk6wzP/CrX5l/jH4SjQnrIk5g/X/Cd1qQ/qso JZzFoonOKvIp5Gw/+fZ9NP3YFcnkoRMv4NjZV8PAmsYLds+ibRiBcoB8u6FmiJV7 WW5uopgPkfCGN5BV3+QHwJDVe+WlgnlzaT5zPUCcP5KWusDts4fWIgzP7vrtAzf4 3OJLrgSGdBeOqWnJD21nxKUD27JOseX7D+BFtwxR4lMsXHqlHJfETpZ8gts1ZGH3 2U353j/jkZvGWmc6dMcuxOXT2K4VqpYeIIqs0IcLu6hM9crtR89zPR2Iu1AilfDW h2NroF+Q//SgMMzWoTEG6Tn7RAc7MthgA/tRCFZF9CBMzNs988w0CTHnKsIHmjpU UKkMeJGAC9YrPYIcqrg0oYsmLUWXc8JuZbGJBnei3BzbaMTlcwIN9qj36zfq6xWc TMLpbWEoIsgFIZMP/hAP =rpGB -----END PGP SIGNATURE----- Merge tag 'rtc-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/abelloni/linux Pull RTC updates from Alexandre Belloni: "RTC for 4.8 Cleanups: - huge cleanup of rtc-generic and char/genrtc this allowed to cleanup rtc-cmos, rtc-sh, rtc-m68k, rtc-powerpc and rtc-parisc - move mn10300 to rtc-cmos Subsystem: - fix wakealarms after hibernate - multiples fixes for rctest - simplify implementations of .read_alarm New drivers: - Maxim MAX6916 Drivers: - ds1307: fix weekday - m41t80: add wakeup support - pcf85063: add support for PCF85063A variant - rv8803: extend i2c fix and other fixes - s35390a: fix alarm reading, this fixes instant reboot after shutdown for QNAP TS-41x - s3c: clock fixes" * tag 'rtc-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/abelloni/linux: (65 commits) rtc: rv8803: Clear V1F when setting the time rtc: rv8803: Stop the clock while setting the time rtc: rv8803: Always apply the I²C workaround rtc: rv8803: Fix read day of week rtc: rv8803: Remove the check for valid time rtc: rv8803: Kconfig: Indicate rx8900 support rtc: asm9260: remove .owner field for driver rtc: at91sam9: Fix missing spin_lock_init() rtc: m41t80: add suspend handlers for alarm IRQ rtc: m41t80: make it a real error message rtc: pcf85063: Add support for the PCF85063A device rtc: pcf85063: fix year range rtc: hym8563: in .read_alarm set .tm_sec to 0 to signal minute accuracy rtc: explicitly set tm_sec = 0 for drivers with minute accurancy rtc: s3c: Add s3c_rtc_{enable/disable}_clk in s3c_rtc_setfreq() rtc: s3c: Remove unnecessary call to disable already disabled clock rtc: abx80x: use devm_add_action_or_reset() rtc: m41t80: use devm_add_action_or_reset() rtc: fix a typo and reduce three empty lines to one rtc: s35390a: improve two comments in .set_alarm ...
351 lines
9.5 KiB
C
351 lines
9.5 KiB
C
/*
|
|
* linux/arch/parisc/kernel/time.c
|
|
*
|
|
* Copyright (C) 1991, 1992, 1995 Linus Torvalds
|
|
* Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
|
|
* Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
|
|
*
|
|
* 1994-07-02 Alan Modra
|
|
* fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
|
|
* 1998-12-20 Updated NTP code according to technical memorandum Jan '96
|
|
* "A Kernel Model for Precision Timekeeping" by Dave Mills
|
|
*/
|
|
#include <linux/errno.h>
|
|
#include <linux/module.h>
|
|
#include <linux/rtc.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/param.h>
|
|
#include <linux/string.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/time.h>
|
|
#include <linux/init.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/clocksource.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/ftrace.h>
|
|
|
|
#include <asm/uaccess.h>
|
|
#include <asm/io.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/page.h>
|
|
#include <asm/param.h>
|
|
#include <asm/pdc.h>
|
|
#include <asm/led.h>
|
|
|
|
#include <linux/timex.h>
|
|
|
|
static unsigned long clocktick __read_mostly; /* timer cycles per tick */
|
|
|
|
#ifndef CONFIG_64BIT
|
|
/*
|
|
* The processor-internal cycle counter (Control Register 16) is used as time
|
|
* source for the sched_clock() function. This register is 64bit wide on a
|
|
* 64-bit kernel and 32bit on a 32-bit kernel. Since sched_clock() always
|
|
* requires a 64bit counter we emulate on the 32-bit kernel the higher 32bits
|
|
* with a per-cpu variable which we increase every time the counter
|
|
* wraps-around (which happens every ~4 secounds).
|
|
*/
|
|
static DEFINE_PER_CPU(unsigned long, cr16_high_32_bits);
|
|
#endif
|
|
|
|
/*
|
|
* We keep time on PA-RISC Linux by using the Interval Timer which is
|
|
* a pair of registers; one is read-only and one is write-only; both
|
|
* accessed through CR16. The read-only register is 32 or 64 bits wide,
|
|
* and increments by 1 every CPU clock tick. The architecture only
|
|
* guarantees us a rate between 0.5 and 2, but all implementations use a
|
|
* rate of 1. The write-only register is 32-bits wide. When the lowest
|
|
* 32 bits of the read-only register compare equal to the write-only
|
|
* register, it raises a maskable external interrupt. Each processor has
|
|
* an Interval Timer of its own and they are not synchronised.
|
|
*
|
|
* We want to generate an interrupt every 1/HZ seconds. So we program
|
|
* CR16 to interrupt every @clocktick cycles. The it_value in cpu_data
|
|
* is programmed with the intended time of the next tick. We can be
|
|
* held off for an arbitrarily long period of time by interrupts being
|
|
* disabled, so we may miss one or more ticks.
|
|
*/
|
|
irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
|
|
{
|
|
unsigned long now, now2;
|
|
unsigned long next_tick;
|
|
unsigned long cycles_elapsed, ticks_elapsed = 1;
|
|
unsigned long cycles_remainder;
|
|
unsigned int cpu = smp_processor_id();
|
|
struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
|
|
|
|
/* gcc can optimize for "read-only" case with a local clocktick */
|
|
unsigned long cpt = clocktick;
|
|
|
|
profile_tick(CPU_PROFILING);
|
|
|
|
/* Initialize next_tick to the expected tick time. */
|
|
next_tick = cpuinfo->it_value;
|
|
|
|
/* Get current cycle counter (Control Register 16). */
|
|
now = mfctl(16);
|
|
|
|
cycles_elapsed = now - next_tick;
|
|
|
|
if ((cycles_elapsed >> 6) < cpt) {
|
|
/* use "cheap" math (add/subtract) instead
|
|
* of the more expensive div/mul method
|
|
*/
|
|
cycles_remainder = cycles_elapsed;
|
|
while (cycles_remainder > cpt) {
|
|
cycles_remainder -= cpt;
|
|
ticks_elapsed++;
|
|
}
|
|
} else {
|
|
/* TODO: Reduce this to one fdiv op */
|
|
cycles_remainder = cycles_elapsed % cpt;
|
|
ticks_elapsed += cycles_elapsed / cpt;
|
|
}
|
|
|
|
/* convert from "division remainder" to "remainder of clock tick" */
|
|
cycles_remainder = cpt - cycles_remainder;
|
|
|
|
/* Determine when (in CR16 cycles) next IT interrupt will fire.
|
|
* We want IT to fire modulo clocktick even if we miss/skip some.
|
|
* But those interrupts don't in fact get delivered that regularly.
|
|
*/
|
|
next_tick = now + cycles_remainder;
|
|
|
|
cpuinfo->it_value = next_tick;
|
|
|
|
/* Program the IT when to deliver the next interrupt.
|
|
* Only bottom 32-bits of next_tick are writable in CR16!
|
|
*/
|
|
mtctl(next_tick, 16);
|
|
|
|
#if !defined(CONFIG_64BIT)
|
|
/* check for overflow on a 32bit kernel (every ~4 seconds). */
|
|
if (unlikely(next_tick < now))
|
|
this_cpu_inc(cr16_high_32_bits);
|
|
#endif
|
|
|
|
/* Skip one clocktick on purpose if we missed next_tick.
|
|
* The new CR16 must be "later" than current CR16 otherwise
|
|
* itimer would not fire until CR16 wrapped - e.g 4 seconds
|
|
* later on a 1Ghz processor. We'll account for the missed
|
|
* tick on the next timer interrupt.
|
|
*
|
|
* "next_tick - now" will always give the difference regardless
|
|
* if one or the other wrapped. If "now" is "bigger" we'll end up
|
|
* with a very large unsigned number.
|
|
*/
|
|
now2 = mfctl(16);
|
|
if (next_tick - now2 > cpt)
|
|
mtctl(next_tick+cpt, 16);
|
|
|
|
#if 1
|
|
/*
|
|
* GGG: DEBUG code for how many cycles programming CR16 used.
|
|
*/
|
|
if (unlikely(now2 - now > 0x3000)) /* 12K cycles */
|
|
printk (KERN_CRIT "timer_interrupt(CPU %d): SLOW! 0x%lx cycles!"
|
|
" cyc %lX rem %lX "
|
|
" next/now %lX/%lX\n",
|
|
cpu, now2 - now, cycles_elapsed, cycles_remainder,
|
|
next_tick, now );
|
|
#endif
|
|
|
|
/* Can we differentiate between "early CR16" (aka Scenario 1) and
|
|
* "long delay" (aka Scenario 3)? I don't think so.
|
|
*
|
|
* Timer_interrupt will be delivered at least a few hundred cycles
|
|
* after the IT fires. But it's arbitrary how much time passes
|
|
* before we call it "late". I've picked one second.
|
|
*
|
|
* It's important NO printk's are between reading CR16 and
|
|
* setting up the next value. May introduce huge variance.
|
|
*/
|
|
if (unlikely(ticks_elapsed > HZ)) {
|
|
/* Scenario 3: very long delay? bad in any case */
|
|
printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
|
|
" cycles %lX rem %lX "
|
|
" next/now %lX/%lX\n",
|
|
cpu,
|
|
cycles_elapsed, cycles_remainder,
|
|
next_tick, now );
|
|
}
|
|
|
|
/* Done mucking with unreliable delivery of interrupts.
|
|
* Go do system house keeping.
|
|
*/
|
|
|
|
if (!--cpuinfo->prof_counter) {
|
|
cpuinfo->prof_counter = cpuinfo->prof_multiplier;
|
|
update_process_times(user_mode(get_irq_regs()));
|
|
}
|
|
|
|
if (cpu == 0)
|
|
xtime_update(ticks_elapsed);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
|
|
unsigned long profile_pc(struct pt_regs *regs)
|
|
{
|
|
unsigned long pc = instruction_pointer(regs);
|
|
|
|
if (regs->gr[0] & PSW_N)
|
|
pc -= 4;
|
|
|
|
#ifdef CONFIG_SMP
|
|
if (in_lock_functions(pc))
|
|
pc = regs->gr[2];
|
|
#endif
|
|
|
|
return pc;
|
|
}
|
|
EXPORT_SYMBOL(profile_pc);
|
|
|
|
|
|
/* clock source code */
|
|
|
|
static cycle_t read_cr16(struct clocksource *cs)
|
|
{
|
|
return get_cycles();
|
|
}
|
|
|
|
static struct clocksource clocksource_cr16 = {
|
|
.name = "cr16",
|
|
.rating = 300,
|
|
.read = read_cr16,
|
|
.mask = CLOCKSOURCE_MASK(BITS_PER_LONG),
|
|
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
|
};
|
|
|
|
int update_cr16_clocksource(void)
|
|
{
|
|
/* since the cr16 cycle counters are not synchronized across CPUs,
|
|
we'll check if we should switch to a safe clocksource: */
|
|
if (clocksource_cr16.rating != 0 && num_online_cpus() > 1) {
|
|
clocksource_change_rating(&clocksource_cr16, 0);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void __init start_cpu_itimer(void)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
unsigned long next_tick = mfctl(16) + clocktick;
|
|
|
|
#if defined(CONFIG_HAVE_UNSTABLE_SCHED_CLOCK) && defined(CONFIG_64BIT)
|
|
/* With multiple 64bit CPUs online, the cr16's are not syncronized. */
|
|
if (cpu != 0)
|
|
clear_sched_clock_stable();
|
|
#endif
|
|
|
|
mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */
|
|
|
|
per_cpu(cpu_data, cpu).it_value = next_tick;
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
|
|
static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
|
|
{
|
|
struct pdc_tod tod_data;
|
|
|
|
memset(tm, 0, sizeof(*tm));
|
|
if (pdc_tod_read(&tod_data) < 0)
|
|
return -EOPNOTSUPP;
|
|
|
|
/* we treat tod_sec as unsigned, so this can work until year 2106 */
|
|
rtc_time64_to_tm(tod_data.tod_sec, tm);
|
|
return rtc_valid_tm(tm);
|
|
}
|
|
|
|
static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
|
|
{
|
|
time64_t secs = rtc_tm_to_time64(tm);
|
|
|
|
if (pdc_tod_set(secs, 0) < 0)
|
|
return -EOPNOTSUPP;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct rtc_class_ops rtc_generic_ops = {
|
|
.read_time = rtc_generic_get_time,
|
|
.set_time = rtc_generic_set_time,
|
|
};
|
|
|
|
static int __init rtc_init(void)
|
|
{
|
|
struct platform_device *pdev;
|
|
|
|
pdev = platform_device_register_data(NULL, "rtc-generic", -1,
|
|
&rtc_generic_ops,
|
|
sizeof(rtc_generic_ops));
|
|
|
|
return PTR_ERR_OR_ZERO(pdev);
|
|
}
|
|
device_initcall(rtc_init);
|
|
#endif
|
|
|
|
void read_persistent_clock(struct timespec *ts)
|
|
{
|
|
static struct pdc_tod tod_data;
|
|
if (pdc_tod_read(&tod_data) == 0) {
|
|
ts->tv_sec = tod_data.tod_sec;
|
|
ts->tv_nsec = tod_data.tod_usec * 1000;
|
|
} else {
|
|
printk(KERN_ERR "Error reading tod clock\n");
|
|
ts->tv_sec = 0;
|
|
ts->tv_nsec = 0;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* sched_clock() framework
|
|
*/
|
|
|
|
static u32 cyc2ns_mul __read_mostly;
|
|
static u32 cyc2ns_shift __read_mostly;
|
|
|
|
u64 sched_clock(void)
|
|
{
|
|
u64 now;
|
|
|
|
/* Get current cycle counter (Control Register 16). */
|
|
#ifdef CONFIG_64BIT
|
|
now = mfctl(16);
|
|
#else
|
|
now = mfctl(16) + (((u64) this_cpu_read(cr16_high_32_bits)) << 32);
|
|
#endif
|
|
|
|
/* return the value in ns (cycles_2_ns) */
|
|
return mul_u64_u32_shr(now, cyc2ns_mul, cyc2ns_shift);
|
|
}
|
|
|
|
|
|
/*
|
|
* timer interrupt and sched_clock() initialization
|
|
*/
|
|
|
|
void __init time_init(void)
|
|
{
|
|
unsigned long current_cr16_khz;
|
|
|
|
current_cr16_khz = PAGE0->mem_10msec/10; /* kHz */
|
|
clocktick = (100 * PAGE0->mem_10msec) / HZ;
|
|
|
|
/* calculate mult/shift values for cr16 */
|
|
clocks_calc_mult_shift(&cyc2ns_mul, &cyc2ns_shift, current_cr16_khz,
|
|
NSEC_PER_MSEC, 0);
|
|
|
|
start_cpu_itimer(); /* get CPU 0 started */
|
|
|
|
/* register at clocksource framework */
|
|
clocksource_register_khz(&clocksource_cr16, current_cr16_khz);
|
|
}
|