mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-23 07:38:25 +07:00
6c32978414
-----BEGIN PGP SIGNATURE----- iQIzBAABCAAdFiEEqG5UsNXhtOCrfGQP+7dXa6fLC2sFAl7U/i8ACgkQ+7dXa6fL C2u2eg/+Oy6ybq0hPovYVkFI9WIG7ZCz7w9Q6BEnfYMqqn3dnfJxKQ3l4pnQEOWw f4QfvpvevsYfMtOJkYcG6s66rQgbFdqc5TEyBBy0QNp3acRolN7IXkcopvv9xOpQ JxedpbFG1PTFLWjvBpyjlrUPouwLzq2FXAf1Ox0ZIMw6165mYOMWoli1VL8dh0A0 Ai7JUB0WrvTNbrwhV413obIzXT/rPCdcrgbQcgrrLPex8lQ47ZAE9bq6k4q5HiwK KRzEqkQgnzId6cCNTFBfkTWsx89zZunz7jkfM5yx30MvdAtPSxvvpfIPdZRZkXsP E2K9Fk1/6OQZTC0Op3Pi/bt+hVG/mD1p0sQUDgo2MO3qlSS+5mMkR8h3mJEgwK12 72P4YfOJkuAy2z3v4lL0GYdUDAZY6i6G8TMxERKu/a9O3VjTWICDOyBUS6F8YEAK C7HlbZxAEOKTVK0BTDTeEUBwSeDrBbvH6MnRlZCG5g1Fos2aWP0udhjiX8IfZLO7 GN6nWBvK1fYzfsUczdhgnoCzQs3suoDo04HnsTPGJ8De52T4x2RsjV+gPx0nrNAq eWChl1JvMWsY2B3GLnl9XQz4NNN+EreKEkk+PULDGllrArrPsp5Vnhb9FJO1PVCU hMDJHohPiXnKbc8f4Bd78OhIvnuoGfJPdM5MtNe2flUKy2a2ops= =YTGf -----END PGP SIGNATURE----- Merge tag 'notifications-20200601' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs Pull notification queue from David Howells: "This adds a general notification queue concept and adds an event source for keys/keyrings, such as linking and unlinking keys and changing their attributes. Thanks to Debarshi Ray, we do have a pull request to use this to fix a problem with gnome-online-accounts - as mentioned last time: https://gitlab.gnome.org/GNOME/gnome-online-accounts/merge_requests/47 Without this, g-o-a has to constantly poll a keyring-based kerberos cache to find out if kinit has changed anything. [ There are other notification pending: mount/sb fsinfo notifications for libmount that Karel Zak and Ian Kent have been working on, and Christian Brauner would like to use them in lxc, but let's see how this one works first ] LSM hooks are included: - A set of hooks are provided that allow an LSM to rule on whether or not a watch may be set. Each of these hooks takes a different "watched object" parameter, so they're not really shareable. The LSM should use current's credentials. [Wanted by SELinux & Smack] - A hook is provided to allow an LSM to rule on whether or not a particular message may be posted to a particular queue. This is given the credentials from the event generator (which may be the system) and the watch setter. [Wanted by Smack] I've provided SELinux and Smack with implementations of some of these hooks. WHY === Key/keyring notifications are desirable because if you have your kerberos tickets in a file/directory, your Gnome desktop will monitor that using something like fanotify and tell you if your credentials cache changes. However, we also have the ability to cache your kerberos tickets in the session, user or persistent keyring so that it isn't left around on disk across a reboot or logout. Keyrings, however, cannot currently be monitored asynchronously, so the desktop has to poll for it - not so good on a laptop. This facility will allow the desktop to avoid the need to poll. DESIGN DECISIONS ================ - The notification queue is built on top of a standard pipe. Messages are effectively spliced in. The pipe is opened with a special flag: pipe2(fds, O_NOTIFICATION_PIPE); The special flag has the same value as O_EXCL (which doesn't seem like it will ever be applicable in this context)[?]. It is given up front to make it a lot easier to prohibit splice&co from accessing the pipe. [?] Should this be done some other way? I'd rather not use up a new O_* flag if I can avoid it - should I add a pipe3() system call instead? The pipe is then configured:: ioctl(fds[1], IOC_WATCH_QUEUE_SET_SIZE, queue_depth); ioctl(fds[1], IOC_WATCH_QUEUE_SET_FILTER, &filter); Messages are then read out of the pipe using read(). - It should be possible to allow write() to insert data into the notification pipes too, but this is currently disabled as the kernel has to be able to insert messages into the pipe *without* holding pipe->mutex and the code to make this work needs careful auditing. - sendfile(), splice() and vmsplice() are disabled on notification pipes because of the pipe->mutex issue and also because they sometimes want to revert what they just did - but one or more notification messages might've been interleaved in the ring. - The kernel inserts messages with the wait queue spinlock held. This means that pipe_read() and pipe_write() have to take the spinlock to update the queue pointers. - Records in the buffer are binary, typed and have a length so that they can be of varying size. This allows multiple heterogeneous sources to share a common buffer; there are 16 million types available, of which I've used just a few, so there is scope for others to be used. Tags may be specified when a watchpoint is created to help distinguish the sources. - Records are filterable as types have up to 256 subtypes that can be individually filtered. Other filtration is also available. - Notification pipes don't interfere with each other; each may be bound to a different set of watches. Any particular notification will be copied to all the queues that are currently watching for it - and only those that are watching for it. - When recording a notification, the kernel will not sleep, but will rather mark a queue as having lost a message if there's insufficient space. read() will fabricate a loss notification message at an appropriate point later. - The notification pipe is created and then watchpoints are attached to it, using one of: keyctl_watch_key(KEY_SPEC_SESSION_KEYRING, fds[1], 0x01); watch_mount(AT_FDCWD, "/", 0, fd, 0x02); watch_sb(AT_FDCWD, "/mnt", 0, fd, 0x03); where in both cases, fd indicates the queue and the number after is a tag between 0 and 255. - Watches are removed if either the notification pipe is destroyed or the watched object is destroyed. In the latter case, a message will be generated indicating the enforced watch removal. Things I want to avoid: - Introducing features that make the core VFS dependent on the network stack or networking namespaces (ie. usage of netlink). - Dumping all this stuff into dmesg and having a daemon that sits there parsing the output and distributing it as this then puts the responsibility for security into userspace and makes handling namespaces tricky. Further, dmesg might not exist or might be inaccessible inside a container. - Letting users see events they shouldn't be able to see. TESTING AND MANPAGES ==================== - The keyutils tree has a pipe-watch branch that has keyctl commands for making use of notifications. Proposed manual pages can also be found on this branch, though a couple of them really need to go to the main manpages repository instead. If the kernel supports the watching of keys, then running "make test" on that branch will cause the testing infrastructure to spawn a monitoring process on the side that monitors a notifications pipe for all the key/keyring changes induced by the tests and they'll all be checked off to make sure they happened. https://git.kernel.org/pub/scm/linux/kernel/git/dhowells/keyutils.git/log/?h=pipe-watch - A test program is provided (samples/watch_queue/watch_test) that can be used to monitor for keyrings, mount and superblock events. Information on the notifications is simply logged to stdout" * tag 'notifications-20200601' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs: smack: Implement the watch_key and post_notification hooks selinux: Implement the watch_key security hook keys: Make the KEY_NEED_* perms an enum rather than a mask pipe: Add notification lossage handling pipe: Allow buffers to be marked read-whole-or-error for notifications Add sample notification program watch_queue: Add a key/keyring notification facility security: Add hooks to rule on setting a watch pipe: Add general notification queue support pipe: Add O_NOTIFICATION_PIPE security: Add a hook for the point of notification insertion uapi: General notification queue definitions
392 lines
20 KiB
C
392 lines
20 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
|
|
/*
|
|
* Linux Security Module Hook declarations.
|
|
*
|
|
* Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
|
|
* Copyright (C) 2001 Greg Kroah-Hartman <greg@kroah.com>
|
|
* Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
|
|
* Copyright (C) 2001 James Morris <jmorris@intercode.com.au>
|
|
* Copyright (C) 2001 Silicon Graphics, Inc. (Trust Technology Group)
|
|
* Copyright (C) 2015 Intel Corporation.
|
|
* Copyright (C) 2015 Casey Schaufler <casey@schaufler-ca.com>
|
|
* Copyright (C) 2016 Mellanox Techonologies
|
|
* Copyright (C) 2020 Google LLC.
|
|
*/
|
|
|
|
/*
|
|
* The macro LSM_HOOK is used to define the data structures required by the
|
|
* the LSM framework using the pattern:
|
|
*
|
|
* LSM_HOOK(<return_type>, <default_value>, <hook_name>, args...)
|
|
*
|
|
* struct security_hook_heads {
|
|
* #define LSM_HOOK(RET, DEFAULT, NAME, ...) struct hlist_head NAME;
|
|
* #include <linux/lsm_hook_defs.h>
|
|
* #undef LSM_HOOK
|
|
* };
|
|
*/
|
|
LSM_HOOK(int, 0, binder_set_context_mgr, struct task_struct *mgr)
|
|
LSM_HOOK(int, 0, binder_transaction, struct task_struct *from,
|
|
struct task_struct *to)
|
|
LSM_HOOK(int, 0, binder_transfer_binder, struct task_struct *from,
|
|
struct task_struct *to)
|
|
LSM_HOOK(int, 0, binder_transfer_file, struct task_struct *from,
|
|
struct task_struct *to, struct file *file)
|
|
LSM_HOOK(int, 0, ptrace_access_check, struct task_struct *child,
|
|
unsigned int mode)
|
|
LSM_HOOK(int, 0, ptrace_traceme, struct task_struct *parent)
|
|
LSM_HOOK(int, 0, capget, struct task_struct *target, kernel_cap_t *effective,
|
|
kernel_cap_t *inheritable, kernel_cap_t *permitted)
|
|
LSM_HOOK(int, 0, capset, struct cred *new, const struct cred *old,
|
|
const kernel_cap_t *effective, const kernel_cap_t *inheritable,
|
|
const kernel_cap_t *permitted)
|
|
LSM_HOOK(int, 0, capable, const struct cred *cred, struct user_namespace *ns,
|
|
int cap, unsigned int opts)
|
|
LSM_HOOK(int, 0, quotactl, int cmds, int type, int id, struct super_block *sb)
|
|
LSM_HOOK(int, 0, quota_on, struct dentry *dentry)
|
|
LSM_HOOK(int, 0, syslog, int type)
|
|
LSM_HOOK(int, 0, settime, const struct timespec64 *ts,
|
|
const struct timezone *tz)
|
|
LSM_HOOK(int, 0, vm_enough_memory, struct mm_struct *mm, long pages)
|
|
LSM_HOOK(int, 0, bprm_creds_for_exec, struct linux_binprm *bprm)
|
|
LSM_HOOK(int, 0, bprm_creds_from_file, struct linux_binprm *bprm, struct file *file)
|
|
LSM_HOOK(int, 0, bprm_check_security, struct linux_binprm *bprm)
|
|
LSM_HOOK(void, LSM_RET_VOID, bprm_committing_creds, struct linux_binprm *bprm)
|
|
LSM_HOOK(void, LSM_RET_VOID, bprm_committed_creds, struct linux_binprm *bprm)
|
|
LSM_HOOK(int, 0, fs_context_dup, struct fs_context *fc,
|
|
struct fs_context *src_sc)
|
|
LSM_HOOK(int, -ENOPARAM, fs_context_parse_param, struct fs_context *fc,
|
|
struct fs_parameter *param)
|
|
LSM_HOOK(int, 0, sb_alloc_security, struct super_block *sb)
|
|
LSM_HOOK(void, LSM_RET_VOID, sb_free_security, struct super_block *sb)
|
|
LSM_HOOK(void, LSM_RET_VOID, sb_free_mnt_opts, void *mnt_opts)
|
|
LSM_HOOK(int, 0, sb_eat_lsm_opts, char *orig, void **mnt_opts)
|
|
LSM_HOOK(int, 0, sb_remount, struct super_block *sb, void *mnt_opts)
|
|
LSM_HOOK(int, 0, sb_kern_mount, struct super_block *sb)
|
|
LSM_HOOK(int, 0, sb_show_options, struct seq_file *m, struct super_block *sb)
|
|
LSM_HOOK(int, 0, sb_statfs, struct dentry *dentry)
|
|
LSM_HOOK(int, 0, sb_mount, const char *dev_name, const struct path *path,
|
|
const char *type, unsigned long flags, void *data)
|
|
LSM_HOOK(int, 0, sb_umount, struct vfsmount *mnt, int flags)
|
|
LSM_HOOK(int, 0, sb_pivotroot, const struct path *old_path,
|
|
const struct path *new_path)
|
|
LSM_HOOK(int, 0, sb_set_mnt_opts, struct super_block *sb, void *mnt_opts,
|
|
unsigned long kern_flags, unsigned long *set_kern_flags)
|
|
LSM_HOOK(int, 0, sb_clone_mnt_opts, const struct super_block *oldsb,
|
|
struct super_block *newsb, unsigned long kern_flags,
|
|
unsigned long *set_kern_flags)
|
|
LSM_HOOK(int, 0, sb_add_mnt_opt, const char *option, const char *val,
|
|
int len, void **mnt_opts)
|
|
LSM_HOOK(int, 0, move_mount, const struct path *from_path,
|
|
const struct path *to_path)
|
|
LSM_HOOK(int, 0, dentry_init_security, struct dentry *dentry,
|
|
int mode, const struct qstr *name, void **ctx, u32 *ctxlen)
|
|
LSM_HOOK(int, 0, dentry_create_files_as, struct dentry *dentry, int mode,
|
|
struct qstr *name, const struct cred *old, struct cred *new)
|
|
|
|
#ifdef CONFIG_SECURITY_PATH
|
|
LSM_HOOK(int, 0, path_unlink, const struct path *dir, struct dentry *dentry)
|
|
LSM_HOOK(int, 0, path_mkdir, const struct path *dir, struct dentry *dentry,
|
|
umode_t mode)
|
|
LSM_HOOK(int, 0, path_rmdir, const struct path *dir, struct dentry *dentry)
|
|
LSM_HOOK(int, 0, path_mknod, const struct path *dir, struct dentry *dentry,
|
|
umode_t mode, unsigned int dev)
|
|
LSM_HOOK(int, 0, path_truncate, const struct path *path)
|
|
LSM_HOOK(int, 0, path_symlink, const struct path *dir, struct dentry *dentry,
|
|
const char *old_name)
|
|
LSM_HOOK(int, 0, path_link, struct dentry *old_dentry,
|
|
const struct path *new_dir, struct dentry *new_dentry)
|
|
LSM_HOOK(int, 0, path_rename, const struct path *old_dir,
|
|
struct dentry *old_dentry, const struct path *new_dir,
|
|
struct dentry *new_dentry)
|
|
LSM_HOOK(int, 0, path_chmod, const struct path *path, umode_t mode)
|
|
LSM_HOOK(int, 0, path_chown, const struct path *path, kuid_t uid, kgid_t gid)
|
|
LSM_HOOK(int, 0, path_chroot, const struct path *path)
|
|
#endif /* CONFIG_SECURITY_PATH */
|
|
|
|
/* Needed for inode based security check */
|
|
LSM_HOOK(int, 0, path_notify, const struct path *path, u64 mask,
|
|
unsigned int obj_type)
|
|
LSM_HOOK(int, 0, inode_alloc_security, struct inode *inode)
|
|
LSM_HOOK(void, LSM_RET_VOID, inode_free_security, struct inode *inode)
|
|
LSM_HOOK(int, 0, inode_init_security, struct inode *inode,
|
|
struct inode *dir, const struct qstr *qstr, const char **name,
|
|
void **value, size_t *len)
|
|
LSM_HOOK(int, 0, inode_create, struct inode *dir, struct dentry *dentry,
|
|
umode_t mode)
|
|
LSM_HOOK(int, 0, inode_link, struct dentry *old_dentry, struct inode *dir,
|
|
struct dentry *new_dentry)
|
|
LSM_HOOK(int, 0, inode_unlink, struct inode *dir, struct dentry *dentry)
|
|
LSM_HOOK(int, 0, inode_symlink, struct inode *dir, struct dentry *dentry,
|
|
const char *old_name)
|
|
LSM_HOOK(int, 0, inode_mkdir, struct inode *dir, struct dentry *dentry,
|
|
umode_t mode)
|
|
LSM_HOOK(int, 0, inode_rmdir, struct inode *dir, struct dentry *dentry)
|
|
LSM_HOOK(int, 0, inode_mknod, struct inode *dir, struct dentry *dentry,
|
|
umode_t mode, dev_t dev)
|
|
LSM_HOOK(int, 0, inode_rename, struct inode *old_dir, struct dentry *old_dentry,
|
|
struct inode *new_dir, struct dentry *new_dentry)
|
|
LSM_HOOK(int, 0, inode_readlink, struct dentry *dentry)
|
|
LSM_HOOK(int, 0, inode_follow_link, struct dentry *dentry, struct inode *inode,
|
|
bool rcu)
|
|
LSM_HOOK(int, 0, inode_permission, struct inode *inode, int mask)
|
|
LSM_HOOK(int, 0, inode_setattr, struct dentry *dentry, struct iattr *attr)
|
|
LSM_HOOK(int, 0, inode_getattr, const struct path *path)
|
|
LSM_HOOK(int, 0, inode_setxattr, struct dentry *dentry, const char *name,
|
|
const void *value, size_t size, int flags)
|
|
LSM_HOOK(void, LSM_RET_VOID, inode_post_setxattr, struct dentry *dentry,
|
|
const char *name, const void *value, size_t size, int flags)
|
|
LSM_HOOK(int, 0, inode_getxattr, struct dentry *dentry, const char *name)
|
|
LSM_HOOK(int, 0, inode_listxattr, struct dentry *dentry)
|
|
LSM_HOOK(int, 0, inode_removexattr, struct dentry *dentry, const char *name)
|
|
LSM_HOOK(int, 0, inode_need_killpriv, struct dentry *dentry)
|
|
LSM_HOOK(int, 0, inode_killpriv, struct dentry *dentry)
|
|
LSM_HOOK(int, -EOPNOTSUPP, inode_getsecurity, struct inode *inode,
|
|
const char *name, void **buffer, bool alloc)
|
|
LSM_HOOK(int, -EOPNOTSUPP, inode_setsecurity, struct inode *inode,
|
|
const char *name, const void *value, size_t size, int flags)
|
|
LSM_HOOK(int, 0, inode_listsecurity, struct inode *inode, char *buffer,
|
|
size_t buffer_size)
|
|
LSM_HOOK(void, LSM_RET_VOID, inode_getsecid, struct inode *inode, u32 *secid)
|
|
LSM_HOOK(int, 0, inode_copy_up, struct dentry *src, struct cred **new)
|
|
LSM_HOOK(int, 0, inode_copy_up_xattr, const char *name)
|
|
LSM_HOOK(int, 0, kernfs_init_security, struct kernfs_node *kn_dir,
|
|
struct kernfs_node *kn)
|
|
LSM_HOOK(int, 0, file_permission, struct file *file, int mask)
|
|
LSM_HOOK(int, 0, file_alloc_security, struct file *file)
|
|
LSM_HOOK(void, LSM_RET_VOID, file_free_security, struct file *file)
|
|
LSM_HOOK(int, 0, file_ioctl, struct file *file, unsigned int cmd,
|
|
unsigned long arg)
|
|
LSM_HOOK(int, 0, mmap_addr, unsigned long addr)
|
|
LSM_HOOK(int, 0, mmap_file, struct file *file, unsigned long reqprot,
|
|
unsigned long prot, unsigned long flags)
|
|
LSM_HOOK(int, 0, file_mprotect, struct vm_area_struct *vma,
|
|
unsigned long reqprot, unsigned long prot)
|
|
LSM_HOOK(int, 0, file_lock, struct file *file, unsigned int cmd)
|
|
LSM_HOOK(int, 0, file_fcntl, struct file *file, unsigned int cmd,
|
|
unsigned long arg)
|
|
LSM_HOOK(void, LSM_RET_VOID, file_set_fowner, struct file *file)
|
|
LSM_HOOK(int, 0, file_send_sigiotask, struct task_struct *tsk,
|
|
struct fown_struct *fown, int sig)
|
|
LSM_HOOK(int, 0, file_receive, struct file *file)
|
|
LSM_HOOK(int, 0, file_open, struct file *file)
|
|
LSM_HOOK(int, 0, task_alloc, struct task_struct *task,
|
|
unsigned long clone_flags)
|
|
LSM_HOOK(void, LSM_RET_VOID, task_free, struct task_struct *task)
|
|
LSM_HOOK(int, 0, cred_alloc_blank, struct cred *cred, gfp_t gfp)
|
|
LSM_HOOK(void, LSM_RET_VOID, cred_free, struct cred *cred)
|
|
LSM_HOOK(int, 0, cred_prepare, struct cred *new, const struct cred *old,
|
|
gfp_t gfp)
|
|
LSM_HOOK(void, LSM_RET_VOID, cred_transfer, struct cred *new,
|
|
const struct cred *old)
|
|
LSM_HOOK(void, LSM_RET_VOID, cred_getsecid, const struct cred *c, u32 *secid)
|
|
LSM_HOOK(int, 0, kernel_act_as, struct cred *new, u32 secid)
|
|
LSM_HOOK(int, 0, kernel_create_files_as, struct cred *new, struct inode *inode)
|
|
LSM_HOOK(int, 0, kernel_module_request, char *kmod_name)
|
|
LSM_HOOK(int, 0, kernel_load_data, enum kernel_load_data_id id)
|
|
LSM_HOOK(int, 0, kernel_read_file, struct file *file,
|
|
enum kernel_read_file_id id)
|
|
LSM_HOOK(int, 0, kernel_post_read_file, struct file *file, char *buf,
|
|
loff_t size, enum kernel_read_file_id id)
|
|
LSM_HOOK(int, 0, task_fix_setuid, struct cred *new, const struct cred *old,
|
|
int flags)
|
|
LSM_HOOK(int, 0, task_setpgid, struct task_struct *p, pid_t pgid)
|
|
LSM_HOOK(int, 0, task_getpgid, struct task_struct *p)
|
|
LSM_HOOK(int, 0, task_getsid, struct task_struct *p)
|
|
LSM_HOOK(void, LSM_RET_VOID, task_getsecid, struct task_struct *p, u32 *secid)
|
|
LSM_HOOK(int, 0, task_setnice, struct task_struct *p, int nice)
|
|
LSM_HOOK(int, 0, task_setioprio, struct task_struct *p, int ioprio)
|
|
LSM_HOOK(int, 0, task_getioprio, struct task_struct *p)
|
|
LSM_HOOK(int, 0, task_prlimit, const struct cred *cred,
|
|
const struct cred *tcred, unsigned int flags)
|
|
LSM_HOOK(int, 0, task_setrlimit, struct task_struct *p, unsigned int resource,
|
|
struct rlimit *new_rlim)
|
|
LSM_HOOK(int, 0, task_setscheduler, struct task_struct *p)
|
|
LSM_HOOK(int, 0, task_getscheduler, struct task_struct *p)
|
|
LSM_HOOK(int, 0, task_movememory, struct task_struct *p)
|
|
LSM_HOOK(int, 0, task_kill, struct task_struct *p, struct kernel_siginfo *info,
|
|
int sig, const struct cred *cred)
|
|
LSM_HOOK(int, -ENOSYS, task_prctl, int option, unsigned long arg2,
|
|
unsigned long arg3, unsigned long arg4, unsigned long arg5)
|
|
LSM_HOOK(void, LSM_RET_VOID, task_to_inode, struct task_struct *p,
|
|
struct inode *inode)
|
|
LSM_HOOK(int, 0, ipc_permission, struct kern_ipc_perm *ipcp, short flag)
|
|
LSM_HOOK(void, LSM_RET_VOID, ipc_getsecid, struct kern_ipc_perm *ipcp,
|
|
u32 *secid)
|
|
LSM_HOOK(int, 0, msg_msg_alloc_security, struct msg_msg *msg)
|
|
LSM_HOOK(void, LSM_RET_VOID, msg_msg_free_security, struct msg_msg *msg)
|
|
LSM_HOOK(int, 0, msg_queue_alloc_security, struct kern_ipc_perm *perm)
|
|
LSM_HOOK(void, LSM_RET_VOID, msg_queue_free_security,
|
|
struct kern_ipc_perm *perm)
|
|
LSM_HOOK(int, 0, msg_queue_associate, struct kern_ipc_perm *perm, int msqflg)
|
|
LSM_HOOK(int, 0, msg_queue_msgctl, struct kern_ipc_perm *perm, int cmd)
|
|
LSM_HOOK(int, 0, msg_queue_msgsnd, struct kern_ipc_perm *perm,
|
|
struct msg_msg *msg, int msqflg)
|
|
LSM_HOOK(int, 0, msg_queue_msgrcv, struct kern_ipc_perm *perm,
|
|
struct msg_msg *msg, struct task_struct *target, long type, int mode)
|
|
LSM_HOOK(int, 0, shm_alloc_security, struct kern_ipc_perm *perm)
|
|
LSM_HOOK(void, LSM_RET_VOID, shm_free_security, struct kern_ipc_perm *perm)
|
|
LSM_HOOK(int, 0, shm_associate, struct kern_ipc_perm *perm, int shmflg)
|
|
LSM_HOOK(int, 0, shm_shmctl, struct kern_ipc_perm *perm, int cmd)
|
|
LSM_HOOK(int, 0, shm_shmat, struct kern_ipc_perm *perm, char __user *shmaddr,
|
|
int shmflg)
|
|
LSM_HOOK(int, 0, sem_alloc_security, struct kern_ipc_perm *perm)
|
|
LSM_HOOK(void, LSM_RET_VOID, sem_free_security, struct kern_ipc_perm *perm)
|
|
LSM_HOOK(int, 0, sem_associate, struct kern_ipc_perm *perm, int semflg)
|
|
LSM_HOOK(int, 0, sem_semctl, struct kern_ipc_perm *perm, int cmd)
|
|
LSM_HOOK(int, 0, sem_semop, struct kern_ipc_perm *perm, struct sembuf *sops,
|
|
unsigned nsops, int alter)
|
|
LSM_HOOK(int, 0, netlink_send, struct sock *sk, struct sk_buff *skb)
|
|
LSM_HOOK(void, LSM_RET_VOID, d_instantiate, struct dentry *dentry,
|
|
struct inode *inode)
|
|
LSM_HOOK(int, -EINVAL, getprocattr, struct task_struct *p, char *name,
|
|
char **value)
|
|
LSM_HOOK(int, -EINVAL, setprocattr, const char *name, void *value, size_t size)
|
|
LSM_HOOK(int, 0, ismaclabel, const char *name)
|
|
LSM_HOOK(int, -EOPNOTSUPP, secid_to_secctx, u32 secid, char **secdata,
|
|
u32 *seclen)
|
|
LSM_HOOK(int, 0, secctx_to_secid, const char *secdata, u32 seclen, u32 *secid)
|
|
LSM_HOOK(void, LSM_RET_VOID, release_secctx, char *secdata, u32 seclen)
|
|
LSM_HOOK(void, LSM_RET_VOID, inode_invalidate_secctx, struct inode *inode)
|
|
LSM_HOOK(int, 0, inode_notifysecctx, struct inode *inode, void *ctx, u32 ctxlen)
|
|
LSM_HOOK(int, 0, inode_setsecctx, struct dentry *dentry, void *ctx, u32 ctxlen)
|
|
LSM_HOOK(int, 0, inode_getsecctx, struct inode *inode, void **ctx,
|
|
u32 *ctxlen)
|
|
|
|
#if defined(CONFIG_SECURITY) && defined(CONFIG_WATCH_QUEUE)
|
|
LSM_HOOK(int, 0, post_notification, const struct cred *w_cred,
|
|
const struct cred *cred, struct watch_notification *n)
|
|
#endif /* CONFIG_SECURITY && CONFIG_WATCH_QUEUE */
|
|
|
|
#if defined(CONFIG_SECURITY) && defined(CONFIG_KEY_NOTIFICATIONS)
|
|
LSM_HOOK(int, 0, watch_key, struct key *key)
|
|
#endif /* CONFIG_SECURITY && CONFIG_KEY_NOTIFICATIONS */
|
|
|
|
#ifdef CONFIG_SECURITY_NETWORK
|
|
LSM_HOOK(int, 0, unix_stream_connect, struct sock *sock, struct sock *other,
|
|
struct sock *newsk)
|
|
LSM_HOOK(int, 0, unix_may_send, struct socket *sock, struct socket *other)
|
|
LSM_HOOK(int, 0, socket_create, int family, int type, int protocol, int kern)
|
|
LSM_HOOK(int, 0, socket_post_create, struct socket *sock, int family, int type,
|
|
int protocol, int kern)
|
|
LSM_HOOK(int, 0, socket_socketpair, struct socket *socka, struct socket *sockb)
|
|
LSM_HOOK(int, 0, socket_bind, struct socket *sock, struct sockaddr *address,
|
|
int addrlen)
|
|
LSM_HOOK(int, 0, socket_connect, struct socket *sock, struct sockaddr *address,
|
|
int addrlen)
|
|
LSM_HOOK(int, 0, socket_listen, struct socket *sock, int backlog)
|
|
LSM_HOOK(int, 0, socket_accept, struct socket *sock, struct socket *newsock)
|
|
LSM_HOOK(int, 0, socket_sendmsg, struct socket *sock, struct msghdr *msg,
|
|
int size)
|
|
LSM_HOOK(int, 0, socket_recvmsg, struct socket *sock, struct msghdr *msg,
|
|
int size, int flags)
|
|
LSM_HOOK(int, 0, socket_getsockname, struct socket *sock)
|
|
LSM_HOOK(int, 0, socket_getpeername, struct socket *sock)
|
|
LSM_HOOK(int, 0, socket_getsockopt, struct socket *sock, int level, int optname)
|
|
LSM_HOOK(int, 0, socket_setsockopt, struct socket *sock, int level, int optname)
|
|
LSM_HOOK(int, 0, socket_shutdown, struct socket *sock, int how)
|
|
LSM_HOOK(int, 0, socket_sock_rcv_skb, struct sock *sk, struct sk_buff *skb)
|
|
LSM_HOOK(int, 0, socket_getpeersec_stream, struct socket *sock,
|
|
char __user *optval, int __user *optlen, unsigned len)
|
|
LSM_HOOK(int, 0, socket_getpeersec_dgram, struct socket *sock,
|
|
struct sk_buff *skb, u32 *secid)
|
|
LSM_HOOK(int, 0, sk_alloc_security, struct sock *sk, int family, gfp_t priority)
|
|
LSM_HOOK(void, LSM_RET_VOID, sk_free_security, struct sock *sk)
|
|
LSM_HOOK(void, LSM_RET_VOID, sk_clone_security, const struct sock *sk,
|
|
struct sock *newsk)
|
|
LSM_HOOK(void, LSM_RET_VOID, sk_getsecid, struct sock *sk, u32 *secid)
|
|
LSM_HOOK(void, LSM_RET_VOID, sock_graft, struct sock *sk, struct socket *parent)
|
|
LSM_HOOK(int, 0, inet_conn_request, struct sock *sk, struct sk_buff *skb,
|
|
struct request_sock *req)
|
|
LSM_HOOK(void, LSM_RET_VOID, inet_csk_clone, struct sock *newsk,
|
|
const struct request_sock *req)
|
|
LSM_HOOK(void, LSM_RET_VOID, inet_conn_established, struct sock *sk,
|
|
struct sk_buff *skb)
|
|
LSM_HOOK(int, 0, secmark_relabel_packet, u32 secid)
|
|
LSM_HOOK(void, LSM_RET_VOID, secmark_refcount_inc, void)
|
|
LSM_HOOK(void, LSM_RET_VOID, secmark_refcount_dec, void)
|
|
LSM_HOOK(void, LSM_RET_VOID, req_classify_flow, const struct request_sock *req,
|
|
struct flowi *fl)
|
|
LSM_HOOK(int, 0, tun_dev_alloc_security, void **security)
|
|
LSM_HOOK(void, LSM_RET_VOID, tun_dev_free_security, void *security)
|
|
LSM_HOOK(int, 0, tun_dev_create, void)
|
|
LSM_HOOK(int, 0, tun_dev_attach_queue, void *security)
|
|
LSM_HOOK(int, 0, tun_dev_attach, struct sock *sk, void *security)
|
|
LSM_HOOK(int, 0, tun_dev_open, void *security)
|
|
LSM_HOOK(int, 0, sctp_assoc_request, struct sctp_endpoint *ep,
|
|
struct sk_buff *skb)
|
|
LSM_HOOK(int, 0, sctp_bind_connect, struct sock *sk, int optname,
|
|
struct sockaddr *address, int addrlen)
|
|
LSM_HOOK(void, LSM_RET_VOID, sctp_sk_clone, struct sctp_endpoint *ep,
|
|
struct sock *sk, struct sock *newsk)
|
|
#endif /* CONFIG_SECURITY_NETWORK */
|
|
|
|
#ifdef CONFIG_SECURITY_INFINIBAND
|
|
LSM_HOOK(int, 0, ib_pkey_access, void *sec, u64 subnet_prefix, u16 pkey)
|
|
LSM_HOOK(int, 0, ib_endport_manage_subnet, void *sec, const char *dev_name,
|
|
u8 port_num)
|
|
LSM_HOOK(int, 0, ib_alloc_security, void **sec)
|
|
LSM_HOOK(void, LSM_RET_VOID, ib_free_security, void *sec)
|
|
#endif /* CONFIG_SECURITY_INFINIBAND */
|
|
|
|
#ifdef CONFIG_SECURITY_NETWORK_XFRM
|
|
LSM_HOOK(int, 0, xfrm_policy_alloc_security, struct xfrm_sec_ctx **ctxp,
|
|
struct xfrm_user_sec_ctx *sec_ctx, gfp_t gfp)
|
|
LSM_HOOK(int, 0, xfrm_policy_clone_security, struct xfrm_sec_ctx *old_ctx,
|
|
struct xfrm_sec_ctx **new_ctx)
|
|
LSM_HOOK(void, LSM_RET_VOID, xfrm_policy_free_security,
|
|
struct xfrm_sec_ctx *ctx)
|
|
LSM_HOOK(int, 0, xfrm_policy_delete_security, struct xfrm_sec_ctx *ctx)
|
|
LSM_HOOK(int, 0, xfrm_state_alloc, struct xfrm_state *x,
|
|
struct xfrm_user_sec_ctx *sec_ctx)
|
|
LSM_HOOK(int, 0, xfrm_state_alloc_acquire, struct xfrm_state *x,
|
|
struct xfrm_sec_ctx *polsec, u32 secid)
|
|
LSM_HOOK(void, LSM_RET_VOID, xfrm_state_free_security, struct xfrm_state *x)
|
|
LSM_HOOK(int, 0, xfrm_state_delete_security, struct xfrm_state *x)
|
|
LSM_HOOK(int, 0, xfrm_policy_lookup, struct xfrm_sec_ctx *ctx, u32 fl_secid,
|
|
u8 dir)
|
|
LSM_HOOK(int, 1, xfrm_state_pol_flow_match, struct xfrm_state *x,
|
|
struct xfrm_policy *xp, const struct flowi *fl)
|
|
LSM_HOOK(int, 0, xfrm_decode_session, struct sk_buff *skb, u32 *secid,
|
|
int ckall)
|
|
#endif /* CONFIG_SECURITY_NETWORK_XFRM */
|
|
|
|
/* key management security hooks */
|
|
#ifdef CONFIG_KEYS
|
|
LSM_HOOK(int, 0, key_alloc, struct key *key, const struct cred *cred,
|
|
unsigned long flags)
|
|
LSM_HOOK(void, LSM_RET_VOID, key_free, struct key *key)
|
|
LSM_HOOK(int, 0, key_permission, key_ref_t key_ref, const struct cred *cred,
|
|
unsigned perm)
|
|
LSM_HOOK(int, 0, key_getsecurity, struct key *key, char **_buffer)
|
|
#endif /* CONFIG_KEYS */
|
|
|
|
#ifdef CONFIG_AUDIT
|
|
LSM_HOOK(int, 0, audit_rule_init, u32 field, u32 op, char *rulestr,
|
|
void **lsmrule)
|
|
LSM_HOOK(int, 0, audit_rule_known, struct audit_krule *krule)
|
|
LSM_HOOK(int, 0, audit_rule_match, u32 secid, u32 field, u32 op, void *lsmrule)
|
|
LSM_HOOK(void, LSM_RET_VOID, audit_rule_free, void *lsmrule)
|
|
#endif /* CONFIG_AUDIT */
|
|
|
|
#ifdef CONFIG_BPF_SYSCALL
|
|
LSM_HOOK(int, 0, bpf, int cmd, union bpf_attr *attr, unsigned int size)
|
|
LSM_HOOK(int, 0, bpf_map, struct bpf_map *map, fmode_t fmode)
|
|
LSM_HOOK(int, 0, bpf_prog, struct bpf_prog *prog)
|
|
LSM_HOOK(int, 0, bpf_map_alloc_security, struct bpf_map *map)
|
|
LSM_HOOK(void, LSM_RET_VOID, bpf_map_free_security, struct bpf_map *map)
|
|
LSM_HOOK(int, 0, bpf_prog_alloc_security, struct bpf_prog_aux *aux)
|
|
LSM_HOOK(void, LSM_RET_VOID, bpf_prog_free_security, struct bpf_prog_aux *aux)
|
|
#endif /* CONFIG_BPF_SYSCALL */
|
|
|
|
LSM_HOOK(int, 0, locked_down, enum lockdown_reason what)
|
|
|
|
#ifdef CONFIG_PERF_EVENTS
|
|
LSM_HOOK(int, 0, perf_event_open, struct perf_event_attr *attr, int type)
|
|
LSM_HOOK(int, 0, perf_event_alloc, struct perf_event *event)
|
|
LSM_HOOK(void, LSM_RET_VOID, perf_event_free, struct perf_event *event)
|
|
LSM_HOOK(int, 0, perf_event_read, struct perf_event *event)
|
|
LSM_HOOK(int, 0, perf_event_write, struct perf_event *event)
|
|
#endif /* CONFIG_PERF_EVENTS */
|