mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
09d989d179
This adds a new regulatory hint to be used when we know all devices have been disconnected and idle. This can happen when we suspend, for instance. When we disconnect we can no longer assume the same regulatory rules learned from a country IE or beacon hints are applicable so restore regulatory settings to an initial state. Since driver hints are cached on the wiphy that called the hint, those hints are not reproduced onto cfg80211 as the wiphy will respect its own wiphy->regd regardless. Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2730 lines
70 KiB
C
2730 lines
70 KiB
C
/*
|
|
* Copyright 2002-2005, Instant802 Networks, Inc.
|
|
* Copyright 2005-2006, Devicescape Software, Inc.
|
|
* Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
|
|
* Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
/**
|
|
* DOC: Wireless regulatory infrastructure
|
|
*
|
|
* The usual implementation is for a driver to read a device EEPROM to
|
|
* determine which regulatory domain it should be operating under, then
|
|
* looking up the allowable channels in a driver-local table and finally
|
|
* registering those channels in the wiphy structure.
|
|
*
|
|
* Another set of compliance enforcement is for drivers to use their
|
|
* own compliance limits which can be stored on the EEPROM. The host
|
|
* driver or firmware may ensure these are used.
|
|
*
|
|
* In addition to all this we provide an extra layer of regulatory
|
|
* conformance. For drivers which do not have any regulatory
|
|
* information CRDA provides the complete regulatory solution.
|
|
* For others it provides a community effort on further restrictions
|
|
* to enhance compliance.
|
|
*
|
|
* Note: When number of rules --> infinity we will not be able to
|
|
* index on alpha2 any more, instead we'll probably have to
|
|
* rely on some SHA1 checksum of the regdomain for example.
|
|
*
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/list.h>
|
|
#include <linux/random.h>
|
|
#include <linux/nl80211.h>
|
|
#include <linux/platform_device.h>
|
|
#include <net/cfg80211.h>
|
|
#include "core.h"
|
|
#include "reg.h"
|
|
#include "regdb.h"
|
|
#include "nl80211.h"
|
|
|
|
#ifdef CONFIG_CFG80211_REG_DEBUG
|
|
#define REG_DBG_PRINT(format, args...) \
|
|
do { \
|
|
printk(KERN_DEBUG format , ## args); \
|
|
} while (0)
|
|
#else
|
|
#define REG_DBG_PRINT(args...)
|
|
#endif
|
|
|
|
/* Receipt of information from last regulatory request */
|
|
static struct regulatory_request *last_request;
|
|
|
|
/* To trigger userspace events */
|
|
static struct platform_device *reg_pdev;
|
|
|
|
/*
|
|
* Central wireless core regulatory domains, we only need two,
|
|
* the current one and a world regulatory domain in case we have no
|
|
* information to give us an alpha2
|
|
*/
|
|
const struct ieee80211_regdomain *cfg80211_regdomain;
|
|
|
|
/*
|
|
* We use this as a place for the rd structure built from the
|
|
* last parsed country IE to rest until CRDA gets back to us with
|
|
* what it thinks should apply for the same country
|
|
*/
|
|
static const struct ieee80211_regdomain *country_ie_regdomain;
|
|
|
|
/*
|
|
* Protects static reg.c components:
|
|
* - cfg80211_world_regdom
|
|
* - cfg80211_regdom
|
|
* - country_ie_regdomain
|
|
* - last_request
|
|
*/
|
|
DEFINE_MUTEX(reg_mutex);
|
|
#define assert_reg_lock() WARN_ON(!mutex_is_locked(®_mutex))
|
|
|
|
/* Used to queue up regulatory hints */
|
|
static LIST_HEAD(reg_requests_list);
|
|
static spinlock_t reg_requests_lock;
|
|
|
|
/* Used to queue up beacon hints for review */
|
|
static LIST_HEAD(reg_pending_beacons);
|
|
static spinlock_t reg_pending_beacons_lock;
|
|
|
|
/* Used to keep track of processed beacon hints */
|
|
static LIST_HEAD(reg_beacon_list);
|
|
|
|
struct reg_beacon {
|
|
struct list_head list;
|
|
struct ieee80211_channel chan;
|
|
};
|
|
|
|
/* We keep a static world regulatory domain in case of the absence of CRDA */
|
|
static const struct ieee80211_regdomain world_regdom = {
|
|
.n_reg_rules = 5,
|
|
.alpha2 = "00",
|
|
.reg_rules = {
|
|
/* IEEE 802.11b/g, channels 1..11 */
|
|
REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
|
|
/* IEEE 802.11b/g, channels 12..13. No HT40
|
|
* channel fits here. */
|
|
REG_RULE(2467-10, 2472+10, 20, 6, 20,
|
|
NL80211_RRF_PASSIVE_SCAN |
|
|
NL80211_RRF_NO_IBSS),
|
|
/* IEEE 802.11 channel 14 - Only JP enables
|
|
* this and for 802.11b only */
|
|
REG_RULE(2484-10, 2484+10, 20, 6, 20,
|
|
NL80211_RRF_PASSIVE_SCAN |
|
|
NL80211_RRF_NO_IBSS |
|
|
NL80211_RRF_NO_OFDM),
|
|
/* IEEE 802.11a, channel 36..48 */
|
|
REG_RULE(5180-10, 5240+10, 40, 6, 20,
|
|
NL80211_RRF_PASSIVE_SCAN |
|
|
NL80211_RRF_NO_IBSS),
|
|
|
|
/* NB: 5260 MHz - 5700 MHz requies DFS */
|
|
|
|
/* IEEE 802.11a, channel 149..165 */
|
|
REG_RULE(5745-10, 5825+10, 40, 6, 20,
|
|
NL80211_RRF_PASSIVE_SCAN |
|
|
NL80211_RRF_NO_IBSS),
|
|
}
|
|
};
|
|
|
|
static const struct ieee80211_regdomain *cfg80211_world_regdom =
|
|
&world_regdom;
|
|
|
|
static char *ieee80211_regdom = "00";
|
|
static char user_alpha2[2];
|
|
|
|
module_param(ieee80211_regdom, charp, 0444);
|
|
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
|
|
|
|
static void reset_regdomains(void)
|
|
{
|
|
/* avoid freeing static information or freeing something twice */
|
|
if (cfg80211_regdomain == cfg80211_world_regdom)
|
|
cfg80211_regdomain = NULL;
|
|
if (cfg80211_world_regdom == &world_regdom)
|
|
cfg80211_world_regdom = NULL;
|
|
if (cfg80211_regdomain == &world_regdom)
|
|
cfg80211_regdomain = NULL;
|
|
|
|
kfree(cfg80211_regdomain);
|
|
kfree(cfg80211_world_regdom);
|
|
|
|
cfg80211_world_regdom = &world_regdom;
|
|
cfg80211_regdomain = NULL;
|
|
}
|
|
|
|
/*
|
|
* Dynamic world regulatory domain requested by the wireless
|
|
* core upon initialization
|
|
*/
|
|
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
|
|
{
|
|
BUG_ON(!last_request);
|
|
|
|
reset_regdomains();
|
|
|
|
cfg80211_world_regdom = rd;
|
|
cfg80211_regdomain = rd;
|
|
}
|
|
|
|
bool is_world_regdom(const char *alpha2)
|
|
{
|
|
if (!alpha2)
|
|
return false;
|
|
if (alpha2[0] == '0' && alpha2[1] == '0')
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static bool is_alpha2_set(const char *alpha2)
|
|
{
|
|
if (!alpha2)
|
|
return false;
|
|
if (alpha2[0] != 0 && alpha2[1] != 0)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static bool is_alpha_upper(char letter)
|
|
{
|
|
/* ASCII A - Z */
|
|
if (letter >= 65 && letter <= 90)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static bool is_unknown_alpha2(const char *alpha2)
|
|
{
|
|
if (!alpha2)
|
|
return false;
|
|
/*
|
|
* Special case where regulatory domain was built by driver
|
|
* but a specific alpha2 cannot be determined
|
|
*/
|
|
if (alpha2[0] == '9' && alpha2[1] == '9')
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static bool is_intersected_alpha2(const char *alpha2)
|
|
{
|
|
if (!alpha2)
|
|
return false;
|
|
/*
|
|
* Special case where regulatory domain is the
|
|
* result of an intersection between two regulatory domain
|
|
* structures
|
|
*/
|
|
if (alpha2[0] == '9' && alpha2[1] == '8')
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static bool is_an_alpha2(const char *alpha2)
|
|
{
|
|
if (!alpha2)
|
|
return false;
|
|
if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
|
|
{
|
|
if (!alpha2_x || !alpha2_y)
|
|
return false;
|
|
if (alpha2_x[0] == alpha2_y[0] &&
|
|
alpha2_x[1] == alpha2_y[1])
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static bool regdom_changes(const char *alpha2)
|
|
{
|
|
assert_cfg80211_lock();
|
|
|
|
if (!cfg80211_regdomain)
|
|
return true;
|
|
if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
|
|
* you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
|
|
* has ever been issued.
|
|
*/
|
|
static bool is_user_regdom_saved(void)
|
|
{
|
|
if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
|
|
return false;
|
|
|
|
/* This would indicate a mistake on the design */
|
|
if (WARN((!is_world_regdom(user_alpha2) &&
|
|
!is_an_alpha2(user_alpha2)),
|
|
"Unexpected user alpha2: %c%c\n",
|
|
user_alpha2[0],
|
|
user_alpha2[1]))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* country_ie_integrity_changes - tells us if the country IE has changed
|
|
* @checksum: checksum of country IE of fields we are interested in
|
|
*
|
|
* If the country IE has not changed you can ignore it safely. This is
|
|
* useful to determine if two devices are seeing two different country IEs
|
|
* even on the same alpha2. Note that this will return false if no IE has
|
|
* been set on the wireless core yet.
|
|
*/
|
|
static bool country_ie_integrity_changes(u32 checksum)
|
|
{
|
|
/* If no IE has been set then the checksum doesn't change */
|
|
if (unlikely(!last_request->country_ie_checksum))
|
|
return false;
|
|
if (unlikely(last_request->country_ie_checksum != checksum))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
|
|
const struct ieee80211_regdomain *src_regd)
|
|
{
|
|
struct ieee80211_regdomain *regd;
|
|
int size_of_regd = 0;
|
|
unsigned int i;
|
|
|
|
size_of_regd = sizeof(struct ieee80211_regdomain) +
|
|
((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
|
|
|
|
regd = kzalloc(size_of_regd, GFP_KERNEL);
|
|
if (!regd)
|
|
return -ENOMEM;
|
|
|
|
memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
|
|
|
|
for (i = 0; i < src_regd->n_reg_rules; i++)
|
|
memcpy(®d->reg_rules[i], &src_regd->reg_rules[i],
|
|
sizeof(struct ieee80211_reg_rule));
|
|
|
|
*dst_regd = regd;
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_CFG80211_INTERNAL_REGDB
|
|
struct reg_regdb_search_request {
|
|
char alpha2[2];
|
|
struct list_head list;
|
|
};
|
|
|
|
static LIST_HEAD(reg_regdb_search_list);
|
|
static DEFINE_SPINLOCK(reg_regdb_search_lock);
|
|
|
|
static void reg_regdb_search(struct work_struct *work)
|
|
{
|
|
struct reg_regdb_search_request *request;
|
|
const struct ieee80211_regdomain *curdom, *regdom;
|
|
int i, r;
|
|
|
|
spin_lock(®_regdb_search_lock);
|
|
while (!list_empty(®_regdb_search_list)) {
|
|
request = list_first_entry(®_regdb_search_list,
|
|
struct reg_regdb_search_request,
|
|
list);
|
|
list_del(&request->list);
|
|
|
|
for (i=0; i<reg_regdb_size; i++) {
|
|
curdom = reg_regdb[i];
|
|
|
|
if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
|
|
r = reg_copy_regd(®dom, curdom);
|
|
if (r)
|
|
break;
|
|
spin_unlock(®_regdb_search_lock);
|
|
mutex_lock(&cfg80211_mutex);
|
|
set_regdom(regdom);
|
|
mutex_unlock(&cfg80211_mutex);
|
|
spin_lock(®_regdb_search_lock);
|
|
break;
|
|
}
|
|
}
|
|
|
|
kfree(request);
|
|
}
|
|
spin_unlock(®_regdb_search_lock);
|
|
}
|
|
|
|
static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
|
|
|
|
static void reg_regdb_query(const char *alpha2)
|
|
{
|
|
struct reg_regdb_search_request *request;
|
|
|
|
if (!alpha2)
|
|
return;
|
|
|
|
request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
|
|
if (!request)
|
|
return;
|
|
|
|
memcpy(request->alpha2, alpha2, 2);
|
|
|
|
spin_lock(®_regdb_search_lock);
|
|
list_add_tail(&request->list, ®_regdb_search_list);
|
|
spin_unlock(®_regdb_search_lock);
|
|
|
|
schedule_work(®_regdb_work);
|
|
}
|
|
#else
|
|
static inline void reg_regdb_query(const char *alpha2) {}
|
|
#endif /* CONFIG_CFG80211_INTERNAL_REGDB */
|
|
|
|
/*
|
|
* This lets us keep regulatory code which is updated on a regulatory
|
|
* basis in userspace.
|
|
*/
|
|
static int call_crda(const char *alpha2)
|
|
{
|
|
char country_env[9 + 2] = "COUNTRY=";
|
|
char *envp[] = {
|
|
country_env,
|
|
NULL
|
|
};
|
|
|
|
if (!is_world_regdom((char *) alpha2))
|
|
printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
|
|
alpha2[0], alpha2[1]);
|
|
else
|
|
printk(KERN_INFO "cfg80211: Calling CRDA to update world "
|
|
"regulatory domain\n");
|
|
|
|
/* query internal regulatory database (if it exists) */
|
|
reg_regdb_query(alpha2);
|
|
|
|
country_env[8] = alpha2[0];
|
|
country_env[9] = alpha2[1];
|
|
|
|
return kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, envp);
|
|
}
|
|
|
|
/* Used by nl80211 before kmalloc'ing our regulatory domain */
|
|
bool reg_is_valid_request(const char *alpha2)
|
|
{
|
|
assert_cfg80211_lock();
|
|
|
|
if (!last_request)
|
|
return false;
|
|
|
|
return alpha2_equal(last_request->alpha2, alpha2);
|
|
}
|
|
|
|
/* Sanity check on a regulatory rule */
|
|
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
|
|
{
|
|
const struct ieee80211_freq_range *freq_range = &rule->freq_range;
|
|
u32 freq_diff;
|
|
|
|
if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
|
|
return false;
|
|
|
|
if (freq_range->start_freq_khz > freq_range->end_freq_khz)
|
|
return false;
|
|
|
|
freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
|
|
|
|
if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
|
|
freq_range->max_bandwidth_khz > freq_diff)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
|
|
{
|
|
const struct ieee80211_reg_rule *reg_rule = NULL;
|
|
unsigned int i;
|
|
|
|
if (!rd->n_reg_rules)
|
|
return false;
|
|
|
|
if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
|
|
return false;
|
|
|
|
for (i = 0; i < rd->n_reg_rules; i++) {
|
|
reg_rule = &rd->reg_rules[i];
|
|
if (!is_valid_reg_rule(reg_rule))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
|
|
u32 center_freq_khz,
|
|
u32 bw_khz)
|
|
{
|
|
u32 start_freq_khz, end_freq_khz;
|
|
|
|
start_freq_khz = center_freq_khz - (bw_khz/2);
|
|
end_freq_khz = center_freq_khz + (bw_khz/2);
|
|
|
|
if (start_freq_khz >= freq_range->start_freq_khz &&
|
|
end_freq_khz <= freq_range->end_freq_khz)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* freq_in_rule_band - tells us if a frequency is in a frequency band
|
|
* @freq_range: frequency rule we want to query
|
|
* @freq_khz: frequency we are inquiring about
|
|
*
|
|
* This lets us know if a specific frequency rule is or is not relevant to
|
|
* a specific frequency's band. Bands are device specific and artificial
|
|
* definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
|
|
* safe for now to assume that a frequency rule should not be part of a
|
|
* frequency's band if the start freq or end freq are off by more than 2 GHz.
|
|
* This resolution can be lowered and should be considered as we add
|
|
* regulatory rule support for other "bands".
|
|
**/
|
|
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
|
|
u32 freq_khz)
|
|
{
|
|
#define ONE_GHZ_IN_KHZ 1000000
|
|
if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
|
|
return true;
|
|
if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
|
|
return true;
|
|
return false;
|
|
#undef ONE_GHZ_IN_KHZ
|
|
}
|
|
|
|
/*
|
|
* This is a work around for sanity checking ieee80211_channel_to_frequency()'s
|
|
* work. ieee80211_channel_to_frequency() can for example currently provide a
|
|
* 2 GHz channel when in fact a 5 GHz channel was desired. An example would be
|
|
* an AP providing channel 8 on a country IE triplet when it sent this on the
|
|
* 5 GHz band, that channel is designed to be channel 8 on 5 GHz, not a 2 GHz
|
|
* channel.
|
|
*
|
|
* This can be removed once ieee80211_channel_to_frequency() takes in a band.
|
|
*/
|
|
static bool chan_in_band(int chan, enum ieee80211_band band)
|
|
{
|
|
int center_freq = ieee80211_channel_to_frequency(chan);
|
|
|
|
switch (band) {
|
|
case IEEE80211_BAND_2GHZ:
|
|
if (center_freq <= 2484)
|
|
return true;
|
|
return false;
|
|
case IEEE80211_BAND_5GHZ:
|
|
if (center_freq >= 5005)
|
|
return true;
|
|
return false;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Some APs may send a country IE triplet for each channel they
|
|
* support and while this is completely overkill and silly we still
|
|
* need to support it. We avoid making a single rule for each channel
|
|
* though and to help us with this we use this helper to find the
|
|
* actual subband end channel. These type of country IE triplet
|
|
* scenerios are handled then, all yielding two regulaotry rules from
|
|
* parsing a country IE:
|
|
*
|
|
* [1]
|
|
* [2]
|
|
* [36]
|
|
* [40]
|
|
*
|
|
* [1]
|
|
* [2-4]
|
|
* [5-12]
|
|
* [36]
|
|
* [40-44]
|
|
*
|
|
* [1-4]
|
|
* [5-7]
|
|
* [36-44]
|
|
* [48-64]
|
|
*
|
|
* [36-36]
|
|
* [40-40]
|
|
* [44-44]
|
|
* [48-48]
|
|
* [52-52]
|
|
* [56-56]
|
|
* [60-60]
|
|
* [64-64]
|
|
* [100-100]
|
|
* [104-104]
|
|
* [108-108]
|
|
* [112-112]
|
|
* [116-116]
|
|
* [120-120]
|
|
* [124-124]
|
|
* [128-128]
|
|
* [132-132]
|
|
* [136-136]
|
|
* [140-140]
|
|
*
|
|
* Returns 0 if the IE has been found to be invalid in the middle
|
|
* somewhere.
|
|
*/
|
|
static int max_subband_chan(enum ieee80211_band band,
|
|
int orig_cur_chan,
|
|
int orig_end_channel,
|
|
s8 orig_max_power,
|
|
u8 **country_ie,
|
|
u8 *country_ie_len)
|
|
{
|
|
u8 *triplets_start = *country_ie;
|
|
u8 len_at_triplet = *country_ie_len;
|
|
int end_subband_chan = orig_end_channel;
|
|
|
|
/*
|
|
* We'll deal with padding for the caller unless
|
|
* its not immediate and we don't process any channels
|
|
*/
|
|
if (*country_ie_len == 1) {
|
|
*country_ie += 1;
|
|
*country_ie_len -= 1;
|
|
return orig_end_channel;
|
|
}
|
|
|
|
/* Move to the next triplet and then start search */
|
|
*country_ie += 3;
|
|
*country_ie_len -= 3;
|
|
|
|
if (!chan_in_band(orig_cur_chan, band))
|
|
return 0;
|
|
|
|
while (*country_ie_len >= 3) {
|
|
int end_channel = 0;
|
|
struct ieee80211_country_ie_triplet *triplet =
|
|
(struct ieee80211_country_ie_triplet *) *country_ie;
|
|
int cur_channel = 0, next_expected_chan;
|
|
|
|
/* means last triplet is completely unrelated to this one */
|
|
if (triplet->ext.reg_extension_id >=
|
|
IEEE80211_COUNTRY_EXTENSION_ID) {
|
|
*country_ie -= 3;
|
|
*country_ie_len += 3;
|
|
break;
|
|
}
|
|
|
|
if (triplet->chans.first_channel == 0) {
|
|
*country_ie += 1;
|
|
*country_ie_len -= 1;
|
|
if (*country_ie_len != 0)
|
|
return 0;
|
|
break;
|
|
}
|
|
|
|
if (triplet->chans.num_channels == 0)
|
|
return 0;
|
|
|
|
/* Monitonically increasing channel order */
|
|
if (triplet->chans.first_channel <= end_subband_chan)
|
|
return 0;
|
|
|
|
if (!chan_in_band(triplet->chans.first_channel, band))
|
|
return 0;
|
|
|
|
/* 2 GHz */
|
|
if (triplet->chans.first_channel <= 14) {
|
|
end_channel = triplet->chans.first_channel +
|
|
triplet->chans.num_channels - 1;
|
|
}
|
|
else {
|
|
end_channel = triplet->chans.first_channel +
|
|
(4 * (triplet->chans.num_channels - 1));
|
|
}
|
|
|
|
if (!chan_in_band(end_channel, band))
|
|
return 0;
|
|
|
|
if (orig_max_power != triplet->chans.max_power) {
|
|
*country_ie -= 3;
|
|
*country_ie_len += 3;
|
|
break;
|
|
}
|
|
|
|
cur_channel = triplet->chans.first_channel;
|
|
|
|
/* The key is finding the right next expected channel */
|
|
if (band == IEEE80211_BAND_2GHZ)
|
|
next_expected_chan = end_subband_chan + 1;
|
|
else
|
|
next_expected_chan = end_subband_chan + 4;
|
|
|
|
if (cur_channel != next_expected_chan) {
|
|
*country_ie -= 3;
|
|
*country_ie_len += 3;
|
|
break;
|
|
}
|
|
|
|
end_subband_chan = end_channel;
|
|
|
|
/* Move to the next one */
|
|
*country_ie += 3;
|
|
*country_ie_len -= 3;
|
|
|
|
/*
|
|
* Padding needs to be dealt with if we processed
|
|
* some channels.
|
|
*/
|
|
if (*country_ie_len == 1) {
|
|
*country_ie += 1;
|
|
*country_ie_len -= 1;
|
|
break;
|
|
}
|
|
|
|
/* If seen, the IE is invalid */
|
|
if (*country_ie_len == 2)
|
|
return 0;
|
|
}
|
|
|
|
if (end_subband_chan == orig_end_channel) {
|
|
*country_ie = triplets_start;
|
|
*country_ie_len = len_at_triplet;
|
|
return orig_end_channel;
|
|
}
|
|
|
|
return end_subband_chan;
|
|
}
|
|
|
|
/*
|
|
* Converts a country IE to a regulatory domain. A regulatory domain
|
|
* structure has a lot of information which the IE doesn't yet have,
|
|
* so for the other values we use upper max values as we will intersect
|
|
* with our userspace regulatory agent to get lower bounds.
|
|
*/
|
|
static struct ieee80211_regdomain *country_ie_2_rd(
|
|
enum ieee80211_band band,
|
|
u8 *country_ie,
|
|
u8 country_ie_len,
|
|
u32 *checksum)
|
|
{
|
|
struct ieee80211_regdomain *rd = NULL;
|
|
unsigned int i = 0;
|
|
char alpha2[2];
|
|
u32 flags = 0;
|
|
u32 num_rules = 0, size_of_regd = 0;
|
|
u8 *triplets_start = NULL;
|
|
u8 len_at_triplet = 0;
|
|
/* the last channel we have registered in a subband (triplet) */
|
|
int last_sub_max_channel = 0;
|
|
|
|
*checksum = 0xDEADBEEF;
|
|
|
|
/* Country IE requirements */
|
|
BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
|
|
country_ie_len & 0x01);
|
|
|
|
alpha2[0] = country_ie[0];
|
|
alpha2[1] = country_ie[1];
|
|
|
|
/*
|
|
* Third octet can be:
|
|
* 'I' - Indoor
|
|
* 'O' - Outdoor
|
|
*
|
|
* anything else we assume is no restrictions
|
|
*/
|
|
if (country_ie[2] == 'I')
|
|
flags = NL80211_RRF_NO_OUTDOOR;
|
|
else if (country_ie[2] == 'O')
|
|
flags = NL80211_RRF_NO_INDOOR;
|
|
|
|
country_ie += 3;
|
|
country_ie_len -= 3;
|
|
|
|
triplets_start = country_ie;
|
|
len_at_triplet = country_ie_len;
|
|
|
|
*checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);
|
|
|
|
/*
|
|
* We need to build a reg rule for each triplet, but first we must
|
|
* calculate the number of reg rules we will need. We will need one
|
|
* for each channel subband
|
|
*/
|
|
while (country_ie_len >= 3) {
|
|
int end_channel = 0;
|
|
struct ieee80211_country_ie_triplet *triplet =
|
|
(struct ieee80211_country_ie_triplet *) country_ie;
|
|
int cur_sub_max_channel = 0, cur_channel = 0;
|
|
|
|
if (triplet->ext.reg_extension_id >=
|
|
IEEE80211_COUNTRY_EXTENSION_ID) {
|
|
country_ie += 3;
|
|
country_ie_len -= 3;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* APs can add padding to make length divisible
|
|
* by two, required by the spec.
|
|
*/
|
|
if (triplet->chans.first_channel == 0) {
|
|
country_ie++;
|
|
country_ie_len--;
|
|
/* This is expected to be at the very end only */
|
|
if (country_ie_len != 0)
|
|
return NULL;
|
|
break;
|
|
}
|
|
|
|
if (triplet->chans.num_channels == 0)
|
|
return NULL;
|
|
|
|
if (!chan_in_band(triplet->chans.first_channel, band))
|
|
return NULL;
|
|
|
|
/* 2 GHz */
|
|
if (band == IEEE80211_BAND_2GHZ)
|
|
end_channel = triplet->chans.first_channel +
|
|
triplet->chans.num_channels - 1;
|
|
else
|
|
/*
|
|
* 5 GHz -- For example in country IEs if the first
|
|
* channel given is 36 and the number of channels is 4
|
|
* then the individual channel numbers defined for the
|
|
* 5 GHz PHY by these parameters are: 36, 40, 44, and 48
|
|
* and not 36, 37, 38, 39.
|
|
*
|
|
* See: http://tinyurl.com/11d-clarification
|
|
*/
|
|
end_channel = triplet->chans.first_channel +
|
|
(4 * (triplet->chans.num_channels - 1));
|
|
|
|
cur_channel = triplet->chans.first_channel;
|
|
|
|
/*
|
|
* Enhancement for APs that send a triplet for every channel
|
|
* or for whatever reason sends triplets with multiple channels
|
|
* separated when in fact they should be together.
|
|
*/
|
|
end_channel = max_subband_chan(band,
|
|
cur_channel,
|
|
end_channel,
|
|
triplet->chans.max_power,
|
|
&country_ie,
|
|
&country_ie_len);
|
|
if (!end_channel)
|
|
return NULL;
|
|
|
|
if (!chan_in_band(end_channel, band))
|
|
return NULL;
|
|
|
|
cur_sub_max_channel = end_channel;
|
|
|
|
/* Basic sanity check */
|
|
if (cur_sub_max_channel < cur_channel)
|
|
return NULL;
|
|
|
|
/*
|
|
* Do not allow overlapping channels. Also channels
|
|
* passed in each subband must be monotonically
|
|
* increasing
|
|
*/
|
|
if (last_sub_max_channel) {
|
|
if (cur_channel <= last_sub_max_channel)
|
|
return NULL;
|
|
if (cur_sub_max_channel <= last_sub_max_channel)
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* When dot11RegulatoryClassesRequired is supported
|
|
* we can throw ext triplets as part of this soup,
|
|
* for now we don't care when those change as we
|
|
* don't support them
|
|
*/
|
|
*checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
|
|
((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
|
|
((triplet->chans.max_power ^ cur_sub_max_channel) << 24);
|
|
|
|
last_sub_max_channel = cur_sub_max_channel;
|
|
|
|
num_rules++;
|
|
|
|
if (country_ie_len >= 3) {
|
|
country_ie += 3;
|
|
country_ie_len -= 3;
|
|
}
|
|
|
|
/*
|
|
* Note: this is not a IEEE requirement but
|
|
* simply a memory requirement
|
|
*/
|
|
if (num_rules > NL80211_MAX_SUPP_REG_RULES)
|
|
return NULL;
|
|
}
|
|
|
|
country_ie = triplets_start;
|
|
country_ie_len = len_at_triplet;
|
|
|
|
size_of_regd = sizeof(struct ieee80211_regdomain) +
|
|
(num_rules * sizeof(struct ieee80211_reg_rule));
|
|
|
|
rd = kzalloc(size_of_regd, GFP_KERNEL);
|
|
if (!rd)
|
|
return NULL;
|
|
|
|
rd->n_reg_rules = num_rules;
|
|
rd->alpha2[0] = alpha2[0];
|
|
rd->alpha2[1] = alpha2[1];
|
|
|
|
/* This time around we fill in the rd */
|
|
while (country_ie_len >= 3) {
|
|
int end_channel = 0;
|
|
struct ieee80211_country_ie_triplet *triplet =
|
|
(struct ieee80211_country_ie_triplet *) country_ie;
|
|
struct ieee80211_reg_rule *reg_rule = NULL;
|
|
struct ieee80211_freq_range *freq_range = NULL;
|
|
struct ieee80211_power_rule *power_rule = NULL;
|
|
|
|
/*
|
|
* Must parse if dot11RegulatoryClassesRequired is true,
|
|
* we don't support this yet
|
|
*/
|
|
if (triplet->ext.reg_extension_id >=
|
|
IEEE80211_COUNTRY_EXTENSION_ID) {
|
|
country_ie += 3;
|
|
country_ie_len -= 3;
|
|
continue;
|
|
}
|
|
|
|
if (triplet->chans.first_channel == 0) {
|
|
country_ie++;
|
|
country_ie_len--;
|
|
break;
|
|
}
|
|
|
|
reg_rule = &rd->reg_rules[i];
|
|
freq_range = ®_rule->freq_range;
|
|
power_rule = ®_rule->power_rule;
|
|
|
|
reg_rule->flags = flags;
|
|
|
|
/* 2 GHz */
|
|
if (band == IEEE80211_BAND_2GHZ)
|
|
end_channel = triplet->chans.first_channel +
|
|
triplet->chans.num_channels -1;
|
|
else
|
|
end_channel = triplet->chans.first_channel +
|
|
(4 * (triplet->chans.num_channels - 1));
|
|
|
|
end_channel = max_subband_chan(band,
|
|
triplet->chans.first_channel,
|
|
end_channel,
|
|
triplet->chans.max_power,
|
|
&country_ie,
|
|
&country_ie_len);
|
|
|
|
/*
|
|
* The +10 is since the regulatory domain expects
|
|
* the actual band edge, not the center of freq for
|
|
* its start and end freqs, assuming 20 MHz bandwidth on
|
|
* the channels passed
|
|
*/
|
|
freq_range->start_freq_khz =
|
|
MHZ_TO_KHZ(ieee80211_channel_to_frequency(
|
|
triplet->chans.first_channel) - 10);
|
|
freq_range->end_freq_khz =
|
|
MHZ_TO_KHZ(ieee80211_channel_to_frequency(
|
|
end_channel) + 10);
|
|
|
|
/*
|
|
* These are large arbitrary values we use to intersect later.
|
|
* Increment this if we ever support >= 40 MHz channels
|
|
* in IEEE 802.11
|
|
*/
|
|
freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
|
|
power_rule->max_antenna_gain = DBI_TO_MBI(100);
|
|
power_rule->max_eirp = DBM_TO_MBM(triplet->chans.max_power);
|
|
|
|
i++;
|
|
|
|
if (country_ie_len >= 3) {
|
|
country_ie += 3;
|
|
country_ie_len -= 3;
|
|
}
|
|
|
|
BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
|
|
}
|
|
|
|
return rd;
|
|
}
|
|
|
|
|
|
/*
|
|
* Helper for regdom_intersect(), this does the real
|
|
* mathematical intersection fun
|
|
*/
|
|
static int reg_rules_intersect(
|
|
const struct ieee80211_reg_rule *rule1,
|
|
const struct ieee80211_reg_rule *rule2,
|
|
struct ieee80211_reg_rule *intersected_rule)
|
|
{
|
|
const struct ieee80211_freq_range *freq_range1, *freq_range2;
|
|
struct ieee80211_freq_range *freq_range;
|
|
const struct ieee80211_power_rule *power_rule1, *power_rule2;
|
|
struct ieee80211_power_rule *power_rule;
|
|
u32 freq_diff;
|
|
|
|
freq_range1 = &rule1->freq_range;
|
|
freq_range2 = &rule2->freq_range;
|
|
freq_range = &intersected_rule->freq_range;
|
|
|
|
power_rule1 = &rule1->power_rule;
|
|
power_rule2 = &rule2->power_rule;
|
|
power_rule = &intersected_rule->power_rule;
|
|
|
|
freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
|
|
freq_range2->start_freq_khz);
|
|
freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
|
|
freq_range2->end_freq_khz);
|
|
freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
|
|
freq_range2->max_bandwidth_khz);
|
|
|
|
freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
|
|
if (freq_range->max_bandwidth_khz > freq_diff)
|
|
freq_range->max_bandwidth_khz = freq_diff;
|
|
|
|
power_rule->max_eirp = min(power_rule1->max_eirp,
|
|
power_rule2->max_eirp);
|
|
power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
|
|
power_rule2->max_antenna_gain);
|
|
|
|
intersected_rule->flags = (rule1->flags | rule2->flags);
|
|
|
|
if (!is_valid_reg_rule(intersected_rule))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* regdom_intersect - do the intersection between two regulatory domains
|
|
* @rd1: first regulatory domain
|
|
* @rd2: second regulatory domain
|
|
*
|
|
* Use this function to get the intersection between two regulatory domains.
|
|
* Once completed we will mark the alpha2 for the rd as intersected, "98",
|
|
* as no one single alpha2 can represent this regulatory domain.
|
|
*
|
|
* Returns a pointer to the regulatory domain structure which will hold the
|
|
* resulting intersection of rules between rd1 and rd2. We will
|
|
* kzalloc() this structure for you.
|
|
*/
|
|
static struct ieee80211_regdomain *regdom_intersect(
|
|
const struct ieee80211_regdomain *rd1,
|
|
const struct ieee80211_regdomain *rd2)
|
|
{
|
|
int r, size_of_regd;
|
|
unsigned int x, y;
|
|
unsigned int num_rules = 0, rule_idx = 0;
|
|
const struct ieee80211_reg_rule *rule1, *rule2;
|
|
struct ieee80211_reg_rule *intersected_rule;
|
|
struct ieee80211_regdomain *rd;
|
|
/* This is just a dummy holder to help us count */
|
|
struct ieee80211_reg_rule irule;
|
|
|
|
/* Uses the stack temporarily for counter arithmetic */
|
|
intersected_rule = &irule;
|
|
|
|
memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
|
|
|
|
if (!rd1 || !rd2)
|
|
return NULL;
|
|
|
|
/*
|
|
* First we get a count of the rules we'll need, then we actually
|
|
* build them. This is to so we can malloc() and free() a
|
|
* regdomain once. The reason we use reg_rules_intersect() here
|
|
* is it will return -EINVAL if the rule computed makes no sense.
|
|
* All rules that do check out OK are valid.
|
|
*/
|
|
|
|
for (x = 0; x < rd1->n_reg_rules; x++) {
|
|
rule1 = &rd1->reg_rules[x];
|
|
for (y = 0; y < rd2->n_reg_rules; y++) {
|
|
rule2 = &rd2->reg_rules[y];
|
|
if (!reg_rules_intersect(rule1, rule2,
|
|
intersected_rule))
|
|
num_rules++;
|
|
memset(intersected_rule, 0,
|
|
sizeof(struct ieee80211_reg_rule));
|
|
}
|
|
}
|
|
|
|
if (!num_rules)
|
|
return NULL;
|
|
|
|
size_of_regd = sizeof(struct ieee80211_regdomain) +
|
|
((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
|
|
|
|
rd = kzalloc(size_of_regd, GFP_KERNEL);
|
|
if (!rd)
|
|
return NULL;
|
|
|
|
for (x = 0; x < rd1->n_reg_rules; x++) {
|
|
rule1 = &rd1->reg_rules[x];
|
|
for (y = 0; y < rd2->n_reg_rules; y++) {
|
|
rule2 = &rd2->reg_rules[y];
|
|
/*
|
|
* This time around instead of using the stack lets
|
|
* write to the target rule directly saving ourselves
|
|
* a memcpy()
|
|
*/
|
|
intersected_rule = &rd->reg_rules[rule_idx];
|
|
r = reg_rules_intersect(rule1, rule2,
|
|
intersected_rule);
|
|
/*
|
|
* No need to memset here the intersected rule here as
|
|
* we're not using the stack anymore
|
|
*/
|
|
if (r)
|
|
continue;
|
|
rule_idx++;
|
|
}
|
|
}
|
|
|
|
if (rule_idx != num_rules) {
|
|
kfree(rd);
|
|
return NULL;
|
|
}
|
|
|
|
rd->n_reg_rules = num_rules;
|
|
rd->alpha2[0] = '9';
|
|
rd->alpha2[1] = '8';
|
|
|
|
return rd;
|
|
}
|
|
|
|
/*
|
|
* XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
|
|
* want to just have the channel structure use these
|
|
*/
|
|
static u32 map_regdom_flags(u32 rd_flags)
|
|
{
|
|
u32 channel_flags = 0;
|
|
if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
|
|
channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
|
|
if (rd_flags & NL80211_RRF_NO_IBSS)
|
|
channel_flags |= IEEE80211_CHAN_NO_IBSS;
|
|
if (rd_flags & NL80211_RRF_DFS)
|
|
channel_flags |= IEEE80211_CHAN_RADAR;
|
|
return channel_flags;
|
|
}
|
|
|
|
static int freq_reg_info_regd(struct wiphy *wiphy,
|
|
u32 center_freq,
|
|
u32 desired_bw_khz,
|
|
const struct ieee80211_reg_rule **reg_rule,
|
|
const struct ieee80211_regdomain *custom_regd)
|
|
{
|
|
int i;
|
|
bool band_rule_found = false;
|
|
const struct ieee80211_regdomain *regd;
|
|
bool bw_fits = false;
|
|
|
|
if (!desired_bw_khz)
|
|
desired_bw_khz = MHZ_TO_KHZ(20);
|
|
|
|
regd = custom_regd ? custom_regd : cfg80211_regdomain;
|
|
|
|
/*
|
|
* Follow the driver's regulatory domain, if present, unless a country
|
|
* IE has been processed or a user wants to help complaince further
|
|
*/
|
|
if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
|
|
last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
|
|
wiphy->regd)
|
|
regd = wiphy->regd;
|
|
|
|
if (!regd)
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < regd->n_reg_rules; i++) {
|
|
const struct ieee80211_reg_rule *rr;
|
|
const struct ieee80211_freq_range *fr = NULL;
|
|
const struct ieee80211_power_rule *pr = NULL;
|
|
|
|
rr = ®d->reg_rules[i];
|
|
fr = &rr->freq_range;
|
|
pr = &rr->power_rule;
|
|
|
|
/*
|
|
* We only need to know if one frequency rule was
|
|
* was in center_freq's band, that's enough, so lets
|
|
* not overwrite it once found
|
|
*/
|
|
if (!band_rule_found)
|
|
band_rule_found = freq_in_rule_band(fr, center_freq);
|
|
|
|
bw_fits = reg_does_bw_fit(fr,
|
|
center_freq,
|
|
desired_bw_khz);
|
|
|
|
if (band_rule_found && bw_fits) {
|
|
*reg_rule = rr;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (!band_rule_found)
|
|
return -ERANGE;
|
|
|
|
return -EINVAL;
|
|
}
|
|
EXPORT_SYMBOL(freq_reg_info);
|
|
|
|
int freq_reg_info(struct wiphy *wiphy,
|
|
u32 center_freq,
|
|
u32 desired_bw_khz,
|
|
const struct ieee80211_reg_rule **reg_rule)
|
|
{
|
|
assert_cfg80211_lock();
|
|
return freq_reg_info_regd(wiphy,
|
|
center_freq,
|
|
desired_bw_khz,
|
|
reg_rule,
|
|
NULL);
|
|
}
|
|
|
|
/*
|
|
* Note that right now we assume the desired channel bandwidth
|
|
* is always 20 MHz for each individual channel (HT40 uses 20 MHz
|
|
* per channel, the primary and the extension channel). To support
|
|
* smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
|
|
* new ieee80211_channel.target_bw and re run the regulatory check
|
|
* on the wiphy with the target_bw specified. Then we can simply use
|
|
* that below for the desired_bw_khz below.
|
|
*/
|
|
static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
|
|
unsigned int chan_idx)
|
|
{
|
|
int r;
|
|
u32 flags, bw_flags = 0;
|
|
u32 desired_bw_khz = MHZ_TO_KHZ(20);
|
|
const struct ieee80211_reg_rule *reg_rule = NULL;
|
|
const struct ieee80211_power_rule *power_rule = NULL;
|
|
const struct ieee80211_freq_range *freq_range = NULL;
|
|
struct ieee80211_supported_band *sband;
|
|
struct ieee80211_channel *chan;
|
|
struct wiphy *request_wiphy = NULL;
|
|
|
|
assert_cfg80211_lock();
|
|
|
|
request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
|
|
|
|
sband = wiphy->bands[band];
|
|
BUG_ON(chan_idx >= sband->n_channels);
|
|
chan = &sband->channels[chan_idx];
|
|
|
|
flags = chan->orig_flags;
|
|
|
|
r = freq_reg_info(wiphy,
|
|
MHZ_TO_KHZ(chan->center_freq),
|
|
desired_bw_khz,
|
|
®_rule);
|
|
|
|
if (r) {
|
|
/*
|
|
* This means no regulatory rule was found in the country IE
|
|
* with a frequency range on the center_freq's band, since
|
|
* IEEE-802.11 allows for a country IE to have a subset of the
|
|
* regulatory information provided in a country we ignore
|
|
* disabling the channel unless at least one reg rule was
|
|
* found on the center_freq's band. For details see this
|
|
* clarification:
|
|
*
|
|
* http://tinyurl.com/11d-clarification
|
|
*/
|
|
if (r == -ERANGE &&
|
|
last_request->initiator ==
|
|
NL80211_REGDOM_SET_BY_COUNTRY_IE) {
|
|
REG_DBG_PRINT("cfg80211: Leaving channel %d MHz "
|
|
"intact on %s - no rule found in band on "
|
|
"Country IE\n",
|
|
chan->center_freq, wiphy_name(wiphy));
|
|
} else {
|
|
/*
|
|
* In this case we know the country IE has at least one reg rule
|
|
* for the band so we respect its band definitions
|
|
*/
|
|
if (last_request->initiator ==
|
|
NL80211_REGDOM_SET_BY_COUNTRY_IE)
|
|
REG_DBG_PRINT("cfg80211: Disabling "
|
|
"channel %d MHz on %s due to "
|
|
"Country IE\n",
|
|
chan->center_freq, wiphy_name(wiphy));
|
|
flags |= IEEE80211_CHAN_DISABLED;
|
|
chan->flags = flags;
|
|
}
|
|
return;
|
|
}
|
|
|
|
power_rule = ®_rule->power_rule;
|
|
freq_range = ®_rule->freq_range;
|
|
|
|
if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
|
|
bw_flags = IEEE80211_CHAN_NO_HT40;
|
|
|
|
if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
|
|
request_wiphy && request_wiphy == wiphy &&
|
|
request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
|
|
/*
|
|
* This gaurantees the driver's requested regulatory domain
|
|
* will always be used as a base for further regulatory
|
|
* settings
|
|
*/
|
|
chan->flags = chan->orig_flags =
|
|
map_regdom_flags(reg_rule->flags) | bw_flags;
|
|
chan->max_antenna_gain = chan->orig_mag =
|
|
(int) MBI_TO_DBI(power_rule->max_antenna_gain);
|
|
chan->max_power = chan->orig_mpwr =
|
|
(int) MBM_TO_DBM(power_rule->max_eirp);
|
|
return;
|
|
}
|
|
|
|
chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
|
|
chan->max_antenna_gain = min(chan->orig_mag,
|
|
(int) MBI_TO_DBI(power_rule->max_antenna_gain));
|
|
if (chan->orig_mpwr)
|
|
chan->max_power = min(chan->orig_mpwr,
|
|
(int) MBM_TO_DBM(power_rule->max_eirp));
|
|
else
|
|
chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
|
|
}
|
|
|
|
static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
|
|
{
|
|
unsigned int i;
|
|
struct ieee80211_supported_band *sband;
|
|
|
|
BUG_ON(!wiphy->bands[band]);
|
|
sband = wiphy->bands[band];
|
|
|
|
for (i = 0; i < sband->n_channels; i++)
|
|
handle_channel(wiphy, band, i);
|
|
}
|
|
|
|
static bool ignore_reg_update(struct wiphy *wiphy,
|
|
enum nl80211_reg_initiator initiator)
|
|
{
|
|
if (!last_request)
|
|
return true;
|
|
if (initiator == NL80211_REGDOM_SET_BY_CORE &&
|
|
wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
|
|
return true;
|
|
/*
|
|
* wiphy->regd will be set once the device has its own
|
|
* desired regulatory domain set
|
|
*/
|
|
if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
|
|
!is_world_regdom(last_request->alpha2))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
|
|
{
|
|
struct cfg80211_registered_device *rdev;
|
|
|
|
list_for_each_entry(rdev, &cfg80211_rdev_list, list)
|
|
wiphy_update_regulatory(&rdev->wiphy, initiator);
|
|
}
|
|
|
|
static void handle_reg_beacon(struct wiphy *wiphy,
|
|
unsigned int chan_idx,
|
|
struct reg_beacon *reg_beacon)
|
|
{
|
|
struct ieee80211_supported_band *sband;
|
|
struct ieee80211_channel *chan;
|
|
bool channel_changed = false;
|
|
struct ieee80211_channel chan_before;
|
|
|
|
assert_cfg80211_lock();
|
|
|
|
sband = wiphy->bands[reg_beacon->chan.band];
|
|
chan = &sband->channels[chan_idx];
|
|
|
|
if (likely(chan->center_freq != reg_beacon->chan.center_freq))
|
|
return;
|
|
|
|
if (chan->beacon_found)
|
|
return;
|
|
|
|
chan->beacon_found = true;
|
|
|
|
if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
|
|
return;
|
|
|
|
chan_before.center_freq = chan->center_freq;
|
|
chan_before.flags = chan->flags;
|
|
|
|
if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
|
|
chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
|
|
channel_changed = true;
|
|
}
|
|
|
|
if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
|
|
chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
|
|
channel_changed = true;
|
|
}
|
|
|
|
if (channel_changed)
|
|
nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
|
|
}
|
|
|
|
/*
|
|
* Called when a scan on a wiphy finds a beacon on
|
|
* new channel
|
|
*/
|
|
static void wiphy_update_new_beacon(struct wiphy *wiphy,
|
|
struct reg_beacon *reg_beacon)
|
|
{
|
|
unsigned int i;
|
|
struct ieee80211_supported_band *sband;
|
|
|
|
assert_cfg80211_lock();
|
|
|
|
if (!wiphy->bands[reg_beacon->chan.band])
|
|
return;
|
|
|
|
sband = wiphy->bands[reg_beacon->chan.band];
|
|
|
|
for (i = 0; i < sband->n_channels; i++)
|
|
handle_reg_beacon(wiphy, i, reg_beacon);
|
|
}
|
|
|
|
/*
|
|
* Called upon reg changes or a new wiphy is added
|
|
*/
|
|
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
|
|
{
|
|
unsigned int i;
|
|
struct ieee80211_supported_band *sband;
|
|
struct reg_beacon *reg_beacon;
|
|
|
|
assert_cfg80211_lock();
|
|
|
|
if (list_empty(®_beacon_list))
|
|
return;
|
|
|
|
list_for_each_entry(reg_beacon, ®_beacon_list, list) {
|
|
if (!wiphy->bands[reg_beacon->chan.band])
|
|
continue;
|
|
sband = wiphy->bands[reg_beacon->chan.band];
|
|
for (i = 0; i < sband->n_channels; i++)
|
|
handle_reg_beacon(wiphy, i, reg_beacon);
|
|
}
|
|
}
|
|
|
|
static bool reg_is_world_roaming(struct wiphy *wiphy)
|
|
{
|
|
if (is_world_regdom(cfg80211_regdomain->alpha2) ||
|
|
(wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
|
|
return true;
|
|
if (last_request &&
|
|
last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
|
|
wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/* Reap the advantages of previously found beacons */
|
|
static void reg_process_beacons(struct wiphy *wiphy)
|
|
{
|
|
/*
|
|
* Means we are just firing up cfg80211, so no beacons would
|
|
* have been processed yet.
|
|
*/
|
|
if (!last_request)
|
|
return;
|
|
if (!reg_is_world_roaming(wiphy))
|
|
return;
|
|
wiphy_update_beacon_reg(wiphy);
|
|
}
|
|
|
|
static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
|
|
{
|
|
if (!chan)
|
|
return true;
|
|
if (chan->flags & IEEE80211_CHAN_DISABLED)
|
|
return true;
|
|
/* This would happen when regulatory rules disallow HT40 completely */
|
|
if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static void reg_process_ht_flags_channel(struct wiphy *wiphy,
|
|
enum ieee80211_band band,
|
|
unsigned int chan_idx)
|
|
{
|
|
struct ieee80211_supported_band *sband;
|
|
struct ieee80211_channel *channel;
|
|
struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
|
|
unsigned int i;
|
|
|
|
assert_cfg80211_lock();
|
|
|
|
sband = wiphy->bands[band];
|
|
BUG_ON(chan_idx >= sband->n_channels);
|
|
channel = &sband->channels[chan_idx];
|
|
|
|
if (is_ht40_not_allowed(channel)) {
|
|
channel->flags |= IEEE80211_CHAN_NO_HT40;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* We need to ensure the extension channels exist to
|
|
* be able to use HT40- or HT40+, this finds them (or not)
|
|
*/
|
|
for (i = 0; i < sband->n_channels; i++) {
|
|
struct ieee80211_channel *c = &sband->channels[i];
|
|
if (c->center_freq == (channel->center_freq - 20))
|
|
channel_before = c;
|
|
if (c->center_freq == (channel->center_freq + 20))
|
|
channel_after = c;
|
|
}
|
|
|
|
/*
|
|
* Please note that this assumes target bandwidth is 20 MHz,
|
|
* if that ever changes we also need to change the below logic
|
|
* to include that as well.
|
|
*/
|
|
if (is_ht40_not_allowed(channel_before))
|
|
channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
|
|
else
|
|
channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
|
|
|
|
if (is_ht40_not_allowed(channel_after))
|
|
channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
|
|
else
|
|
channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
|
|
}
|
|
|
|
static void reg_process_ht_flags_band(struct wiphy *wiphy,
|
|
enum ieee80211_band band)
|
|
{
|
|
unsigned int i;
|
|
struct ieee80211_supported_band *sband;
|
|
|
|
BUG_ON(!wiphy->bands[band]);
|
|
sband = wiphy->bands[band];
|
|
|
|
for (i = 0; i < sband->n_channels; i++)
|
|
reg_process_ht_flags_channel(wiphy, band, i);
|
|
}
|
|
|
|
static void reg_process_ht_flags(struct wiphy *wiphy)
|
|
{
|
|
enum ieee80211_band band;
|
|
|
|
if (!wiphy)
|
|
return;
|
|
|
|
for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
|
|
if (wiphy->bands[band])
|
|
reg_process_ht_flags_band(wiphy, band);
|
|
}
|
|
|
|
}
|
|
|
|
void wiphy_update_regulatory(struct wiphy *wiphy,
|
|
enum nl80211_reg_initiator initiator)
|
|
{
|
|
enum ieee80211_band band;
|
|
|
|
if (ignore_reg_update(wiphy, initiator))
|
|
goto out;
|
|
for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
|
|
if (wiphy->bands[band])
|
|
handle_band(wiphy, band);
|
|
}
|
|
out:
|
|
reg_process_beacons(wiphy);
|
|
reg_process_ht_flags(wiphy);
|
|
if (wiphy->reg_notifier)
|
|
wiphy->reg_notifier(wiphy, last_request);
|
|
}
|
|
|
|
static void handle_channel_custom(struct wiphy *wiphy,
|
|
enum ieee80211_band band,
|
|
unsigned int chan_idx,
|
|
const struct ieee80211_regdomain *regd)
|
|
{
|
|
int r;
|
|
u32 desired_bw_khz = MHZ_TO_KHZ(20);
|
|
u32 bw_flags = 0;
|
|
const struct ieee80211_reg_rule *reg_rule = NULL;
|
|
const struct ieee80211_power_rule *power_rule = NULL;
|
|
const struct ieee80211_freq_range *freq_range = NULL;
|
|
struct ieee80211_supported_band *sband;
|
|
struct ieee80211_channel *chan;
|
|
|
|
assert_reg_lock();
|
|
|
|
sband = wiphy->bands[band];
|
|
BUG_ON(chan_idx >= sband->n_channels);
|
|
chan = &sband->channels[chan_idx];
|
|
|
|
r = freq_reg_info_regd(wiphy,
|
|
MHZ_TO_KHZ(chan->center_freq),
|
|
desired_bw_khz,
|
|
®_rule,
|
|
regd);
|
|
|
|
if (r) {
|
|
chan->flags = IEEE80211_CHAN_DISABLED;
|
|
return;
|
|
}
|
|
|
|
power_rule = ®_rule->power_rule;
|
|
freq_range = ®_rule->freq_range;
|
|
|
|
if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
|
|
bw_flags = IEEE80211_CHAN_NO_HT40;
|
|
|
|
chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
|
|
chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
|
|
chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
|
|
}
|
|
|
|
static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
|
|
const struct ieee80211_regdomain *regd)
|
|
{
|
|
unsigned int i;
|
|
struct ieee80211_supported_band *sband;
|
|
|
|
BUG_ON(!wiphy->bands[band]);
|
|
sband = wiphy->bands[band];
|
|
|
|
for (i = 0; i < sband->n_channels; i++)
|
|
handle_channel_custom(wiphy, band, i, regd);
|
|
}
|
|
|
|
/* Used by drivers prior to wiphy registration */
|
|
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
|
|
const struct ieee80211_regdomain *regd)
|
|
{
|
|
enum ieee80211_band band;
|
|
unsigned int bands_set = 0;
|
|
|
|
mutex_lock(®_mutex);
|
|
for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
|
|
if (!wiphy->bands[band])
|
|
continue;
|
|
handle_band_custom(wiphy, band, regd);
|
|
bands_set++;
|
|
}
|
|
mutex_unlock(®_mutex);
|
|
|
|
/*
|
|
* no point in calling this if it won't have any effect
|
|
* on your device's supportd bands.
|
|
*/
|
|
WARN_ON(!bands_set);
|
|
}
|
|
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
|
|
|
|
/*
|
|
* Return value which can be used by ignore_request() to indicate
|
|
* it has been determined we should intersect two regulatory domains
|
|
*/
|
|
#define REG_INTERSECT 1
|
|
|
|
/* This has the logic which determines when a new request
|
|
* should be ignored. */
|
|
static int ignore_request(struct wiphy *wiphy,
|
|
struct regulatory_request *pending_request)
|
|
{
|
|
struct wiphy *last_wiphy = NULL;
|
|
|
|
assert_cfg80211_lock();
|
|
|
|
/* All initial requests are respected */
|
|
if (!last_request)
|
|
return 0;
|
|
|
|
switch (pending_request->initiator) {
|
|
case NL80211_REGDOM_SET_BY_CORE:
|
|
return 0;
|
|
case NL80211_REGDOM_SET_BY_COUNTRY_IE:
|
|
|
|
last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
|
|
|
|
if (unlikely(!is_an_alpha2(pending_request->alpha2)))
|
|
return -EINVAL;
|
|
if (last_request->initiator ==
|
|
NL80211_REGDOM_SET_BY_COUNTRY_IE) {
|
|
if (last_wiphy != wiphy) {
|
|
/*
|
|
* Two cards with two APs claiming different
|
|
* Country IE alpha2s. We could
|
|
* intersect them, but that seems unlikely
|
|
* to be correct. Reject second one for now.
|
|
*/
|
|
if (regdom_changes(pending_request->alpha2))
|
|
return -EOPNOTSUPP;
|
|
return -EALREADY;
|
|
}
|
|
/*
|
|
* Two consecutive Country IE hints on the same wiphy.
|
|
* This should be picked up early by the driver/stack
|
|
*/
|
|
if (WARN_ON(regdom_changes(pending_request->alpha2)))
|
|
return 0;
|
|
return -EALREADY;
|
|
}
|
|
return REG_INTERSECT;
|
|
case NL80211_REGDOM_SET_BY_DRIVER:
|
|
if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
|
|
if (regdom_changes(pending_request->alpha2))
|
|
return 0;
|
|
return -EALREADY;
|
|
}
|
|
|
|
/*
|
|
* This would happen if you unplug and plug your card
|
|
* back in or if you add a new device for which the previously
|
|
* loaded card also agrees on the regulatory domain.
|
|
*/
|
|
if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
|
|
!regdom_changes(pending_request->alpha2))
|
|
return -EALREADY;
|
|
|
|
return REG_INTERSECT;
|
|
case NL80211_REGDOM_SET_BY_USER:
|
|
if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
|
|
return REG_INTERSECT;
|
|
/*
|
|
* If the user knows better the user should set the regdom
|
|
* to their country before the IE is picked up
|
|
*/
|
|
if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
|
|
last_request->intersect)
|
|
return -EOPNOTSUPP;
|
|
/*
|
|
* Process user requests only after previous user/driver/core
|
|
* requests have been processed
|
|
*/
|
|
if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
|
|
last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
|
|
last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
|
|
if (regdom_changes(last_request->alpha2))
|
|
return -EAGAIN;
|
|
}
|
|
|
|
if (!regdom_changes(pending_request->alpha2))
|
|
return -EALREADY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* __regulatory_hint - hint to the wireless core a regulatory domain
|
|
* @wiphy: if the hint comes from country information from an AP, this
|
|
* is required to be set to the wiphy that received the information
|
|
* @pending_request: the regulatory request currently being processed
|
|
*
|
|
* The Wireless subsystem can use this function to hint to the wireless core
|
|
* what it believes should be the current regulatory domain.
|
|
*
|
|
* Returns zero if all went fine, %-EALREADY if a regulatory domain had
|
|
* already been set or other standard error codes.
|
|
*
|
|
* Caller must hold &cfg80211_mutex and ®_mutex
|
|
*/
|
|
static int __regulatory_hint(struct wiphy *wiphy,
|
|
struct regulatory_request *pending_request)
|
|
{
|
|
bool intersect = false;
|
|
int r = 0;
|
|
|
|
assert_cfg80211_lock();
|
|
|
|
r = ignore_request(wiphy, pending_request);
|
|
|
|
if (r == REG_INTERSECT) {
|
|
if (pending_request->initiator ==
|
|
NL80211_REGDOM_SET_BY_DRIVER) {
|
|
r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
|
|
if (r) {
|
|
kfree(pending_request);
|
|
return r;
|
|
}
|
|
}
|
|
intersect = true;
|
|
} else if (r) {
|
|
/*
|
|
* If the regulatory domain being requested by the
|
|
* driver has already been set just copy it to the
|
|
* wiphy
|
|
*/
|
|
if (r == -EALREADY &&
|
|
pending_request->initiator ==
|
|
NL80211_REGDOM_SET_BY_DRIVER) {
|
|
r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
|
|
if (r) {
|
|
kfree(pending_request);
|
|
return r;
|
|
}
|
|
r = -EALREADY;
|
|
goto new_request;
|
|
}
|
|
kfree(pending_request);
|
|
return r;
|
|
}
|
|
|
|
new_request:
|
|
kfree(last_request);
|
|
|
|
last_request = pending_request;
|
|
last_request->intersect = intersect;
|
|
|
|
pending_request = NULL;
|
|
|
|
if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
|
|
user_alpha2[0] = last_request->alpha2[0];
|
|
user_alpha2[1] = last_request->alpha2[1];
|
|
}
|
|
|
|
/* When r == REG_INTERSECT we do need to call CRDA */
|
|
if (r < 0) {
|
|
/*
|
|
* Since CRDA will not be called in this case as we already
|
|
* have applied the requested regulatory domain before we just
|
|
* inform userspace we have processed the request
|
|
*/
|
|
if (r == -EALREADY)
|
|
nl80211_send_reg_change_event(last_request);
|
|
return r;
|
|
}
|
|
|
|
return call_crda(last_request->alpha2);
|
|
}
|
|
|
|
/* This processes *all* regulatory hints */
|
|
static void reg_process_hint(struct regulatory_request *reg_request)
|
|
{
|
|
int r = 0;
|
|
struct wiphy *wiphy = NULL;
|
|
|
|
BUG_ON(!reg_request->alpha2);
|
|
|
|
mutex_lock(&cfg80211_mutex);
|
|
mutex_lock(®_mutex);
|
|
|
|
if (wiphy_idx_valid(reg_request->wiphy_idx))
|
|
wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
|
|
|
|
if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
|
|
!wiphy) {
|
|
kfree(reg_request);
|
|
goto out;
|
|
}
|
|
|
|
r = __regulatory_hint(wiphy, reg_request);
|
|
/* This is required so that the orig_* parameters are saved */
|
|
if (r == -EALREADY && wiphy &&
|
|
wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
|
|
wiphy_update_regulatory(wiphy, reg_request->initiator);
|
|
out:
|
|
mutex_unlock(®_mutex);
|
|
mutex_unlock(&cfg80211_mutex);
|
|
}
|
|
|
|
/* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
|
|
static void reg_process_pending_hints(void)
|
|
{
|
|
struct regulatory_request *reg_request;
|
|
|
|
spin_lock(®_requests_lock);
|
|
while (!list_empty(®_requests_list)) {
|
|
reg_request = list_first_entry(®_requests_list,
|
|
struct regulatory_request,
|
|
list);
|
|
list_del_init(®_request->list);
|
|
|
|
spin_unlock(®_requests_lock);
|
|
reg_process_hint(reg_request);
|
|
spin_lock(®_requests_lock);
|
|
}
|
|
spin_unlock(®_requests_lock);
|
|
}
|
|
|
|
/* Processes beacon hints -- this has nothing to do with country IEs */
|
|
static void reg_process_pending_beacon_hints(void)
|
|
{
|
|
struct cfg80211_registered_device *rdev;
|
|
struct reg_beacon *pending_beacon, *tmp;
|
|
|
|
/*
|
|
* No need to hold the reg_mutex here as we just touch wiphys
|
|
* and do not read or access regulatory variables.
|
|
*/
|
|
mutex_lock(&cfg80211_mutex);
|
|
|
|
/* This goes through the _pending_ beacon list */
|
|
spin_lock_bh(®_pending_beacons_lock);
|
|
|
|
if (list_empty(®_pending_beacons)) {
|
|
spin_unlock_bh(®_pending_beacons_lock);
|
|
goto out;
|
|
}
|
|
|
|
list_for_each_entry_safe(pending_beacon, tmp,
|
|
®_pending_beacons, list) {
|
|
|
|
list_del_init(&pending_beacon->list);
|
|
|
|
/* Applies the beacon hint to current wiphys */
|
|
list_for_each_entry(rdev, &cfg80211_rdev_list, list)
|
|
wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
|
|
|
|
/* Remembers the beacon hint for new wiphys or reg changes */
|
|
list_add_tail(&pending_beacon->list, ®_beacon_list);
|
|
}
|
|
|
|
spin_unlock_bh(®_pending_beacons_lock);
|
|
out:
|
|
mutex_unlock(&cfg80211_mutex);
|
|
}
|
|
|
|
static void reg_todo(struct work_struct *work)
|
|
{
|
|
reg_process_pending_hints();
|
|
reg_process_pending_beacon_hints();
|
|
}
|
|
|
|
static DECLARE_WORK(reg_work, reg_todo);
|
|
|
|
static void queue_regulatory_request(struct regulatory_request *request)
|
|
{
|
|
spin_lock(®_requests_lock);
|
|
list_add_tail(&request->list, ®_requests_list);
|
|
spin_unlock(®_requests_lock);
|
|
|
|
schedule_work(®_work);
|
|
}
|
|
|
|
/*
|
|
* Core regulatory hint -- happens during cfg80211_init()
|
|
* and when we restore regulatory settings.
|
|
*/
|
|
static int regulatory_hint_core(const char *alpha2)
|
|
{
|
|
struct regulatory_request *request;
|
|
|
|
kfree(last_request);
|
|
last_request = NULL;
|
|
|
|
request = kzalloc(sizeof(struct regulatory_request),
|
|
GFP_KERNEL);
|
|
if (!request)
|
|
return -ENOMEM;
|
|
|
|
request->alpha2[0] = alpha2[0];
|
|
request->alpha2[1] = alpha2[1];
|
|
request->initiator = NL80211_REGDOM_SET_BY_CORE;
|
|
|
|
/*
|
|
* This ensures last_request is populated once modules
|
|
* come swinging in and calling regulatory hints and
|
|
* wiphy_apply_custom_regulatory().
|
|
*/
|
|
reg_process_hint(request);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* User hints */
|
|
int regulatory_hint_user(const char *alpha2)
|
|
{
|
|
struct regulatory_request *request;
|
|
|
|
BUG_ON(!alpha2);
|
|
|
|
request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
|
|
if (!request)
|
|
return -ENOMEM;
|
|
|
|
request->wiphy_idx = WIPHY_IDX_STALE;
|
|
request->alpha2[0] = alpha2[0];
|
|
request->alpha2[1] = alpha2[1];
|
|
request->initiator = NL80211_REGDOM_SET_BY_USER;
|
|
|
|
queue_regulatory_request(request);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Driver hints */
|
|
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
|
|
{
|
|
struct regulatory_request *request;
|
|
|
|
BUG_ON(!alpha2);
|
|
BUG_ON(!wiphy);
|
|
|
|
request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
|
|
if (!request)
|
|
return -ENOMEM;
|
|
|
|
request->wiphy_idx = get_wiphy_idx(wiphy);
|
|
|
|
/* Must have registered wiphy first */
|
|
BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
|
|
|
|
request->alpha2[0] = alpha2[0];
|
|
request->alpha2[1] = alpha2[1];
|
|
request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
|
|
|
|
queue_regulatory_request(request);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(regulatory_hint);
|
|
|
|
/* Caller must hold reg_mutex */
|
|
static bool reg_same_country_ie_hint(struct wiphy *wiphy,
|
|
u32 country_ie_checksum)
|
|
{
|
|
struct wiphy *request_wiphy;
|
|
|
|
assert_reg_lock();
|
|
|
|
if (unlikely(last_request->initiator !=
|
|
NL80211_REGDOM_SET_BY_COUNTRY_IE))
|
|
return false;
|
|
|
|
request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
|
|
|
|
if (!request_wiphy)
|
|
return false;
|
|
|
|
if (likely(request_wiphy != wiphy))
|
|
return !country_ie_integrity_changes(country_ie_checksum);
|
|
/*
|
|
* We should not have let these through at this point, they
|
|
* should have been picked up earlier by the first alpha2 check
|
|
* on the device
|
|
*/
|
|
if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
|
|
* therefore cannot iterate over the rdev list here.
|
|
*/
|
|
void regulatory_hint_11d(struct wiphy *wiphy,
|
|
enum ieee80211_band band,
|
|
u8 *country_ie,
|
|
u8 country_ie_len)
|
|
{
|
|
struct ieee80211_regdomain *rd = NULL;
|
|
char alpha2[2];
|
|
u32 checksum = 0;
|
|
enum environment_cap env = ENVIRON_ANY;
|
|
struct regulatory_request *request;
|
|
|
|
mutex_lock(®_mutex);
|
|
|
|
if (unlikely(!last_request))
|
|
goto out;
|
|
|
|
/* IE len must be evenly divisible by 2 */
|
|
if (country_ie_len & 0x01)
|
|
goto out;
|
|
|
|
if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
|
|
goto out;
|
|
|
|
/*
|
|
* Pending country IE processing, this can happen after we
|
|
* call CRDA and wait for a response if a beacon was received before
|
|
* we were able to process the last regulatory_hint_11d() call
|
|
*/
|
|
if (country_ie_regdomain)
|
|
goto out;
|
|
|
|
alpha2[0] = country_ie[0];
|
|
alpha2[1] = country_ie[1];
|
|
|
|
if (country_ie[2] == 'I')
|
|
env = ENVIRON_INDOOR;
|
|
else if (country_ie[2] == 'O')
|
|
env = ENVIRON_OUTDOOR;
|
|
|
|
/*
|
|
* We will run this only upon a successful connection on cfg80211.
|
|
* We leave conflict resolution to the workqueue, where can hold
|
|
* cfg80211_mutex.
|
|
*/
|
|
if (likely(last_request->initiator ==
|
|
NL80211_REGDOM_SET_BY_COUNTRY_IE &&
|
|
wiphy_idx_valid(last_request->wiphy_idx)))
|
|
goto out;
|
|
|
|
rd = country_ie_2_rd(band, country_ie, country_ie_len, &checksum);
|
|
if (!rd) {
|
|
REG_DBG_PRINT("cfg80211: Ignoring bogus country IE\n");
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* This will not happen right now but we leave it here for the
|
|
* the future when we want to add suspend/resume support and having
|
|
* the user move to another country after doing so, or having the user
|
|
* move to another AP. Right now we just trust the first AP.
|
|
*
|
|
* If we hit this before we add this support we want to be informed of
|
|
* it as it would indicate a mistake in the current design
|
|
*/
|
|
if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
|
|
goto free_rd_out;
|
|
|
|
request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
|
|
if (!request)
|
|
goto free_rd_out;
|
|
|
|
/*
|
|
* We keep this around for when CRDA comes back with a response so
|
|
* we can intersect with that
|
|
*/
|
|
country_ie_regdomain = rd;
|
|
|
|
request->wiphy_idx = get_wiphy_idx(wiphy);
|
|
request->alpha2[0] = rd->alpha2[0];
|
|
request->alpha2[1] = rd->alpha2[1];
|
|
request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
|
|
request->country_ie_checksum = checksum;
|
|
request->country_ie_env = env;
|
|
|
|
mutex_unlock(®_mutex);
|
|
|
|
queue_regulatory_request(request);
|
|
|
|
return;
|
|
|
|
free_rd_out:
|
|
kfree(rd);
|
|
out:
|
|
mutex_unlock(®_mutex);
|
|
}
|
|
|
|
static void restore_alpha2(char *alpha2, bool reset_user)
|
|
{
|
|
/* indicates there is no alpha2 to consider for restoration */
|
|
alpha2[0] = '9';
|
|
alpha2[1] = '7';
|
|
|
|
/* The user setting has precedence over the module parameter */
|
|
if (is_user_regdom_saved()) {
|
|
/* Unless we're asked to ignore it and reset it */
|
|
if (reset_user) {
|
|
REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
|
|
"including user preference\n");
|
|
user_alpha2[0] = '9';
|
|
user_alpha2[1] = '7';
|
|
|
|
/*
|
|
* If we're ignoring user settings, we still need to
|
|
* check the module parameter to ensure we put things
|
|
* back as they were for a full restore.
|
|
*/
|
|
if (!is_world_regdom(ieee80211_regdom)) {
|
|
REG_DBG_PRINT("cfg80211: Keeping preference on "
|
|
"module parameter ieee80211_regdom: %c%c\n",
|
|
ieee80211_regdom[0],
|
|
ieee80211_regdom[1]);
|
|
alpha2[0] = ieee80211_regdom[0];
|
|
alpha2[1] = ieee80211_regdom[1];
|
|
}
|
|
} else {
|
|
REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
|
|
"while preserving user preference for: %c%c\n",
|
|
user_alpha2[0],
|
|
user_alpha2[1]);
|
|
alpha2[0] = user_alpha2[0];
|
|
alpha2[1] = user_alpha2[1];
|
|
}
|
|
} else if (!is_world_regdom(ieee80211_regdom)) {
|
|
REG_DBG_PRINT("cfg80211: Keeping preference on "
|
|
"module parameter ieee80211_regdom: %c%c\n",
|
|
ieee80211_regdom[0],
|
|
ieee80211_regdom[1]);
|
|
alpha2[0] = ieee80211_regdom[0];
|
|
alpha2[1] = ieee80211_regdom[1];
|
|
} else
|
|
REG_DBG_PRINT("cfg80211: Restoring regulatory settings\n");
|
|
}
|
|
|
|
/*
|
|
* Restoring regulatory settings involves ingoring any
|
|
* possibly stale country IE information and user regulatory
|
|
* settings if so desired, this includes any beacon hints
|
|
* learned as we could have traveled outside to another country
|
|
* after disconnection. To restore regulatory settings we do
|
|
* exactly what we did at bootup:
|
|
*
|
|
* - send a core regulatory hint
|
|
* - send a user regulatory hint if applicable
|
|
*
|
|
* Device drivers that send a regulatory hint for a specific country
|
|
* keep their own regulatory domain on wiphy->regd so that does does
|
|
* not need to be remembered.
|
|
*/
|
|
static void restore_regulatory_settings(bool reset_user)
|
|
{
|
|
char alpha2[2];
|
|
struct reg_beacon *reg_beacon, *btmp;
|
|
|
|
mutex_lock(&cfg80211_mutex);
|
|
mutex_lock(®_mutex);
|
|
|
|
reset_regdomains();
|
|
restore_alpha2(alpha2, reset_user);
|
|
|
|
/* Clear beacon hints */
|
|
spin_lock_bh(®_pending_beacons_lock);
|
|
if (!list_empty(®_pending_beacons)) {
|
|
list_for_each_entry_safe(reg_beacon, btmp,
|
|
®_pending_beacons, list) {
|
|
list_del(®_beacon->list);
|
|
kfree(reg_beacon);
|
|
}
|
|
}
|
|
spin_unlock_bh(®_pending_beacons_lock);
|
|
|
|
if (!list_empty(®_beacon_list)) {
|
|
list_for_each_entry_safe(reg_beacon, btmp,
|
|
®_beacon_list, list) {
|
|
list_del(®_beacon->list);
|
|
kfree(reg_beacon);
|
|
}
|
|
}
|
|
|
|
/* First restore to the basic regulatory settings */
|
|
cfg80211_regdomain = cfg80211_world_regdom;
|
|
|
|
mutex_unlock(®_mutex);
|
|
mutex_unlock(&cfg80211_mutex);
|
|
|
|
regulatory_hint_core(cfg80211_regdomain->alpha2);
|
|
|
|
/*
|
|
* This restores the ieee80211_regdom module parameter
|
|
* preference or the last user requested regulatory
|
|
* settings, user regulatory settings takes precedence.
|
|
*/
|
|
if (is_an_alpha2(alpha2))
|
|
regulatory_hint_user(user_alpha2);
|
|
}
|
|
|
|
|
|
void regulatory_hint_disconnect(void)
|
|
{
|
|
REG_DBG_PRINT("cfg80211: All devices are disconnected, going to "
|
|
"restore regulatory settings\n");
|
|
restore_regulatory_settings(false);
|
|
}
|
|
|
|
static bool freq_is_chan_12_13_14(u16 freq)
|
|
{
|
|
if (freq == ieee80211_channel_to_frequency(12) ||
|
|
freq == ieee80211_channel_to_frequency(13) ||
|
|
freq == ieee80211_channel_to_frequency(14))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
int regulatory_hint_found_beacon(struct wiphy *wiphy,
|
|
struct ieee80211_channel *beacon_chan,
|
|
gfp_t gfp)
|
|
{
|
|
struct reg_beacon *reg_beacon;
|
|
|
|
if (likely((beacon_chan->beacon_found ||
|
|
(beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
|
|
(beacon_chan->band == IEEE80211_BAND_2GHZ &&
|
|
!freq_is_chan_12_13_14(beacon_chan->center_freq)))))
|
|
return 0;
|
|
|
|
reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
|
|
if (!reg_beacon)
|
|
return -ENOMEM;
|
|
|
|
REG_DBG_PRINT("cfg80211: Found new beacon on "
|
|
"frequency: %d MHz (Ch %d) on %s\n",
|
|
beacon_chan->center_freq,
|
|
ieee80211_frequency_to_channel(beacon_chan->center_freq),
|
|
wiphy_name(wiphy));
|
|
|
|
memcpy(®_beacon->chan, beacon_chan,
|
|
sizeof(struct ieee80211_channel));
|
|
|
|
|
|
/*
|
|
* Since we can be called from BH or and non-BH context
|
|
* we must use spin_lock_bh()
|
|
*/
|
|
spin_lock_bh(®_pending_beacons_lock);
|
|
list_add_tail(®_beacon->list, ®_pending_beacons);
|
|
spin_unlock_bh(®_pending_beacons_lock);
|
|
|
|
schedule_work(®_work);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void print_rd_rules(const struct ieee80211_regdomain *rd)
|
|
{
|
|
unsigned int i;
|
|
const struct ieee80211_reg_rule *reg_rule = NULL;
|
|
const struct ieee80211_freq_range *freq_range = NULL;
|
|
const struct ieee80211_power_rule *power_rule = NULL;
|
|
|
|
printk(KERN_INFO " (start_freq - end_freq @ bandwidth), "
|
|
"(max_antenna_gain, max_eirp)\n");
|
|
|
|
for (i = 0; i < rd->n_reg_rules; i++) {
|
|
reg_rule = &rd->reg_rules[i];
|
|
freq_range = ®_rule->freq_range;
|
|
power_rule = ®_rule->power_rule;
|
|
|
|
/*
|
|
* There may not be documentation for max antenna gain
|
|
* in certain regions
|
|
*/
|
|
if (power_rule->max_antenna_gain)
|
|
printk(KERN_INFO " (%d KHz - %d KHz @ %d KHz), "
|
|
"(%d mBi, %d mBm)\n",
|
|
freq_range->start_freq_khz,
|
|
freq_range->end_freq_khz,
|
|
freq_range->max_bandwidth_khz,
|
|
power_rule->max_antenna_gain,
|
|
power_rule->max_eirp);
|
|
else
|
|
printk(KERN_INFO " (%d KHz - %d KHz @ %d KHz), "
|
|
"(N/A, %d mBm)\n",
|
|
freq_range->start_freq_khz,
|
|
freq_range->end_freq_khz,
|
|
freq_range->max_bandwidth_khz,
|
|
power_rule->max_eirp);
|
|
}
|
|
}
|
|
|
|
static void print_regdomain(const struct ieee80211_regdomain *rd)
|
|
{
|
|
|
|
if (is_intersected_alpha2(rd->alpha2)) {
|
|
|
|
if (last_request->initiator ==
|
|
NL80211_REGDOM_SET_BY_COUNTRY_IE) {
|
|
struct cfg80211_registered_device *rdev;
|
|
rdev = cfg80211_rdev_by_wiphy_idx(
|
|
last_request->wiphy_idx);
|
|
if (rdev) {
|
|
printk(KERN_INFO "cfg80211: Current regulatory "
|
|
"domain updated by AP to: %c%c\n",
|
|
rdev->country_ie_alpha2[0],
|
|
rdev->country_ie_alpha2[1]);
|
|
} else
|
|
printk(KERN_INFO "cfg80211: Current regulatory "
|
|
"domain intersected: \n");
|
|
} else
|
|
printk(KERN_INFO "cfg80211: Current regulatory "
|
|
"domain intersected: \n");
|
|
} else if (is_world_regdom(rd->alpha2))
|
|
printk(KERN_INFO "cfg80211: World regulatory "
|
|
"domain updated:\n");
|
|
else {
|
|
if (is_unknown_alpha2(rd->alpha2))
|
|
printk(KERN_INFO "cfg80211: Regulatory domain "
|
|
"changed to driver built-in settings "
|
|
"(unknown country)\n");
|
|
else
|
|
printk(KERN_INFO "cfg80211: Regulatory domain "
|
|
"changed to country: %c%c\n",
|
|
rd->alpha2[0], rd->alpha2[1]);
|
|
}
|
|
print_rd_rules(rd);
|
|
}
|
|
|
|
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
|
|
{
|
|
printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
|
|
rd->alpha2[0], rd->alpha2[1]);
|
|
print_rd_rules(rd);
|
|
}
|
|
|
|
#ifdef CONFIG_CFG80211_REG_DEBUG
|
|
static void reg_country_ie_process_debug(
|
|
const struct ieee80211_regdomain *rd,
|
|
const struct ieee80211_regdomain *country_ie_regdomain,
|
|
const struct ieee80211_regdomain *intersected_rd)
|
|
{
|
|
printk(KERN_DEBUG "cfg80211: Received country IE:\n");
|
|
print_regdomain_info(country_ie_regdomain);
|
|
printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
|
|
print_regdomain_info(rd);
|
|
if (intersected_rd) {
|
|
printk(KERN_DEBUG "cfg80211: We intersect both of these "
|
|
"and get:\n");
|
|
print_regdomain_info(intersected_rd);
|
|
return;
|
|
}
|
|
printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
|
|
}
|
|
#else
|
|
static inline void reg_country_ie_process_debug(
|
|
const struct ieee80211_regdomain *rd,
|
|
const struct ieee80211_regdomain *country_ie_regdomain,
|
|
const struct ieee80211_regdomain *intersected_rd)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
/* Takes ownership of rd only if it doesn't fail */
|
|
static int __set_regdom(const struct ieee80211_regdomain *rd)
|
|
{
|
|
const struct ieee80211_regdomain *intersected_rd = NULL;
|
|
struct cfg80211_registered_device *rdev = NULL;
|
|
struct wiphy *request_wiphy;
|
|
/* Some basic sanity checks first */
|
|
|
|
if (is_world_regdom(rd->alpha2)) {
|
|
if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
|
|
return -EINVAL;
|
|
update_world_regdomain(rd);
|
|
return 0;
|
|
}
|
|
|
|
if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
|
|
!is_unknown_alpha2(rd->alpha2))
|
|
return -EINVAL;
|
|
|
|
if (!last_request)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Lets only bother proceeding on the same alpha2 if the current
|
|
* rd is non static (it means CRDA was present and was used last)
|
|
* and the pending request came in from a country IE
|
|
*/
|
|
if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
|
|
/*
|
|
* If someone else asked us to change the rd lets only bother
|
|
* checking if the alpha2 changes if CRDA was already called
|
|
*/
|
|
if (!regdom_changes(rd->alpha2))
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Now lets set the regulatory domain, update all driver channels
|
|
* and finally inform them of what we have done, in case they want
|
|
* to review or adjust their own settings based on their own
|
|
* internal EEPROM data
|
|
*/
|
|
|
|
if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
|
|
return -EINVAL;
|
|
|
|
if (!is_valid_rd(rd)) {
|
|
printk(KERN_ERR "cfg80211: Invalid "
|
|
"regulatory domain detected:\n");
|
|
print_regdomain_info(rd);
|
|
return -EINVAL;
|
|
}
|
|
|
|
request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
|
|
|
|
if (!last_request->intersect) {
|
|
int r;
|
|
|
|
if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
|
|
reset_regdomains();
|
|
cfg80211_regdomain = rd;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* For a driver hint, lets copy the regulatory domain the
|
|
* driver wanted to the wiphy to deal with conflicts
|
|
*/
|
|
|
|
/*
|
|
* Userspace could have sent two replies with only
|
|
* one kernel request.
|
|
*/
|
|
if (request_wiphy->regd)
|
|
return -EALREADY;
|
|
|
|
r = reg_copy_regd(&request_wiphy->regd, rd);
|
|
if (r)
|
|
return r;
|
|
|
|
reset_regdomains();
|
|
cfg80211_regdomain = rd;
|
|
return 0;
|
|
}
|
|
|
|
/* Intersection requires a bit more work */
|
|
|
|
if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
|
|
|
|
intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
|
|
if (!intersected_rd)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* We can trash what CRDA provided now.
|
|
* However if a driver requested this specific regulatory
|
|
* domain we keep it for its private use
|
|
*/
|
|
if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
|
|
request_wiphy->regd = rd;
|
|
else
|
|
kfree(rd);
|
|
|
|
rd = NULL;
|
|
|
|
reset_regdomains();
|
|
cfg80211_regdomain = intersected_rd;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Country IE requests are handled a bit differently, we intersect
|
|
* the country IE rd with what CRDA believes that country should have
|
|
*/
|
|
|
|
/*
|
|
* Userspace could have sent two replies with only
|
|
* one kernel request. By the second reply we would have
|
|
* already processed and consumed the country_ie_regdomain.
|
|
*/
|
|
if (!country_ie_regdomain)
|
|
return -EALREADY;
|
|
BUG_ON(rd == country_ie_regdomain);
|
|
|
|
/*
|
|
* Intersect what CRDA returned and our what we
|
|
* had built from the Country IE received
|
|
*/
|
|
|
|
intersected_rd = regdom_intersect(rd, country_ie_regdomain);
|
|
|
|
reg_country_ie_process_debug(rd,
|
|
country_ie_regdomain,
|
|
intersected_rd);
|
|
|
|
kfree(country_ie_regdomain);
|
|
country_ie_regdomain = NULL;
|
|
|
|
if (!intersected_rd)
|
|
return -EINVAL;
|
|
|
|
rdev = wiphy_to_dev(request_wiphy);
|
|
|
|
rdev->country_ie_alpha2[0] = rd->alpha2[0];
|
|
rdev->country_ie_alpha2[1] = rd->alpha2[1];
|
|
rdev->env = last_request->country_ie_env;
|
|
|
|
BUG_ON(intersected_rd == rd);
|
|
|
|
kfree(rd);
|
|
rd = NULL;
|
|
|
|
reset_regdomains();
|
|
cfg80211_regdomain = intersected_rd;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Use this call to set the current regulatory domain. Conflicts with
|
|
* multiple drivers can be ironed out later. Caller must've already
|
|
* kmalloc'd the rd structure. Caller must hold cfg80211_mutex
|
|
*/
|
|
int set_regdom(const struct ieee80211_regdomain *rd)
|
|
{
|
|
int r;
|
|
|
|
assert_cfg80211_lock();
|
|
|
|
mutex_lock(®_mutex);
|
|
|
|
/* Note that this doesn't update the wiphys, this is done below */
|
|
r = __set_regdom(rd);
|
|
if (r) {
|
|
kfree(rd);
|
|
mutex_unlock(®_mutex);
|
|
return r;
|
|
}
|
|
|
|
/* This would make this whole thing pointless */
|
|
if (!last_request->intersect)
|
|
BUG_ON(rd != cfg80211_regdomain);
|
|
|
|
/* update all wiphys now with the new established regulatory domain */
|
|
update_all_wiphy_regulatory(last_request->initiator);
|
|
|
|
print_regdomain(cfg80211_regdomain);
|
|
|
|
nl80211_send_reg_change_event(last_request);
|
|
|
|
mutex_unlock(®_mutex);
|
|
|
|
return r;
|
|
}
|
|
|
|
/* Caller must hold cfg80211_mutex */
|
|
void reg_device_remove(struct wiphy *wiphy)
|
|
{
|
|
struct wiphy *request_wiphy = NULL;
|
|
|
|
assert_cfg80211_lock();
|
|
|
|
mutex_lock(®_mutex);
|
|
|
|
kfree(wiphy->regd);
|
|
|
|
if (last_request)
|
|
request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
|
|
|
|
if (!request_wiphy || request_wiphy != wiphy)
|
|
goto out;
|
|
|
|
last_request->wiphy_idx = WIPHY_IDX_STALE;
|
|
last_request->country_ie_env = ENVIRON_ANY;
|
|
out:
|
|
mutex_unlock(®_mutex);
|
|
}
|
|
|
|
int regulatory_init(void)
|
|
{
|
|
int err = 0;
|
|
|
|
reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
|
|
if (IS_ERR(reg_pdev))
|
|
return PTR_ERR(reg_pdev);
|
|
|
|
spin_lock_init(®_requests_lock);
|
|
spin_lock_init(®_pending_beacons_lock);
|
|
|
|
cfg80211_regdomain = cfg80211_world_regdom;
|
|
|
|
user_alpha2[0] = '9';
|
|
user_alpha2[1] = '7';
|
|
|
|
/* We always try to get an update for the static regdomain */
|
|
err = regulatory_hint_core(cfg80211_regdomain->alpha2);
|
|
if (err) {
|
|
if (err == -ENOMEM)
|
|
return err;
|
|
/*
|
|
* N.B. kobject_uevent_env() can fail mainly for when we're out
|
|
* memory which is handled and propagated appropriately above
|
|
* but it can also fail during a netlink_broadcast() or during
|
|
* early boot for call_usermodehelper(). For now treat these
|
|
* errors as non-fatal.
|
|
*/
|
|
printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
|
|
"to call CRDA during init");
|
|
#ifdef CONFIG_CFG80211_REG_DEBUG
|
|
/* We want to find out exactly why when debugging */
|
|
WARN_ON(err);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Finally, if the user set the module parameter treat it
|
|
* as a user hint.
|
|
*/
|
|
if (!is_world_regdom(ieee80211_regdom))
|
|
regulatory_hint_user(ieee80211_regdom);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void regulatory_exit(void)
|
|
{
|
|
struct regulatory_request *reg_request, *tmp;
|
|
struct reg_beacon *reg_beacon, *btmp;
|
|
|
|
cancel_work_sync(®_work);
|
|
|
|
mutex_lock(&cfg80211_mutex);
|
|
mutex_lock(®_mutex);
|
|
|
|
reset_regdomains();
|
|
|
|
kfree(country_ie_regdomain);
|
|
country_ie_regdomain = NULL;
|
|
|
|
kfree(last_request);
|
|
|
|
platform_device_unregister(reg_pdev);
|
|
|
|
spin_lock_bh(®_pending_beacons_lock);
|
|
if (!list_empty(®_pending_beacons)) {
|
|
list_for_each_entry_safe(reg_beacon, btmp,
|
|
®_pending_beacons, list) {
|
|
list_del(®_beacon->list);
|
|
kfree(reg_beacon);
|
|
}
|
|
}
|
|
spin_unlock_bh(®_pending_beacons_lock);
|
|
|
|
if (!list_empty(®_beacon_list)) {
|
|
list_for_each_entry_safe(reg_beacon, btmp,
|
|
®_beacon_list, list) {
|
|
list_del(®_beacon->list);
|
|
kfree(reg_beacon);
|
|
}
|
|
}
|
|
|
|
spin_lock(®_requests_lock);
|
|
if (!list_empty(®_requests_list)) {
|
|
list_for_each_entry_safe(reg_request, tmp,
|
|
®_requests_list, list) {
|
|
list_del(®_request->list);
|
|
kfree(reg_request);
|
|
}
|
|
}
|
|
spin_unlock(®_requests_lock);
|
|
|
|
mutex_unlock(®_mutex);
|
|
mutex_unlock(&cfg80211_mutex);
|
|
}
|