mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-21 12:26:47 +07:00
709b973c84
The function get_user() can sleep while trying to fetch instruction from user address space and causes the following warning from the scheduler. BUG: sleeping function called from invalid context Though interrupts get enabled back but it happens bit later after get_user() is called. This change moves enabling these interrupts earlier covering the function get_user(). While at this, lets check for kernel mode and crash as this interrupt should not have been triggered from the kernel context. Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2182 lines
56 KiB
C
2182 lines
56 KiB
C
/*
|
|
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
|
|
* Copyright 2007-2010 Freescale Semiconductor, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
* Modified by Cort Dougan (cort@cs.nmt.edu)
|
|
* and Paul Mackerras (paulus@samba.org)
|
|
*/
|
|
|
|
/*
|
|
* This file handles the architecture-dependent parts of hardware exceptions
|
|
*/
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/debug.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pkeys.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/unistd.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/user.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/init.h>
|
|
#include <linux/extable.h>
|
|
#include <linux/module.h> /* print_modules */
|
|
#include <linux/prctl.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/backlight.h>
|
|
#include <linux/bug.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/context_tracking.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/console.h>
|
|
#include <linux/kmsg_dump.h>
|
|
|
|
#include <asm/emulated_ops.h>
|
|
#include <asm/pgtable.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/debugfs.h>
|
|
#include <asm/io.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/rtas.h>
|
|
#include <asm/pmc.h>
|
|
#include <asm/reg.h>
|
|
#ifdef CONFIG_PMAC_BACKLIGHT
|
|
#include <asm/backlight.h>
|
|
#endif
|
|
#ifdef CONFIG_PPC64
|
|
#include <asm/firmware.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/tm.h>
|
|
#endif
|
|
#include <asm/kexec.h>
|
|
#include <asm/ppc-opcode.h>
|
|
#include <asm/rio.h>
|
|
#include <asm/fadump.h>
|
|
#include <asm/switch_to.h>
|
|
#include <asm/tm.h>
|
|
#include <asm/debug.h>
|
|
#include <asm/asm-prototypes.h>
|
|
#include <asm/hmi.h>
|
|
#include <sysdev/fsl_pci.h>
|
|
#include <asm/kprobes.h>
|
|
|
|
#if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
|
|
int (*__debugger)(struct pt_regs *regs) __read_mostly;
|
|
int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
|
|
int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
|
|
int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
|
|
int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
|
|
int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
|
|
int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
|
|
|
|
EXPORT_SYMBOL(__debugger);
|
|
EXPORT_SYMBOL(__debugger_ipi);
|
|
EXPORT_SYMBOL(__debugger_bpt);
|
|
EXPORT_SYMBOL(__debugger_sstep);
|
|
EXPORT_SYMBOL(__debugger_iabr_match);
|
|
EXPORT_SYMBOL(__debugger_break_match);
|
|
EXPORT_SYMBOL(__debugger_fault_handler);
|
|
#endif
|
|
|
|
/* Transactional Memory trap debug */
|
|
#ifdef TM_DEBUG_SW
|
|
#define TM_DEBUG(x...) printk(KERN_INFO x)
|
|
#else
|
|
#define TM_DEBUG(x...) do { } while(0)
|
|
#endif
|
|
|
|
/*
|
|
* Trap & Exception support
|
|
*/
|
|
|
|
#ifdef CONFIG_PMAC_BACKLIGHT
|
|
static void pmac_backlight_unblank(void)
|
|
{
|
|
mutex_lock(&pmac_backlight_mutex);
|
|
if (pmac_backlight) {
|
|
struct backlight_properties *props;
|
|
|
|
props = &pmac_backlight->props;
|
|
props->brightness = props->max_brightness;
|
|
props->power = FB_BLANK_UNBLANK;
|
|
backlight_update_status(pmac_backlight);
|
|
}
|
|
mutex_unlock(&pmac_backlight_mutex);
|
|
}
|
|
#else
|
|
static inline void pmac_backlight_unblank(void) { }
|
|
#endif
|
|
|
|
/*
|
|
* If oops/die is expected to crash the machine, return true here.
|
|
*
|
|
* This should not be expected to be 100% accurate, there may be
|
|
* notifiers registered or other unexpected conditions that may bring
|
|
* down the kernel. Or if the current process in the kernel is holding
|
|
* locks or has other critical state, the kernel may become effectively
|
|
* unusable anyway.
|
|
*/
|
|
bool die_will_crash(void)
|
|
{
|
|
if (should_fadump_crash())
|
|
return true;
|
|
if (kexec_should_crash(current))
|
|
return true;
|
|
if (in_interrupt() || panic_on_oops ||
|
|
!current->pid || is_global_init(current))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
|
|
static int die_owner = -1;
|
|
static unsigned int die_nest_count;
|
|
static int die_counter;
|
|
|
|
extern void panic_flush_kmsg_start(void)
|
|
{
|
|
/*
|
|
* These are mostly taken from kernel/panic.c, but tries to do
|
|
* relatively minimal work. Don't use delay functions (TB may
|
|
* be broken), don't crash dump (need to set a firmware log),
|
|
* don't run notifiers. We do want to get some information to
|
|
* Linux console.
|
|
*/
|
|
console_verbose();
|
|
bust_spinlocks(1);
|
|
}
|
|
|
|
extern void panic_flush_kmsg_end(void)
|
|
{
|
|
printk_safe_flush_on_panic();
|
|
kmsg_dump(KMSG_DUMP_PANIC);
|
|
bust_spinlocks(0);
|
|
debug_locks_off();
|
|
console_flush_on_panic();
|
|
}
|
|
|
|
static unsigned long oops_begin(struct pt_regs *regs)
|
|
{
|
|
int cpu;
|
|
unsigned long flags;
|
|
|
|
oops_enter();
|
|
|
|
/* racy, but better than risking deadlock. */
|
|
raw_local_irq_save(flags);
|
|
cpu = smp_processor_id();
|
|
if (!arch_spin_trylock(&die_lock)) {
|
|
if (cpu == die_owner)
|
|
/* nested oops. should stop eventually */;
|
|
else
|
|
arch_spin_lock(&die_lock);
|
|
}
|
|
die_nest_count++;
|
|
die_owner = cpu;
|
|
console_verbose();
|
|
bust_spinlocks(1);
|
|
if (machine_is(powermac))
|
|
pmac_backlight_unblank();
|
|
return flags;
|
|
}
|
|
NOKPROBE_SYMBOL(oops_begin);
|
|
|
|
static void oops_end(unsigned long flags, struct pt_regs *regs,
|
|
int signr)
|
|
{
|
|
bust_spinlocks(0);
|
|
add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
|
|
die_nest_count--;
|
|
oops_exit();
|
|
printk("\n");
|
|
if (!die_nest_count) {
|
|
/* Nest count reaches zero, release the lock. */
|
|
die_owner = -1;
|
|
arch_spin_unlock(&die_lock);
|
|
}
|
|
raw_local_irq_restore(flags);
|
|
|
|
/*
|
|
* system_reset_excption handles debugger, crash dump, panic, for 0x100
|
|
*/
|
|
if (TRAP(regs) == 0x100)
|
|
return;
|
|
|
|
crash_fadump(regs, "die oops");
|
|
|
|
if (kexec_should_crash(current))
|
|
crash_kexec(regs);
|
|
|
|
if (!signr)
|
|
return;
|
|
|
|
/*
|
|
* While our oops output is serialised by a spinlock, output
|
|
* from panic() called below can race and corrupt it. If we
|
|
* know we are going to panic, delay for 1 second so we have a
|
|
* chance to get clean backtraces from all CPUs that are oopsing.
|
|
*/
|
|
if (in_interrupt() || panic_on_oops || !current->pid ||
|
|
is_global_init(current)) {
|
|
mdelay(MSEC_PER_SEC);
|
|
}
|
|
|
|
if (in_interrupt())
|
|
panic("Fatal exception in interrupt");
|
|
if (panic_on_oops)
|
|
panic("Fatal exception");
|
|
do_exit(signr);
|
|
}
|
|
NOKPROBE_SYMBOL(oops_end);
|
|
|
|
static int __die(const char *str, struct pt_regs *regs, long err)
|
|
{
|
|
printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
|
|
|
|
if (IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN))
|
|
printk("LE ");
|
|
else
|
|
printk("BE ");
|
|
|
|
if (IS_ENABLED(CONFIG_PREEMPT))
|
|
pr_cont("PREEMPT ");
|
|
|
|
if (IS_ENABLED(CONFIG_SMP))
|
|
pr_cont("SMP NR_CPUS=%d ", NR_CPUS);
|
|
|
|
if (debug_pagealloc_enabled())
|
|
pr_cont("DEBUG_PAGEALLOC ");
|
|
|
|
if (IS_ENABLED(CONFIG_NUMA))
|
|
pr_cont("NUMA ");
|
|
|
|
pr_cont("%s\n", ppc_md.name ? ppc_md.name : "");
|
|
|
|
if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
|
|
return 1;
|
|
|
|
print_modules();
|
|
show_regs(regs);
|
|
|
|
return 0;
|
|
}
|
|
NOKPROBE_SYMBOL(__die);
|
|
|
|
void die(const char *str, struct pt_regs *regs, long err)
|
|
{
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* system_reset_excption handles debugger, crash dump, panic, for 0x100
|
|
*/
|
|
if (TRAP(regs) != 0x100) {
|
|
if (debugger(regs))
|
|
return;
|
|
}
|
|
|
|
flags = oops_begin(regs);
|
|
if (__die(str, regs, err))
|
|
err = 0;
|
|
oops_end(flags, regs, err);
|
|
}
|
|
NOKPROBE_SYMBOL(die);
|
|
|
|
void user_single_step_siginfo(struct task_struct *tsk,
|
|
struct pt_regs *regs, siginfo_t *info)
|
|
{
|
|
memset(info, 0, sizeof(*info));
|
|
info->si_signo = SIGTRAP;
|
|
info->si_code = TRAP_TRACE;
|
|
info->si_addr = (void __user *)regs->nip;
|
|
}
|
|
|
|
|
|
void _exception_pkey(int signr, struct pt_regs *regs, int code,
|
|
unsigned long addr, int key)
|
|
{
|
|
siginfo_t info;
|
|
const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
|
|
"at %08lx nip %08lx lr %08lx code %x\n";
|
|
const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
|
|
"at %016lx nip %016lx lr %016lx code %x\n";
|
|
|
|
if (!user_mode(regs)) {
|
|
die("Exception in kernel mode", regs, signr);
|
|
return;
|
|
}
|
|
|
|
if (show_unhandled_signals && unhandled_signal(current, signr)) {
|
|
printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
|
|
current->comm, current->pid, signr,
|
|
addr, regs->nip, regs->link, code);
|
|
}
|
|
|
|
if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
|
|
local_irq_enable();
|
|
|
|
current->thread.trap_nr = code;
|
|
|
|
/*
|
|
* Save all the pkey registers AMR/IAMR/UAMOR. Eg: Core dumps need
|
|
* to capture the content, if the task gets killed.
|
|
*/
|
|
thread_pkey_regs_save(¤t->thread);
|
|
|
|
memset(&info, 0, sizeof(info));
|
|
info.si_signo = signr;
|
|
info.si_code = code;
|
|
info.si_addr = (void __user *) addr;
|
|
info.si_pkey = key;
|
|
|
|
force_sig_info(signr, &info, current);
|
|
}
|
|
|
|
void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
|
|
{
|
|
_exception_pkey(signr, regs, code, addr, 0);
|
|
}
|
|
|
|
void system_reset_exception(struct pt_regs *regs)
|
|
{
|
|
/*
|
|
* Avoid crashes in case of nested NMI exceptions. Recoverability
|
|
* is determined by RI and in_nmi
|
|
*/
|
|
bool nested = in_nmi();
|
|
if (!nested)
|
|
nmi_enter();
|
|
|
|
__this_cpu_inc(irq_stat.sreset_irqs);
|
|
|
|
/* See if any machine dependent calls */
|
|
if (ppc_md.system_reset_exception) {
|
|
if (ppc_md.system_reset_exception(regs))
|
|
goto out;
|
|
}
|
|
|
|
if (debugger(regs))
|
|
goto out;
|
|
|
|
/*
|
|
* A system reset is a request to dump, so we always send
|
|
* it through the crashdump code (if fadump or kdump are
|
|
* registered).
|
|
*/
|
|
crash_fadump(regs, "System Reset");
|
|
|
|
crash_kexec(regs);
|
|
|
|
/*
|
|
* We aren't the primary crash CPU. We need to send it
|
|
* to a holding pattern to avoid it ending up in the panic
|
|
* code.
|
|
*/
|
|
crash_kexec_secondary(regs);
|
|
|
|
/*
|
|
* No debugger or crash dump registered, print logs then
|
|
* panic.
|
|
*/
|
|
die("System Reset", regs, SIGABRT);
|
|
|
|
mdelay(2*MSEC_PER_SEC); /* Wait a little while for others to print */
|
|
add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
|
|
nmi_panic(regs, "System Reset");
|
|
|
|
out:
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
BUG_ON(get_paca()->in_nmi == 0);
|
|
if (get_paca()->in_nmi > 1)
|
|
nmi_panic(regs, "Unrecoverable nested System Reset");
|
|
#endif
|
|
/* Must die if the interrupt is not recoverable */
|
|
if (!(regs->msr & MSR_RI))
|
|
nmi_panic(regs, "Unrecoverable System Reset");
|
|
|
|
if (!nested)
|
|
nmi_exit();
|
|
|
|
/* What should we do here? We could issue a shutdown or hard reset. */
|
|
}
|
|
|
|
/*
|
|
* I/O accesses can cause machine checks on powermacs.
|
|
* Check if the NIP corresponds to the address of a sync
|
|
* instruction for which there is an entry in the exception
|
|
* table.
|
|
* Note that the 601 only takes a machine check on TEA
|
|
* (transfer error ack) signal assertion, and does not
|
|
* set any of the top 16 bits of SRR1.
|
|
* -- paulus.
|
|
*/
|
|
static inline int check_io_access(struct pt_regs *regs)
|
|
{
|
|
#ifdef CONFIG_PPC32
|
|
unsigned long msr = regs->msr;
|
|
const struct exception_table_entry *entry;
|
|
unsigned int *nip = (unsigned int *)regs->nip;
|
|
|
|
if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
|
|
&& (entry = search_exception_tables(regs->nip)) != NULL) {
|
|
/*
|
|
* Check that it's a sync instruction, or somewhere
|
|
* in the twi; isync; nop sequence that inb/inw/inl uses.
|
|
* As the address is in the exception table
|
|
* we should be able to read the instr there.
|
|
* For the debug message, we look at the preceding
|
|
* load or store.
|
|
*/
|
|
if (*nip == PPC_INST_NOP)
|
|
nip -= 2;
|
|
else if (*nip == PPC_INST_ISYNC)
|
|
--nip;
|
|
if (*nip == PPC_INST_SYNC || (*nip >> 26) == OP_TRAP) {
|
|
unsigned int rb;
|
|
|
|
--nip;
|
|
rb = (*nip >> 11) & 0x1f;
|
|
printk(KERN_DEBUG "%s bad port %lx at %p\n",
|
|
(*nip & 0x100)? "OUT to": "IN from",
|
|
regs->gpr[rb] - _IO_BASE, nip);
|
|
regs->msr |= MSR_RI;
|
|
regs->nip = extable_fixup(entry);
|
|
return 1;
|
|
}
|
|
}
|
|
#endif /* CONFIG_PPC32 */
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
|
|
/* On 4xx, the reason for the machine check or program exception
|
|
is in the ESR. */
|
|
#define get_reason(regs) ((regs)->dsisr)
|
|
#define REASON_FP ESR_FP
|
|
#define REASON_ILLEGAL (ESR_PIL | ESR_PUO)
|
|
#define REASON_PRIVILEGED ESR_PPR
|
|
#define REASON_TRAP ESR_PTR
|
|
|
|
/* single-step stuff */
|
|
#define single_stepping(regs) (current->thread.debug.dbcr0 & DBCR0_IC)
|
|
#define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC)
|
|
#define clear_br_trace(regs) do {} while(0)
|
|
#else
|
|
/* On non-4xx, the reason for the machine check or program
|
|
exception is in the MSR. */
|
|
#define get_reason(regs) ((regs)->msr)
|
|
#define REASON_TM SRR1_PROGTM
|
|
#define REASON_FP SRR1_PROGFPE
|
|
#define REASON_ILLEGAL SRR1_PROGILL
|
|
#define REASON_PRIVILEGED SRR1_PROGPRIV
|
|
#define REASON_TRAP SRR1_PROGTRAP
|
|
|
|
#define single_stepping(regs) ((regs)->msr & MSR_SE)
|
|
#define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
|
|
#define clear_br_trace(regs) ((regs)->msr &= ~MSR_BE)
|
|
#endif
|
|
|
|
#if defined(CONFIG_E500)
|
|
int machine_check_e500mc(struct pt_regs *regs)
|
|
{
|
|
unsigned long mcsr = mfspr(SPRN_MCSR);
|
|
unsigned long pvr = mfspr(SPRN_PVR);
|
|
unsigned long reason = mcsr;
|
|
int recoverable = 1;
|
|
|
|
if (reason & MCSR_LD) {
|
|
recoverable = fsl_rio_mcheck_exception(regs);
|
|
if (recoverable == 1)
|
|
goto silent_out;
|
|
}
|
|
|
|
printk("Machine check in kernel mode.\n");
|
|
printk("Caused by (from MCSR=%lx): ", reason);
|
|
|
|
if (reason & MCSR_MCP)
|
|
printk("Machine Check Signal\n");
|
|
|
|
if (reason & MCSR_ICPERR) {
|
|
printk("Instruction Cache Parity Error\n");
|
|
|
|
/*
|
|
* This is recoverable by invalidating the i-cache.
|
|
*/
|
|
mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
|
|
while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
|
|
;
|
|
|
|
/*
|
|
* This will generally be accompanied by an instruction
|
|
* fetch error report -- only treat MCSR_IF as fatal
|
|
* if it wasn't due to an L1 parity error.
|
|
*/
|
|
reason &= ~MCSR_IF;
|
|
}
|
|
|
|
if (reason & MCSR_DCPERR_MC) {
|
|
printk("Data Cache Parity Error\n");
|
|
|
|
/*
|
|
* In write shadow mode we auto-recover from the error, but it
|
|
* may still get logged and cause a machine check. We should
|
|
* only treat the non-write shadow case as non-recoverable.
|
|
*/
|
|
/* On e6500 core, L1 DCWS (Data cache write shadow mode) bit
|
|
* is not implemented but L1 data cache always runs in write
|
|
* shadow mode. Hence on data cache parity errors HW will
|
|
* automatically invalidate the L1 Data Cache.
|
|
*/
|
|
if (PVR_VER(pvr) != PVR_VER_E6500) {
|
|
if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
|
|
recoverable = 0;
|
|
}
|
|
}
|
|
|
|
if (reason & MCSR_L2MMU_MHIT) {
|
|
printk("Hit on multiple TLB entries\n");
|
|
recoverable = 0;
|
|
}
|
|
|
|
if (reason & MCSR_NMI)
|
|
printk("Non-maskable interrupt\n");
|
|
|
|
if (reason & MCSR_IF) {
|
|
printk("Instruction Fetch Error Report\n");
|
|
recoverable = 0;
|
|
}
|
|
|
|
if (reason & MCSR_LD) {
|
|
printk("Load Error Report\n");
|
|
recoverable = 0;
|
|
}
|
|
|
|
if (reason & MCSR_ST) {
|
|
printk("Store Error Report\n");
|
|
recoverable = 0;
|
|
}
|
|
|
|
if (reason & MCSR_LDG) {
|
|
printk("Guarded Load Error Report\n");
|
|
recoverable = 0;
|
|
}
|
|
|
|
if (reason & MCSR_TLBSYNC)
|
|
printk("Simultaneous tlbsync operations\n");
|
|
|
|
if (reason & MCSR_BSL2_ERR) {
|
|
printk("Level 2 Cache Error\n");
|
|
recoverable = 0;
|
|
}
|
|
|
|
if (reason & MCSR_MAV) {
|
|
u64 addr;
|
|
|
|
addr = mfspr(SPRN_MCAR);
|
|
addr |= (u64)mfspr(SPRN_MCARU) << 32;
|
|
|
|
printk("Machine Check %s Address: %#llx\n",
|
|
reason & MCSR_MEA ? "Effective" : "Physical", addr);
|
|
}
|
|
|
|
silent_out:
|
|
mtspr(SPRN_MCSR, mcsr);
|
|
return mfspr(SPRN_MCSR) == 0 && recoverable;
|
|
}
|
|
|
|
int machine_check_e500(struct pt_regs *regs)
|
|
{
|
|
unsigned long reason = mfspr(SPRN_MCSR);
|
|
|
|
if (reason & MCSR_BUS_RBERR) {
|
|
if (fsl_rio_mcheck_exception(regs))
|
|
return 1;
|
|
if (fsl_pci_mcheck_exception(regs))
|
|
return 1;
|
|
}
|
|
|
|
printk("Machine check in kernel mode.\n");
|
|
printk("Caused by (from MCSR=%lx): ", reason);
|
|
|
|
if (reason & MCSR_MCP)
|
|
printk("Machine Check Signal\n");
|
|
if (reason & MCSR_ICPERR)
|
|
printk("Instruction Cache Parity Error\n");
|
|
if (reason & MCSR_DCP_PERR)
|
|
printk("Data Cache Push Parity Error\n");
|
|
if (reason & MCSR_DCPERR)
|
|
printk("Data Cache Parity Error\n");
|
|
if (reason & MCSR_BUS_IAERR)
|
|
printk("Bus - Instruction Address Error\n");
|
|
if (reason & MCSR_BUS_RAERR)
|
|
printk("Bus - Read Address Error\n");
|
|
if (reason & MCSR_BUS_WAERR)
|
|
printk("Bus - Write Address Error\n");
|
|
if (reason & MCSR_BUS_IBERR)
|
|
printk("Bus - Instruction Data Error\n");
|
|
if (reason & MCSR_BUS_RBERR)
|
|
printk("Bus - Read Data Bus Error\n");
|
|
if (reason & MCSR_BUS_WBERR)
|
|
printk("Bus - Write Data Bus Error\n");
|
|
if (reason & MCSR_BUS_IPERR)
|
|
printk("Bus - Instruction Parity Error\n");
|
|
if (reason & MCSR_BUS_RPERR)
|
|
printk("Bus - Read Parity Error\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
int machine_check_generic(struct pt_regs *regs)
|
|
{
|
|
return 0;
|
|
}
|
|
#elif defined(CONFIG_E200)
|
|
int machine_check_e200(struct pt_regs *regs)
|
|
{
|
|
unsigned long reason = mfspr(SPRN_MCSR);
|
|
|
|
printk("Machine check in kernel mode.\n");
|
|
printk("Caused by (from MCSR=%lx): ", reason);
|
|
|
|
if (reason & MCSR_MCP)
|
|
printk("Machine Check Signal\n");
|
|
if (reason & MCSR_CP_PERR)
|
|
printk("Cache Push Parity Error\n");
|
|
if (reason & MCSR_CPERR)
|
|
printk("Cache Parity Error\n");
|
|
if (reason & MCSR_EXCP_ERR)
|
|
printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
|
|
if (reason & MCSR_BUS_IRERR)
|
|
printk("Bus - Read Bus Error on instruction fetch\n");
|
|
if (reason & MCSR_BUS_DRERR)
|
|
printk("Bus - Read Bus Error on data load\n");
|
|
if (reason & MCSR_BUS_WRERR)
|
|
printk("Bus - Write Bus Error on buffered store or cache line push\n");
|
|
|
|
return 0;
|
|
}
|
|
#elif defined(CONFIG_PPC32)
|
|
int machine_check_generic(struct pt_regs *regs)
|
|
{
|
|
unsigned long reason = regs->msr;
|
|
|
|
printk("Machine check in kernel mode.\n");
|
|
printk("Caused by (from SRR1=%lx): ", reason);
|
|
switch (reason & 0x601F0000) {
|
|
case 0x80000:
|
|
printk("Machine check signal\n");
|
|
break;
|
|
case 0: /* for 601 */
|
|
case 0x40000:
|
|
case 0x140000: /* 7450 MSS error and TEA */
|
|
printk("Transfer error ack signal\n");
|
|
break;
|
|
case 0x20000:
|
|
printk("Data parity error signal\n");
|
|
break;
|
|
case 0x10000:
|
|
printk("Address parity error signal\n");
|
|
break;
|
|
case 0x20000000:
|
|
printk("L1 Data Cache error\n");
|
|
break;
|
|
case 0x40000000:
|
|
printk("L1 Instruction Cache error\n");
|
|
break;
|
|
case 0x00100000:
|
|
printk("L2 data cache parity error\n");
|
|
break;
|
|
default:
|
|
printk("Unknown values in msr\n");
|
|
}
|
|
return 0;
|
|
}
|
|
#endif /* everything else */
|
|
|
|
void machine_check_exception(struct pt_regs *regs)
|
|
{
|
|
int recover = 0;
|
|
bool nested = in_nmi();
|
|
if (!nested)
|
|
nmi_enter();
|
|
|
|
/* 64s accounts the mce in machine_check_early when in HVMODE */
|
|
if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64) || !cpu_has_feature(CPU_FTR_HVMODE))
|
|
__this_cpu_inc(irq_stat.mce_exceptions);
|
|
|
|
add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
|
|
|
|
/* See if any machine dependent calls. In theory, we would want
|
|
* to call the CPU first, and call the ppc_md. one if the CPU
|
|
* one returns a positive number. However there is existing code
|
|
* that assumes the board gets a first chance, so let's keep it
|
|
* that way for now and fix things later. --BenH.
|
|
*/
|
|
if (ppc_md.machine_check_exception)
|
|
recover = ppc_md.machine_check_exception(regs);
|
|
else if (cur_cpu_spec->machine_check)
|
|
recover = cur_cpu_spec->machine_check(regs);
|
|
|
|
if (recover > 0)
|
|
goto bail;
|
|
|
|
if (debugger_fault_handler(regs))
|
|
goto bail;
|
|
|
|
if (check_io_access(regs))
|
|
goto bail;
|
|
|
|
die("Machine check", regs, SIGBUS);
|
|
|
|
/* Must die if the interrupt is not recoverable */
|
|
if (!(regs->msr & MSR_RI))
|
|
nmi_panic(regs, "Unrecoverable Machine check");
|
|
|
|
bail:
|
|
if (!nested)
|
|
nmi_exit();
|
|
}
|
|
|
|
void SMIException(struct pt_regs *regs)
|
|
{
|
|
die("System Management Interrupt", regs, SIGABRT);
|
|
}
|
|
|
|
#ifdef CONFIG_VSX
|
|
static void p9_hmi_special_emu(struct pt_regs *regs)
|
|
{
|
|
unsigned int ra, rb, t, i, sel, instr, rc;
|
|
const void __user *addr;
|
|
u8 vbuf[16], *vdst;
|
|
unsigned long ea, msr, msr_mask;
|
|
bool swap;
|
|
|
|
if (__get_user_inatomic(instr, (unsigned int __user *)regs->nip))
|
|
return;
|
|
|
|
/*
|
|
* lxvb16x opcode: 0x7c0006d8
|
|
* lxvd2x opcode: 0x7c000698
|
|
* lxvh8x opcode: 0x7c000658
|
|
* lxvw4x opcode: 0x7c000618
|
|
*/
|
|
if ((instr & 0xfc00073e) != 0x7c000618) {
|
|
pr_devel("HMI vec emu: not vector CI %i:%s[%d] nip=%016lx"
|
|
" instr=%08x\n",
|
|
smp_processor_id(), current->comm, current->pid,
|
|
regs->nip, instr);
|
|
return;
|
|
}
|
|
|
|
/* Grab vector registers into the task struct */
|
|
msr = regs->msr; /* Grab msr before we flush the bits */
|
|
flush_vsx_to_thread(current);
|
|
enable_kernel_altivec();
|
|
|
|
/*
|
|
* Is userspace running with a different endian (this is rare but
|
|
* not impossible)
|
|
*/
|
|
swap = (msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
|
|
|
|
/* Decode the instruction */
|
|
ra = (instr >> 16) & 0x1f;
|
|
rb = (instr >> 11) & 0x1f;
|
|
t = (instr >> 21) & 0x1f;
|
|
if (instr & 1)
|
|
vdst = (u8 *)¤t->thread.vr_state.vr[t];
|
|
else
|
|
vdst = (u8 *)¤t->thread.fp_state.fpr[t][0];
|
|
|
|
/* Grab the vector address */
|
|
ea = regs->gpr[rb] + (ra ? regs->gpr[ra] : 0);
|
|
if (is_32bit_task())
|
|
ea &= 0xfffffffful;
|
|
addr = (__force const void __user *)ea;
|
|
|
|
/* Check it */
|
|
if (!access_ok(VERIFY_READ, addr, 16)) {
|
|
pr_devel("HMI vec emu: bad access %i:%s[%d] nip=%016lx"
|
|
" instr=%08x addr=%016lx\n",
|
|
smp_processor_id(), current->comm, current->pid,
|
|
regs->nip, instr, (unsigned long)addr);
|
|
return;
|
|
}
|
|
|
|
/* Read the vector */
|
|
rc = 0;
|
|
if ((unsigned long)addr & 0xfUL)
|
|
/* unaligned case */
|
|
rc = __copy_from_user_inatomic(vbuf, addr, 16);
|
|
else
|
|
__get_user_atomic_128_aligned(vbuf, addr, rc);
|
|
if (rc) {
|
|
pr_devel("HMI vec emu: page fault %i:%s[%d] nip=%016lx"
|
|
" instr=%08x addr=%016lx\n",
|
|
smp_processor_id(), current->comm, current->pid,
|
|
regs->nip, instr, (unsigned long)addr);
|
|
return;
|
|
}
|
|
|
|
pr_devel("HMI vec emu: emulated vector CI %i:%s[%d] nip=%016lx"
|
|
" instr=%08x addr=%016lx\n",
|
|
smp_processor_id(), current->comm, current->pid, regs->nip,
|
|
instr, (unsigned long) addr);
|
|
|
|
/* Grab instruction "selector" */
|
|
sel = (instr >> 6) & 3;
|
|
|
|
/*
|
|
* Check to make sure the facility is actually enabled. This
|
|
* could happen if we get a false positive hit.
|
|
*
|
|
* lxvd2x/lxvw4x always check MSR VSX sel = 0,2
|
|
* lxvh8x/lxvb16x check MSR VSX or VEC depending on VSR used sel = 1,3
|
|
*/
|
|
msr_mask = MSR_VSX;
|
|
if ((sel & 1) && (instr & 1)) /* lxvh8x & lxvb16x + VSR >= 32 */
|
|
msr_mask = MSR_VEC;
|
|
if (!(msr & msr_mask)) {
|
|
pr_devel("HMI vec emu: MSR fac clear %i:%s[%d] nip=%016lx"
|
|
" instr=%08x msr:%016lx\n",
|
|
smp_processor_id(), current->comm, current->pid,
|
|
regs->nip, instr, msr);
|
|
return;
|
|
}
|
|
|
|
/* Do logging here before we modify sel based on endian */
|
|
switch (sel) {
|
|
case 0: /* lxvw4x */
|
|
PPC_WARN_EMULATED(lxvw4x, regs);
|
|
break;
|
|
case 1: /* lxvh8x */
|
|
PPC_WARN_EMULATED(lxvh8x, regs);
|
|
break;
|
|
case 2: /* lxvd2x */
|
|
PPC_WARN_EMULATED(lxvd2x, regs);
|
|
break;
|
|
case 3: /* lxvb16x */
|
|
PPC_WARN_EMULATED(lxvb16x, regs);
|
|
break;
|
|
}
|
|
|
|
#ifdef __LITTLE_ENDIAN__
|
|
/*
|
|
* An LE kernel stores the vector in the task struct as an LE
|
|
* byte array (effectively swapping both the components and
|
|
* the content of the components). Those instructions expect
|
|
* the components to remain in ascending address order, so we
|
|
* swap them back.
|
|
*
|
|
* If we are running a BE user space, the expectation is that
|
|
* of a simple memcpy, so forcing the emulation to look like
|
|
* a lxvb16x should do the trick.
|
|
*/
|
|
if (swap)
|
|
sel = 3;
|
|
|
|
switch (sel) {
|
|
case 0: /* lxvw4x */
|
|
for (i = 0; i < 4; i++)
|
|
((u32 *)vdst)[i] = ((u32 *)vbuf)[3-i];
|
|
break;
|
|
case 1: /* lxvh8x */
|
|
for (i = 0; i < 8; i++)
|
|
((u16 *)vdst)[i] = ((u16 *)vbuf)[7-i];
|
|
break;
|
|
case 2: /* lxvd2x */
|
|
for (i = 0; i < 2; i++)
|
|
((u64 *)vdst)[i] = ((u64 *)vbuf)[1-i];
|
|
break;
|
|
case 3: /* lxvb16x */
|
|
for (i = 0; i < 16; i++)
|
|
vdst[i] = vbuf[15-i];
|
|
break;
|
|
}
|
|
#else /* __LITTLE_ENDIAN__ */
|
|
/* On a big endian kernel, a BE userspace only needs a memcpy */
|
|
if (!swap)
|
|
sel = 3;
|
|
|
|
/* Otherwise, we need to swap the content of the components */
|
|
switch (sel) {
|
|
case 0: /* lxvw4x */
|
|
for (i = 0; i < 4; i++)
|
|
((u32 *)vdst)[i] = cpu_to_le32(((u32 *)vbuf)[i]);
|
|
break;
|
|
case 1: /* lxvh8x */
|
|
for (i = 0; i < 8; i++)
|
|
((u16 *)vdst)[i] = cpu_to_le16(((u16 *)vbuf)[i]);
|
|
break;
|
|
case 2: /* lxvd2x */
|
|
for (i = 0; i < 2; i++)
|
|
((u64 *)vdst)[i] = cpu_to_le64(((u64 *)vbuf)[i]);
|
|
break;
|
|
case 3: /* lxvb16x */
|
|
memcpy(vdst, vbuf, 16);
|
|
break;
|
|
}
|
|
#endif /* !__LITTLE_ENDIAN__ */
|
|
|
|
/* Go to next instruction */
|
|
regs->nip += 4;
|
|
}
|
|
#endif /* CONFIG_VSX */
|
|
|
|
void handle_hmi_exception(struct pt_regs *regs)
|
|
{
|
|
struct pt_regs *old_regs;
|
|
|
|
old_regs = set_irq_regs(regs);
|
|
irq_enter();
|
|
|
|
#ifdef CONFIG_VSX
|
|
/* Real mode flagged P9 special emu is needed */
|
|
if (local_paca->hmi_p9_special_emu) {
|
|
local_paca->hmi_p9_special_emu = 0;
|
|
|
|
/*
|
|
* We don't want to take page faults while doing the
|
|
* emulation, we just replay the instruction if necessary.
|
|
*/
|
|
pagefault_disable();
|
|
p9_hmi_special_emu(regs);
|
|
pagefault_enable();
|
|
}
|
|
#endif /* CONFIG_VSX */
|
|
|
|
if (ppc_md.handle_hmi_exception)
|
|
ppc_md.handle_hmi_exception(regs);
|
|
|
|
irq_exit();
|
|
set_irq_regs(old_regs);
|
|
}
|
|
|
|
void unknown_exception(struct pt_regs *regs)
|
|
{
|
|
enum ctx_state prev_state = exception_enter();
|
|
|
|
printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
|
|
regs->nip, regs->msr, regs->trap);
|
|
|
|
_exception(SIGTRAP, regs, TRAP_FIXME, 0);
|
|
|
|
exception_exit(prev_state);
|
|
}
|
|
|
|
void instruction_breakpoint_exception(struct pt_regs *regs)
|
|
{
|
|
enum ctx_state prev_state = exception_enter();
|
|
|
|
if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
|
|
5, SIGTRAP) == NOTIFY_STOP)
|
|
goto bail;
|
|
if (debugger_iabr_match(regs))
|
|
goto bail;
|
|
_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
|
|
|
|
bail:
|
|
exception_exit(prev_state);
|
|
}
|
|
|
|
void RunModeException(struct pt_regs *regs)
|
|
{
|
|
_exception(SIGTRAP, regs, TRAP_FIXME, 0);
|
|
}
|
|
|
|
void single_step_exception(struct pt_regs *regs)
|
|
{
|
|
enum ctx_state prev_state = exception_enter();
|
|
|
|
clear_single_step(regs);
|
|
clear_br_trace(regs);
|
|
|
|
if (kprobe_post_handler(regs))
|
|
return;
|
|
|
|
if (notify_die(DIE_SSTEP, "single_step", regs, 5,
|
|
5, SIGTRAP) == NOTIFY_STOP)
|
|
goto bail;
|
|
if (debugger_sstep(regs))
|
|
goto bail;
|
|
|
|
_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
|
|
|
|
bail:
|
|
exception_exit(prev_state);
|
|
}
|
|
NOKPROBE_SYMBOL(single_step_exception);
|
|
|
|
/*
|
|
* After we have successfully emulated an instruction, we have to
|
|
* check if the instruction was being single-stepped, and if so,
|
|
* pretend we got a single-step exception. This was pointed out
|
|
* by Kumar Gala. -- paulus
|
|
*/
|
|
static void emulate_single_step(struct pt_regs *regs)
|
|
{
|
|
if (single_stepping(regs))
|
|
single_step_exception(regs);
|
|
}
|
|
|
|
static inline int __parse_fpscr(unsigned long fpscr)
|
|
{
|
|
int ret = FPE_FIXME;
|
|
|
|
/* Invalid operation */
|
|
if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
|
|
ret = FPE_FLTINV;
|
|
|
|
/* Overflow */
|
|
else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
|
|
ret = FPE_FLTOVF;
|
|
|
|
/* Underflow */
|
|
else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
|
|
ret = FPE_FLTUND;
|
|
|
|
/* Divide by zero */
|
|
else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
|
|
ret = FPE_FLTDIV;
|
|
|
|
/* Inexact result */
|
|
else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
|
|
ret = FPE_FLTRES;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void parse_fpe(struct pt_regs *regs)
|
|
{
|
|
int code = 0;
|
|
|
|
flush_fp_to_thread(current);
|
|
|
|
code = __parse_fpscr(current->thread.fp_state.fpscr);
|
|
|
|
_exception(SIGFPE, regs, code, regs->nip);
|
|
}
|
|
|
|
/*
|
|
* Illegal instruction emulation support. Originally written to
|
|
* provide the PVR to user applications using the mfspr rd, PVR.
|
|
* Return non-zero if we can't emulate, or -EFAULT if the associated
|
|
* memory access caused an access fault. Return zero on success.
|
|
*
|
|
* There are a couple of ways to do this, either "decode" the instruction
|
|
* or directly match lots of bits. In this case, matching lots of
|
|
* bits is faster and easier.
|
|
*
|
|
*/
|
|
static int emulate_string_inst(struct pt_regs *regs, u32 instword)
|
|
{
|
|
u8 rT = (instword >> 21) & 0x1f;
|
|
u8 rA = (instword >> 16) & 0x1f;
|
|
u8 NB_RB = (instword >> 11) & 0x1f;
|
|
u32 num_bytes;
|
|
unsigned long EA;
|
|
int pos = 0;
|
|
|
|
/* Early out if we are an invalid form of lswx */
|
|
if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
|
|
if ((rT == rA) || (rT == NB_RB))
|
|
return -EINVAL;
|
|
|
|
EA = (rA == 0) ? 0 : regs->gpr[rA];
|
|
|
|
switch (instword & PPC_INST_STRING_MASK) {
|
|
case PPC_INST_LSWX:
|
|
case PPC_INST_STSWX:
|
|
EA += NB_RB;
|
|
num_bytes = regs->xer & 0x7f;
|
|
break;
|
|
case PPC_INST_LSWI:
|
|
case PPC_INST_STSWI:
|
|
num_bytes = (NB_RB == 0) ? 32 : NB_RB;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
while (num_bytes != 0)
|
|
{
|
|
u8 val;
|
|
u32 shift = 8 * (3 - (pos & 0x3));
|
|
|
|
/* if process is 32-bit, clear upper 32 bits of EA */
|
|
if ((regs->msr & MSR_64BIT) == 0)
|
|
EA &= 0xFFFFFFFF;
|
|
|
|
switch ((instword & PPC_INST_STRING_MASK)) {
|
|
case PPC_INST_LSWX:
|
|
case PPC_INST_LSWI:
|
|
if (get_user(val, (u8 __user *)EA))
|
|
return -EFAULT;
|
|
/* first time updating this reg,
|
|
* zero it out */
|
|
if (pos == 0)
|
|
regs->gpr[rT] = 0;
|
|
regs->gpr[rT] |= val << shift;
|
|
break;
|
|
case PPC_INST_STSWI:
|
|
case PPC_INST_STSWX:
|
|
val = regs->gpr[rT] >> shift;
|
|
if (put_user(val, (u8 __user *)EA))
|
|
return -EFAULT;
|
|
break;
|
|
}
|
|
/* move EA to next address */
|
|
EA += 1;
|
|
num_bytes--;
|
|
|
|
/* manage our position within the register */
|
|
if (++pos == 4) {
|
|
pos = 0;
|
|
if (++rT == 32)
|
|
rT = 0;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
|
|
{
|
|
u32 ra,rs;
|
|
unsigned long tmp;
|
|
|
|
ra = (instword >> 16) & 0x1f;
|
|
rs = (instword >> 21) & 0x1f;
|
|
|
|
tmp = regs->gpr[rs];
|
|
tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
|
|
tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
|
|
tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
|
|
regs->gpr[ra] = tmp;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int emulate_isel(struct pt_regs *regs, u32 instword)
|
|
{
|
|
u8 rT = (instword >> 21) & 0x1f;
|
|
u8 rA = (instword >> 16) & 0x1f;
|
|
u8 rB = (instword >> 11) & 0x1f;
|
|
u8 BC = (instword >> 6) & 0x1f;
|
|
u8 bit;
|
|
unsigned long tmp;
|
|
|
|
tmp = (rA == 0) ? 0 : regs->gpr[rA];
|
|
bit = (regs->ccr >> (31 - BC)) & 0x1;
|
|
|
|
regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
static inline bool tm_abort_check(struct pt_regs *regs, int cause)
|
|
{
|
|
/* If we're emulating a load/store in an active transaction, we cannot
|
|
* emulate it as the kernel operates in transaction suspended context.
|
|
* We need to abort the transaction. This creates a persistent TM
|
|
* abort so tell the user what caused it with a new code.
|
|
*/
|
|
if (MSR_TM_TRANSACTIONAL(regs->msr)) {
|
|
tm_enable();
|
|
tm_abort(cause);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
#else
|
|
static inline bool tm_abort_check(struct pt_regs *regs, int reason)
|
|
{
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
static int emulate_instruction(struct pt_regs *regs)
|
|
{
|
|
u32 instword;
|
|
u32 rd;
|
|
|
|
if (!user_mode(regs))
|
|
return -EINVAL;
|
|
CHECK_FULL_REGS(regs);
|
|
|
|
if (get_user(instword, (u32 __user *)(regs->nip)))
|
|
return -EFAULT;
|
|
|
|
/* Emulate the mfspr rD, PVR. */
|
|
if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
|
|
PPC_WARN_EMULATED(mfpvr, regs);
|
|
rd = (instword >> 21) & 0x1f;
|
|
regs->gpr[rd] = mfspr(SPRN_PVR);
|
|
return 0;
|
|
}
|
|
|
|
/* Emulating the dcba insn is just a no-op. */
|
|
if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
|
|
PPC_WARN_EMULATED(dcba, regs);
|
|
return 0;
|
|
}
|
|
|
|
/* Emulate the mcrxr insn. */
|
|
if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
|
|
int shift = (instword >> 21) & 0x1c;
|
|
unsigned long msk = 0xf0000000UL >> shift;
|
|
|
|
PPC_WARN_EMULATED(mcrxr, regs);
|
|
regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
|
|
regs->xer &= ~0xf0000000UL;
|
|
return 0;
|
|
}
|
|
|
|
/* Emulate load/store string insn. */
|
|
if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
|
|
if (tm_abort_check(regs,
|
|
TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
|
|
return -EINVAL;
|
|
PPC_WARN_EMULATED(string, regs);
|
|
return emulate_string_inst(regs, instword);
|
|
}
|
|
|
|
/* Emulate the popcntb (Population Count Bytes) instruction. */
|
|
if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
|
|
PPC_WARN_EMULATED(popcntb, regs);
|
|
return emulate_popcntb_inst(regs, instword);
|
|
}
|
|
|
|
/* Emulate isel (Integer Select) instruction */
|
|
if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
|
|
PPC_WARN_EMULATED(isel, regs);
|
|
return emulate_isel(regs, instword);
|
|
}
|
|
|
|
/* Emulate sync instruction variants */
|
|
if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
|
|
PPC_WARN_EMULATED(sync, regs);
|
|
asm volatile("sync");
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PPC64
|
|
/* Emulate the mfspr rD, DSCR. */
|
|
if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
|
|
PPC_INST_MFSPR_DSCR_USER) ||
|
|
((instword & PPC_INST_MFSPR_DSCR_MASK) ==
|
|
PPC_INST_MFSPR_DSCR)) &&
|
|
cpu_has_feature(CPU_FTR_DSCR)) {
|
|
PPC_WARN_EMULATED(mfdscr, regs);
|
|
rd = (instword >> 21) & 0x1f;
|
|
regs->gpr[rd] = mfspr(SPRN_DSCR);
|
|
return 0;
|
|
}
|
|
/* Emulate the mtspr DSCR, rD. */
|
|
if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
|
|
PPC_INST_MTSPR_DSCR_USER) ||
|
|
((instword & PPC_INST_MTSPR_DSCR_MASK) ==
|
|
PPC_INST_MTSPR_DSCR)) &&
|
|
cpu_has_feature(CPU_FTR_DSCR)) {
|
|
PPC_WARN_EMULATED(mtdscr, regs);
|
|
rd = (instword >> 21) & 0x1f;
|
|
current->thread.dscr = regs->gpr[rd];
|
|
current->thread.dscr_inherit = 1;
|
|
mtspr(SPRN_DSCR, current->thread.dscr);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
int is_valid_bugaddr(unsigned long addr)
|
|
{
|
|
return is_kernel_addr(addr);
|
|
}
|
|
|
|
#ifdef CONFIG_MATH_EMULATION
|
|
static int emulate_math(struct pt_regs *regs)
|
|
{
|
|
int ret;
|
|
extern int do_mathemu(struct pt_regs *regs);
|
|
|
|
ret = do_mathemu(regs);
|
|
if (ret >= 0)
|
|
PPC_WARN_EMULATED(math, regs);
|
|
|
|
switch (ret) {
|
|
case 0:
|
|
emulate_single_step(regs);
|
|
return 0;
|
|
case 1: {
|
|
int code = 0;
|
|
code = __parse_fpscr(current->thread.fp_state.fpscr);
|
|
_exception(SIGFPE, regs, code, regs->nip);
|
|
return 0;
|
|
}
|
|
case -EFAULT:
|
|
_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
|
|
return 0;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
#else
|
|
static inline int emulate_math(struct pt_regs *regs) { return -1; }
|
|
#endif
|
|
|
|
void program_check_exception(struct pt_regs *regs)
|
|
{
|
|
enum ctx_state prev_state = exception_enter();
|
|
unsigned int reason = get_reason(regs);
|
|
|
|
/* We can now get here via a FP Unavailable exception if the core
|
|
* has no FPU, in that case the reason flags will be 0 */
|
|
|
|
if (reason & REASON_FP) {
|
|
/* IEEE FP exception */
|
|
parse_fpe(regs);
|
|
goto bail;
|
|
}
|
|
if (reason & REASON_TRAP) {
|
|
unsigned long bugaddr;
|
|
/* Debugger is first in line to stop recursive faults in
|
|
* rcu_lock, notify_die, or atomic_notifier_call_chain */
|
|
if (debugger_bpt(regs))
|
|
goto bail;
|
|
|
|
if (kprobe_handler(regs))
|
|
goto bail;
|
|
|
|
/* trap exception */
|
|
if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
|
|
== NOTIFY_STOP)
|
|
goto bail;
|
|
|
|
bugaddr = regs->nip;
|
|
/*
|
|
* Fixup bugaddr for BUG_ON() in real mode
|
|
*/
|
|
if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
|
|
bugaddr += PAGE_OFFSET;
|
|
|
|
if (!(regs->msr & MSR_PR) && /* not user-mode */
|
|
report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
|
|
regs->nip += 4;
|
|
goto bail;
|
|
}
|
|
_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
|
|
goto bail;
|
|
}
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
if (reason & REASON_TM) {
|
|
/* This is a TM "Bad Thing Exception" program check.
|
|
* This occurs when:
|
|
* - An rfid/hrfid/mtmsrd attempts to cause an illegal
|
|
* transition in TM states.
|
|
* - A trechkpt is attempted when transactional.
|
|
* - A treclaim is attempted when non transactional.
|
|
* - A tend is illegally attempted.
|
|
* - writing a TM SPR when transactional.
|
|
*
|
|
* If usermode caused this, it's done something illegal and
|
|
* gets a SIGILL slap on the wrist. We call it an illegal
|
|
* operand to distinguish from the instruction just being bad
|
|
* (e.g. executing a 'tend' on a CPU without TM!); it's an
|
|
* illegal /placement/ of a valid instruction.
|
|
*/
|
|
if (user_mode(regs)) {
|
|
_exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
|
|
goto bail;
|
|
} else {
|
|
printk(KERN_EMERG "Unexpected TM Bad Thing exception "
|
|
"at %lx (msr 0x%x)\n", regs->nip, reason);
|
|
die("Unrecoverable exception", regs, SIGABRT);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* If we took the program check in the kernel skip down to sending a
|
|
* SIGILL. The subsequent cases all relate to emulating instructions
|
|
* which we should only do for userspace. We also do not want to enable
|
|
* interrupts for kernel faults because that might lead to further
|
|
* faults, and loose the context of the original exception.
|
|
*/
|
|
if (!user_mode(regs))
|
|
goto sigill;
|
|
|
|
/* We restore the interrupt state now */
|
|
if (!arch_irq_disabled_regs(regs))
|
|
local_irq_enable();
|
|
|
|
/* (reason & REASON_ILLEGAL) would be the obvious thing here,
|
|
* but there seems to be a hardware bug on the 405GP (RevD)
|
|
* that means ESR is sometimes set incorrectly - either to
|
|
* ESR_DST (!?) or 0. In the process of chasing this with the
|
|
* hardware people - not sure if it can happen on any illegal
|
|
* instruction or only on FP instructions, whether there is a
|
|
* pattern to occurrences etc. -dgibson 31/Mar/2003
|
|
*/
|
|
if (!emulate_math(regs))
|
|
goto bail;
|
|
|
|
/* Try to emulate it if we should. */
|
|
if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
|
|
switch (emulate_instruction(regs)) {
|
|
case 0:
|
|
regs->nip += 4;
|
|
emulate_single_step(regs);
|
|
goto bail;
|
|
case -EFAULT:
|
|
_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
|
|
goto bail;
|
|
}
|
|
}
|
|
|
|
sigill:
|
|
if (reason & REASON_PRIVILEGED)
|
|
_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
|
|
else
|
|
_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
|
|
|
|
bail:
|
|
exception_exit(prev_state);
|
|
}
|
|
NOKPROBE_SYMBOL(program_check_exception);
|
|
|
|
/*
|
|
* This occurs when running in hypervisor mode on POWER6 or later
|
|
* and an illegal instruction is encountered.
|
|
*/
|
|
void emulation_assist_interrupt(struct pt_regs *regs)
|
|
{
|
|
regs->msr |= REASON_ILLEGAL;
|
|
program_check_exception(regs);
|
|
}
|
|
NOKPROBE_SYMBOL(emulation_assist_interrupt);
|
|
|
|
void alignment_exception(struct pt_regs *regs)
|
|
{
|
|
enum ctx_state prev_state = exception_enter();
|
|
int sig, code, fixed = 0;
|
|
|
|
/* We restore the interrupt state now */
|
|
if (!arch_irq_disabled_regs(regs))
|
|
local_irq_enable();
|
|
|
|
if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
|
|
goto bail;
|
|
|
|
/* we don't implement logging of alignment exceptions */
|
|
if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
|
|
fixed = fix_alignment(regs);
|
|
|
|
if (fixed == 1) {
|
|
regs->nip += 4; /* skip over emulated instruction */
|
|
emulate_single_step(regs);
|
|
goto bail;
|
|
}
|
|
|
|
/* Operand address was bad */
|
|
if (fixed == -EFAULT) {
|
|
sig = SIGSEGV;
|
|
code = SEGV_ACCERR;
|
|
} else {
|
|
sig = SIGBUS;
|
|
code = BUS_ADRALN;
|
|
}
|
|
if (user_mode(regs))
|
|
_exception(sig, regs, code, regs->dar);
|
|
else
|
|
bad_page_fault(regs, regs->dar, sig);
|
|
|
|
bail:
|
|
exception_exit(prev_state);
|
|
}
|
|
|
|
void StackOverflow(struct pt_regs *regs)
|
|
{
|
|
printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
|
|
current, regs->gpr[1]);
|
|
debugger(regs);
|
|
show_regs(regs);
|
|
panic("kernel stack overflow");
|
|
}
|
|
|
|
void nonrecoverable_exception(struct pt_regs *regs)
|
|
{
|
|
printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
|
|
regs->nip, regs->msr);
|
|
debugger(regs);
|
|
die("nonrecoverable exception", regs, SIGKILL);
|
|
}
|
|
|
|
void kernel_fp_unavailable_exception(struct pt_regs *regs)
|
|
{
|
|
enum ctx_state prev_state = exception_enter();
|
|
|
|
printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
|
|
"%lx at %lx\n", regs->trap, regs->nip);
|
|
die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
|
|
|
|
exception_exit(prev_state);
|
|
}
|
|
|
|
void altivec_unavailable_exception(struct pt_regs *regs)
|
|
{
|
|
enum ctx_state prev_state = exception_enter();
|
|
|
|
if (user_mode(regs)) {
|
|
/* A user program has executed an altivec instruction,
|
|
but this kernel doesn't support altivec. */
|
|
_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
|
|
goto bail;
|
|
}
|
|
|
|
printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
|
|
"%lx at %lx\n", regs->trap, regs->nip);
|
|
die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
|
|
|
|
bail:
|
|
exception_exit(prev_state);
|
|
}
|
|
|
|
void vsx_unavailable_exception(struct pt_regs *regs)
|
|
{
|
|
if (user_mode(regs)) {
|
|
/* A user program has executed an vsx instruction,
|
|
but this kernel doesn't support vsx. */
|
|
_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
|
|
return;
|
|
}
|
|
|
|
printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
|
|
"%lx at %lx\n", regs->trap, regs->nip);
|
|
die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
|
|
}
|
|
|
|
#ifdef CONFIG_PPC64
|
|
static void tm_unavailable(struct pt_regs *regs)
|
|
{
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
if (user_mode(regs)) {
|
|
current->thread.load_tm++;
|
|
regs->msr |= MSR_TM;
|
|
tm_enable();
|
|
tm_restore_sprs(¤t->thread);
|
|
return;
|
|
}
|
|
#endif
|
|
pr_emerg("Unrecoverable TM Unavailable Exception "
|
|
"%lx at %lx\n", regs->trap, regs->nip);
|
|
die("Unrecoverable TM Unavailable Exception", regs, SIGABRT);
|
|
}
|
|
|
|
void facility_unavailable_exception(struct pt_regs *regs)
|
|
{
|
|
static char *facility_strings[] = {
|
|
[FSCR_FP_LG] = "FPU",
|
|
[FSCR_VECVSX_LG] = "VMX/VSX",
|
|
[FSCR_DSCR_LG] = "DSCR",
|
|
[FSCR_PM_LG] = "PMU SPRs",
|
|
[FSCR_BHRB_LG] = "BHRB",
|
|
[FSCR_TM_LG] = "TM",
|
|
[FSCR_EBB_LG] = "EBB",
|
|
[FSCR_TAR_LG] = "TAR",
|
|
[FSCR_MSGP_LG] = "MSGP",
|
|
[FSCR_SCV_LG] = "SCV",
|
|
};
|
|
char *facility = "unknown";
|
|
u64 value;
|
|
u32 instword, rd;
|
|
u8 status;
|
|
bool hv;
|
|
|
|
hv = (TRAP(regs) == 0xf80);
|
|
if (hv)
|
|
value = mfspr(SPRN_HFSCR);
|
|
else
|
|
value = mfspr(SPRN_FSCR);
|
|
|
|
status = value >> 56;
|
|
if ((hv || status >= 2) &&
|
|
(status < ARRAY_SIZE(facility_strings)) &&
|
|
facility_strings[status])
|
|
facility = facility_strings[status];
|
|
|
|
/* We should not have taken this interrupt in kernel */
|
|
if (!user_mode(regs)) {
|
|
pr_emerg("Facility '%s' unavailable (%d) exception in kernel mode at %lx\n",
|
|
facility, status, regs->nip);
|
|
die("Unexpected facility unavailable exception", regs, SIGABRT);
|
|
}
|
|
|
|
/* We restore the interrupt state now */
|
|
if (!arch_irq_disabled_regs(regs))
|
|
local_irq_enable();
|
|
|
|
if (status == FSCR_DSCR_LG) {
|
|
/*
|
|
* User is accessing the DSCR register using the problem
|
|
* state only SPR number (0x03) either through a mfspr or
|
|
* a mtspr instruction. If it is a write attempt through
|
|
* a mtspr, then we set the inherit bit. This also allows
|
|
* the user to write or read the register directly in the
|
|
* future by setting via the FSCR DSCR bit. But in case it
|
|
* is a read DSCR attempt through a mfspr instruction, we
|
|
* just emulate the instruction instead. This code path will
|
|
* always emulate all the mfspr instructions till the user
|
|
* has attempted at least one mtspr instruction. This way it
|
|
* preserves the same behaviour when the user is accessing
|
|
* the DSCR through privilege level only SPR number (0x11)
|
|
* which is emulated through illegal instruction exception.
|
|
* We always leave HFSCR DSCR set.
|
|
*/
|
|
if (get_user(instword, (u32 __user *)(regs->nip))) {
|
|
pr_err("Failed to fetch the user instruction\n");
|
|
return;
|
|
}
|
|
|
|
/* Write into DSCR (mtspr 0x03, RS) */
|
|
if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
|
|
== PPC_INST_MTSPR_DSCR_USER) {
|
|
rd = (instword >> 21) & 0x1f;
|
|
current->thread.dscr = regs->gpr[rd];
|
|
current->thread.dscr_inherit = 1;
|
|
current->thread.fscr |= FSCR_DSCR;
|
|
mtspr(SPRN_FSCR, current->thread.fscr);
|
|
}
|
|
|
|
/* Read from DSCR (mfspr RT, 0x03) */
|
|
if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
|
|
== PPC_INST_MFSPR_DSCR_USER) {
|
|
if (emulate_instruction(regs)) {
|
|
pr_err("DSCR based mfspr emulation failed\n");
|
|
return;
|
|
}
|
|
regs->nip += 4;
|
|
emulate_single_step(regs);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (status == FSCR_TM_LG) {
|
|
/*
|
|
* If we're here then the hardware is TM aware because it
|
|
* generated an exception with FSRM_TM set.
|
|
*
|
|
* If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
|
|
* told us not to do TM, or the kernel is not built with TM
|
|
* support.
|
|
*
|
|
* If both of those things are true, then userspace can spam the
|
|
* console by triggering the printk() below just by continually
|
|
* doing tbegin (or any TM instruction). So in that case just
|
|
* send the process a SIGILL immediately.
|
|
*/
|
|
if (!cpu_has_feature(CPU_FTR_TM))
|
|
goto out;
|
|
|
|
tm_unavailable(regs);
|
|
return;
|
|
}
|
|
|
|
pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
|
|
hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr);
|
|
|
|
out:
|
|
_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
|
|
void fp_unavailable_tm(struct pt_regs *regs)
|
|
{
|
|
/* Note: This does not handle any kind of FP laziness. */
|
|
|
|
TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
|
|
regs->nip, regs->msr);
|
|
|
|
/* We can only have got here if the task started using FP after
|
|
* beginning the transaction. So, the transactional regs are just a
|
|
* copy of the checkpointed ones. But, we still need to recheckpoint
|
|
* as we're enabling FP for the process; it will return, abort the
|
|
* transaction, and probably retry but now with FP enabled. So the
|
|
* checkpointed FP registers need to be loaded.
|
|
*/
|
|
tm_reclaim_current(TM_CAUSE_FAC_UNAV);
|
|
/* Reclaim didn't save out any FPRs to transact_fprs. */
|
|
|
|
/* Enable FP for the task: */
|
|
current->thread.load_fp = 1;
|
|
|
|
/* This loads and recheckpoints the FP registers from
|
|
* thread.fpr[]. They will remain in registers after the
|
|
* checkpoint so we don't need to reload them after.
|
|
* If VMX is in use, the VRs now hold checkpointed values,
|
|
* so we don't want to load the VRs from the thread_struct.
|
|
*/
|
|
tm_recheckpoint(¤t->thread);
|
|
}
|
|
|
|
void altivec_unavailable_tm(struct pt_regs *regs)
|
|
{
|
|
/* See the comments in fp_unavailable_tm(). This function operates
|
|
* the same way.
|
|
*/
|
|
|
|
TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
|
|
"MSR=%lx\n",
|
|
regs->nip, regs->msr);
|
|
tm_reclaim_current(TM_CAUSE_FAC_UNAV);
|
|
current->thread.load_vec = 1;
|
|
tm_recheckpoint(¤t->thread);
|
|
current->thread.used_vr = 1;
|
|
}
|
|
|
|
void vsx_unavailable_tm(struct pt_regs *regs)
|
|
{
|
|
/* See the comments in fp_unavailable_tm(). This works similarly,
|
|
* though we're loading both FP and VEC registers in here.
|
|
*
|
|
* If FP isn't in use, load FP regs. If VEC isn't in use, load VEC
|
|
* regs. Either way, set MSR_VSX.
|
|
*/
|
|
|
|
TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
|
|
"MSR=%lx\n",
|
|
regs->nip, regs->msr);
|
|
|
|
current->thread.used_vsr = 1;
|
|
|
|
/* This reclaims FP and/or VR regs if they're already enabled */
|
|
tm_reclaim_current(TM_CAUSE_FAC_UNAV);
|
|
|
|
current->thread.load_vec = 1;
|
|
current->thread.load_fp = 1;
|
|
|
|
tm_recheckpoint(¤t->thread);
|
|
}
|
|
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
|
|
|
|
void performance_monitor_exception(struct pt_regs *regs)
|
|
{
|
|
__this_cpu_inc(irq_stat.pmu_irqs);
|
|
|
|
perf_irq(regs);
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
|
|
static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
|
|
{
|
|
int changed = 0;
|
|
/*
|
|
* Determine the cause of the debug event, clear the
|
|
* event flags and send a trap to the handler. Torez
|
|
*/
|
|
if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
|
|
dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
|
|
#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
|
|
current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
|
|
#endif
|
|
do_send_trap(regs, mfspr(SPRN_DAC1), debug_status,
|
|
5);
|
|
changed |= 0x01;
|
|
} else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
|
|
dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
|
|
do_send_trap(regs, mfspr(SPRN_DAC2), debug_status,
|
|
6);
|
|
changed |= 0x01;
|
|
} else if (debug_status & DBSR_IAC1) {
|
|
current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
|
|
dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
|
|
do_send_trap(regs, mfspr(SPRN_IAC1), debug_status,
|
|
1);
|
|
changed |= 0x01;
|
|
} else if (debug_status & DBSR_IAC2) {
|
|
current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
|
|
do_send_trap(regs, mfspr(SPRN_IAC2), debug_status,
|
|
2);
|
|
changed |= 0x01;
|
|
} else if (debug_status & DBSR_IAC3) {
|
|
current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
|
|
dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
|
|
do_send_trap(regs, mfspr(SPRN_IAC3), debug_status,
|
|
3);
|
|
changed |= 0x01;
|
|
} else if (debug_status & DBSR_IAC4) {
|
|
current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
|
|
do_send_trap(regs, mfspr(SPRN_IAC4), debug_status,
|
|
4);
|
|
changed |= 0x01;
|
|
}
|
|
/*
|
|
* At the point this routine was called, the MSR(DE) was turned off.
|
|
* Check all other debug flags and see if that bit needs to be turned
|
|
* back on or not.
|
|
*/
|
|
if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
|
|
current->thread.debug.dbcr1))
|
|
regs->msr |= MSR_DE;
|
|
else
|
|
/* Make sure the IDM flag is off */
|
|
current->thread.debug.dbcr0 &= ~DBCR0_IDM;
|
|
|
|
if (changed & 0x01)
|
|
mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
|
|
}
|
|
|
|
void DebugException(struct pt_regs *regs, unsigned long debug_status)
|
|
{
|
|
current->thread.debug.dbsr = debug_status;
|
|
|
|
/* Hack alert: On BookE, Branch Taken stops on the branch itself, while
|
|
* on server, it stops on the target of the branch. In order to simulate
|
|
* the server behaviour, we thus restart right away with a single step
|
|
* instead of stopping here when hitting a BT
|
|
*/
|
|
if (debug_status & DBSR_BT) {
|
|
regs->msr &= ~MSR_DE;
|
|
|
|
/* Disable BT */
|
|
mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
|
|
/* Clear the BT event */
|
|
mtspr(SPRN_DBSR, DBSR_BT);
|
|
|
|
/* Do the single step trick only when coming from userspace */
|
|
if (user_mode(regs)) {
|
|
current->thread.debug.dbcr0 &= ~DBCR0_BT;
|
|
current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
|
|
regs->msr |= MSR_DE;
|
|
return;
|
|
}
|
|
|
|
if (kprobe_post_handler(regs))
|
|
return;
|
|
|
|
if (notify_die(DIE_SSTEP, "block_step", regs, 5,
|
|
5, SIGTRAP) == NOTIFY_STOP) {
|
|
return;
|
|
}
|
|
if (debugger_sstep(regs))
|
|
return;
|
|
} else if (debug_status & DBSR_IC) { /* Instruction complete */
|
|
regs->msr &= ~MSR_DE;
|
|
|
|
/* Disable instruction completion */
|
|
mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
|
|
/* Clear the instruction completion event */
|
|
mtspr(SPRN_DBSR, DBSR_IC);
|
|
|
|
if (kprobe_post_handler(regs))
|
|
return;
|
|
|
|
if (notify_die(DIE_SSTEP, "single_step", regs, 5,
|
|
5, SIGTRAP) == NOTIFY_STOP) {
|
|
return;
|
|
}
|
|
|
|
if (debugger_sstep(regs))
|
|
return;
|
|
|
|
if (user_mode(regs)) {
|
|
current->thread.debug.dbcr0 &= ~DBCR0_IC;
|
|
if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
|
|
current->thread.debug.dbcr1))
|
|
regs->msr |= MSR_DE;
|
|
else
|
|
/* Make sure the IDM bit is off */
|
|
current->thread.debug.dbcr0 &= ~DBCR0_IDM;
|
|
}
|
|
|
|
_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
|
|
} else
|
|
handle_debug(regs, debug_status);
|
|
}
|
|
NOKPROBE_SYMBOL(DebugException);
|
|
#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
|
|
|
|
#if !defined(CONFIG_TAU_INT)
|
|
void TAUException(struct pt_regs *regs)
|
|
{
|
|
printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx %s\n",
|
|
regs->nip, regs->msr, regs->trap, print_tainted());
|
|
}
|
|
#endif /* CONFIG_INT_TAU */
|
|
|
|
#ifdef CONFIG_ALTIVEC
|
|
void altivec_assist_exception(struct pt_regs *regs)
|
|
{
|
|
int err;
|
|
|
|
if (!user_mode(regs)) {
|
|
printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
|
|
" at %lx\n", regs->nip);
|
|
die("Kernel VMX/Altivec assist exception", regs, SIGILL);
|
|
}
|
|
|
|
flush_altivec_to_thread(current);
|
|
|
|
PPC_WARN_EMULATED(altivec, regs);
|
|
err = emulate_altivec(regs);
|
|
if (err == 0) {
|
|
regs->nip += 4; /* skip emulated instruction */
|
|
emulate_single_step(regs);
|
|
return;
|
|
}
|
|
|
|
if (err == -EFAULT) {
|
|
/* got an error reading the instruction */
|
|
_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
|
|
} else {
|
|
/* didn't recognize the instruction */
|
|
/* XXX quick hack for now: set the non-Java bit in the VSCR */
|
|
printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
|
|
"in %s at %lx\n", current->comm, regs->nip);
|
|
current->thread.vr_state.vscr.u[3] |= 0x10000;
|
|
}
|
|
}
|
|
#endif /* CONFIG_ALTIVEC */
|
|
|
|
#ifdef CONFIG_FSL_BOOKE
|
|
void CacheLockingException(struct pt_regs *regs, unsigned long address,
|
|
unsigned long error_code)
|
|
{
|
|
/* We treat cache locking instructions from the user
|
|
* as priv ops, in the future we could try to do
|
|
* something smarter
|
|
*/
|
|
if (error_code & (ESR_DLK|ESR_ILK))
|
|
_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
|
|
return;
|
|
}
|
|
#endif /* CONFIG_FSL_BOOKE */
|
|
|
|
#ifdef CONFIG_SPE
|
|
void SPEFloatingPointException(struct pt_regs *regs)
|
|
{
|
|
extern int do_spe_mathemu(struct pt_regs *regs);
|
|
unsigned long spefscr;
|
|
int fpexc_mode;
|
|
int code = FPE_FIXME;
|
|
int err;
|
|
|
|
flush_spe_to_thread(current);
|
|
|
|
spefscr = current->thread.spefscr;
|
|
fpexc_mode = current->thread.fpexc_mode;
|
|
|
|
if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
|
|
code = FPE_FLTOVF;
|
|
}
|
|
else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
|
|
code = FPE_FLTUND;
|
|
}
|
|
else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
|
|
code = FPE_FLTDIV;
|
|
else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
|
|
code = FPE_FLTINV;
|
|
}
|
|
else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
|
|
code = FPE_FLTRES;
|
|
|
|
err = do_spe_mathemu(regs);
|
|
if (err == 0) {
|
|
regs->nip += 4; /* skip emulated instruction */
|
|
emulate_single_step(regs);
|
|
return;
|
|
}
|
|
|
|
if (err == -EFAULT) {
|
|
/* got an error reading the instruction */
|
|
_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
|
|
} else if (err == -EINVAL) {
|
|
/* didn't recognize the instruction */
|
|
printk(KERN_ERR "unrecognized spe instruction "
|
|
"in %s at %lx\n", current->comm, regs->nip);
|
|
} else {
|
|
_exception(SIGFPE, regs, code, regs->nip);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
void SPEFloatingPointRoundException(struct pt_regs *regs)
|
|
{
|
|
extern int speround_handler(struct pt_regs *regs);
|
|
int err;
|
|
|
|
preempt_disable();
|
|
if (regs->msr & MSR_SPE)
|
|
giveup_spe(current);
|
|
preempt_enable();
|
|
|
|
regs->nip -= 4;
|
|
err = speround_handler(regs);
|
|
if (err == 0) {
|
|
regs->nip += 4; /* skip emulated instruction */
|
|
emulate_single_step(regs);
|
|
return;
|
|
}
|
|
|
|
if (err == -EFAULT) {
|
|
/* got an error reading the instruction */
|
|
_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
|
|
} else if (err == -EINVAL) {
|
|
/* didn't recognize the instruction */
|
|
printk(KERN_ERR "unrecognized spe instruction "
|
|
"in %s at %lx\n", current->comm, regs->nip);
|
|
} else {
|
|
_exception(SIGFPE, regs, FPE_FIXME, regs->nip);
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* We enter here if we get an unrecoverable exception, that is, one
|
|
* that happened at a point where the RI (recoverable interrupt) bit
|
|
* in the MSR is 0. This indicates that SRR0/1 are live, and that
|
|
* we therefore lost state by taking this exception.
|
|
*/
|
|
void unrecoverable_exception(struct pt_regs *regs)
|
|
{
|
|
printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
|
|
regs->trap, regs->nip);
|
|
die("Unrecoverable exception", regs, SIGABRT);
|
|
}
|
|
NOKPROBE_SYMBOL(unrecoverable_exception);
|
|
|
|
#if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
|
|
/*
|
|
* Default handler for a Watchdog exception,
|
|
* spins until a reboot occurs
|
|
*/
|
|
void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
|
|
{
|
|
/* Generic WatchdogHandler, implement your own */
|
|
mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
|
|
return;
|
|
}
|
|
|
|
void WatchdogException(struct pt_regs *regs)
|
|
{
|
|
printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
|
|
WatchdogHandler(regs);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* We enter here if we discover during exception entry that we are
|
|
* running in supervisor mode with a userspace value in the stack pointer.
|
|
*/
|
|
void kernel_bad_stack(struct pt_regs *regs)
|
|
{
|
|
printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
|
|
regs->gpr[1], regs->nip);
|
|
die("Bad kernel stack pointer", regs, SIGABRT);
|
|
}
|
|
NOKPROBE_SYMBOL(kernel_bad_stack);
|
|
|
|
void __init trap_init(void)
|
|
{
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_PPC_EMULATED_STATS
|
|
|
|
#define WARN_EMULATED_SETUP(type) .type = { .name = #type }
|
|
|
|
struct ppc_emulated ppc_emulated = {
|
|
#ifdef CONFIG_ALTIVEC
|
|
WARN_EMULATED_SETUP(altivec),
|
|
#endif
|
|
WARN_EMULATED_SETUP(dcba),
|
|
WARN_EMULATED_SETUP(dcbz),
|
|
WARN_EMULATED_SETUP(fp_pair),
|
|
WARN_EMULATED_SETUP(isel),
|
|
WARN_EMULATED_SETUP(mcrxr),
|
|
WARN_EMULATED_SETUP(mfpvr),
|
|
WARN_EMULATED_SETUP(multiple),
|
|
WARN_EMULATED_SETUP(popcntb),
|
|
WARN_EMULATED_SETUP(spe),
|
|
WARN_EMULATED_SETUP(string),
|
|
WARN_EMULATED_SETUP(sync),
|
|
WARN_EMULATED_SETUP(unaligned),
|
|
#ifdef CONFIG_MATH_EMULATION
|
|
WARN_EMULATED_SETUP(math),
|
|
#endif
|
|
#ifdef CONFIG_VSX
|
|
WARN_EMULATED_SETUP(vsx),
|
|
#endif
|
|
#ifdef CONFIG_PPC64
|
|
WARN_EMULATED_SETUP(mfdscr),
|
|
WARN_EMULATED_SETUP(mtdscr),
|
|
WARN_EMULATED_SETUP(lq_stq),
|
|
WARN_EMULATED_SETUP(lxvw4x),
|
|
WARN_EMULATED_SETUP(lxvh8x),
|
|
WARN_EMULATED_SETUP(lxvd2x),
|
|
WARN_EMULATED_SETUP(lxvb16x),
|
|
#endif
|
|
};
|
|
|
|
u32 ppc_warn_emulated;
|
|
|
|
void ppc_warn_emulated_print(const char *type)
|
|
{
|
|
pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
|
|
type);
|
|
}
|
|
|
|
static int __init ppc_warn_emulated_init(void)
|
|
{
|
|
struct dentry *dir, *d;
|
|
unsigned int i;
|
|
struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
|
|
|
|
if (!powerpc_debugfs_root)
|
|
return -ENODEV;
|
|
|
|
dir = debugfs_create_dir("emulated_instructions",
|
|
powerpc_debugfs_root);
|
|
if (!dir)
|
|
return -ENOMEM;
|
|
|
|
d = debugfs_create_u32("do_warn", 0644, dir,
|
|
&ppc_warn_emulated);
|
|
if (!d)
|
|
goto fail;
|
|
|
|
for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
|
|
d = debugfs_create_u32(entries[i].name, 0644, dir,
|
|
(u32 *)&entries[i].val.counter);
|
|
if (!d)
|
|
goto fail;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
debugfs_remove_recursive(dir);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
device_initcall(ppc_warn_emulated_init);
|
|
|
|
#endif /* CONFIG_PPC_EMULATED_STATS */
|