linux_dsm_epyc7002/drivers/gpu/drm/amd/amdkfd/kfd_process.c
Felix Kuehling 6b95e7973a drm/amdkfd: Add quiesce_mm and resume_mm to kgd2kfd_calls
These interfaces allow KGD to stop and resume all GPU user mode queue
access to a process address space. This is needed for handling MMU
notifiers of userptrs mapped for GPU access in KFD VMs.

Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Reviewed-by: Oded Gabbay <oded.gabbay@gmail.com>
Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com>
2018-03-23 15:32:32 -04:00

1070 lines
27 KiB
C

/*
* Copyright 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <linux/mutex.h>
#include <linux/log2.h>
#include <linux/sched.h>
#include <linux/sched/mm.h>
#include <linux/sched/task.h>
#include <linux/slab.h>
#include <linux/amd-iommu.h>
#include <linux/notifier.h>
#include <linux/compat.h>
#include <linux/mman.h>
#include <linux/file.h>
struct mm_struct;
#include "kfd_priv.h"
#include "kfd_device_queue_manager.h"
#include "kfd_dbgmgr.h"
#include "kfd_iommu.h"
/*
* List of struct kfd_process (field kfd_process).
* Unique/indexed by mm_struct*
*/
DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
static DEFINE_MUTEX(kfd_processes_mutex);
DEFINE_SRCU(kfd_processes_srcu);
/* For process termination handling */
static struct workqueue_struct *kfd_process_wq;
/* Ordered, single-threaded workqueue for restoring evicted
* processes. Restoring multiple processes concurrently under memory
* pressure can lead to processes blocking each other from validating
* their BOs and result in a live-lock situation where processes
* remain evicted indefinitely.
*/
static struct workqueue_struct *kfd_restore_wq;
static struct kfd_process *find_process(const struct task_struct *thread);
static void kfd_process_ref_release(struct kref *ref);
static struct kfd_process *create_process(const struct task_struct *thread,
struct file *filep);
static void evict_process_worker(struct work_struct *work);
static void restore_process_worker(struct work_struct *work);
int kfd_process_create_wq(void)
{
if (!kfd_process_wq)
kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
if (!kfd_restore_wq)
kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0);
if (!kfd_process_wq || !kfd_restore_wq) {
kfd_process_destroy_wq();
return -ENOMEM;
}
return 0;
}
void kfd_process_destroy_wq(void)
{
if (kfd_process_wq) {
destroy_workqueue(kfd_process_wq);
kfd_process_wq = NULL;
}
if (kfd_restore_wq) {
destroy_workqueue(kfd_restore_wq);
kfd_restore_wq = NULL;
}
}
static void kfd_process_free_gpuvm(struct kgd_mem *mem,
struct kfd_process_device *pdd)
{
struct kfd_dev *dev = pdd->dev;
dev->kfd2kgd->unmap_memory_to_gpu(dev->kgd, mem, pdd->vm);
dev->kfd2kgd->free_memory_of_gpu(dev->kgd, mem);
}
/* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
* This function should be only called right after the process
* is created and when kfd_processes_mutex is still being held
* to avoid concurrency. Because of that exclusiveness, we do
* not need to take p->mutex.
*/
static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
uint64_t gpu_va, uint32_t size,
uint32_t flags, void **kptr)
{
struct kfd_dev *kdev = pdd->dev;
struct kgd_mem *mem = NULL;
int handle;
int err;
err = kdev->kfd2kgd->alloc_memory_of_gpu(kdev->kgd, gpu_va, size,
pdd->vm, &mem, NULL, flags);
if (err)
goto err_alloc_mem;
err = kdev->kfd2kgd->map_memory_to_gpu(kdev->kgd, mem, pdd->vm);
if (err)
goto err_map_mem;
err = kdev->kfd2kgd->sync_memory(kdev->kgd, mem, true);
if (err) {
pr_debug("Sync memory failed, wait interrupted by user signal\n");
goto sync_memory_failed;
}
/* Create an obj handle so kfd_process_device_remove_obj_handle
* will take care of the bo removal when the process finishes.
* We do not need to take p->mutex, because the process is just
* created and the ioctls have not had the chance to run.
*/
handle = kfd_process_device_create_obj_handle(pdd, mem);
if (handle < 0) {
err = handle;
goto free_gpuvm;
}
if (kptr) {
err = kdev->kfd2kgd->map_gtt_bo_to_kernel(kdev->kgd,
(struct kgd_mem *)mem, kptr, NULL);
if (err) {
pr_debug("Map GTT BO to kernel failed\n");
goto free_obj_handle;
}
}
return err;
free_obj_handle:
kfd_process_device_remove_obj_handle(pdd, handle);
free_gpuvm:
sync_memory_failed:
kfd_process_free_gpuvm(mem, pdd);
return err;
err_map_mem:
kdev->kfd2kgd->free_memory_of_gpu(kdev->kgd, mem);
err_alloc_mem:
*kptr = NULL;
return err;
}
/* kfd_process_device_reserve_ib_mem - Reserve memory inside the
* process for IB usage The memory reserved is for KFD to submit
* IB to AMDGPU from kernel. If the memory is reserved
* successfully, ib_kaddr will have the CPU/kernel
* address. Check ib_kaddr before accessing the memory.
*/
static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
{
struct qcm_process_device *qpd = &pdd->qpd;
uint32_t flags = ALLOC_MEM_FLAGS_GTT |
ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
ALLOC_MEM_FLAGS_WRITABLE |
ALLOC_MEM_FLAGS_EXECUTABLE;
void *kaddr;
int ret;
if (qpd->ib_kaddr || !qpd->ib_base)
return 0;
/* ib_base is only set for dGPU */
ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
&kaddr);
if (ret)
return ret;
qpd->ib_kaddr = kaddr;
return 0;
}
struct kfd_process *kfd_create_process(struct file *filep)
{
struct kfd_process *process;
struct task_struct *thread = current;
if (!thread->mm)
return ERR_PTR(-EINVAL);
/* Only the pthreads threading model is supported. */
if (thread->group_leader->mm != thread->mm)
return ERR_PTR(-EINVAL);
/*
* take kfd processes mutex before starting of process creation
* so there won't be a case where two threads of the same process
* create two kfd_process structures
*/
mutex_lock(&kfd_processes_mutex);
/* A prior open of /dev/kfd could have already created the process. */
process = find_process(thread);
if (process)
pr_debug("Process already found\n");
else
process = create_process(thread, filep);
mutex_unlock(&kfd_processes_mutex);
return process;
}
struct kfd_process *kfd_get_process(const struct task_struct *thread)
{
struct kfd_process *process;
if (!thread->mm)
return ERR_PTR(-EINVAL);
/* Only the pthreads threading model is supported. */
if (thread->group_leader->mm != thread->mm)
return ERR_PTR(-EINVAL);
process = find_process(thread);
return process;
}
static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
{
struct kfd_process *process;
hash_for_each_possible_rcu(kfd_processes_table, process,
kfd_processes, (uintptr_t)mm)
if (process->mm == mm)
return process;
return NULL;
}
static struct kfd_process *find_process(const struct task_struct *thread)
{
struct kfd_process *p;
int idx;
idx = srcu_read_lock(&kfd_processes_srcu);
p = find_process_by_mm(thread->mm);
srcu_read_unlock(&kfd_processes_srcu, idx);
return p;
}
void kfd_unref_process(struct kfd_process *p)
{
kref_put(&p->ref, kfd_process_ref_release);
}
static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
{
struct kfd_process *p = pdd->process;
void *mem;
int id;
/*
* Remove all handles from idr and release appropriate
* local memory object
*/
idr_for_each_entry(&pdd->alloc_idr, mem, id) {
struct kfd_process_device *peer_pdd;
list_for_each_entry(peer_pdd, &p->per_device_data,
per_device_list) {
if (!peer_pdd->vm)
continue;
peer_pdd->dev->kfd2kgd->unmap_memory_to_gpu(
peer_pdd->dev->kgd, mem, peer_pdd->vm);
}
pdd->dev->kfd2kgd->free_memory_of_gpu(pdd->dev->kgd, mem);
kfd_process_device_remove_obj_handle(pdd, id);
}
}
static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
{
struct kfd_process_device *pdd;
list_for_each_entry(pdd, &p->per_device_data, per_device_list)
kfd_process_device_free_bos(pdd);
}
static void kfd_process_destroy_pdds(struct kfd_process *p)
{
struct kfd_process_device *pdd, *temp;
list_for_each_entry_safe(pdd, temp, &p->per_device_data,
per_device_list) {
pr_debug("Releasing pdd (topology id %d) for process (pasid %d)\n",
pdd->dev->id, p->pasid);
if (pdd->drm_file)
fput(pdd->drm_file);
else if (pdd->vm)
pdd->dev->kfd2kgd->destroy_process_vm(
pdd->dev->kgd, pdd->vm);
list_del(&pdd->per_device_list);
if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
get_order(KFD_CWSR_TBA_TMA_SIZE));
idr_destroy(&pdd->alloc_idr);
kfree(pdd);
}
}
/* No process locking is needed in this function, because the process
* is not findable any more. We must assume that no other thread is
* using it any more, otherwise we couldn't safely free the process
* structure in the end.
*/
static void kfd_process_wq_release(struct work_struct *work)
{
struct kfd_process *p = container_of(work, struct kfd_process,
release_work);
kfd_iommu_unbind_process(p);
kfd_process_free_outstanding_kfd_bos(p);
kfd_process_destroy_pdds(p);
dma_fence_put(p->ef);
kfd_event_free_process(p);
kfd_pasid_free(p->pasid);
kfd_free_process_doorbells(p);
mutex_destroy(&p->mutex);
put_task_struct(p->lead_thread);
kfree(p);
}
static void kfd_process_ref_release(struct kref *ref)
{
struct kfd_process *p = container_of(ref, struct kfd_process, ref);
INIT_WORK(&p->release_work, kfd_process_wq_release);
queue_work(kfd_process_wq, &p->release_work);
}
static void kfd_process_destroy_delayed(struct rcu_head *rcu)
{
struct kfd_process *p = container_of(rcu, struct kfd_process, rcu);
kfd_unref_process(p);
}
static void kfd_process_notifier_release(struct mmu_notifier *mn,
struct mm_struct *mm)
{
struct kfd_process *p;
struct kfd_process_device *pdd = NULL;
/*
* The kfd_process structure can not be free because the
* mmu_notifier srcu is read locked
*/
p = container_of(mn, struct kfd_process, mmu_notifier);
if (WARN_ON(p->mm != mm))
return;
mutex_lock(&kfd_processes_mutex);
hash_del_rcu(&p->kfd_processes);
mutex_unlock(&kfd_processes_mutex);
synchronize_srcu(&kfd_processes_srcu);
cancel_delayed_work_sync(&p->eviction_work);
cancel_delayed_work_sync(&p->restore_work);
mutex_lock(&p->mutex);
/* Iterate over all process device data structures and if the
* pdd is in debug mode, we should first force unregistration,
* then we will be able to destroy the queues
*/
list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
struct kfd_dev *dev = pdd->dev;
mutex_lock(kfd_get_dbgmgr_mutex());
if (dev && dev->dbgmgr && dev->dbgmgr->pasid == p->pasid) {
if (!kfd_dbgmgr_unregister(dev->dbgmgr, p)) {
kfd_dbgmgr_destroy(dev->dbgmgr);
dev->dbgmgr = NULL;
}
}
mutex_unlock(kfd_get_dbgmgr_mutex());
}
kfd_process_dequeue_from_all_devices(p);
pqm_uninit(&p->pqm);
/* Indicate to other users that MM is no longer valid */
p->mm = NULL;
mutex_unlock(&p->mutex);
mmu_notifier_unregister_no_release(&p->mmu_notifier, mm);
mmu_notifier_call_srcu(&p->rcu, &kfd_process_destroy_delayed);
}
static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
.release = kfd_process_notifier_release,
};
static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
{
unsigned long offset;
struct kfd_process_device *pdd;
list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
struct kfd_dev *dev = pdd->dev;
struct qcm_process_device *qpd = &pdd->qpd;
if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
continue;
offset = (dev->id | KFD_MMAP_RESERVED_MEM_MASK) << PAGE_SHIFT;
qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
MAP_SHARED, offset);
if (IS_ERR_VALUE(qpd->tba_addr)) {
int err = qpd->tba_addr;
pr_err("Failure to set tba address. error %d.\n", err);
qpd->tba_addr = 0;
qpd->cwsr_kaddr = NULL;
return err;
}
memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
}
return 0;
}
static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
{
struct kfd_dev *dev = pdd->dev;
struct qcm_process_device *qpd = &pdd->qpd;
uint32_t flags = ALLOC_MEM_FLAGS_GTT |
ALLOC_MEM_FLAGS_NO_SUBSTITUTE | ALLOC_MEM_FLAGS_EXECUTABLE;
void *kaddr;
int ret;
if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
return 0;
/* cwsr_base is only set for dGPU */
ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
KFD_CWSR_TBA_TMA_SIZE, flags, &kaddr);
if (ret)
return ret;
qpd->cwsr_kaddr = kaddr;
qpd->tba_addr = qpd->cwsr_base;
memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
return 0;
}
static struct kfd_process *create_process(const struct task_struct *thread,
struct file *filep)
{
struct kfd_process *process;
int err = -ENOMEM;
process = kzalloc(sizeof(*process), GFP_KERNEL);
if (!process)
goto err_alloc_process;
process->pasid = kfd_pasid_alloc();
if (process->pasid == 0)
goto err_alloc_pasid;
if (kfd_alloc_process_doorbells(process) < 0)
goto err_alloc_doorbells;
kref_init(&process->ref);
mutex_init(&process->mutex);
process->mm = thread->mm;
/* register notifier */
process->mmu_notifier.ops = &kfd_process_mmu_notifier_ops;
err = mmu_notifier_register(&process->mmu_notifier, process->mm);
if (err)
goto err_mmu_notifier;
hash_add_rcu(kfd_processes_table, &process->kfd_processes,
(uintptr_t)process->mm);
process->lead_thread = thread->group_leader;
get_task_struct(process->lead_thread);
INIT_LIST_HEAD(&process->per_device_data);
kfd_event_init_process(process);
err = pqm_init(&process->pqm, process);
if (err != 0)
goto err_process_pqm_init;
/* init process apertures*/
process->is_32bit_user_mode = in_compat_syscall();
err = kfd_init_apertures(process);
if (err != 0)
goto err_init_apertures;
INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
process->last_restore_timestamp = get_jiffies_64();
err = kfd_process_init_cwsr_apu(process, filep);
if (err)
goto err_init_cwsr;
return process;
err_init_cwsr:
kfd_process_free_outstanding_kfd_bos(process);
kfd_process_destroy_pdds(process);
err_init_apertures:
pqm_uninit(&process->pqm);
err_process_pqm_init:
hash_del_rcu(&process->kfd_processes);
synchronize_rcu();
mmu_notifier_unregister_no_release(&process->mmu_notifier, process->mm);
err_mmu_notifier:
mutex_destroy(&process->mutex);
kfd_free_process_doorbells(process);
err_alloc_doorbells:
kfd_pasid_free(process->pasid);
err_alloc_pasid:
kfree(process);
err_alloc_process:
return ERR_PTR(err);
}
struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
struct kfd_process *p)
{
struct kfd_process_device *pdd = NULL;
list_for_each_entry(pdd, &p->per_device_data, per_device_list)
if (pdd->dev == dev)
return pdd;
return NULL;
}
struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
struct kfd_process *p)
{
struct kfd_process_device *pdd = NULL;
pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
if (!pdd)
return NULL;
pdd->dev = dev;
INIT_LIST_HEAD(&pdd->qpd.queues_list);
INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
pdd->qpd.dqm = dev->dqm;
pdd->qpd.pqm = &p->pqm;
pdd->qpd.evicted = 0;
pdd->process = p;
pdd->bound = PDD_UNBOUND;
pdd->already_dequeued = false;
list_add(&pdd->per_device_list, &p->per_device_data);
/* Init idr used for memory handle translation */
idr_init(&pdd->alloc_idr);
return pdd;
}
/**
* kfd_process_device_init_vm - Initialize a VM for a process-device
*
* @pdd: The process-device
* @drm_file: Optional pointer to a DRM file descriptor
*
* If @drm_file is specified, it will be used to acquire the VM from
* that file descriptor. If successful, the @pdd takes ownership of
* the file descriptor.
*
* If @drm_file is NULL, a new VM is created.
*
* Returns 0 on success, -errno on failure.
*/
int kfd_process_device_init_vm(struct kfd_process_device *pdd,
struct file *drm_file)
{
struct kfd_process *p;
struct kfd_dev *dev;
int ret;
if (pdd->vm)
return drm_file ? -EBUSY : 0;
p = pdd->process;
dev = pdd->dev;
if (drm_file)
ret = dev->kfd2kgd->acquire_process_vm(
dev->kgd, drm_file,
&pdd->vm, &p->kgd_process_info, &p->ef);
else
ret = dev->kfd2kgd->create_process_vm(
dev->kgd, &pdd->vm, &p->kgd_process_info, &p->ef);
if (ret) {
pr_err("Failed to create process VM object\n");
return ret;
}
ret = kfd_process_device_reserve_ib_mem(pdd);
if (ret)
goto err_reserve_ib_mem;
ret = kfd_process_device_init_cwsr_dgpu(pdd);
if (ret)
goto err_init_cwsr;
pdd->drm_file = drm_file;
return 0;
err_init_cwsr:
err_reserve_ib_mem:
kfd_process_device_free_bos(pdd);
if (!drm_file)
dev->kfd2kgd->destroy_process_vm(dev->kgd, pdd->vm);
pdd->vm = NULL;
return ret;
}
/*
* Direct the IOMMU to bind the process (specifically the pasid->mm)
* to the device.
* Unbinding occurs when the process dies or the device is removed.
*
* Assumes that the process lock is held.
*/
struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
struct kfd_process *p)
{
struct kfd_process_device *pdd;
int err;
pdd = kfd_get_process_device_data(dev, p);
if (!pdd) {
pr_err("Process device data doesn't exist\n");
return ERR_PTR(-ENOMEM);
}
err = kfd_iommu_bind_process_to_device(pdd);
if (err)
return ERR_PTR(err);
err = kfd_process_device_init_vm(pdd, NULL);
if (err)
return ERR_PTR(err);
return pdd;
}
struct kfd_process_device *kfd_get_first_process_device_data(
struct kfd_process *p)
{
return list_first_entry(&p->per_device_data,
struct kfd_process_device,
per_device_list);
}
struct kfd_process_device *kfd_get_next_process_device_data(
struct kfd_process *p,
struct kfd_process_device *pdd)
{
if (list_is_last(&pdd->per_device_list, &p->per_device_data))
return NULL;
return list_next_entry(pdd, per_device_list);
}
bool kfd_has_process_device_data(struct kfd_process *p)
{
return !(list_empty(&p->per_device_data));
}
/* Create specific handle mapped to mem from process local memory idr
* Assumes that the process lock is held.
*/
int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
void *mem)
{
return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
}
/* Translate specific handle from process local memory idr
* Assumes that the process lock is held.
*/
void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
int handle)
{
if (handle < 0)
return NULL;
return idr_find(&pdd->alloc_idr, handle);
}
/* Remove specific handle from process local memory idr
* Assumes that the process lock is held.
*/
void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
int handle)
{
if (handle >= 0)
idr_remove(&pdd->alloc_idr, handle);
}
/* This increments the process->ref counter. */
struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid)
{
struct kfd_process *p, *ret_p = NULL;
unsigned int temp;
int idx = srcu_read_lock(&kfd_processes_srcu);
hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
if (p->pasid == pasid) {
kref_get(&p->ref);
ret_p = p;
break;
}
}
srcu_read_unlock(&kfd_processes_srcu, idx);
return ret_p;
}
/* This increments the process->ref counter. */
struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
{
struct kfd_process *p;
int idx = srcu_read_lock(&kfd_processes_srcu);
p = find_process_by_mm(mm);
if (p)
kref_get(&p->ref);
srcu_read_unlock(&kfd_processes_srcu, idx);
return p;
}
/* process_evict_queues - Evict all user queues of a process
*
* Eviction is reference-counted per process-device. This means multiple
* evictions from different sources can be nested safely.
*/
int kfd_process_evict_queues(struct kfd_process *p)
{
struct kfd_process_device *pdd;
int r = 0;
unsigned int n_evicted = 0;
list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
&pdd->qpd);
if (r) {
pr_err("Failed to evict process queues\n");
goto fail;
}
n_evicted++;
}
return r;
fail:
/* To keep state consistent, roll back partial eviction by
* restoring queues
*/
list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
if (n_evicted == 0)
break;
if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
&pdd->qpd))
pr_err("Failed to restore queues\n");
n_evicted--;
}
return r;
}
/* process_restore_queues - Restore all user queues of a process */
int kfd_process_restore_queues(struct kfd_process *p)
{
struct kfd_process_device *pdd;
int r, ret = 0;
list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
&pdd->qpd);
if (r) {
pr_err("Failed to restore process queues\n");
if (!ret)
ret = r;
}
}
return ret;
}
static void evict_process_worker(struct work_struct *work)
{
int ret;
struct kfd_process *p;
struct delayed_work *dwork;
dwork = to_delayed_work(work);
/* Process termination destroys this worker thread. So during the
* lifetime of this thread, kfd_process p will be valid
*/
p = container_of(dwork, struct kfd_process, eviction_work);
WARN_ONCE(p->last_eviction_seqno != p->ef->seqno,
"Eviction fence mismatch\n");
/* Narrow window of overlap between restore and evict work
* item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos
* unreserves KFD BOs, it is possible to evicted again. But
* restore has few more steps of finish. So lets wait for any
* previous restore work to complete
*/
flush_delayed_work(&p->restore_work);
pr_debug("Started evicting pasid %d\n", p->pasid);
ret = kfd_process_evict_queues(p);
if (!ret) {
dma_fence_signal(p->ef);
dma_fence_put(p->ef);
p->ef = NULL;
queue_delayed_work(kfd_restore_wq, &p->restore_work,
msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
pr_debug("Finished evicting pasid %d\n", p->pasid);
} else
pr_err("Failed to evict queues of pasid %d\n", p->pasid);
}
static void restore_process_worker(struct work_struct *work)
{
struct delayed_work *dwork;
struct kfd_process *p;
struct kfd_process_device *pdd;
int ret = 0;
dwork = to_delayed_work(work);
/* Process termination destroys this worker thread. So during the
* lifetime of this thread, kfd_process p will be valid
*/
p = container_of(dwork, struct kfd_process, restore_work);
/* Call restore_process_bos on the first KGD device. This function
* takes care of restoring the whole process including other devices.
* Restore can fail if enough memory is not available. If so,
* reschedule again.
*/
pdd = list_first_entry(&p->per_device_data,
struct kfd_process_device,
per_device_list);
pr_debug("Started restoring pasid %d\n", p->pasid);
/* Setting last_restore_timestamp before successful restoration.
* Otherwise this would have to be set by KGD (restore_process_bos)
* before KFD BOs are unreserved. If not, the process can be evicted
* again before the timestamp is set.
* If restore fails, the timestamp will be set again in the next
* attempt. This would mean that the minimum GPU quanta would be
* PROCESS_ACTIVE_TIME_MS - (time to execute the following two
* functions)
*/
p->last_restore_timestamp = get_jiffies_64();
ret = pdd->dev->kfd2kgd->restore_process_bos(p->kgd_process_info,
&p->ef);
if (ret) {
pr_debug("Failed to restore BOs of pasid %d, retry after %d ms\n",
p->pasid, PROCESS_BACK_OFF_TIME_MS);
ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
WARN(!ret, "reschedule restore work failed\n");
return;
}
ret = kfd_process_restore_queues(p);
if (!ret)
pr_debug("Finished restoring pasid %d\n", p->pasid);
else
pr_err("Failed to restore queues of pasid %d\n", p->pasid);
}
void kfd_suspend_all_processes(void)
{
struct kfd_process *p;
unsigned int temp;
int idx = srcu_read_lock(&kfd_processes_srcu);
hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
cancel_delayed_work_sync(&p->eviction_work);
cancel_delayed_work_sync(&p->restore_work);
if (kfd_process_evict_queues(p))
pr_err("Failed to suspend process %d\n", p->pasid);
dma_fence_signal(p->ef);
dma_fence_put(p->ef);
p->ef = NULL;
}
srcu_read_unlock(&kfd_processes_srcu, idx);
}
int kfd_resume_all_processes(void)
{
struct kfd_process *p;
unsigned int temp;
int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) {
pr_err("Restore process %d failed during resume\n",
p->pasid);
ret = -EFAULT;
}
}
srcu_read_unlock(&kfd_processes_srcu, idx);
return ret;
}
int kfd_reserved_mem_mmap(struct kfd_process *process,
struct vm_area_struct *vma)
{
struct kfd_dev *dev = kfd_device_by_id(vma->vm_pgoff);
struct kfd_process_device *pdd;
struct qcm_process_device *qpd;
if (!dev)
return -EINVAL;
if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
pr_err("Incorrect CWSR mapping size.\n");
return -EINVAL;
}
pdd = kfd_get_process_device_data(dev, process);
if (!pdd)
return -EINVAL;
qpd = &pdd->qpd;
qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
get_order(KFD_CWSR_TBA_TMA_SIZE));
if (!qpd->cwsr_kaddr) {
pr_err("Error allocating per process CWSR buffer.\n");
return -ENOMEM;
}
vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND
| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP;
/* Mapping pages to user process */
return remap_pfn_range(vma, vma->vm_start,
PFN_DOWN(__pa(qpd->cwsr_kaddr)),
KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
}
void kfd_flush_tlb(struct kfd_process_device *pdd)
{
struct kfd_dev *dev = pdd->dev;
const struct kfd2kgd_calls *f2g = dev->kfd2kgd;
if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
/* Nothing to flush until a VMID is assigned, which
* only happens when the first queue is created.
*/
if (pdd->qpd.vmid)
f2g->invalidate_tlbs_vmid(dev->kgd, pdd->qpd.vmid);
} else {
f2g->invalidate_tlbs(dev->kgd, pdd->process->pasid);
}
}
#if defined(CONFIG_DEBUG_FS)
int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
{
struct kfd_process *p;
unsigned int temp;
int r = 0;
int idx = srcu_read_lock(&kfd_processes_srcu);
hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
seq_printf(m, "Process %d PASID %d:\n",
p->lead_thread->tgid, p->pasid);
mutex_lock(&p->mutex);
r = pqm_debugfs_mqds(m, &p->pqm);
mutex_unlock(&p->mutex);
if (r)
break;
}
srcu_read_unlock(&kfd_processes_srcu, idx);
return r;
}
#endif