mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-12 17:16:31 +07:00
5a7bbad27a
There is very little benefit in allowing to let a ->make_request instance update the bios device and sector and loop around it in __generic_make_request when we can archive the same through calling generic_make_request from the driver and letting the loop in generic_make_request handle it. Note that various drivers got the return value from ->make_request and returned non-zero values for errors. Signed-off-by: Christoph Hellwig <hch@lst.de> Acked-by: NeilBrown <neilb@suse.de> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
1124 lines
30 KiB
C
1124 lines
30 KiB
C
/*
|
|
* mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
|
|
*
|
|
* (C) 2001 San Mehat <nettwerk@valinux.com>
|
|
* (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
|
|
* (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
|
|
*
|
|
* This driver for the Micro Memory PCI Memory Module with Battery Backup
|
|
* is Copyright Micro Memory Inc 2001-2002. All rights reserved.
|
|
*
|
|
* This driver is released to the public under the terms of the
|
|
* GNU GENERAL PUBLIC LICENSE version 2
|
|
* See the file COPYING for details.
|
|
*
|
|
* This driver provides a standard block device interface for Micro Memory(tm)
|
|
* PCI based RAM boards.
|
|
* 10/05/01: Phap Nguyen - Rebuilt the driver
|
|
* 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
|
|
* 29oct2001:NeilBrown - Use make_request_fn instead of request_fn
|
|
* - use stand disk partitioning (so fdisk works).
|
|
* 08nov2001:NeilBrown - change driver name from "mm" to "umem"
|
|
* - incorporate into main kernel
|
|
* 08apr2002:NeilBrown - Move some of interrupt handle to tasklet
|
|
* - use spin_lock_bh instead of _irq
|
|
* - Never block on make_request. queue
|
|
* bh's instead.
|
|
* - unregister umem from devfs at mod unload
|
|
* - Change version to 2.3
|
|
* 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
|
|
* 07Jan2002: P. Nguyen - Used PCI Memory Write & Invalidate for DMA
|
|
* 15May2002:NeilBrown - convert to bio for 2.5
|
|
* 17May2002:NeilBrown - remove init_mem initialisation. Instead detect
|
|
* - a sequence of writes that cover the card, and
|
|
* - set initialised bit then.
|
|
*/
|
|
|
|
#undef DEBUG /* #define DEBUG if you want debugging info (pr_debug) */
|
|
#include <linux/fs.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/ioctl.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/dma-mapping.h>
|
|
|
|
#include <linux/fcntl.h> /* O_ACCMODE */
|
|
#include <linux/hdreg.h> /* HDIO_GETGEO */
|
|
|
|
#include "umem.h"
|
|
|
|
#include <asm/uaccess.h>
|
|
#include <asm/io.h>
|
|
|
|
#define MM_MAXCARDS 4
|
|
#define MM_RAHEAD 2 /* two sectors */
|
|
#define MM_BLKSIZE 1024 /* 1k blocks */
|
|
#define MM_HARDSECT 512 /* 512-byte hardware sectors */
|
|
#define MM_SHIFT 6 /* max 64 partitions on 4 cards */
|
|
|
|
/*
|
|
* Version Information
|
|
*/
|
|
|
|
#define DRIVER_NAME "umem"
|
|
#define DRIVER_VERSION "v2.3"
|
|
#define DRIVER_AUTHOR "San Mehat, Johannes Erdfelt, NeilBrown"
|
|
#define DRIVER_DESC "Micro Memory(tm) PCI memory board block driver"
|
|
|
|
static int debug;
|
|
/* #define HW_TRACE(x) writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
|
|
#define HW_TRACE(x)
|
|
|
|
#define DEBUG_LED_ON_TRANSFER 0x01
|
|
#define DEBUG_BATTERY_POLLING 0x02
|
|
|
|
module_param(debug, int, 0644);
|
|
MODULE_PARM_DESC(debug, "Debug bitmask");
|
|
|
|
static int pci_read_cmd = 0x0C; /* Read Multiple */
|
|
module_param(pci_read_cmd, int, 0);
|
|
MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
|
|
|
|
static int pci_write_cmd = 0x0F; /* Write and Invalidate */
|
|
module_param(pci_write_cmd, int, 0);
|
|
MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
|
|
|
|
static int pci_cmds;
|
|
|
|
static int major_nr;
|
|
|
|
#include <linux/blkdev.h>
|
|
#include <linux/blkpg.h>
|
|
|
|
struct cardinfo {
|
|
struct pci_dev *dev;
|
|
|
|
unsigned char __iomem *csr_remap;
|
|
unsigned int mm_size; /* size in kbytes */
|
|
|
|
unsigned int init_size; /* initial segment, in sectors,
|
|
* that we know to
|
|
* have been written
|
|
*/
|
|
struct bio *bio, *currentbio, **biotail;
|
|
int current_idx;
|
|
sector_t current_sector;
|
|
|
|
struct request_queue *queue;
|
|
|
|
struct mm_page {
|
|
dma_addr_t page_dma;
|
|
struct mm_dma_desc *desc;
|
|
int cnt, headcnt;
|
|
struct bio *bio, **biotail;
|
|
int idx;
|
|
} mm_pages[2];
|
|
#define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
|
|
|
|
int Active, Ready;
|
|
|
|
struct tasklet_struct tasklet;
|
|
unsigned int dma_status;
|
|
|
|
struct {
|
|
int good;
|
|
int warned;
|
|
unsigned long last_change;
|
|
} battery[2];
|
|
|
|
spinlock_t lock;
|
|
int check_batteries;
|
|
|
|
int flags;
|
|
};
|
|
|
|
static struct cardinfo cards[MM_MAXCARDS];
|
|
static struct timer_list battery_timer;
|
|
|
|
static int num_cards;
|
|
|
|
static struct gendisk *mm_gendisk[MM_MAXCARDS];
|
|
|
|
static void check_batteries(struct cardinfo *card);
|
|
|
|
static int get_userbit(struct cardinfo *card, int bit)
|
|
{
|
|
unsigned char led;
|
|
|
|
led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
|
|
return led & bit;
|
|
}
|
|
|
|
static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
|
|
{
|
|
unsigned char led;
|
|
|
|
led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
|
|
if (state)
|
|
led |= bit;
|
|
else
|
|
led &= ~bit;
|
|
writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* NOTE: For the power LED, use the LED_POWER_* macros since they differ
|
|
*/
|
|
static void set_led(struct cardinfo *card, int shift, unsigned char state)
|
|
{
|
|
unsigned char led;
|
|
|
|
led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
|
|
if (state == LED_FLIP)
|
|
led ^= (1<<shift);
|
|
else {
|
|
led &= ~(0x03 << shift);
|
|
led |= (state << shift);
|
|
}
|
|
writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
|
|
|
|
}
|
|
|
|
#ifdef MM_DIAG
|
|
static void dump_regs(struct cardinfo *card)
|
|
{
|
|
unsigned char *p;
|
|
int i, i1;
|
|
|
|
p = card->csr_remap;
|
|
for (i = 0; i < 8; i++) {
|
|
printk(KERN_DEBUG "%p ", p);
|
|
|
|
for (i1 = 0; i1 < 16; i1++)
|
|
printk("%02x ", *p++);
|
|
|
|
printk("\n");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
|
|
{
|
|
dev_printk(KERN_DEBUG, &card->dev->dev, "DMAstat - ");
|
|
if (dmastat & DMASCR_ANY_ERR)
|
|
printk(KERN_CONT "ANY_ERR ");
|
|
if (dmastat & DMASCR_MBE_ERR)
|
|
printk(KERN_CONT "MBE_ERR ");
|
|
if (dmastat & DMASCR_PARITY_ERR_REP)
|
|
printk(KERN_CONT "PARITY_ERR_REP ");
|
|
if (dmastat & DMASCR_PARITY_ERR_DET)
|
|
printk(KERN_CONT "PARITY_ERR_DET ");
|
|
if (dmastat & DMASCR_SYSTEM_ERR_SIG)
|
|
printk(KERN_CONT "SYSTEM_ERR_SIG ");
|
|
if (dmastat & DMASCR_TARGET_ABT)
|
|
printk(KERN_CONT "TARGET_ABT ");
|
|
if (dmastat & DMASCR_MASTER_ABT)
|
|
printk(KERN_CONT "MASTER_ABT ");
|
|
if (dmastat & DMASCR_CHAIN_COMPLETE)
|
|
printk(KERN_CONT "CHAIN_COMPLETE ");
|
|
if (dmastat & DMASCR_DMA_COMPLETE)
|
|
printk(KERN_CONT "DMA_COMPLETE ");
|
|
printk("\n");
|
|
}
|
|
|
|
/*
|
|
* Theory of request handling
|
|
*
|
|
* Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
|
|
* We have two pages of mm_dma_desc, holding about 64 descriptors
|
|
* each. These are allocated at init time.
|
|
* One page is "Ready" and is either full, or can have request added.
|
|
* The other page might be "Active", which DMA is happening on it.
|
|
*
|
|
* Whenever IO on the active page completes, the Ready page is activated
|
|
* and the ex-Active page is clean out and made Ready.
|
|
* Otherwise the Ready page is only activated when it becomes full.
|
|
*
|
|
* If a request arrives while both pages a full, it is queued, and b_rdev is
|
|
* overloaded to record whether it was a read or a write.
|
|
*
|
|
* The interrupt handler only polls the device to clear the interrupt.
|
|
* The processing of the result is done in a tasklet.
|
|
*/
|
|
|
|
static void mm_start_io(struct cardinfo *card)
|
|
{
|
|
/* we have the lock, we know there is
|
|
* no IO active, and we know that card->Active
|
|
* is set
|
|
*/
|
|
struct mm_dma_desc *desc;
|
|
struct mm_page *page;
|
|
int offset;
|
|
|
|
/* make the last descriptor end the chain */
|
|
page = &card->mm_pages[card->Active];
|
|
pr_debug("start_io: %d %d->%d\n",
|
|
card->Active, page->headcnt, page->cnt - 1);
|
|
desc = &page->desc[page->cnt-1];
|
|
|
|
desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
|
|
desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
|
|
desc->sem_control_bits = desc->control_bits;
|
|
|
|
|
|
if (debug & DEBUG_LED_ON_TRANSFER)
|
|
set_led(card, LED_REMOVE, LED_ON);
|
|
|
|
desc = &page->desc[page->headcnt];
|
|
writel(0, card->csr_remap + DMA_PCI_ADDR);
|
|
writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
|
|
|
|
writel(0, card->csr_remap + DMA_LOCAL_ADDR);
|
|
writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
|
|
|
|
writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
|
|
writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
|
|
|
|
writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
|
|
writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
|
|
|
|
offset = ((char *)desc) - ((char *)page->desc);
|
|
writel(cpu_to_le32((page->page_dma+offset) & 0xffffffff),
|
|
card->csr_remap + DMA_DESCRIPTOR_ADDR);
|
|
/* Force the value to u64 before shifting otherwise >> 32 is undefined C
|
|
* and on some ports will do nothing ! */
|
|
writel(cpu_to_le32(((u64)page->page_dma)>>32),
|
|
card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
|
|
|
|
/* Go, go, go */
|
|
writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
|
|
card->csr_remap + DMA_STATUS_CTRL);
|
|
}
|
|
|
|
static int add_bio(struct cardinfo *card);
|
|
|
|
static void activate(struct cardinfo *card)
|
|
{
|
|
/* if No page is Active, and Ready is
|
|
* not empty, then switch Ready page
|
|
* to active and start IO.
|
|
* Then add any bh's that are available to Ready
|
|
*/
|
|
|
|
do {
|
|
while (add_bio(card))
|
|
;
|
|
|
|
if (card->Active == -1 &&
|
|
card->mm_pages[card->Ready].cnt > 0) {
|
|
card->Active = card->Ready;
|
|
card->Ready = 1-card->Ready;
|
|
mm_start_io(card);
|
|
}
|
|
|
|
} while (card->Active == -1 && add_bio(card));
|
|
}
|
|
|
|
static inline void reset_page(struct mm_page *page)
|
|
{
|
|
page->cnt = 0;
|
|
page->headcnt = 0;
|
|
page->bio = NULL;
|
|
page->biotail = &page->bio;
|
|
}
|
|
|
|
/*
|
|
* If there is room on Ready page, take
|
|
* one bh off list and add it.
|
|
* return 1 if there was room, else 0.
|
|
*/
|
|
static int add_bio(struct cardinfo *card)
|
|
{
|
|
struct mm_page *p;
|
|
struct mm_dma_desc *desc;
|
|
dma_addr_t dma_handle;
|
|
int offset;
|
|
struct bio *bio;
|
|
struct bio_vec *vec;
|
|
int idx;
|
|
int rw;
|
|
int len;
|
|
|
|
bio = card->currentbio;
|
|
if (!bio && card->bio) {
|
|
card->currentbio = card->bio;
|
|
card->current_idx = card->bio->bi_idx;
|
|
card->current_sector = card->bio->bi_sector;
|
|
card->bio = card->bio->bi_next;
|
|
if (card->bio == NULL)
|
|
card->biotail = &card->bio;
|
|
card->currentbio->bi_next = NULL;
|
|
return 1;
|
|
}
|
|
if (!bio)
|
|
return 0;
|
|
idx = card->current_idx;
|
|
|
|
rw = bio_rw(bio);
|
|
if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
|
|
return 0;
|
|
|
|
vec = bio_iovec_idx(bio, idx);
|
|
len = vec->bv_len;
|
|
dma_handle = pci_map_page(card->dev,
|
|
vec->bv_page,
|
|
vec->bv_offset,
|
|
len,
|
|
(rw == READ) ?
|
|
PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
|
|
|
|
p = &card->mm_pages[card->Ready];
|
|
desc = &p->desc[p->cnt];
|
|
p->cnt++;
|
|
if (p->bio == NULL)
|
|
p->idx = idx;
|
|
if ((p->biotail) != &bio->bi_next) {
|
|
*(p->biotail) = bio;
|
|
p->biotail = &(bio->bi_next);
|
|
bio->bi_next = NULL;
|
|
}
|
|
|
|
desc->data_dma_handle = dma_handle;
|
|
|
|
desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
|
|
desc->local_addr = cpu_to_le64(card->current_sector << 9);
|
|
desc->transfer_size = cpu_to_le32(len);
|
|
offset = (((char *)&desc->sem_control_bits) - ((char *)p->desc));
|
|
desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
|
|
desc->zero1 = desc->zero2 = 0;
|
|
offset = (((char *)(desc+1)) - ((char *)p->desc));
|
|
desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
|
|
desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
|
|
DMASCR_PARITY_INT_EN|
|
|
DMASCR_CHAIN_EN |
|
|
DMASCR_SEM_EN |
|
|
pci_cmds);
|
|
if (rw == WRITE)
|
|
desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
|
|
desc->sem_control_bits = desc->control_bits;
|
|
|
|
card->current_sector += (len >> 9);
|
|
idx++;
|
|
card->current_idx = idx;
|
|
if (idx >= bio->bi_vcnt)
|
|
card->currentbio = NULL;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void process_page(unsigned long data)
|
|
{
|
|
/* check if any of the requests in the page are DMA_COMPLETE,
|
|
* and deal with them appropriately.
|
|
* If we find a descriptor without DMA_COMPLETE in the semaphore, then
|
|
* dma must have hit an error on that descriptor, so use dma_status
|
|
* instead and assume that all following descriptors must be re-tried.
|
|
*/
|
|
struct mm_page *page;
|
|
struct bio *return_bio = NULL;
|
|
struct cardinfo *card = (struct cardinfo *)data;
|
|
unsigned int dma_status = card->dma_status;
|
|
|
|
spin_lock_bh(&card->lock);
|
|
if (card->Active < 0)
|
|
goto out_unlock;
|
|
page = &card->mm_pages[card->Active];
|
|
|
|
while (page->headcnt < page->cnt) {
|
|
struct bio *bio = page->bio;
|
|
struct mm_dma_desc *desc = &page->desc[page->headcnt];
|
|
int control = le32_to_cpu(desc->sem_control_bits);
|
|
int last = 0;
|
|
int idx;
|
|
|
|
if (!(control & DMASCR_DMA_COMPLETE)) {
|
|
control = dma_status;
|
|
last = 1;
|
|
}
|
|
page->headcnt++;
|
|
idx = page->idx;
|
|
page->idx++;
|
|
if (page->idx >= bio->bi_vcnt) {
|
|
page->bio = bio->bi_next;
|
|
if (page->bio)
|
|
page->idx = page->bio->bi_idx;
|
|
}
|
|
|
|
pci_unmap_page(card->dev, desc->data_dma_handle,
|
|
bio_iovec_idx(bio, idx)->bv_len,
|
|
(control & DMASCR_TRANSFER_READ) ?
|
|
PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
|
|
if (control & DMASCR_HARD_ERROR) {
|
|
/* error */
|
|
clear_bit(BIO_UPTODATE, &bio->bi_flags);
|
|
dev_printk(KERN_WARNING, &card->dev->dev,
|
|
"I/O error on sector %d/%d\n",
|
|
le32_to_cpu(desc->local_addr)>>9,
|
|
le32_to_cpu(desc->transfer_size));
|
|
dump_dmastat(card, control);
|
|
} else if ((bio->bi_rw & REQ_WRITE) &&
|
|
le32_to_cpu(desc->local_addr) >> 9 ==
|
|
card->init_size) {
|
|
card->init_size += le32_to_cpu(desc->transfer_size) >> 9;
|
|
if (card->init_size >> 1 >= card->mm_size) {
|
|
dev_printk(KERN_INFO, &card->dev->dev,
|
|
"memory now initialised\n");
|
|
set_userbit(card, MEMORY_INITIALIZED, 1);
|
|
}
|
|
}
|
|
if (bio != page->bio) {
|
|
bio->bi_next = return_bio;
|
|
return_bio = bio;
|
|
}
|
|
|
|
if (last)
|
|
break;
|
|
}
|
|
|
|
if (debug & DEBUG_LED_ON_TRANSFER)
|
|
set_led(card, LED_REMOVE, LED_OFF);
|
|
|
|
if (card->check_batteries) {
|
|
card->check_batteries = 0;
|
|
check_batteries(card);
|
|
}
|
|
if (page->headcnt >= page->cnt) {
|
|
reset_page(page);
|
|
card->Active = -1;
|
|
activate(card);
|
|
} else {
|
|
/* haven't finished with this one yet */
|
|
pr_debug("do some more\n");
|
|
mm_start_io(card);
|
|
}
|
|
out_unlock:
|
|
spin_unlock_bh(&card->lock);
|
|
|
|
while (return_bio) {
|
|
struct bio *bio = return_bio;
|
|
|
|
return_bio = bio->bi_next;
|
|
bio->bi_next = NULL;
|
|
bio_endio(bio, 0);
|
|
}
|
|
}
|
|
|
|
static void mm_make_request(struct request_queue *q, struct bio *bio)
|
|
{
|
|
struct cardinfo *card = q->queuedata;
|
|
pr_debug("mm_make_request %llu %u\n",
|
|
(unsigned long long)bio->bi_sector, bio->bi_size);
|
|
|
|
spin_lock_irq(&card->lock);
|
|
*card->biotail = bio;
|
|
bio->bi_next = NULL;
|
|
card->biotail = &bio->bi_next;
|
|
spin_unlock_irq(&card->lock);
|
|
|
|
return;
|
|
}
|
|
|
|
static irqreturn_t mm_interrupt(int irq, void *__card)
|
|
{
|
|
struct cardinfo *card = (struct cardinfo *) __card;
|
|
unsigned int dma_status;
|
|
unsigned short cfg_status;
|
|
|
|
HW_TRACE(0x30);
|
|
|
|
dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
|
|
|
|
if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
|
|
/* interrupt wasn't for me ... */
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
/* clear COMPLETION interrupts */
|
|
if (card->flags & UM_FLAG_NO_BYTE_STATUS)
|
|
writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
|
|
card->csr_remap + DMA_STATUS_CTRL);
|
|
else
|
|
writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
|
|
card->csr_remap + DMA_STATUS_CTRL + 2);
|
|
|
|
/* log errors and clear interrupt status */
|
|
if (dma_status & DMASCR_ANY_ERR) {
|
|
unsigned int data_log1, data_log2;
|
|
unsigned int addr_log1, addr_log2;
|
|
unsigned char stat, count, syndrome, check;
|
|
|
|
stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
|
|
|
|
data_log1 = le32_to_cpu(readl(card->csr_remap +
|
|
ERROR_DATA_LOG));
|
|
data_log2 = le32_to_cpu(readl(card->csr_remap +
|
|
ERROR_DATA_LOG + 4));
|
|
addr_log1 = le32_to_cpu(readl(card->csr_remap +
|
|
ERROR_ADDR_LOG));
|
|
addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
|
|
|
|
count = readb(card->csr_remap + ERROR_COUNT);
|
|
syndrome = readb(card->csr_remap + ERROR_SYNDROME);
|
|
check = readb(card->csr_remap + ERROR_CHECK);
|
|
|
|
dump_dmastat(card, dma_status);
|
|
|
|
if (stat & 0x01)
|
|
dev_printk(KERN_ERR, &card->dev->dev,
|
|
"Memory access error detected (err count %d)\n",
|
|
count);
|
|
if (stat & 0x02)
|
|
dev_printk(KERN_ERR, &card->dev->dev,
|
|
"Multi-bit EDC error\n");
|
|
|
|
dev_printk(KERN_ERR, &card->dev->dev,
|
|
"Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
|
|
addr_log2, addr_log1, data_log2, data_log1);
|
|
dev_printk(KERN_ERR, &card->dev->dev,
|
|
"Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
|
|
check, syndrome);
|
|
|
|
writeb(0, card->csr_remap + ERROR_COUNT);
|
|
}
|
|
|
|
if (dma_status & DMASCR_PARITY_ERR_REP) {
|
|
dev_printk(KERN_ERR, &card->dev->dev,
|
|
"PARITY ERROR REPORTED\n");
|
|
pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
|
|
pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
|
|
}
|
|
|
|
if (dma_status & DMASCR_PARITY_ERR_DET) {
|
|
dev_printk(KERN_ERR, &card->dev->dev,
|
|
"PARITY ERROR DETECTED\n");
|
|
pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
|
|
pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
|
|
}
|
|
|
|
if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
|
|
dev_printk(KERN_ERR, &card->dev->dev, "SYSTEM ERROR\n");
|
|
pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
|
|
pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
|
|
}
|
|
|
|
if (dma_status & DMASCR_TARGET_ABT) {
|
|
dev_printk(KERN_ERR, &card->dev->dev, "TARGET ABORT\n");
|
|
pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
|
|
pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
|
|
}
|
|
|
|
if (dma_status & DMASCR_MASTER_ABT) {
|
|
dev_printk(KERN_ERR, &card->dev->dev, "MASTER ABORT\n");
|
|
pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
|
|
pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
|
|
}
|
|
|
|
/* and process the DMA descriptors */
|
|
card->dma_status = dma_status;
|
|
tasklet_schedule(&card->tasklet);
|
|
|
|
HW_TRACE(0x36);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* If both batteries are good, no LED
|
|
* If either battery has been warned, solid LED
|
|
* If both batteries are bad, flash the LED quickly
|
|
* If either battery is bad, flash the LED semi quickly
|
|
*/
|
|
static void set_fault_to_battery_status(struct cardinfo *card)
|
|
{
|
|
if (card->battery[0].good && card->battery[1].good)
|
|
set_led(card, LED_FAULT, LED_OFF);
|
|
else if (card->battery[0].warned || card->battery[1].warned)
|
|
set_led(card, LED_FAULT, LED_ON);
|
|
else if (!card->battery[0].good && !card->battery[1].good)
|
|
set_led(card, LED_FAULT, LED_FLASH_7_0);
|
|
else
|
|
set_led(card, LED_FAULT, LED_FLASH_3_5);
|
|
}
|
|
|
|
static void init_battery_timer(void);
|
|
|
|
static int check_battery(struct cardinfo *card, int battery, int status)
|
|
{
|
|
if (status != card->battery[battery].good) {
|
|
card->battery[battery].good = !card->battery[battery].good;
|
|
card->battery[battery].last_change = jiffies;
|
|
|
|
if (card->battery[battery].good) {
|
|
dev_printk(KERN_ERR, &card->dev->dev,
|
|
"Battery %d now good\n", battery + 1);
|
|
card->battery[battery].warned = 0;
|
|
} else
|
|
dev_printk(KERN_ERR, &card->dev->dev,
|
|
"Battery %d now FAILED\n", battery + 1);
|
|
|
|
return 1;
|
|
} else if (!card->battery[battery].good &&
|
|
!card->battery[battery].warned &&
|
|
time_after_eq(jiffies, card->battery[battery].last_change +
|
|
(HZ * 60 * 60 * 5))) {
|
|
dev_printk(KERN_ERR, &card->dev->dev,
|
|
"Battery %d still FAILED after 5 hours\n", battery + 1);
|
|
card->battery[battery].warned = 1;
|
|
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void check_batteries(struct cardinfo *card)
|
|
{
|
|
/* NOTE: this must *never* be called while the card
|
|
* is doing (bus-to-card) DMA, or you will need the
|
|
* reset switch
|
|
*/
|
|
unsigned char status;
|
|
int ret1, ret2;
|
|
|
|
status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
|
|
if (debug & DEBUG_BATTERY_POLLING)
|
|
dev_printk(KERN_DEBUG, &card->dev->dev,
|
|
"checking battery status, 1 = %s, 2 = %s\n",
|
|
(status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
|
|
(status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
|
|
|
|
ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
|
|
ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
|
|
|
|
if (ret1 || ret2)
|
|
set_fault_to_battery_status(card);
|
|
}
|
|
|
|
static void check_all_batteries(unsigned long ptr)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < num_cards; i++)
|
|
if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
|
|
struct cardinfo *card = &cards[i];
|
|
spin_lock_bh(&card->lock);
|
|
if (card->Active >= 0)
|
|
card->check_batteries = 1;
|
|
else
|
|
check_batteries(card);
|
|
spin_unlock_bh(&card->lock);
|
|
}
|
|
|
|
init_battery_timer();
|
|
}
|
|
|
|
static void init_battery_timer(void)
|
|
{
|
|
init_timer(&battery_timer);
|
|
battery_timer.function = check_all_batteries;
|
|
battery_timer.expires = jiffies + (HZ * 60);
|
|
add_timer(&battery_timer);
|
|
}
|
|
|
|
static void del_battery_timer(void)
|
|
{
|
|
del_timer(&battery_timer);
|
|
}
|
|
|
|
/*
|
|
* Note no locks taken out here. In a worst case scenario, we could drop
|
|
* a chunk of system memory. But that should never happen, since validation
|
|
* happens at open or mount time, when locks are held.
|
|
*
|
|
* That's crap, since doing that while some partitions are opened
|
|
* or mounted will give you really nasty results.
|
|
*/
|
|
static int mm_revalidate(struct gendisk *disk)
|
|
{
|
|
struct cardinfo *card = disk->private_data;
|
|
set_capacity(disk, card->mm_size << 1);
|
|
return 0;
|
|
}
|
|
|
|
static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
|
|
{
|
|
struct cardinfo *card = bdev->bd_disk->private_data;
|
|
int size = card->mm_size * (1024 / MM_HARDSECT);
|
|
|
|
/*
|
|
* get geometry: we have to fake one... trim the size to a
|
|
* multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
|
|
* whatever cylinders.
|
|
*/
|
|
geo->heads = 64;
|
|
geo->sectors = 32;
|
|
geo->cylinders = size / (geo->heads * geo->sectors);
|
|
return 0;
|
|
}
|
|
|
|
static const struct block_device_operations mm_fops = {
|
|
.owner = THIS_MODULE,
|
|
.getgeo = mm_getgeo,
|
|
.revalidate_disk = mm_revalidate,
|
|
};
|
|
|
|
static int __devinit mm_pci_probe(struct pci_dev *dev,
|
|
const struct pci_device_id *id)
|
|
{
|
|
int ret = -ENODEV;
|
|
struct cardinfo *card = &cards[num_cards];
|
|
unsigned char mem_present;
|
|
unsigned char batt_status;
|
|
unsigned int saved_bar, data;
|
|
unsigned long csr_base;
|
|
unsigned long csr_len;
|
|
int magic_number;
|
|
static int printed_version;
|
|
|
|
if (!printed_version++)
|
|
printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
|
|
|
|
ret = pci_enable_device(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
|
|
pci_set_master(dev);
|
|
|
|
card->dev = dev;
|
|
|
|
csr_base = pci_resource_start(dev, 0);
|
|
csr_len = pci_resource_len(dev, 0);
|
|
if (!csr_base || !csr_len)
|
|
return -ENODEV;
|
|
|
|
dev_printk(KERN_INFO, &dev->dev,
|
|
"Micro Memory(tm) controller found (PCI Mem Module (Battery Backup))\n");
|
|
|
|
if (pci_set_dma_mask(dev, DMA_BIT_MASK(64)) &&
|
|
pci_set_dma_mask(dev, DMA_BIT_MASK(32))) {
|
|
dev_printk(KERN_WARNING, &dev->dev, "NO suitable DMA found\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ret = pci_request_regions(dev, DRIVER_NAME);
|
|
if (ret) {
|
|
dev_printk(KERN_ERR, &card->dev->dev,
|
|
"Unable to request memory region\n");
|
|
goto failed_req_csr;
|
|
}
|
|
|
|
card->csr_remap = ioremap_nocache(csr_base, csr_len);
|
|
if (!card->csr_remap) {
|
|
dev_printk(KERN_ERR, &card->dev->dev,
|
|
"Unable to remap memory region\n");
|
|
ret = -ENOMEM;
|
|
|
|
goto failed_remap_csr;
|
|
}
|
|
|
|
dev_printk(KERN_INFO, &card->dev->dev,
|
|
"CSR 0x%08lx -> 0x%p (0x%lx)\n",
|
|
csr_base, card->csr_remap, csr_len);
|
|
|
|
switch (card->dev->device) {
|
|
case 0x5415:
|
|
card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
|
|
magic_number = 0x59;
|
|
break;
|
|
|
|
case 0x5425:
|
|
card->flags |= UM_FLAG_NO_BYTE_STATUS;
|
|
magic_number = 0x5C;
|
|
break;
|
|
|
|
case 0x6155:
|
|
card->flags |= UM_FLAG_NO_BYTE_STATUS |
|
|
UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
|
|
magic_number = 0x99;
|
|
break;
|
|
|
|
default:
|
|
magic_number = 0x100;
|
|
break;
|
|
}
|
|
|
|
if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
|
|
dev_printk(KERN_ERR, &card->dev->dev, "Magic number invalid\n");
|
|
ret = -ENOMEM;
|
|
goto failed_magic;
|
|
}
|
|
|
|
card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
|
|
PAGE_SIZE * 2,
|
|
&card->mm_pages[0].page_dma);
|
|
card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
|
|
PAGE_SIZE * 2,
|
|
&card->mm_pages[1].page_dma);
|
|
if (card->mm_pages[0].desc == NULL ||
|
|
card->mm_pages[1].desc == NULL) {
|
|
dev_printk(KERN_ERR, &card->dev->dev, "alloc failed\n");
|
|
goto failed_alloc;
|
|
}
|
|
reset_page(&card->mm_pages[0]);
|
|
reset_page(&card->mm_pages[1]);
|
|
card->Ready = 0; /* page 0 is ready */
|
|
card->Active = -1; /* no page is active */
|
|
card->bio = NULL;
|
|
card->biotail = &card->bio;
|
|
|
|
card->queue = blk_alloc_queue(GFP_KERNEL);
|
|
if (!card->queue)
|
|
goto failed_alloc;
|
|
|
|
blk_queue_make_request(card->queue, mm_make_request);
|
|
card->queue->queue_lock = &card->lock;
|
|
card->queue->queuedata = card;
|
|
|
|
tasklet_init(&card->tasklet, process_page, (unsigned long)card);
|
|
|
|
card->check_batteries = 0;
|
|
|
|
mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
|
|
switch (mem_present) {
|
|
case MEM_128_MB:
|
|
card->mm_size = 1024 * 128;
|
|
break;
|
|
case MEM_256_MB:
|
|
card->mm_size = 1024 * 256;
|
|
break;
|
|
case MEM_512_MB:
|
|
card->mm_size = 1024 * 512;
|
|
break;
|
|
case MEM_1_GB:
|
|
card->mm_size = 1024 * 1024;
|
|
break;
|
|
case MEM_2_GB:
|
|
card->mm_size = 1024 * 2048;
|
|
break;
|
|
default:
|
|
card->mm_size = 0;
|
|
break;
|
|
}
|
|
|
|
/* Clear the LED's we control */
|
|
set_led(card, LED_REMOVE, LED_OFF);
|
|
set_led(card, LED_FAULT, LED_OFF);
|
|
|
|
batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
|
|
|
|
card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
|
|
card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
|
|
card->battery[0].last_change = card->battery[1].last_change = jiffies;
|
|
|
|
if (card->flags & UM_FLAG_NO_BATT)
|
|
dev_printk(KERN_INFO, &card->dev->dev,
|
|
"Size %d KB\n", card->mm_size);
|
|
else {
|
|
dev_printk(KERN_INFO, &card->dev->dev,
|
|
"Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
|
|
card->mm_size,
|
|
batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled",
|
|
card->battery[0].good ? "OK" : "FAILURE",
|
|
batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled",
|
|
card->battery[1].good ? "OK" : "FAILURE");
|
|
|
|
set_fault_to_battery_status(card);
|
|
}
|
|
|
|
pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
|
|
data = 0xffffffff;
|
|
pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
|
|
pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
|
|
pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
|
|
data &= 0xfffffff0;
|
|
data = ~data;
|
|
data += 1;
|
|
|
|
if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, DRIVER_NAME,
|
|
card)) {
|
|
dev_printk(KERN_ERR, &card->dev->dev,
|
|
"Unable to allocate IRQ\n");
|
|
ret = -ENODEV;
|
|
goto failed_req_irq;
|
|
}
|
|
|
|
dev_printk(KERN_INFO, &card->dev->dev,
|
|
"Window size %d bytes, IRQ %d\n", data, dev->irq);
|
|
|
|
spin_lock_init(&card->lock);
|
|
|
|
pci_set_drvdata(dev, card);
|
|
|
|
if (pci_write_cmd != 0x0F) /* If not Memory Write & Invalidate */
|
|
pci_write_cmd = 0x07; /* then Memory Write command */
|
|
|
|
if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
|
|
unsigned short cfg_command;
|
|
pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
|
|
cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
|
|
pci_write_config_word(dev, PCI_COMMAND, cfg_command);
|
|
}
|
|
pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
|
|
|
|
num_cards++;
|
|
|
|
if (!get_userbit(card, MEMORY_INITIALIZED)) {
|
|
dev_printk(KERN_INFO, &card->dev->dev,
|
|
"memory NOT initialized. Consider over-writing whole device.\n");
|
|
card->init_size = 0;
|
|
} else {
|
|
dev_printk(KERN_INFO, &card->dev->dev,
|
|
"memory already initialized\n");
|
|
card->init_size = card->mm_size;
|
|
}
|
|
|
|
/* Enable ECC */
|
|
writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
|
|
|
|
return 0;
|
|
|
|
failed_req_irq:
|
|
failed_alloc:
|
|
if (card->mm_pages[0].desc)
|
|
pci_free_consistent(card->dev, PAGE_SIZE*2,
|
|
card->mm_pages[0].desc,
|
|
card->mm_pages[0].page_dma);
|
|
if (card->mm_pages[1].desc)
|
|
pci_free_consistent(card->dev, PAGE_SIZE*2,
|
|
card->mm_pages[1].desc,
|
|
card->mm_pages[1].page_dma);
|
|
failed_magic:
|
|
iounmap(card->csr_remap);
|
|
failed_remap_csr:
|
|
pci_release_regions(dev);
|
|
failed_req_csr:
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void mm_pci_remove(struct pci_dev *dev)
|
|
{
|
|
struct cardinfo *card = pci_get_drvdata(dev);
|
|
|
|
tasklet_kill(&card->tasklet);
|
|
free_irq(dev->irq, card);
|
|
iounmap(card->csr_remap);
|
|
|
|
if (card->mm_pages[0].desc)
|
|
pci_free_consistent(card->dev, PAGE_SIZE*2,
|
|
card->mm_pages[0].desc,
|
|
card->mm_pages[0].page_dma);
|
|
if (card->mm_pages[1].desc)
|
|
pci_free_consistent(card->dev, PAGE_SIZE*2,
|
|
card->mm_pages[1].desc,
|
|
card->mm_pages[1].page_dma);
|
|
blk_cleanup_queue(card->queue);
|
|
|
|
pci_release_regions(dev);
|
|
pci_disable_device(dev);
|
|
}
|
|
|
|
static const struct pci_device_id mm_pci_ids[] = {
|
|
{PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5415CN)},
|
|
{PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5425CN)},
|
|
{PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_6155)},
|
|
{
|
|
.vendor = 0x8086,
|
|
.device = 0xB555,
|
|
.subvendor = 0x1332,
|
|
.subdevice = 0x5460,
|
|
.class = 0x050000,
|
|
.class_mask = 0,
|
|
}, { /* end: all zeroes */ }
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(pci, mm_pci_ids);
|
|
|
|
static struct pci_driver mm_pci_driver = {
|
|
.name = DRIVER_NAME,
|
|
.id_table = mm_pci_ids,
|
|
.probe = mm_pci_probe,
|
|
.remove = mm_pci_remove,
|
|
};
|
|
|
|
static int __init mm_init(void)
|
|
{
|
|
int retval, i;
|
|
int err;
|
|
|
|
retval = pci_register_driver(&mm_pci_driver);
|
|
if (retval)
|
|
return -ENOMEM;
|
|
|
|
err = major_nr = register_blkdev(0, DRIVER_NAME);
|
|
if (err < 0) {
|
|
pci_unregister_driver(&mm_pci_driver);
|
|
return -EIO;
|
|
}
|
|
|
|
for (i = 0; i < num_cards; i++) {
|
|
mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
|
|
if (!mm_gendisk[i])
|
|
goto out;
|
|
}
|
|
|
|
for (i = 0; i < num_cards; i++) {
|
|
struct gendisk *disk = mm_gendisk[i];
|
|
sprintf(disk->disk_name, "umem%c", 'a'+i);
|
|
spin_lock_init(&cards[i].lock);
|
|
disk->major = major_nr;
|
|
disk->first_minor = i << MM_SHIFT;
|
|
disk->fops = &mm_fops;
|
|
disk->private_data = &cards[i];
|
|
disk->queue = cards[i].queue;
|
|
set_capacity(disk, cards[i].mm_size << 1);
|
|
add_disk(disk);
|
|
}
|
|
|
|
init_battery_timer();
|
|
printk(KERN_INFO "MM: desc_per_page = %ld\n", DESC_PER_PAGE);
|
|
/* printk("mm_init: Done. 10-19-01 9:00\n"); */
|
|
return 0;
|
|
|
|
out:
|
|
pci_unregister_driver(&mm_pci_driver);
|
|
unregister_blkdev(major_nr, DRIVER_NAME);
|
|
while (i--)
|
|
put_disk(mm_gendisk[i]);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void __exit mm_cleanup(void)
|
|
{
|
|
int i;
|
|
|
|
del_battery_timer();
|
|
|
|
for (i = 0; i < num_cards ; i++) {
|
|
del_gendisk(mm_gendisk[i]);
|
|
put_disk(mm_gendisk[i]);
|
|
}
|
|
|
|
pci_unregister_driver(&mm_pci_driver);
|
|
|
|
unregister_blkdev(major_nr, DRIVER_NAME);
|
|
}
|
|
|
|
module_init(mm_init);
|
|
module_exit(mm_cleanup);
|
|
|
|
MODULE_AUTHOR(DRIVER_AUTHOR);
|
|
MODULE_DESCRIPTION(DRIVER_DESC);
|
|
MODULE_LICENSE("GPL");
|