mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-27 19:55:05 +07:00
52f476a323
Jeff discovered that performance improves from ~375K iops to ~519K iops
on a simple psync-write fio workload when moving the location of 'struct
page' from the default PMEM location to DRAM. This result is surprising
because the expectation is that 'struct page' for dax is only needed for
third party references to dax mappings. For example, a dax-mapped buffer
passed to another system call for direct-I/O requires 'struct page' for
sending the request down the driver stack and pinning the page. There is
no usage of 'struct page' for first party access to a file via
read(2)/write(2) and friends.
However, this "no page needed" expectation is violated by
CONFIG_HARDENED_USERCOPY and the check_copy_size() performed in
copy_from_iter_full_nocache() and copy_to_iter_mcsafe(). The
check_heap_object() helper routine assumes the buffer is backed by a
slab allocator (DRAM) page and applies some checks. Those checks are
invalid, dax pages do not originate from the slab, and redundant,
dax_iomap_actor() has already validated that the I/O is within bounds.
Specifically that routine validates that the logical file offset is
within bounds of the file, then it does a sector-to-pfn translation
which validates that the physical mapping is within bounds of the block
device.
Bypass additional hardened usercopy overhead and call the 'no check'
versions of the copy_{to,from}_iter operations directly.
Fixes: 0aed55af88
("x86, uaccess: introduce copy_from_iter_flushcache...")
Cc: <stable@vger.kernel.org>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Matthew Wilcox <willy@infradead.org>
Reported-and-tested-by: Jeff Smits <jeff.smits@intel.com>
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
615 lines
16 KiB
C
615 lines
16 KiB
C
/*
|
|
* Persistent Memory Driver
|
|
*
|
|
* Copyright (c) 2014-2015, Intel Corporation.
|
|
* Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
|
|
* Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*/
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/hdreg.h>
|
|
#include <linux/init.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/set_memory.h>
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/badblocks.h>
|
|
#include <linux/memremap.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/blk-mq.h>
|
|
#include <linux/pfn_t.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/dax.h>
|
|
#include <linux/nd.h>
|
|
#include <linux/backing-dev.h>
|
|
#include "pmem.h"
|
|
#include "pfn.h"
|
|
#include "nd.h"
|
|
#include "nd-core.h"
|
|
|
|
static struct device *to_dev(struct pmem_device *pmem)
|
|
{
|
|
/*
|
|
* nvdimm bus services need a 'dev' parameter, and we record the device
|
|
* at init in bb.dev.
|
|
*/
|
|
return pmem->bb.dev;
|
|
}
|
|
|
|
static struct nd_region *to_region(struct pmem_device *pmem)
|
|
{
|
|
return to_nd_region(to_dev(pmem)->parent);
|
|
}
|
|
|
|
static void hwpoison_clear(struct pmem_device *pmem,
|
|
phys_addr_t phys, unsigned int len)
|
|
{
|
|
unsigned long pfn_start, pfn_end, pfn;
|
|
|
|
/* only pmem in the linear map supports HWPoison */
|
|
if (is_vmalloc_addr(pmem->virt_addr))
|
|
return;
|
|
|
|
pfn_start = PHYS_PFN(phys);
|
|
pfn_end = pfn_start + PHYS_PFN(len);
|
|
for (pfn = pfn_start; pfn < pfn_end; pfn++) {
|
|
struct page *page = pfn_to_page(pfn);
|
|
|
|
/*
|
|
* Note, no need to hold a get_dev_pagemap() reference
|
|
* here since we're in the driver I/O path and
|
|
* outstanding I/O requests pin the dev_pagemap.
|
|
*/
|
|
if (test_and_clear_pmem_poison(page))
|
|
clear_mce_nospec(pfn);
|
|
}
|
|
}
|
|
|
|
static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
|
|
phys_addr_t offset, unsigned int len)
|
|
{
|
|
struct device *dev = to_dev(pmem);
|
|
sector_t sector;
|
|
long cleared;
|
|
blk_status_t rc = BLK_STS_OK;
|
|
|
|
sector = (offset - pmem->data_offset) / 512;
|
|
|
|
cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
|
|
if (cleared < len)
|
|
rc = BLK_STS_IOERR;
|
|
if (cleared > 0 && cleared / 512) {
|
|
hwpoison_clear(pmem, pmem->phys_addr + offset, cleared);
|
|
cleared /= 512;
|
|
dev_dbg(dev, "%#llx clear %ld sector%s\n",
|
|
(unsigned long long) sector, cleared,
|
|
cleared > 1 ? "s" : "");
|
|
badblocks_clear(&pmem->bb, sector, cleared);
|
|
if (pmem->bb_state)
|
|
sysfs_notify_dirent(pmem->bb_state);
|
|
}
|
|
|
|
arch_invalidate_pmem(pmem->virt_addr + offset, len);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void write_pmem(void *pmem_addr, struct page *page,
|
|
unsigned int off, unsigned int len)
|
|
{
|
|
unsigned int chunk;
|
|
void *mem;
|
|
|
|
while (len) {
|
|
mem = kmap_atomic(page);
|
|
chunk = min_t(unsigned int, len, PAGE_SIZE - off);
|
|
memcpy_flushcache(pmem_addr, mem + off, chunk);
|
|
kunmap_atomic(mem);
|
|
len -= chunk;
|
|
off = 0;
|
|
page++;
|
|
pmem_addr += chunk;
|
|
}
|
|
}
|
|
|
|
static blk_status_t read_pmem(struct page *page, unsigned int off,
|
|
void *pmem_addr, unsigned int len)
|
|
{
|
|
unsigned int chunk;
|
|
unsigned long rem;
|
|
void *mem;
|
|
|
|
while (len) {
|
|
mem = kmap_atomic(page);
|
|
chunk = min_t(unsigned int, len, PAGE_SIZE - off);
|
|
rem = memcpy_mcsafe(mem + off, pmem_addr, chunk);
|
|
kunmap_atomic(mem);
|
|
if (rem)
|
|
return BLK_STS_IOERR;
|
|
len -= chunk;
|
|
off = 0;
|
|
page++;
|
|
pmem_addr += chunk;
|
|
}
|
|
return BLK_STS_OK;
|
|
}
|
|
|
|
static blk_status_t pmem_do_bvec(struct pmem_device *pmem, struct page *page,
|
|
unsigned int len, unsigned int off, unsigned int op,
|
|
sector_t sector)
|
|
{
|
|
blk_status_t rc = BLK_STS_OK;
|
|
bool bad_pmem = false;
|
|
phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
|
|
void *pmem_addr = pmem->virt_addr + pmem_off;
|
|
|
|
if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
|
|
bad_pmem = true;
|
|
|
|
if (!op_is_write(op)) {
|
|
if (unlikely(bad_pmem))
|
|
rc = BLK_STS_IOERR;
|
|
else {
|
|
rc = read_pmem(page, off, pmem_addr, len);
|
|
flush_dcache_page(page);
|
|
}
|
|
} else {
|
|
/*
|
|
* Note that we write the data both before and after
|
|
* clearing poison. The write before clear poison
|
|
* handles situations where the latest written data is
|
|
* preserved and the clear poison operation simply marks
|
|
* the address range as valid without changing the data.
|
|
* In this case application software can assume that an
|
|
* interrupted write will either return the new good
|
|
* data or an error.
|
|
*
|
|
* However, if pmem_clear_poison() leaves the data in an
|
|
* indeterminate state we need to perform the write
|
|
* after clear poison.
|
|
*/
|
|
flush_dcache_page(page);
|
|
write_pmem(pmem_addr, page, off, len);
|
|
if (unlikely(bad_pmem)) {
|
|
rc = pmem_clear_poison(pmem, pmem_off, len);
|
|
write_pmem(pmem_addr, page, off, len);
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
|
|
{
|
|
blk_status_t rc = 0;
|
|
bool do_acct;
|
|
unsigned long start;
|
|
struct bio_vec bvec;
|
|
struct bvec_iter iter;
|
|
struct pmem_device *pmem = q->queuedata;
|
|
struct nd_region *nd_region = to_region(pmem);
|
|
|
|
if (bio->bi_opf & REQ_PREFLUSH)
|
|
nvdimm_flush(nd_region);
|
|
|
|
do_acct = nd_iostat_start(bio, &start);
|
|
bio_for_each_segment(bvec, bio, iter) {
|
|
rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
|
|
bvec.bv_offset, bio_op(bio), iter.bi_sector);
|
|
if (rc) {
|
|
bio->bi_status = rc;
|
|
break;
|
|
}
|
|
}
|
|
if (do_acct)
|
|
nd_iostat_end(bio, start);
|
|
|
|
if (bio->bi_opf & REQ_FUA)
|
|
nvdimm_flush(nd_region);
|
|
|
|
bio_endio(bio);
|
|
return BLK_QC_T_NONE;
|
|
}
|
|
|
|
static int pmem_rw_page(struct block_device *bdev, sector_t sector,
|
|
struct page *page, unsigned int op)
|
|
{
|
|
struct pmem_device *pmem = bdev->bd_queue->queuedata;
|
|
blk_status_t rc;
|
|
|
|
rc = pmem_do_bvec(pmem, page, hpage_nr_pages(page) * PAGE_SIZE,
|
|
0, op, sector);
|
|
|
|
/*
|
|
* The ->rw_page interface is subtle and tricky. The core
|
|
* retries on any error, so we can only invoke page_endio() in
|
|
* the successful completion case. Otherwise, we'll see crashes
|
|
* caused by double completion.
|
|
*/
|
|
if (rc == 0)
|
|
page_endio(page, op_is_write(op), 0);
|
|
|
|
return blk_status_to_errno(rc);
|
|
}
|
|
|
|
/* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
|
|
__weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
|
|
long nr_pages, void **kaddr, pfn_t *pfn)
|
|
{
|
|
resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
|
|
|
|
if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
|
|
PFN_PHYS(nr_pages))))
|
|
return -EIO;
|
|
|
|
if (kaddr)
|
|
*kaddr = pmem->virt_addr + offset;
|
|
if (pfn)
|
|
*pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
|
|
|
|
/*
|
|
* If badblocks are present, limit known good range to the
|
|
* requested range.
|
|
*/
|
|
if (unlikely(pmem->bb.count))
|
|
return nr_pages;
|
|
return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
|
|
}
|
|
|
|
static const struct block_device_operations pmem_fops = {
|
|
.owner = THIS_MODULE,
|
|
.rw_page = pmem_rw_page,
|
|
.revalidate_disk = nvdimm_revalidate_disk,
|
|
};
|
|
|
|
static long pmem_dax_direct_access(struct dax_device *dax_dev,
|
|
pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
|
|
{
|
|
struct pmem_device *pmem = dax_get_private(dax_dev);
|
|
|
|
return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
|
|
}
|
|
|
|
/*
|
|
* Use the 'no check' versions of copy_from_iter_flushcache() and
|
|
* copy_to_iter_mcsafe() to bypass HARDENED_USERCOPY overhead. Bounds
|
|
* checking, both file offset and device offset, is handled by
|
|
* dax_iomap_actor()
|
|
*/
|
|
static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
|
|
void *addr, size_t bytes, struct iov_iter *i)
|
|
{
|
|
return _copy_from_iter_flushcache(addr, bytes, i);
|
|
}
|
|
|
|
static size_t pmem_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
|
|
void *addr, size_t bytes, struct iov_iter *i)
|
|
{
|
|
return _copy_to_iter_mcsafe(addr, bytes, i);
|
|
}
|
|
|
|
static const struct dax_operations pmem_dax_ops = {
|
|
.direct_access = pmem_dax_direct_access,
|
|
.dax_supported = generic_fsdax_supported,
|
|
.copy_from_iter = pmem_copy_from_iter,
|
|
.copy_to_iter = pmem_copy_to_iter,
|
|
};
|
|
|
|
static const struct attribute_group *pmem_attribute_groups[] = {
|
|
&dax_attribute_group,
|
|
NULL,
|
|
};
|
|
|
|
static void pmem_release_queue(void *q)
|
|
{
|
|
blk_cleanup_queue(q);
|
|
}
|
|
|
|
static void pmem_freeze_queue(struct percpu_ref *ref)
|
|
{
|
|
struct request_queue *q;
|
|
|
|
q = container_of(ref, typeof(*q), q_usage_counter);
|
|
blk_freeze_queue_start(q);
|
|
}
|
|
|
|
static void pmem_release_disk(void *__pmem)
|
|
{
|
|
struct pmem_device *pmem = __pmem;
|
|
|
|
kill_dax(pmem->dax_dev);
|
|
put_dax(pmem->dax_dev);
|
|
del_gendisk(pmem->disk);
|
|
put_disk(pmem->disk);
|
|
}
|
|
|
|
static void pmem_release_pgmap_ops(void *__pgmap)
|
|
{
|
|
dev_pagemap_put_ops();
|
|
}
|
|
|
|
static void fsdax_pagefree(struct page *page, void *data)
|
|
{
|
|
wake_up_var(&page->_refcount);
|
|
}
|
|
|
|
static int setup_pagemap_fsdax(struct device *dev, struct dev_pagemap *pgmap)
|
|
{
|
|
dev_pagemap_get_ops();
|
|
if (devm_add_action_or_reset(dev, pmem_release_pgmap_ops, pgmap))
|
|
return -ENOMEM;
|
|
pgmap->type = MEMORY_DEVICE_FS_DAX;
|
|
pgmap->page_free = fsdax_pagefree;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pmem_attach_disk(struct device *dev,
|
|
struct nd_namespace_common *ndns)
|
|
{
|
|
struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
|
|
struct nd_region *nd_region = to_nd_region(dev->parent);
|
|
int nid = dev_to_node(dev), fua;
|
|
struct resource *res = &nsio->res;
|
|
struct resource bb_res;
|
|
struct nd_pfn *nd_pfn = NULL;
|
|
struct dax_device *dax_dev;
|
|
struct nd_pfn_sb *pfn_sb;
|
|
struct pmem_device *pmem;
|
|
struct request_queue *q;
|
|
struct device *gendev;
|
|
struct gendisk *disk;
|
|
void *addr;
|
|
int rc;
|
|
|
|
pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
|
|
if (!pmem)
|
|
return -ENOMEM;
|
|
|
|
/* while nsio_rw_bytes is active, parse a pfn info block if present */
|
|
if (is_nd_pfn(dev)) {
|
|
nd_pfn = to_nd_pfn(dev);
|
|
rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
/* we're attaching a block device, disable raw namespace access */
|
|
devm_nsio_disable(dev, nsio);
|
|
|
|
dev_set_drvdata(dev, pmem);
|
|
pmem->phys_addr = res->start;
|
|
pmem->size = resource_size(res);
|
|
fua = nvdimm_has_flush(nd_region);
|
|
if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
|
|
dev_warn(dev, "unable to guarantee persistence of writes\n");
|
|
fua = 0;
|
|
}
|
|
|
|
if (!devm_request_mem_region(dev, res->start, resource_size(res),
|
|
dev_name(&ndns->dev))) {
|
|
dev_warn(dev, "could not reserve region %pR\n", res);
|
|
return -EBUSY;
|
|
}
|
|
|
|
q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
|
|
if (!q)
|
|
return -ENOMEM;
|
|
|
|
if (devm_add_action_or_reset(dev, pmem_release_queue, q))
|
|
return -ENOMEM;
|
|
|
|
pmem->pfn_flags = PFN_DEV;
|
|
pmem->pgmap.ref = &q->q_usage_counter;
|
|
pmem->pgmap.kill = pmem_freeze_queue;
|
|
if (is_nd_pfn(dev)) {
|
|
if (setup_pagemap_fsdax(dev, &pmem->pgmap))
|
|
return -ENOMEM;
|
|
addr = devm_memremap_pages(dev, &pmem->pgmap);
|
|
pfn_sb = nd_pfn->pfn_sb;
|
|
pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
|
|
pmem->pfn_pad = resource_size(res) -
|
|
resource_size(&pmem->pgmap.res);
|
|
pmem->pfn_flags |= PFN_MAP;
|
|
memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
|
|
bb_res.start += pmem->data_offset;
|
|
} else if (pmem_should_map_pages(dev)) {
|
|
memcpy(&pmem->pgmap.res, &nsio->res, sizeof(pmem->pgmap.res));
|
|
pmem->pgmap.altmap_valid = false;
|
|
if (setup_pagemap_fsdax(dev, &pmem->pgmap))
|
|
return -ENOMEM;
|
|
addr = devm_memremap_pages(dev, &pmem->pgmap);
|
|
pmem->pfn_flags |= PFN_MAP;
|
|
memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
|
|
} else {
|
|
addr = devm_memremap(dev, pmem->phys_addr,
|
|
pmem->size, ARCH_MEMREMAP_PMEM);
|
|
memcpy(&bb_res, &nsio->res, sizeof(bb_res));
|
|
}
|
|
|
|
if (IS_ERR(addr))
|
|
return PTR_ERR(addr);
|
|
pmem->virt_addr = addr;
|
|
|
|
blk_queue_write_cache(q, true, fua);
|
|
blk_queue_make_request(q, pmem_make_request);
|
|
blk_queue_physical_block_size(q, PAGE_SIZE);
|
|
blk_queue_logical_block_size(q, pmem_sector_size(ndns));
|
|
blk_queue_max_hw_sectors(q, UINT_MAX);
|
|
blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
|
|
if (pmem->pfn_flags & PFN_MAP)
|
|
blk_queue_flag_set(QUEUE_FLAG_DAX, q);
|
|
q->queuedata = pmem;
|
|
|
|
disk = alloc_disk_node(0, nid);
|
|
if (!disk)
|
|
return -ENOMEM;
|
|
pmem->disk = disk;
|
|
|
|
disk->fops = &pmem_fops;
|
|
disk->queue = q;
|
|
disk->flags = GENHD_FL_EXT_DEVT;
|
|
disk->queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO;
|
|
nvdimm_namespace_disk_name(ndns, disk->disk_name);
|
|
set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
|
|
/ 512);
|
|
if (devm_init_badblocks(dev, &pmem->bb))
|
|
return -ENOMEM;
|
|
nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_res);
|
|
disk->bb = &pmem->bb;
|
|
|
|
dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops);
|
|
if (!dax_dev) {
|
|
put_disk(disk);
|
|
return -ENOMEM;
|
|
}
|
|
dax_write_cache(dax_dev, nvdimm_has_cache(nd_region));
|
|
pmem->dax_dev = dax_dev;
|
|
|
|
gendev = disk_to_dev(disk);
|
|
gendev->groups = pmem_attribute_groups;
|
|
|
|
device_add_disk(dev, disk, NULL);
|
|
if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
|
|
return -ENOMEM;
|
|
|
|
revalidate_disk(disk);
|
|
|
|
pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
|
|
"badblocks");
|
|
if (!pmem->bb_state)
|
|
dev_warn(dev, "'badblocks' notification disabled\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nd_pmem_probe(struct device *dev)
|
|
{
|
|
struct nd_namespace_common *ndns;
|
|
|
|
ndns = nvdimm_namespace_common_probe(dev);
|
|
if (IS_ERR(ndns))
|
|
return PTR_ERR(ndns);
|
|
|
|
if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev)))
|
|
return -ENXIO;
|
|
|
|
if (is_nd_btt(dev))
|
|
return nvdimm_namespace_attach_btt(ndns);
|
|
|
|
if (is_nd_pfn(dev))
|
|
return pmem_attach_disk(dev, ndns);
|
|
|
|
/* if we find a valid info-block we'll come back as that personality */
|
|
if (nd_btt_probe(dev, ndns) == 0 || nd_pfn_probe(dev, ndns) == 0
|
|
|| nd_dax_probe(dev, ndns) == 0)
|
|
return -ENXIO;
|
|
|
|
/* ...otherwise we're just a raw pmem device */
|
|
return pmem_attach_disk(dev, ndns);
|
|
}
|
|
|
|
static int nd_pmem_remove(struct device *dev)
|
|
{
|
|
struct pmem_device *pmem = dev_get_drvdata(dev);
|
|
|
|
if (is_nd_btt(dev))
|
|
nvdimm_namespace_detach_btt(to_nd_btt(dev));
|
|
else {
|
|
/*
|
|
* Note, this assumes device_lock() context to not race
|
|
* nd_pmem_notify()
|
|
*/
|
|
sysfs_put(pmem->bb_state);
|
|
pmem->bb_state = NULL;
|
|
}
|
|
nvdimm_flush(to_nd_region(dev->parent));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void nd_pmem_shutdown(struct device *dev)
|
|
{
|
|
nvdimm_flush(to_nd_region(dev->parent));
|
|
}
|
|
|
|
static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
|
|
{
|
|
struct nd_region *nd_region;
|
|
resource_size_t offset = 0, end_trunc = 0;
|
|
struct nd_namespace_common *ndns;
|
|
struct nd_namespace_io *nsio;
|
|
struct resource res;
|
|
struct badblocks *bb;
|
|
struct kernfs_node *bb_state;
|
|
|
|
if (event != NVDIMM_REVALIDATE_POISON)
|
|
return;
|
|
|
|
if (is_nd_btt(dev)) {
|
|
struct nd_btt *nd_btt = to_nd_btt(dev);
|
|
|
|
ndns = nd_btt->ndns;
|
|
nd_region = to_nd_region(ndns->dev.parent);
|
|
nsio = to_nd_namespace_io(&ndns->dev);
|
|
bb = &nsio->bb;
|
|
bb_state = NULL;
|
|
} else {
|
|
struct pmem_device *pmem = dev_get_drvdata(dev);
|
|
|
|
nd_region = to_region(pmem);
|
|
bb = &pmem->bb;
|
|
bb_state = pmem->bb_state;
|
|
|
|
if (is_nd_pfn(dev)) {
|
|
struct nd_pfn *nd_pfn = to_nd_pfn(dev);
|
|
struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
|
|
|
|
ndns = nd_pfn->ndns;
|
|
offset = pmem->data_offset +
|
|
__le32_to_cpu(pfn_sb->start_pad);
|
|
end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
|
|
} else {
|
|
ndns = to_ndns(dev);
|
|
}
|
|
|
|
nsio = to_nd_namespace_io(&ndns->dev);
|
|
}
|
|
|
|
res.start = nsio->res.start + offset;
|
|
res.end = nsio->res.end - end_trunc;
|
|
nvdimm_badblocks_populate(nd_region, bb, &res);
|
|
if (bb_state)
|
|
sysfs_notify_dirent(bb_state);
|
|
}
|
|
|
|
MODULE_ALIAS("pmem");
|
|
MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
|
|
MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
|
|
static struct nd_device_driver nd_pmem_driver = {
|
|
.probe = nd_pmem_probe,
|
|
.remove = nd_pmem_remove,
|
|
.notify = nd_pmem_notify,
|
|
.shutdown = nd_pmem_shutdown,
|
|
.drv = {
|
|
.name = "nd_pmem",
|
|
},
|
|
.type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
|
|
};
|
|
|
|
module_nd_driver(nd_pmem_driver);
|
|
|
|
MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
|
|
MODULE_LICENSE("GPL v2");
|