mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-17 04:57:25 +07:00
04f5866e41
The core dumping code has always run without holding the mmap_sem for
writing, despite that is the only way to ensure that the entire vma
layout will not change from under it. Only using some signal
serialization on the processes belonging to the mm is not nearly enough.
This was pointed out earlier. For example in Hugh's post from Jul 2017:
https://lkml.kernel.org/r/alpine.LSU.2.11.1707191716030.2055@eggly.anvils
"Not strictly relevant here, but a related note: I was very surprised
to discover, only quite recently, how handle_mm_fault() may be called
without down_read(mmap_sem) - when core dumping. That seems a
misguided optimization to me, which would also be nice to correct"
In particular because the growsdown and growsup can move the
vm_start/vm_end the various loops the core dump does around the vma will
not be consistent if page faults can happen concurrently.
Pretty much all users calling mmget_not_zero()/get_task_mm() and then
taking the mmap_sem had the potential to introduce unexpected side
effects in the core dumping code.
Adding mmap_sem for writing around the ->core_dump invocation is a
viable long term fix, but it requires removing all copy user and page
faults and to replace them with get_dump_page() for all binary formats
which is not suitable as a short term fix.
For the time being this solution manually covers the places that can
confuse the core dump either by altering the vma layout or the vma flags
while it runs. Once ->core_dump runs under mmap_sem for writing the
function mmget_still_valid() can be dropped.
Allowing mmap_sem protected sections to run in parallel with the
coredump provides some minor parallelism advantage to the swapoff code
(which seems to be safe enough by never mangling any vma field and can
keep doing swapins in parallel to the core dumping) and to some other
corner case.
In order to facilitate the backporting I added "Fixes: 86039bd3b4e6"
however the side effect of this same race condition in /proc/pid/mem
should be reproducible since before 2.6.12-rc2 so I couldn't add any
other "Fixes:" because there's no hash beyond the git genesis commit.
Because find_extend_vma() is the only location outside of the process
context that could modify the "mm" structures under mmap_sem for
reading, by adding the mmget_still_valid() check to it, all other cases
that take the mmap_sem for reading don't need the new check after
mmget_not_zero()/get_task_mm(). The expand_stack() in page fault
context also doesn't need the new check, because all tasks under core
dumping are frozen.
Link: http://lkml.kernel.org/r/20190325224949.11068-1-aarcange@redhat.com
Fixes: 86039bd3b4
("userfaultfd: add new syscall to provide memory externalization")
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Jann Horn <jannh@google.com>
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Jann Horn <jannh@google.com>
Acked-by: Jason Gunthorpe <jgg@mellanox.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
388 lines
11 KiB
C
388 lines
11 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _LINUX_SCHED_MM_H
|
|
#define _LINUX_SCHED_MM_H
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/atomic.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/mm_types.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/sync_core.h>
|
|
|
|
/*
|
|
* Routines for handling mm_structs
|
|
*/
|
|
extern struct mm_struct *mm_alloc(void);
|
|
|
|
/**
|
|
* mmgrab() - Pin a &struct mm_struct.
|
|
* @mm: The &struct mm_struct to pin.
|
|
*
|
|
* Make sure that @mm will not get freed even after the owning task
|
|
* exits. This doesn't guarantee that the associated address space
|
|
* will still exist later on and mmget_not_zero() has to be used before
|
|
* accessing it.
|
|
*
|
|
* This is a preferred way to to pin @mm for a longer/unbounded amount
|
|
* of time.
|
|
*
|
|
* Use mmdrop() to release the reference acquired by mmgrab().
|
|
*
|
|
* See also <Documentation/vm/active_mm.rst> for an in-depth explanation
|
|
* of &mm_struct.mm_count vs &mm_struct.mm_users.
|
|
*/
|
|
static inline void mmgrab(struct mm_struct *mm)
|
|
{
|
|
atomic_inc(&mm->mm_count);
|
|
}
|
|
|
|
extern void __mmdrop(struct mm_struct *mm);
|
|
|
|
static inline void mmdrop(struct mm_struct *mm)
|
|
{
|
|
/*
|
|
* The implicit full barrier implied by atomic_dec_and_test() is
|
|
* required by the membarrier system call before returning to
|
|
* user-space, after storing to rq->curr.
|
|
*/
|
|
if (unlikely(atomic_dec_and_test(&mm->mm_count)))
|
|
__mmdrop(mm);
|
|
}
|
|
|
|
/*
|
|
* This has to be called after a get_task_mm()/mmget_not_zero()
|
|
* followed by taking the mmap_sem for writing before modifying the
|
|
* vmas or anything the coredump pretends not to change from under it.
|
|
*
|
|
* NOTE: find_extend_vma() called from GUP context is the only place
|
|
* that can modify the "mm" (notably the vm_start/end) under mmap_sem
|
|
* for reading and outside the context of the process, so it is also
|
|
* the only case that holds the mmap_sem for reading that must call
|
|
* this function. Generally if the mmap_sem is hold for reading
|
|
* there's no need of this check after get_task_mm()/mmget_not_zero().
|
|
*
|
|
* This function can be obsoleted and the check can be removed, after
|
|
* the coredump code will hold the mmap_sem for writing before
|
|
* invoking the ->core_dump methods.
|
|
*/
|
|
static inline bool mmget_still_valid(struct mm_struct *mm)
|
|
{
|
|
return likely(!mm->core_state);
|
|
}
|
|
|
|
/**
|
|
* mmget() - Pin the address space associated with a &struct mm_struct.
|
|
* @mm: The address space to pin.
|
|
*
|
|
* Make sure that the address space of the given &struct mm_struct doesn't
|
|
* go away. This does not protect against parts of the address space being
|
|
* modified or freed, however.
|
|
*
|
|
* Never use this function to pin this address space for an
|
|
* unbounded/indefinite amount of time.
|
|
*
|
|
* Use mmput() to release the reference acquired by mmget().
|
|
*
|
|
* See also <Documentation/vm/active_mm.rst> for an in-depth explanation
|
|
* of &mm_struct.mm_count vs &mm_struct.mm_users.
|
|
*/
|
|
static inline void mmget(struct mm_struct *mm)
|
|
{
|
|
atomic_inc(&mm->mm_users);
|
|
}
|
|
|
|
static inline bool mmget_not_zero(struct mm_struct *mm)
|
|
{
|
|
return atomic_inc_not_zero(&mm->mm_users);
|
|
}
|
|
|
|
/* mmput gets rid of the mappings and all user-space */
|
|
extern void mmput(struct mm_struct *);
|
|
#ifdef CONFIG_MMU
|
|
/* same as above but performs the slow path from the async context. Can
|
|
* be called from the atomic context as well
|
|
*/
|
|
void mmput_async(struct mm_struct *);
|
|
#endif
|
|
|
|
/* Grab a reference to a task's mm, if it is not already going away */
|
|
extern struct mm_struct *get_task_mm(struct task_struct *task);
|
|
/*
|
|
* Grab a reference to a task's mm, if it is not already going away
|
|
* and ptrace_may_access with the mode parameter passed to it
|
|
* succeeds.
|
|
*/
|
|
extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
|
|
/* Remove the current tasks stale references to the old mm_struct */
|
|
extern void mm_release(struct task_struct *, struct mm_struct *);
|
|
|
|
#ifdef CONFIG_MEMCG
|
|
extern void mm_update_next_owner(struct mm_struct *mm);
|
|
#else
|
|
static inline void mm_update_next_owner(struct mm_struct *mm)
|
|
{
|
|
}
|
|
#endif /* CONFIG_MEMCG */
|
|
|
|
#ifdef CONFIG_MMU
|
|
extern void arch_pick_mmap_layout(struct mm_struct *mm,
|
|
struct rlimit *rlim_stack);
|
|
extern unsigned long
|
|
arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
|
|
unsigned long, unsigned long);
|
|
extern unsigned long
|
|
arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
|
|
unsigned long len, unsigned long pgoff,
|
|
unsigned long flags);
|
|
#else
|
|
static inline void arch_pick_mmap_layout(struct mm_struct *mm,
|
|
struct rlimit *rlim_stack) {}
|
|
#endif
|
|
|
|
static inline bool in_vfork(struct task_struct *tsk)
|
|
{
|
|
bool ret;
|
|
|
|
/*
|
|
* need RCU to access ->real_parent if CLONE_VM was used along with
|
|
* CLONE_PARENT.
|
|
*
|
|
* We check real_parent->mm == tsk->mm because CLONE_VFORK does not
|
|
* imply CLONE_VM
|
|
*
|
|
* CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
|
|
* ->real_parent is not necessarily the task doing vfork(), so in
|
|
* theory we can't rely on task_lock() if we want to dereference it.
|
|
*
|
|
* And in this case we can't trust the real_parent->mm == tsk->mm
|
|
* check, it can be false negative. But we do not care, if init or
|
|
* another oom-unkillable task does this it should blame itself.
|
|
*/
|
|
rcu_read_lock();
|
|
ret = tsk->vfork_done && tsk->real_parent->mm == tsk->mm;
|
|
rcu_read_unlock();
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Applies per-task gfp context to the given allocation flags.
|
|
* PF_MEMALLOC_NOIO implies GFP_NOIO
|
|
* PF_MEMALLOC_NOFS implies GFP_NOFS
|
|
* PF_MEMALLOC_NOCMA implies no allocation from CMA region.
|
|
*/
|
|
static inline gfp_t current_gfp_context(gfp_t flags)
|
|
{
|
|
if (unlikely(current->flags &
|
|
(PF_MEMALLOC_NOIO | PF_MEMALLOC_NOFS | PF_MEMALLOC_NOCMA))) {
|
|
/*
|
|
* NOIO implies both NOIO and NOFS and it is a weaker context
|
|
* so always make sure it makes precedence
|
|
*/
|
|
if (current->flags & PF_MEMALLOC_NOIO)
|
|
flags &= ~(__GFP_IO | __GFP_FS);
|
|
else if (current->flags & PF_MEMALLOC_NOFS)
|
|
flags &= ~__GFP_FS;
|
|
#ifdef CONFIG_CMA
|
|
if (current->flags & PF_MEMALLOC_NOCMA)
|
|
flags &= ~__GFP_MOVABLE;
|
|
#endif
|
|
}
|
|
return flags;
|
|
}
|
|
|
|
#ifdef CONFIG_LOCKDEP
|
|
extern void __fs_reclaim_acquire(void);
|
|
extern void __fs_reclaim_release(void);
|
|
extern void fs_reclaim_acquire(gfp_t gfp_mask);
|
|
extern void fs_reclaim_release(gfp_t gfp_mask);
|
|
#else
|
|
static inline void __fs_reclaim_acquire(void) { }
|
|
static inline void __fs_reclaim_release(void) { }
|
|
static inline void fs_reclaim_acquire(gfp_t gfp_mask) { }
|
|
static inline void fs_reclaim_release(gfp_t gfp_mask) { }
|
|
#endif
|
|
|
|
/**
|
|
* memalloc_noio_save - Marks implicit GFP_NOIO allocation scope.
|
|
*
|
|
* This functions marks the beginning of the GFP_NOIO allocation scope.
|
|
* All further allocations will implicitly drop __GFP_IO flag and so
|
|
* they are safe for the IO critical section from the allocation recursion
|
|
* point of view. Use memalloc_noio_restore to end the scope with flags
|
|
* returned by this function.
|
|
*
|
|
* This function is safe to be used from any context.
|
|
*/
|
|
static inline unsigned int memalloc_noio_save(void)
|
|
{
|
|
unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
|
|
current->flags |= PF_MEMALLOC_NOIO;
|
|
return flags;
|
|
}
|
|
|
|
/**
|
|
* memalloc_noio_restore - Ends the implicit GFP_NOIO scope.
|
|
* @flags: Flags to restore.
|
|
*
|
|
* Ends the implicit GFP_NOIO scope started by memalloc_noio_save function.
|
|
* Always make sure that that the given flags is the return value from the
|
|
* pairing memalloc_noio_save call.
|
|
*/
|
|
static inline void memalloc_noio_restore(unsigned int flags)
|
|
{
|
|
current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
|
|
}
|
|
|
|
/**
|
|
* memalloc_nofs_save - Marks implicit GFP_NOFS allocation scope.
|
|
*
|
|
* This functions marks the beginning of the GFP_NOFS allocation scope.
|
|
* All further allocations will implicitly drop __GFP_FS flag and so
|
|
* they are safe for the FS critical section from the allocation recursion
|
|
* point of view. Use memalloc_nofs_restore to end the scope with flags
|
|
* returned by this function.
|
|
*
|
|
* This function is safe to be used from any context.
|
|
*/
|
|
static inline unsigned int memalloc_nofs_save(void)
|
|
{
|
|
unsigned int flags = current->flags & PF_MEMALLOC_NOFS;
|
|
current->flags |= PF_MEMALLOC_NOFS;
|
|
return flags;
|
|
}
|
|
|
|
/**
|
|
* memalloc_nofs_restore - Ends the implicit GFP_NOFS scope.
|
|
* @flags: Flags to restore.
|
|
*
|
|
* Ends the implicit GFP_NOFS scope started by memalloc_nofs_save function.
|
|
* Always make sure that that the given flags is the return value from the
|
|
* pairing memalloc_nofs_save call.
|
|
*/
|
|
static inline void memalloc_nofs_restore(unsigned int flags)
|
|
{
|
|
current->flags = (current->flags & ~PF_MEMALLOC_NOFS) | flags;
|
|
}
|
|
|
|
static inline unsigned int memalloc_noreclaim_save(void)
|
|
{
|
|
unsigned int flags = current->flags & PF_MEMALLOC;
|
|
current->flags |= PF_MEMALLOC;
|
|
return flags;
|
|
}
|
|
|
|
static inline void memalloc_noreclaim_restore(unsigned int flags)
|
|
{
|
|
current->flags = (current->flags & ~PF_MEMALLOC) | flags;
|
|
}
|
|
|
|
#ifdef CONFIG_CMA
|
|
static inline unsigned int memalloc_nocma_save(void)
|
|
{
|
|
unsigned int flags = current->flags & PF_MEMALLOC_NOCMA;
|
|
|
|
current->flags |= PF_MEMALLOC_NOCMA;
|
|
return flags;
|
|
}
|
|
|
|
static inline void memalloc_nocma_restore(unsigned int flags)
|
|
{
|
|
current->flags = (current->flags & ~PF_MEMALLOC_NOCMA) | flags;
|
|
}
|
|
#else
|
|
static inline unsigned int memalloc_nocma_save(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void memalloc_nocma_restore(unsigned int flags)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_MEMCG
|
|
/**
|
|
* memalloc_use_memcg - Starts the remote memcg charging scope.
|
|
* @memcg: memcg to charge.
|
|
*
|
|
* This function marks the beginning of the remote memcg charging scope. All the
|
|
* __GFP_ACCOUNT allocations till the end of the scope will be charged to the
|
|
* given memcg.
|
|
*
|
|
* NOTE: This function is not nesting safe.
|
|
*/
|
|
static inline void memalloc_use_memcg(struct mem_cgroup *memcg)
|
|
{
|
|
WARN_ON_ONCE(current->active_memcg);
|
|
current->active_memcg = memcg;
|
|
}
|
|
|
|
/**
|
|
* memalloc_unuse_memcg - Ends the remote memcg charging scope.
|
|
*
|
|
* This function marks the end of the remote memcg charging scope started by
|
|
* memalloc_use_memcg().
|
|
*/
|
|
static inline void memalloc_unuse_memcg(void)
|
|
{
|
|
current->active_memcg = NULL;
|
|
}
|
|
#else
|
|
static inline void memalloc_use_memcg(struct mem_cgroup *memcg)
|
|
{
|
|
}
|
|
|
|
static inline void memalloc_unuse_memcg(void)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_MEMBARRIER
|
|
enum {
|
|
MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY = (1U << 0),
|
|
MEMBARRIER_STATE_PRIVATE_EXPEDITED = (1U << 1),
|
|
MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY = (1U << 2),
|
|
MEMBARRIER_STATE_GLOBAL_EXPEDITED = (1U << 3),
|
|
MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY = (1U << 4),
|
|
MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE = (1U << 5),
|
|
};
|
|
|
|
enum {
|
|
MEMBARRIER_FLAG_SYNC_CORE = (1U << 0),
|
|
};
|
|
|
|
#ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
|
|
#include <asm/membarrier.h>
|
|
#endif
|
|
|
|
static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
|
|
{
|
|
if (likely(!(atomic_read(&mm->membarrier_state) &
|
|
MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE)))
|
|
return;
|
|
sync_core_before_usermode();
|
|
}
|
|
|
|
static inline void membarrier_execve(struct task_struct *t)
|
|
{
|
|
atomic_set(&t->mm->membarrier_state, 0);
|
|
}
|
|
#else
|
|
#ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
|
|
static inline void membarrier_arch_switch_mm(struct mm_struct *prev,
|
|
struct mm_struct *next,
|
|
struct task_struct *tsk)
|
|
{
|
|
}
|
|
#endif
|
|
static inline void membarrier_execve(struct task_struct *t)
|
|
{
|
|
}
|
|
static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
#endif /* _LINUX_SCHED_MM_H */
|