mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-15 15:07:11 +07:00
66b15db69c
With module.h being implicitly everywhere via device.h, the absence of explicitly including something for EXPORT_SYMBOL went unnoticed. Since we are heading to fix things up and clean module.h from the device.h file, we need to explicitly include these files now. Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
438 lines
12 KiB
C
438 lines
12 KiB
C
/*
|
|
* Freescale General-purpose Timers Module
|
|
*
|
|
* Copyright (c) Freescale Semicondutor, Inc. 2006.
|
|
* Shlomi Gridish <gridish@freescale.com>
|
|
* Jerry Huang <Chang-Ming.Huang@freescale.com>
|
|
* Copyright (c) MontaVista Software, Inc. 2008.
|
|
* Anton Vorontsov <avorontsov@ru.mvista.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; either version 2 of the License, or (at your
|
|
* option) any later version.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/err.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/list.h>
|
|
#include <linux/io.h>
|
|
#include <linux/of.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/export.h>
|
|
#include <asm/fsl_gtm.h>
|
|
|
|
#define GTCFR_STP(x) ((x) & 1 ? 1 << 5 : 1 << 1)
|
|
#define GTCFR_RST(x) ((x) & 1 ? 1 << 4 : 1 << 0)
|
|
|
|
#define GTMDR_ICLK_MASK (3 << 1)
|
|
#define GTMDR_ICLK_ICAS (0 << 1)
|
|
#define GTMDR_ICLK_ICLK (1 << 1)
|
|
#define GTMDR_ICLK_SLGO (2 << 1)
|
|
#define GTMDR_FRR (1 << 3)
|
|
#define GTMDR_ORI (1 << 4)
|
|
#define GTMDR_SPS(x) ((x) << 8)
|
|
|
|
struct gtm_timers_regs {
|
|
u8 gtcfr1; /* Timer 1, Timer 2 global config register */
|
|
u8 res0[0x3];
|
|
u8 gtcfr2; /* Timer 3, timer 4 global config register */
|
|
u8 res1[0xB];
|
|
__be16 gtmdr1; /* Timer 1 mode register */
|
|
__be16 gtmdr2; /* Timer 2 mode register */
|
|
__be16 gtrfr1; /* Timer 1 reference register */
|
|
__be16 gtrfr2; /* Timer 2 reference register */
|
|
__be16 gtcpr1; /* Timer 1 capture register */
|
|
__be16 gtcpr2; /* Timer 2 capture register */
|
|
__be16 gtcnr1; /* Timer 1 counter */
|
|
__be16 gtcnr2; /* Timer 2 counter */
|
|
__be16 gtmdr3; /* Timer 3 mode register */
|
|
__be16 gtmdr4; /* Timer 4 mode register */
|
|
__be16 gtrfr3; /* Timer 3 reference register */
|
|
__be16 gtrfr4; /* Timer 4 reference register */
|
|
__be16 gtcpr3; /* Timer 3 capture register */
|
|
__be16 gtcpr4; /* Timer 4 capture register */
|
|
__be16 gtcnr3; /* Timer 3 counter */
|
|
__be16 gtcnr4; /* Timer 4 counter */
|
|
__be16 gtevr1; /* Timer 1 event register */
|
|
__be16 gtevr2; /* Timer 2 event register */
|
|
__be16 gtevr3; /* Timer 3 event register */
|
|
__be16 gtevr4; /* Timer 4 event register */
|
|
__be16 gtpsr1; /* Timer 1 prescale register */
|
|
__be16 gtpsr2; /* Timer 2 prescale register */
|
|
__be16 gtpsr3; /* Timer 3 prescale register */
|
|
__be16 gtpsr4; /* Timer 4 prescale register */
|
|
u8 res2[0x40];
|
|
} __attribute__ ((packed));
|
|
|
|
struct gtm {
|
|
unsigned int clock;
|
|
struct gtm_timers_regs __iomem *regs;
|
|
struct gtm_timer timers[4];
|
|
spinlock_t lock;
|
|
struct list_head list_node;
|
|
};
|
|
|
|
static LIST_HEAD(gtms);
|
|
|
|
/**
|
|
* gtm_get_timer - request GTM timer to use it with the rest of GTM API
|
|
* Context: non-IRQ
|
|
*
|
|
* This function reserves GTM timer for later use. It returns gtm_timer
|
|
* structure to use with the rest of GTM API, you should use timer->irq
|
|
* to manage timer interrupt.
|
|
*/
|
|
struct gtm_timer *gtm_get_timer16(void)
|
|
{
|
|
struct gtm *gtm = NULL;
|
|
int i;
|
|
|
|
list_for_each_entry(gtm, >ms, list_node) {
|
|
spin_lock_irq(>m->lock);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(gtm->timers); i++) {
|
|
if (!gtm->timers[i].requested) {
|
|
gtm->timers[i].requested = true;
|
|
spin_unlock_irq(>m->lock);
|
|
return >m->timers[i];
|
|
}
|
|
}
|
|
|
|
spin_unlock_irq(>m->lock);
|
|
}
|
|
|
|
if (gtm)
|
|
return ERR_PTR(-EBUSY);
|
|
return ERR_PTR(-ENODEV);
|
|
}
|
|
EXPORT_SYMBOL(gtm_get_timer16);
|
|
|
|
/**
|
|
* gtm_get_specific_timer - request specific GTM timer
|
|
* @gtm: specific GTM, pass here GTM's device_node->data
|
|
* @timer: specific timer number, Timer1 is 0.
|
|
* Context: non-IRQ
|
|
*
|
|
* This function reserves GTM timer for later use. It returns gtm_timer
|
|
* structure to use with the rest of GTM API, you should use timer->irq
|
|
* to manage timer interrupt.
|
|
*/
|
|
struct gtm_timer *gtm_get_specific_timer16(struct gtm *gtm,
|
|
unsigned int timer)
|
|
{
|
|
struct gtm_timer *ret = ERR_PTR(-EBUSY);
|
|
|
|
if (timer > 3)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
spin_lock_irq(>m->lock);
|
|
|
|
if (gtm->timers[timer].requested)
|
|
goto out;
|
|
|
|
ret = >m->timers[timer];
|
|
ret->requested = true;
|
|
|
|
out:
|
|
spin_unlock_irq(>m->lock);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(gtm_get_specific_timer16);
|
|
|
|
/**
|
|
* gtm_put_timer16 - release 16 bits GTM timer
|
|
* @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer
|
|
* Context: any
|
|
*
|
|
* This function releases GTM timer so others may request it.
|
|
*/
|
|
void gtm_put_timer16(struct gtm_timer *tmr)
|
|
{
|
|
gtm_stop_timer16(tmr);
|
|
|
|
spin_lock_irq(&tmr->gtm->lock);
|
|
tmr->requested = false;
|
|
spin_unlock_irq(&tmr->gtm->lock);
|
|
}
|
|
EXPORT_SYMBOL(gtm_put_timer16);
|
|
|
|
/*
|
|
* This is back-end for the exported functions, it's used to reset single
|
|
* timer in reference mode.
|
|
*/
|
|
static int gtm_set_ref_timer16(struct gtm_timer *tmr, int frequency,
|
|
int reference_value, bool free_run)
|
|
{
|
|
struct gtm *gtm = tmr->gtm;
|
|
int num = tmr - >m->timers[0];
|
|
unsigned int prescaler;
|
|
u8 iclk = GTMDR_ICLK_ICLK;
|
|
u8 psr;
|
|
u8 sps;
|
|
unsigned long flags;
|
|
int max_prescaler = 256 * 256 * 16;
|
|
|
|
/* CPM2 doesn't have primary prescaler */
|
|
if (!tmr->gtpsr)
|
|
max_prescaler /= 256;
|
|
|
|
prescaler = gtm->clock / frequency;
|
|
/*
|
|
* We have two 8 bit prescalers -- primary and secondary (psr, sps),
|
|
* plus "slow go" mode (clk / 16). So, total prescale value is
|
|
* 16 * (psr + 1) * (sps + 1). Though, for CPM2 GTMs we losing psr.
|
|
*/
|
|
if (prescaler > max_prescaler)
|
|
return -EINVAL;
|
|
|
|
if (prescaler > max_prescaler / 16) {
|
|
iclk = GTMDR_ICLK_SLGO;
|
|
prescaler /= 16;
|
|
}
|
|
|
|
if (prescaler <= 256) {
|
|
psr = 0;
|
|
sps = prescaler - 1;
|
|
} else {
|
|
psr = 256 - 1;
|
|
sps = prescaler / 256 - 1;
|
|
}
|
|
|
|
spin_lock_irqsave(>m->lock, flags);
|
|
|
|
/*
|
|
* Properly reset timers: stop, reset, set up prescalers, reference
|
|
* value and clear event register.
|
|
*/
|
|
clrsetbits_8(tmr->gtcfr, ~(GTCFR_STP(num) | GTCFR_RST(num)),
|
|
GTCFR_STP(num) | GTCFR_RST(num));
|
|
|
|
setbits8(tmr->gtcfr, GTCFR_STP(num));
|
|
|
|
if (tmr->gtpsr)
|
|
out_be16(tmr->gtpsr, psr);
|
|
clrsetbits_be16(tmr->gtmdr, 0xFFFF, iclk | GTMDR_SPS(sps) |
|
|
GTMDR_ORI | (free_run ? GTMDR_FRR : 0));
|
|
out_be16(tmr->gtcnr, 0);
|
|
out_be16(tmr->gtrfr, reference_value);
|
|
out_be16(tmr->gtevr, 0xFFFF);
|
|
|
|
/* Let it be. */
|
|
clrbits8(tmr->gtcfr, GTCFR_STP(num));
|
|
|
|
spin_unlock_irqrestore(>m->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* gtm_set_timer16 - (re)set 16 bit timer with arbitrary precision
|
|
* @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer
|
|
* @usec: timer interval in microseconds
|
|
* @reload: if set, the timer will reset upon expiry rather than
|
|
* continue running free.
|
|
* Context: any
|
|
*
|
|
* This function (re)sets the GTM timer so that it counts up to the requested
|
|
* interval value, and fires the interrupt when the value is reached. This
|
|
* function will reduce the precision of the timer as needed in order for the
|
|
* requested timeout to fit in a 16-bit register.
|
|
*/
|
|
int gtm_set_timer16(struct gtm_timer *tmr, unsigned long usec, bool reload)
|
|
{
|
|
/* quite obvious, frequency which is enough for µSec precision */
|
|
int freq = 1000000;
|
|
unsigned int bit;
|
|
|
|
bit = fls_long(usec);
|
|
if (bit > 15) {
|
|
freq >>= bit - 15;
|
|
usec >>= bit - 15;
|
|
}
|
|
|
|
if (!freq)
|
|
return -EINVAL;
|
|
|
|
return gtm_set_ref_timer16(tmr, freq, usec, reload);
|
|
}
|
|
EXPORT_SYMBOL(gtm_set_timer16);
|
|
|
|
/**
|
|
* gtm_set_exact_utimer16 - (re)set 16 bits timer
|
|
* @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer
|
|
* @usec: timer interval in microseconds
|
|
* @reload: if set, the timer will reset upon expiry rather than
|
|
* continue running free.
|
|
* Context: any
|
|
*
|
|
* This function (re)sets GTM timer so that it counts up to the requested
|
|
* interval value, and fires the interrupt when the value is reached. If reload
|
|
* flag was set, timer will also reset itself upon reference value, otherwise
|
|
* it continues to increment.
|
|
*
|
|
* The _exact_ bit in the function name states that this function will not
|
|
* crop precision of the "usec" argument, thus usec is limited to 16 bits
|
|
* (single timer width).
|
|
*/
|
|
int gtm_set_exact_timer16(struct gtm_timer *tmr, u16 usec, bool reload)
|
|
{
|
|
/* quite obvious, frequency which is enough for µSec precision */
|
|
const int freq = 1000000;
|
|
|
|
/*
|
|
* We can lower the frequency (and probably power consumption) by
|
|
* dividing both frequency and usec by 2 until there is no remainder.
|
|
* But we won't bother with this unless savings are measured, so just
|
|
* run the timer as is.
|
|
*/
|
|
|
|
return gtm_set_ref_timer16(tmr, freq, usec, reload);
|
|
}
|
|
EXPORT_SYMBOL(gtm_set_exact_timer16);
|
|
|
|
/**
|
|
* gtm_stop_timer16 - stop single timer
|
|
* @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer
|
|
* Context: any
|
|
*
|
|
* This function simply stops the GTM timer.
|
|
*/
|
|
void gtm_stop_timer16(struct gtm_timer *tmr)
|
|
{
|
|
struct gtm *gtm = tmr->gtm;
|
|
int num = tmr - >m->timers[0];
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(>m->lock, flags);
|
|
|
|
setbits8(tmr->gtcfr, GTCFR_STP(num));
|
|
out_be16(tmr->gtevr, 0xFFFF);
|
|
|
|
spin_unlock_irqrestore(>m->lock, flags);
|
|
}
|
|
EXPORT_SYMBOL(gtm_stop_timer16);
|
|
|
|
/**
|
|
* gtm_ack_timer16 - acknowledge timer event (free-run timers only)
|
|
* @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer
|
|
* @events: events mask to ack
|
|
* Context: any
|
|
*
|
|
* Thus function used to acknowledge timer interrupt event, use it inside the
|
|
* interrupt handler.
|
|
*/
|
|
void gtm_ack_timer16(struct gtm_timer *tmr, u16 events)
|
|
{
|
|
out_be16(tmr->gtevr, events);
|
|
}
|
|
EXPORT_SYMBOL(gtm_ack_timer16);
|
|
|
|
static void __init gtm_set_shortcuts(struct device_node *np,
|
|
struct gtm_timer *timers,
|
|
struct gtm_timers_regs __iomem *regs)
|
|
{
|
|
/*
|
|
* Yeah, I don't like this either, but timers' registers a bit messed,
|
|
* so we have to provide shortcuts to write timer independent code.
|
|
* Alternative option is to create gt*() accessors, but that will be
|
|
* even uglier and cryptic.
|
|
*/
|
|
timers[0].gtcfr = ®s->gtcfr1;
|
|
timers[0].gtmdr = ®s->gtmdr1;
|
|
timers[0].gtcnr = ®s->gtcnr1;
|
|
timers[0].gtrfr = ®s->gtrfr1;
|
|
timers[0].gtevr = ®s->gtevr1;
|
|
|
|
timers[1].gtcfr = ®s->gtcfr1;
|
|
timers[1].gtmdr = ®s->gtmdr2;
|
|
timers[1].gtcnr = ®s->gtcnr2;
|
|
timers[1].gtrfr = ®s->gtrfr2;
|
|
timers[1].gtevr = ®s->gtevr2;
|
|
|
|
timers[2].gtcfr = ®s->gtcfr2;
|
|
timers[2].gtmdr = ®s->gtmdr3;
|
|
timers[2].gtcnr = ®s->gtcnr3;
|
|
timers[2].gtrfr = ®s->gtrfr3;
|
|
timers[2].gtevr = ®s->gtevr3;
|
|
|
|
timers[3].gtcfr = ®s->gtcfr2;
|
|
timers[3].gtmdr = ®s->gtmdr4;
|
|
timers[3].gtcnr = ®s->gtcnr4;
|
|
timers[3].gtrfr = ®s->gtrfr4;
|
|
timers[3].gtevr = ®s->gtevr4;
|
|
|
|
/* CPM2 doesn't have primary prescaler */
|
|
if (!of_device_is_compatible(np, "fsl,cpm2-gtm")) {
|
|
timers[0].gtpsr = ®s->gtpsr1;
|
|
timers[1].gtpsr = ®s->gtpsr2;
|
|
timers[2].gtpsr = ®s->gtpsr3;
|
|
timers[3].gtpsr = ®s->gtpsr4;
|
|
}
|
|
}
|
|
|
|
static int __init fsl_gtm_init(void)
|
|
{
|
|
struct device_node *np;
|
|
|
|
for_each_compatible_node(np, NULL, "fsl,gtm") {
|
|
int i;
|
|
struct gtm *gtm;
|
|
const u32 *clock;
|
|
int size;
|
|
|
|
gtm = kzalloc(sizeof(*gtm), GFP_KERNEL);
|
|
if (!gtm) {
|
|
pr_err("%s: unable to allocate memory\n",
|
|
np->full_name);
|
|
continue;
|
|
}
|
|
|
|
spin_lock_init(>m->lock);
|
|
|
|
clock = of_get_property(np, "clock-frequency", &size);
|
|
if (!clock || size != sizeof(*clock)) {
|
|
pr_err("%s: no clock-frequency\n", np->full_name);
|
|
goto err;
|
|
}
|
|
gtm->clock = *clock;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(gtm->timers); i++) {
|
|
int ret;
|
|
struct resource irq;
|
|
|
|
ret = of_irq_to_resource(np, i, &irq);
|
|
if (ret == NO_IRQ) {
|
|
pr_err("%s: not enough interrupts specified\n",
|
|
np->full_name);
|
|
goto err;
|
|
}
|
|
gtm->timers[i].irq = irq.start;
|
|
gtm->timers[i].gtm = gtm;
|
|
}
|
|
|
|
gtm->regs = of_iomap(np, 0);
|
|
if (!gtm->regs) {
|
|
pr_err("%s: unable to iomap registers\n",
|
|
np->full_name);
|
|
goto err;
|
|
}
|
|
|
|
gtm_set_shortcuts(np, gtm->timers, gtm->regs);
|
|
list_add(>m->list_node, >ms);
|
|
|
|
/* We don't want to lose the node and its ->data */
|
|
np->data = gtm;
|
|
of_node_get(np);
|
|
|
|
continue;
|
|
err:
|
|
kfree(gtm);
|
|
}
|
|
return 0;
|
|
}
|
|
arch_initcall(fsl_gtm_init);
|