mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-30 14:06:51 +07:00
6a47dc1418
After merging the block tree, today's linux-next build (powerpc ppc64_defconfig) failed like this: fs/nilfs2/the_nilfs.c: In function 'nilfs_discard_segments': fs/nilfs2/the_nilfs.c:673: error: 'DISCARD_FL_BARRIER' undeclared (first use in this function) Caused by commitfbd9b09a17
("blkdev: generalize flags for blkdev_issue_fn functions") interacting with commite902ec9906
("nilfs2: issue discard request after cleaning segments") (which netered Linus' tree on about March 4 - before v2.6.34-rc1). Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
786 lines
21 KiB
C
786 lines
21 KiB
C
/*
|
|
* the_nilfs.c - the_nilfs shared structure.
|
|
*
|
|
* Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
* Written by Ryusuke Konishi <ryusuke@osrg.net>
|
|
*
|
|
*/
|
|
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/crc32.h>
|
|
#include "nilfs.h"
|
|
#include "segment.h"
|
|
#include "alloc.h"
|
|
#include "cpfile.h"
|
|
#include "sufile.h"
|
|
#include "dat.h"
|
|
#include "segbuf.h"
|
|
|
|
|
|
static LIST_HEAD(nilfs_objects);
|
|
static DEFINE_SPINLOCK(nilfs_lock);
|
|
|
|
void nilfs_set_last_segment(struct the_nilfs *nilfs,
|
|
sector_t start_blocknr, u64 seq, __u64 cno)
|
|
{
|
|
spin_lock(&nilfs->ns_last_segment_lock);
|
|
nilfs->ns_last_pseg = start_blocknr;
|
|
nilfs->ns_last_seq = seq;
|
|
nilfs->ns_last_cno = cno;
|
|
spin_unlock(&nilfs->ns_last_segment_lock);
|
|
}
|
|
|
|
/**
|
|
* alloc_nilfs - allocate the_nilfs structure
|
|
* @bdev: block device to which the_nilfs is related
|
|
*
|
|
* alloc_nilfs() allocates memory for the_nilfs and
|
|
* initializes its reference count and locks.
|
|
*
|
|
* Return Value: On success, pointer to the_nilfs is returned.
|
|
* On error, NULL is returned.
|
|
*/
|
|
static struct the_nilfs *alloc_nilfs(struct block_device *bdev)
|
|
{
|
|
struct the_nilfs *nilfs;
|
|
|
|
nilfs = kzalloc(sizeof(*nilfs), GFP_KERNEL);
|
|
if (!nilfs)
|
|
return NULL;
|
|
|
|
nilfs->ns_bdev = bdev;
|
|
atomic_set(&nilfs->ns_count, 1);
|
|
atomic_set(&nilfs->ns_ndirtyblks, 0);
|
|
init_rwsem(&nilfs->ns_sem);
|
|
init_rwsem(&nilfs->ns_super_sem);
|
|
mutex_init(&nilfs->ns_mount_mutex);
|
|
init_rwsem(&nilfs->ns_writer_sem);
|
|
INIT_LIST_HEAD(&nilfs->ns_list);
|
|
INIT_LIST_HEAD(&nilfs->ns_supers);
|
|
spin_lock_init(&nilfs->ns_last_segment_lock);
|
|
nilfs->ns_gc_inodes_h = NULL;
|
|
init_rwsem(&nilfs->ns_segctor_sem);
|
|
|
|
return nilfs;
|
|
}
|
|
|
|
/**
|
|
* find_or_create_nilfs - find or create nilfs object
|
|
* @bdev: block device to which the_nilfs is related
|
|
*
|
|
* find_nilfs() looks up an existent nilfs object created on the
|
|
* device and gets the reference count of the object. If no nilfs object
|
|
* is found on the device, a new nilfs object is allocated.
|
|
*
|
|
* Return Value: On success, pointer to the nilfs object is returned.
|
|
* On error, NULL is returned.
|
|
*/
|
|
struct the_nilfs *find_or_create_nilfs(struct block_device *bdev)
|
|
{
|
|
struct the_nilfs *nilfs, *new = NULL;
|
|
|
|
retry:
|
|
spin_lock(&nilfs_lock);
|
|
list_for_each_entry(nilfs, &nilfs_objects, ns_list) {
|
|
if (nilfs->ns_bdev == bdev) {
|
|
get_nilfs(nilfs);
|
|
spin_unlock(&nilfs_lock);
|
|
if (new)
|
|
put_nilfs(new);
|
|
return nilfs; /* existing object */
|
|
}
|
|
}
|
|
if (new) {
|
|
list_add_tail(&new->ns_list, &nilfs_objects);
|
|
spin_unlock(&nilfs_lock);
|
|
return new; /* new object */
|
|
}
|
|
spin_unlock(&nilfs_lock);
|
|
|
|
new = alloc_nilfs(bdev);
|
|
if (new)
|
|
goto retry;
|
|
return NULL; /* insufficient memory */
|
|
}
|
|
|
|
/**
|
|
* put_nilfs - release a reference to the_nilfs
|
|
* @nilfs: the_nilfs structure to be released
|
|
*
|
|
* put_nilfs() decrements a reference counter of the_nilfs.
|
|
* If the reference count reaches zero, the_nilfs is freed.
|
|
*/
|
|
void put_nilfs(struct the_nilfs *nilfs)
|
|
{
|
|
spin_lock(&nilfs_lock);
|
|
if (!atomic_dec_and_test(&nilfs->ns_count)) {
|
|
spin_unlock(&nilfs_lock);
|
|
return;
|
|
}
|
|
list_del_init(&nilfs->ns_list);
|
|
spin_unlock(&nilfs_lock);
|
|
|
|
/*
|
|
* Increment of ns_count never occurs below because the caller
|
|
* of get_nilfs() holds at least one reference to the_nilfs.
|
|
* Thus its exclusion control is not required here.
|
|
*/
|
|
|
|
might_sleep();
|
|
if (nilfs_loaded(nilfs)) {
|
|
nilfs_mdt_destroy(nilfs->ns_sufile);
|
|
nilfs_mdt_destroy(nilfs->ns_cpfile);
|
|
nilfs_mdt_destroy(nilfs->ns_dat);
|
|
nilfs_mdt_destroy(nilfs->ns_gc_dat);
|
|
}
|
|
if (nilfs_init(nilfs)) {
|
|
nilfs_destroy_gccache(nilfs);
|
|
brelse(nilfs->ns_sbh[0]);
|
|
brelse(nilfs->ns_sbh[1]);
|
|
}
|
|
kfree(nilfs);
|
|
}
|
|
|
|
static int nilfs_load_super_root(struct the_nilfs *nilfs,
|
|
struct nilfs_sb_info *sbi, sector_t sr_block)
|
|
{
|
|
struct buffer_head *bh_sr;
|
|
struct nilfs_super_root *raw_sr;
|
|
struct nilfs_super_block **sbp = nilfs->ns_sbp;
|
|
unsigned dat_entry_size, segment_usage_size, checkpoint_size;
|
|
unsigned inode_size;
|
|
int err;
|
|
|
|
err = nilfs_read_super_root_block(sbi->s_super, sr_block, &bh_sr, 1);
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
down_read(&nilfs->ns_sem);
|
|
dat_entry_size = le16_to_cpu(sbp[0]->s_dat_entry_size);
|
|
checkpoint_size = le16_to_cpu(sbp[0]->s_checkpoint_size);
|
|
segment_usage_size = le16_to_cpu(sbp[0]->s_segment_usage_size);
|
|
up_read(&nilfs->ns_sem);
|
|
|
|
inode_size = nilfs->ns_inode_size;
|
|
|
|
err = -ENOMEM;
|
|
nilfs->ns_dat = nilfs_dat_new(nilfs, dat_entry_size);
|
|
if (unlikely(!nilfs->ns_dat))
|
|
goto failed;
|
|
|
|
nilfs->ns_gc_dat = nilfs_dat_new(nilfs, dat_entry_size);
|
|
if (unlikely(!nilfs->ns_gc_dat))
|
|
goto failed_dat;
|
|
|
|
nilfs->ns_cpfile = nilfs_cpfile_new(nilfs, checkpoint_size);
|
|
if (unlikely(!nilfs->ns_cpfile))
|
|
goto failed_gc_dat;
|
|
|
|
nilfs->ns_sufile = nilfs_sufile_new(nilfs, segment_usage_size);
|
|
if (unlikely(!nilfs->ns_sufile))
|
|
goto failed_cpfile;
|
|
|
|
nilfs_mdt_set_shadow(nilfs->ns_dat, nilfs->ns_gc_dat);
|
|
|
|
err = nilfs_dat_read(nilfs->ns_dat, (void *)bh_sr->b_data +
|
|
NILFS_SR_DAT_OFFSET(inode_size));
|
|
if (unlikely(err))
|
|
goto failed_sufile;
|
|
|
|
err = nilfs_cpfile_read(nilfs->ns_cpfile, (void *)bh_sr->b_data +
|
|
NILFS_SR_CPFILE_OFFSET(inode_size));
|
|
if (unlikely(err))
|
|
goto failed_sufile;
|
|
|
|
err = nilfs_sufile_read(nilfs->ns_sufile, (void *)bh_sr->b_data +
|
|
NILFS_SR_SUFILE_OFFSET(inode_size));
|
|
if (unlikely(err))
|
|
goto failed_sufile;
|
|
|
|
raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
|
|
nilfs->ns_nongc_ctime = le64_to_cpu(raw_sr->sr_nongc_ctime);
|
|
|
|
failed:
|
|
brelse(bh_sr);
|
|
return err;
|
|
|
|
failed_sufile:
|
|
nilfs_mdt_destroy(nilfs->ns_sufile);
|
|
|
|
failed_cpfile:
|
|
nilfs_mdt_destroy(nilfs->ns_cpfile);
|
|
|
|
failed_gc_dat:
|
|
nilfs_mdt_destroy(nilfs->ns_gc_dat);
|
|
|
|
failed_dat:
|
|
nilfs_mdt_destroy(nilfs->ns_dat);
|
|
goto failed;
|
|
}
|
|
|
|
static void nilfs_init_recovery_info(struct nilfs_recovery_info *ri)
|
|
{
|
|
memset(ri, 0, sizeof(*ri));
|
|
INIT_LIST_HEAD(&ri->ri_used_segments);
|
|
}
|
|
|
|
static void nilfs_clear_recovery_info(struct nilfs_recovery_info *ri)
|
|
{
|
|
nilfs_dispose_segment_list(&ri->ri_used_segments);
|
|
}
|
|
|
|
/**
|
|
* load_nilfs - load and recover the nilfs
|
|
* @nilfs: the_nilfs structure to be released
|
|
* @sbi: nilfs_sb_info used to recover past segment
|
|
*
|
|
* load_nilfs() searches and load the latest super root,
|
|
* attaches the last segment, and does recovery if needed.
|
|
* The caller must call this exclusively for simultaneous mounts.
|
|
*/
|
|
int load_nilfs(struct the_nilfs *nilfs, struct nilfs_sb_info *sbi)
|
|
{
|
|
struct nilfs_recovery_info ri;
|
|
unsigned int s_flags = sbi->s_super->s_flags;
|
|
int really_read_only = bdev_read_only(nilfs->ns_bdev);
|
|
int valid_fs = nilfs_valid_fs(nilfs);
|
|
int err;
|
|
|
|
if (nilfs_loaded(nilfs)) {
|
|
if (valid_fs ||
|
|
((s_flags & MS_RDONLY) && nilfs_test_opt(sbi, NORECOVERY)))
|
|
return 0;
|
|
printk(KERN_ERR "NILFS: the filesystem is in an incomplete "
|
|
"recovery state.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!valid_fs) {
|
|
printk(KERN_WARNING "NILFS warning: mounting unchecked fs\n");
|
|
if (s_flags & MS_RDONLY) {
|
|
printk(KERN_INFO "NILFS: INFO: recovery "
|
|
"required for readonly filesystem.\n");
|
|
printk(KERN_INFO "NILFS: write access will "
|
|
"be enabled during recovery.\n");
|
|
}
|
|
}
|
|
|
|
nilfs_init_recovery_info(&ri);
|
|
|
|
err = nilfs_search_super_root(nilfs, sbi, &ri);
|
|
if (unlikely(err)) {
|
|
printk(KERN_ERR "NILFS: error searching super root.\n");
|
|
goto failed;
|
|
}
|
|
|
|
err = nilfs_load_super_root(nilfs, sbi, ri.ri_super_root);
|
|
if (unlikely(err)) {
|
|
printk(KERN_ERR "NILFS: error loading super root.\n");
|
|
goto failed;
|
|
}
|
|
|
|
if (valid_fs)
|
|
goto skip_recovery;
|
|
|
|
if (s_flags & MS_RDONLY) {
|
|
if (nilfs_test_opt(sbi, NORECOVERY)) {
|
|
printk(KERN_INFO "NILFS: norecovery option specified. "
|
|
"skipping roll-forward recovery\n");
|
|
goto skip_recovery;
|
|
}
|
|
if (really_read_only) {
|
|
printk(KERN_ERR "NILFS: write access "
|
|
"unavailable, cannot proceed.\n");
|
|
err = -EROFS;
|
|
goto failed_unload;
|
|
}
|
|
sbi->s_super->s_flags &= ~MS_RDONLY;
|
|
} else if (nilfs_test_opt(sbi, NORECOVERY)) {
|
|
printk(KERN_ERR "NILFS: recovery cancelled because norecovery "
|
|
"option was specified for a read/write mount\n");
|
|
err = -EINVAL;
|
|
goto failed_unload;
|
|
}
|
|
|
|
err = nilfs_recover_logical_segments(nilfs, sbi, &ri);
|
|
if (err)
|
|
goto failed_unload;
|
|
|
|
down_write(&nilfs->ns_sem);
|
|
nilfs->ns_mount_state |= NILFS_VALID_FS;
|
|
nilfs->ns_sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
|
|
err = nilfs_commit_super(sbi, 1);
|
|
up_write(&nilfs->ns_sem);
|
|
|
|
if (err) {
|
|
printk(KERN_ERR "NILFS: failed to update super block. "
|
|
"recovery unfinished.\n");
|
|
goto failed_unload;
|
|
}
|
|
printk(KERN_INFO "NILFS: recovery complete.\n");
|
|
|
|
skip_recovery:
|
|
set_nilfs_loaded(nilfs);
|
|
nilfs_clear_recovery_info(&ri);
|
|
sbi->s_super->s_flags = s_flags;
|
|
return 0;
|
|
|
|
failed_unload:
|
|
nilfs_mdt_destroy(nilfs->ns_cpfile);
|
|
nilfs_mdt_destroy(nilfs->ns_sufile);
|
|
nilfs_mdt_destroy(nilfs->ns_dat);
|
|
|
|
failed:
|
|
nilfs_clear_recovery_info(&ri);
|
|
sbi->s_super->s_flags = s_flags;
|
|
return err;
|
|
}
|
|
|
|
static unsigned long long nilfs_max_size(unsigned int blkbits)
|
|
{
|
|
unsigned int max_bits;
|
|
unsigned long long res = MAX_LFS_FILESIZE; /* page cache limit */
|
|
|
|
max_bits = blkbits + NILFS_BMAP_KEY_BIT; /* bmap size limit */
|
|
if (max_bits < 64)
|
|
res = min_t(unsigned long long, res, (1ULL << max_bits) - 1);
|
|
return res;
|
|
}
|
|
|
|
static int nilfs_store_disk_layout(struct the_nilfs *nilfs,
|
|
struct nilfs_super_block *sbp)
|
|
{
|
|
if (le32_to_cpu(sbp->s_rev_level) != NILFS_CURRENT_REV) {
|
|
printk(KERN_ERR "NILFS: revision mismatch "
|
|
"(superblock rev.=%d.%d, current rev.=%d.%d). "
|
|
"Please check the version of mkfs.nilfs.\n",
|
|
le32_to_cpu(sbp->s_rev_level),
|
|
le16_to_cpu(sbp->s_minor_rev_level),
|
|
NILFS_CURRENT_REV, NILFS_MINOR_REV);
|
|
return -EINVAL;
|
|
}
|
|
nilfs->ns_sbsize = le16_to_cpu(sbp->s_bytes);
|
|
if (nilfs->ns_sbsize > BLOCK_SIZE)
|
|
return -EINVAL;
|
|
|
|
nilfs->ns_inode_size = le16_to_cpu(sbp->s_inode_size);
|
|
nilfs->ns_first_ino = le32_to_cpu(sbp->s_first_ino);
|
|
|
|
nilfs->ns_blocks_per_segment = le32_to_cpu(sbp->s_blocks_per_segment);
|
|
if (nilfs->ns_blocks_per_segment < NILFS_SEG_MIN_BLOCKS) {
|
|
printk(KERN_ERR "NILFS: too short segment.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
nilfs->ns_first_data_block = le64_to_cpu(sbp->s_first_data_block);
|
|
nilfs->ns_nsegments = le64_to_cpu(sbp->s_nsegments);
|
|
nilfs->ns_r_segments_percentage =
|
|
le32_to_cpu(sbp->s_r_segments_percentage);
|
|
nilfs->ns_nrsvsegs =
|
|
max_t(unsigned long, NILFS_MIN_NRSVSEGS,
|
|
DIV_ROUND_UP(nilfs->ns_nsegments *
|
|
nilfs->ns_r_segments_percentage, 100));
|
|
nilfs->ns_crc_seed = le32_to_cpu(sbp->s_crc_seed);
|
|
return 0;
|
|
}
|
|
|
|
static int nilfs_valid_sb(struct nilfs_super_block *sbp)
|
|
{
|
|
static unsigned char sum[4];
|
|
const int sumoff = offsetof(struct nilfs_super_block, s_sum);
|
|
size_t bytes;
|
|
u32 crc;
|
|
|
|
if (!sbp || le16_to_cpu(sbp->s_magic) != NILFS_SUPER_MAGIC)
|
|
return 0;
|
|
bytes = le16_to_cpu(sbp->s_bytes);
|
|
if (bytes > BLOCK_SIZE)
|
|
return 0;
|
|
crc = crc32_le(le32_to_cpu(sbp->s_crc_seed), (unsigned char *)sbp,
|
|
sumoff);
|
|
crc = crc32_le(crc, sum, 4);
|
|
crc = crc32_le(crc, (unsigned char *)sbp + sumoff + 4,
|
|
bytes - sumoff - 4);
|
|
return crc == le32_to_cpu(sbp->s_sum);
|
|
}
|
|
|
|
static int nilfs_sb2_bad_offset(struct nilfs_super_block *sbp, u64 offset)
|
|
{
|
|
return offset < ((le64_to_cpu(sbp->s_nsegments) *
|
|
le32_to_cpu(sbp->s_blocks_per_segment)) <<
|
|
(le32_to_cpu(sbp->s_log_block_size) + 10));
|
|
}
|
|
|
|
static void nilfs_release_super_block(struct the_nilfs *nilfs)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
if (nilfs->ns_sbp[i]) {
|
|
brelse(nilfs->ns_sbh[i]);
|
|
nilfs->ns_sbh[i] = NULL;
|
|
nilfs->ns_sbp[i] = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
void nilfs_fall_back_super_block(struct the_nilfs *nilfs)
|
|
{
|
|
brelse(nilfs->ns_sbh[0]);
|
|
nilfs->ns_sbh[0] = nilfs->ns_sbh[1];
|
|
nilfs->ns_sbp[0] = nilfs->ns_sbp[1];
|
|
nilfs->ns_sbh[1] = NULL;
|
|
nilfs->ns_sbp[1] = NULL;
|
|
}
|
|
|
|
void nilfs_swap_super_block(struct the_nilfs *nilfs)
|
|
{
|
|
struct buffer_head *tsbh = nilfs->ns_sbh[0];
|
|
struct nilfs_super_block *tsbp = nilfs->ns_sbp[0];
|
|
|
|
nilfs->ns_sbh[0] = nilfs->ns_sbh[1];
|
|
nilfs->ns_sbp[0] = nilfs->ns_sbp[1];
|
|
nilfs->ns_sbh[1] = tsbh;
|
|
nilfs->ns_sbp[1] = tsbp;
|
|
}
|
|
|
|
static int nilfs_load_super_block(struct the_nilfs *nilfs,
|
|
struct super_block *sb, int blocksize,
|
|
struct nilfs_super_block **sbpp)
|
|
{
|
|
struct nilfs_super_block **sbp = nilfs->ns_sbp;
|
|
struct buffer_head **sbh = nilfs->ns_sbh;
|
|
u64 sb2off = NILFS_SB2_OFFSET_BYTES(nilfs->ns_bdev->bd_inode->i_size);
|
|
int valid[2], swp = 0;
|
|
|
|
sbp[0] = nilfs_read_super_block(sb, NILFS_SB_OFFSET_BYTES, blocksize,
|
|
&sbh[0]);
|
|
sbp[1] = nilfs_read_super_block(sb, sb2off, blocksize, &sbh[1]);
|
|
|
|
if (!sbp[0]) {
|
|
if (!sbp[1]) {
|
|
printk(KERN_ERR "NILFS: unable to read superblock\n");
|
|
return -EIO;
|
|
}
|
|
printk(KERN_WARNING
|
|
"NILFS warning: unable to read primary superblock\n");
|
|
} else if (!sbp[1])
|
|
printk(KERN_WARNING
|
|
"NILFS warning: unable to read secondary superblock\n");
|
|
|
|
valid[0] = nilfs_valid_sb(sbp[0]);
|
|
valid[1] = nilfs_valid_sb(sbp[1]);
|
|
swp = valid[1] &&
|
|
(!valid[0] ||
|
|
le64_to_cpu(sbp[1]->s_wtime) > le64_to_cpu(sbp[0]->s_wtime));
|
|
|
|
if (valid[swp] && nilfs_sb2_bad_offset(sbp[swp], sb2off)) {
|
|
brelse(sbh[1]);
|
|
sbh[1] = NULL;
|
|
sbp[1] = NULL;
|
|
swp = 0;
|
|
}
|
|
if (!valid[swp]) {
|
|
nilfs_release_super_block(nilfs);
|
|
printk(KERN_ERR "NILFS: Can't find nilfs on dev %s.\n",
|
|
sb->s_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (swp) {
|
|
printk(KERN_WARNING "NILFS warning: broken superblock. "
|
|
"using spare superblock.\n");
|
|
nilfs_swap_super_block(nilfs);
|
|
}
|
|
|
|
nilfs->ns_sbwtime[0] = le64_to_cpu(sbp[0]->s_wtime);
|
|
nilfs->ns_sbwtime[1] = valid[!swp] ? le64_to_cpu(sbp[1]->s_wtime) : 0;
|
|
nilfs->ns_prot_seq = le64_to_cpu(sbp[valid[1] & !swp]->s_last_seq);
|
|
*sbpp = sbp[0];
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* init_nilfs - initialize a NILFS instance.
|
|
* @nilfs: the_nilfs structure
|
|
* @sbi: nilfs_sb_info
|
|
* @sb: super block
|
|
* @data: mount options
|
|
*
|
|
* init_nilfs() performs common initialization per block device (e.g.
|
|
* reading the super block, getting disk layout information, initializing
|
|
* shared fields in the_nilfs). It takes on some portion of the jobs
|
|
* typically done by a fill_super() routine. This division arises from
|
|
* the nature that multiple NILFS instances may be simultaneously
|
|
* mounted on a device.
|
|
* For multiple mounts on the same device, only the first mount
|
|
* invokes these tasks.
|
|
*
|
|
* Return Value: On success, 0 is returned. On error, a negative error
|
|
* code is returned.
|
|
*/
|
|
int init_nilfs(struct the_nilfs *nilfs, struct nilfs_sb_info *sbi, char *data)
|
|
{
|
|
struct super_block *sb = sbi->s_super;
|
|
struct nilfs_super_block *sbp;
|
|
struct backing_dev_info *bdi;
|
|
int blocksize;
|
|
int err;
|
|
|
|
down_write(&nilfs->ns_sem);
|
|
if (nilfs_init(nilfs)) {
|
|
/* Load values from existing the_nilfs */
|
|
sbp = nilfs->ns_sbp[0];
|
|
err = nilfs_store_magic_and_option(sb, sbp, data);
|
|
if (err)
|
|
goto out;
|
|
|
|
blocksize = BLOCK_SIZE << le32_to_cpu(sbp->s_log_block_size);
|
|
if (sb->s_blocksize != blocksize &&
|
|
!sb_set_blocksize(sb, blocksize)) {
|
|
printk(KERN_ERR "NILFS: blocksize %d unfit to device\n",
|
|
blocksize);
|
|
err = -EINVAL;
|
|
}
|
|
sb->s_maxbytes = nilfs_max_size(sb->s_blocksize_bits);
|
|
goto out;
|
|
}
|
|
|
|
blocksize = sb_min_blocksize(sb, BLOCK_SIZE);
|
|
if (!blocksize) {
|
|
printk(KERN_ERR "NILFS: unable to set blocksize\n");
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
err = nilfs_load_super_block(nilfs, sb, blocksize, &sbp);
|
|
if (err)
|
|
goto out;
|
|
|
|
err = nilfs_store_magic_and_option(sb, sbp, data);
|
|
if (err)
|
|
goto failed_sbh;
|
|
|
|
blocksize = BLOCK_SIZE << le32_to_cpu(sbp->s_log_block_size);
|
|
if (sb->s_blocksize != blocksize) {
|
|
int hw_blocksize = bdev_logical_block_size(sb->s_bdev);
|
|
|
|
if (blocksize < hw_blocksize) {
|
|
printk(KERN_ERR
|
|
"NILFS: blocksize %d too small for device "
|
|
"(sector-size = %d).\n",
|
|
blocksize, hw_blocksize);
|
|
err = -EINVAL;
|
|
goto failed_sbh;
|
|
}
|
|
nilfs_release_super_block(nilfs);
|
|
sb_set_blocksize(sb, blocksize);
|
|
|
|
err = nilfs_load_super_block(nilfs, sb, blocksize, &sbp);
|
|
if (err)
|
|
goto out;
|
|
/* not failed_sbh; sbh is released automatically
|
|
when reloading fails. */
|
|
}
|
|
nilfs->ns_blocksize_bits = sb->s_blocksize_bits;
|
|
|
|
err = nilfs_store_disk_layout(nilfs, sbp);
|
|
if (err)
|
|
goto failed_sbh;
|
|
|
|
sb->s_maxbytes = nilfs_max_size(sb->s_blocksize_bits);
|
|
|
|
nilfs->ns_mount_state = le16_to_cpu(sbp->s_state);
|
|
|
|
bdi = nilfs->ns_bdev->bd_inode->i_mapping->backing_dev_info;
|
|
nilfs->ns_bdi = bdi ? : &default_backing_dev_info;
|
|
|
|
/* Finding last segment */
|
|
nilfs->ns_last_pseg = le64_to_cpu(sbp->s_last_pseg);
|
|
nilfs->ns_last_cno = le64_to_cpu(sbp->s_last_cno);
|
|
nilfs->ns_last_seq = le64_to_cpu(sbp->s_last_seq);
|
|
|
|
nilfs->ns_seg_seq = nilfs->ns_last_seq;
|
|
nilfs->ns_segnum =
|
|
nilfs_get_segnum_of_block(nilfs, nilfs->ns_last_pseg);
|
|
nilfs->ns_cno = nilfs->ns_last_cno + 1;
|
|
if (nilfs->ns_segnum >= nilfs->ns_nsegments) {
|
|
printk(KERN_ERR "NILFS invalid last segment number.\n");
|
|
err = -EINVAL;
|
|
goto failed_sbh;
|
|
}
|
|
/* Dummy values */
|
|
nilfs->ns_free_segments_count =
|
|
nilfs->ns_nsegments - (nilfs->ns_segnum + 1);
|
|
|
|
/* Initialize gcinode cache */
|
|
err = nilfs_init_gccache(nilfs);
|
|
if (err)
|
|
goto failed_sbh;
|
|
|
|
set_nilfs_init(nilfs);
|
|
err = 0;
|
|
out:
|
|
up_write(&nilfs->ns_sem);
|
|
return err;
|
|
|
|
failed_sbh:
|
|
nilfs_release_super_block(nilfs);
|
|
goto out;
|
|
}
|
|
|
|
int nilfs_discard_segments(struct the_nilfs *nilfs, __u64 *segnump,
|
|
size_t nsegs)
|
|
{
|
|
sector_t seg_start, seg_end;
|
|
sector_t start = 0, nblocks = 0;
|
|
unsigned int sects_per_block;
|
|
__u64 *sn;
|
|
int ret = 0;
|
|
|
|
sects_per_block = (1 << nilfs->ns_blocksize_bits) /
|
|
bdev_logical_block_size(nilfs->ns_bdev);
|
|
for (sn = segnump; sn < segnump + nsegs; sn++) {
|
|
nilfs_get_segment_range(nilfs, *sn, &seg_start, &seg_end);
|
|
|
|
if (!nblocks) {
|
|
start = seg_start;
|
|
nblocks = seg_end - seg_start + 1;
|
|
} else if (start + nblocks == seg_start) {
|
|
nblocks += seg_end - seg_start + 1;
|
|
} else {
|
|
ret = blkdev_issue_discard(nilfs->ns_bdev,
|
|
start * sects_per_block,
|
|
nblocks * sects_per_block,
|
|
GFP_NOFS,
|
|
BLKDEV_IFL_BARRIER);
|
|
if (ret < 0)
|
|
return ret;
|
|
nblocks = 0;
|
|
}
|
|
}
|
|
if (nblocks)
|
|
ret = blkdev_issue_discard(nilfs->ns_bdev,
|
|
start * sects_per_block,
|
|
nblocks * sects_per_block,
|
|
GFP_NOFS, BLKDEV_IFL_BARRIER);
|
|
return ret;
|
|
}
|
|
|
|
int nilfs_count_free_blocks(struct the_nilfs *nilfs, sector_t *nblocks)
|
|
{
|
|
struct inode *dat = nilfs_dat_inode(nilfs);
|
|
unsigned long ncleansegs;
|
|
|
|
down_read(&NILFS_MDT(dat)->mi_sem); /* XXX */
|
|
ncleansegs = nilfs_sufile_get_ncleansegs(nilfs->ns_sufile);
|
|
up_read(&NILFS_MDT(dat)->mi_sem); /* XXX */
|
|
*nblocks = (sector_t)ncleansegs * nilfs->ns_blocks_per_segment;
|
|
return 0;
|
|
}
|
|
|
|
int nilfs_near_disk_full(struct the_nilfs *nilfs)
|
|
{
|
|
unsigned long ncleansegs, nincsegs;
|
|
|
|
ncleansegs = nilfs_sufile_get_ncleansegs(nilfs->ns_sufile);
|
|
nincsegs = atomic_read(&nilfs->ns_ndirtyblks) /
|
|
nilfs->ns_blocks_per_segment + 1;
|
|
|
|
return ncleansegs <= nilfs->ns_nrsvsegs + nincsegs;
|
|
}
|
|
|
|
/**
|
|
* nilfs_find_sbinfo - find existing nilfs_sb_info structure
|
|
* @nilfs: nilfs object
|
|
* @rw_mount: mount type (non-zero value for read/write mount)
|
|
* @cno: checkpoint number (zero for read-only mount)
|
|
*
|
|
* nilfs_find_sbinfo() returns the nilfs_sb_info structure which
|
|
* @rw_mount and @cno (in case of snapshots) matched. If no instance
|
|
* was found, NULL is returned. Although the super block instance can
|
|
* be unmounted after this function returns, the nilfs_sb_info struct
|
|
* is kept on memory until nilfs_put_sbinfo() is called.
|
|
*/
|
|
struct nilfs_sb_info *nilfs_find_sbinfo(struct the_nilfs *nilfs,
|
|
int rw_mount, __u64 cno)
|
|
{
|
|
struct nilfs_sb_info *sbi;
|
|
|
|
down_read(&nilfs->ns_super_sem);
|
|
/*
|
|
* The SNAPSHOT flag and sb->s_flags are supposed to be
|
|
* protected with nilfs->ns_super_sem.
|
|
*/
|
|
sbi = nilfs->ns_current;
|
|
if (rw_mount) {
|
|
if (sbi && !(sbi->s_super->s_flags & MS_RDONLY))
|
|
goto found; /* read/write mount */
|
|
else
|
|
goto out;
|
|
} else if (cno == 0) {
|
|
if (sbi && (sbi->s_super->s_flags & MS_RDONLY))
|
|
goto found; /* read-only mount */
|
|
else
|
|
goto out;
|
|
}
|
|
|
|
list_for_each_entry(sbi, &nilfs->ns_supers, s_list) {
|
|
if (nilfs_test_opt(sbi, SNAPSHOT) &&
|
|
sbi->s_snapshot_cno == cno)
|
|
goto found; /* snapshot mount */
|
|
}
|
|
out:
|
|
up_read(&nilfs->ns_super_sem);
|
|
return NULL;
|
|
|
|
found:
|
|
atomic_inc(&sbi->s_count);
|
|
up_read(&nilfs->ns_super_sem);
|
|
return sbi;
|
|
}
|
|
|
|
int nilfs_checkpoint_is_mounted(struct the_nilfs *nilfs, __u64 cno,
|
|
int snapshot_mount)
|
|
{
|
|
struct nilfs_sb_info *sbi;
|
|
int ret = 0;
|
|
|
|
down_read(&nilfs->ns_super_sem);
|
|
if (cno == 0 || cno > nilfs->ns_cno)
|
|
goto out_unlock;
|
|
|
|
list_for_each_entry(sbi, &nilfs->ns_supers, s_list) {
|
|
if (sbi->s_snapshot_cno == cno &&
|
|
(!snapshot_mount || nilfs_test_opt(sbi, SNAPSHOT))) {
|
|
/* exclude read-only mounts */
|
|
ret++;
|
|
break;
|
|
}
|
|
}
|
|
/* for protecting recent checkpoints */
|
|
if (cno >= nilfs_last_cno(nilfs))
|
|
ret++;
|
|
|
|
out_unlock:
|
|
up_read(&nilfs->ns_super_sem);
|
|
return ret;
|
|
}
|