mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-24 23:59:59 +07:00
1a59d1b8e0
Based on 1 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details you should have received a copy of the gnu general public license along with this program if not write to the free software foundation inc 59 temple place suite 330 boston ma 02111 1307 usa extracted by the scancode license scanner the SPDX license identifier GPL-2.0-or-later has been chosen to replace the boilerplate/reference in 1334 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Allison Randal <allison@lohutok.net> Reviewed-by: Richard Fontana <rfontana@redhat.com> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190527070033.113240726@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
996 lines
29 KiB
C
996 lines
29 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/* Freescale Enhanced Local Bus Controller NAND driver
|
|
*
|
|
* Copyright © 2006-2007, 2010 Freescale Semiconductor
|
|
*
|
|
* Authors: Nick Spence <nick.spence@freescale.com>,
|
|
* Scott Wood <scottwood@freescale.com>
|
|
* Jack Lan <jack.lan@freescale.com>
|
|
* Roy Zang <tie-fei.zang@freescale.com>
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/string.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/of_platform.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/rawnand.h>
|
|
#include <linux/mtd/nand_ecc.h>
|
|
#include <linux/mtd/partitions.h>
|
|
|
|
#include <asm/io.h>
|
|
#include <asm/fsl_lbc.h>
|
|
|
|
#define MAX_BANKS 8
|
|
#define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
|
|
#define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
|
|
|
|
/* mtd information per set */
|
|
|
|
struct fsl_elbc_mtd {
|
|
struct nand_chip chip;
|
|
struct fsl_lbc_ctrl *ctrl;
|
|
|
|
struct device *dev;
|
|
int bank; /* Chip select bank number */
|
|
u8 __iomem *vbase; /* Chip select base virtual address */
|
|
int page_size; /* NAND page size (0=512, 1=2048) */
|
|
unsigned int fmr; /* FCM Flash Mode Register value */
|
|
};
|
|
|
|
/* Freescale eLBC FCM controller information */
|
|
|
|
struct fsl_elbc_fcm_ctrl {
|
|
struct nand_controller controller;
|
|
struct fsl_elbc_mtd *chips[MAX_BANKS];
|
|
|
|
u8 __iomem *addr; /* Address of assigned FCM buffer */
|
|
unsigned int page; /* Last page written to / read from */
|
|
unsigned int read_bytes; /* Number of bytes read during command */
|
|
unsigned int column; /* Saved column from SEQIN */
|
|
unsigned int index; /* Pointer to next byte to 'read' */
|
|
unsigned int status; /* status read from LTESR after last op */
|
|
unsigned int mdr; /* UPM/FCM Data Register value */
|
|
unsigned int use_mdr; /* Non zero if the MDR is to be set */
|
|
unsigned int oob; /* Non zero if operating on OOB data */
|
|
unsigned int counter; /* counter for the initializations */
|
|
unsigned int max_bitflips; /* Saved during READ0 cmd */
|
|
};
|
|
|
|
/* These map to the positions used by the FCM hardware ECC generator */
|
|
|
|
static int fsl_elbc_ooblayout_ecc(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
|
|
|
|
if (section >= chip->ecc.steps)
|
|
return -ERANGE;
|
|
|
|
oobregion->offset = (16 * section) + 6;
|
|
if (priv->fmr & FMR_ECCM)
|
|
oobregion->offset += 2;
|
|
|
|
oobregion->length = chip->ecc.bytes;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fsl_elbc_ooblayout_free(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
|
|
|
|
if (section > chip->ecc.steps)
|
|
return -ERANGE;
|
|
|
|
if (!section) {
|
|
oobregion->offset = 0;
|
|
if (mtd->writesize > 512)
|
|
oobregion->offset++;
|
|
oobregion->length = (priv->fmr & FMR_ECCM) ? 7 : 5;
|
|
} else {
|
|
oobregion->offset = (16 * section) -
|
|
((priv->fmr & FMR_ECCM) ? 5 : 7);
|
|
if (section < chip->ecc.steps)
|
|
oobregion->length = 13;
|
|
else
|
|
oobregion->length = mtd->oobsize - oobregion->offset;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct mtd_ooblayout_ops fsl_elbc_ooblayout_ops = {
|
|
.ecc = fsl_elbc_ooblayout_ecc,
|
|
.free = fsl_elbc_ooblayout_free,
|
|
};
|
|
|
|
/*
|
|
* ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
|
|
* interfere with ECC positions, that's why we implement our own descriptors.
|
|
* OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
|
|
*/
|
|
static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
|
|
static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
|
|
|
|
static struct nand_bbt_descr bbt_main_descr = {
|
|
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
|
|
NAND_BBT_2BIT | NAND_BBT_VERSION,
|
|
.offs = 11,
|
|
.len = 4,
|
|
.veroffs = 15,
|
|
.maxblocks = 4,
|
|
.pattern = bbt_pattern,
|
|
};
|
|
|
|
static struct nand_bbt_descr bbt_mirror_descr = {
|
|
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
|
|
NAND_BBT_2BIT | NAND_BBT_VERSION,
|
|
.offs = 11,
|
|
.len = 4,
|
|
.veroffs = 15,
|
|
.maxblocks = 4,
|
|
.pattern = mirror_pattern,
|
|
};
|
|
|
|
/*=================================*/
|
|
|
|
/*
|
|
* Set up the FCM hardware block and page address fields, and the fcm
|
|
* structure addr field to point to the correct FCM buffer in memory
|
|
*/
|
|
static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
|
|
struct fsl_lbc_ctrl *ctrl = priv->ctrl;
|
|
struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
|
|
struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
|
|
int buf_num;
|
|
|
|
elbc_fcm_ctrl->page = page_addr;
|
|
|
|
if (priv->page_size) {
|
|
/*
|
|
* large page size chip : FPAR[PI] save the lowest 6 bits,
|
|
* FBAR[BLK] save the other bits.
|
|
*/
|
|
out_be32(&lbc->fbar, page_addr >> 6);
|
|
out_be32(&lbc->fpar,
|
|
((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
|
|
(oob ? FPAR_LP_MS : 0) | column);
|
|
buf_num = (page_addr & 1) << 2;
|
|
} else {
|
|
/*
|
|
* small page size chip : FPAR[PI] save the lowest 5 bits,
|
|
* FBAR[BLK] save the other bits.
|
|
*/
|
|
out_be32(&lbc->fbar, page_addr >> 5);
|
|
out_be32(&lbc->fpar,
|
|
((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
|
|
(oob ? FPAR_SP_MS : 0) | column);
|
|
buf_num = page_addr & 7;
|
|
}
|
|
|
|
elbc_fcm_ctrl->addr = priv->vbase + buf_num * 1024;
|
|
elbc_fcm_ctrl->index = column;
|
|
|
|
/* for OOB data point to the second half of the buffer */
|
|
if (oob)
|
|
elbc_fcm_ctrl->index += priv->page_size ? 2048 : 512;
|
|
|
|
dev_vdbg(priv->dev, "set_addr: bank=%d, "
|
|
"elbc_fcm_ctrl->addr=0x%p (0x%p), "
|
|
"index %x, pes %d ps %d\n",
|
|
buf_num, elbc_fcm_ctrl->addr, priv->vbase,
|
|
elbc_fcm_ctrl->index,
|
|
chip->phys_erase_shift, chip->page_shift);
|
|
}
|
|
|
|
/*
|
|
* execute FCM command and wait for it to complete
|
|
*/
|
|
static int fsl_elbc_run_command(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
|
|
struct fsl_lbc_ctrl *ctrl = priv->ctrl;
|
|
struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
|
|
struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
|
|
|
|
/* Setup the FMR[OP] to execute without write protection */
|
|
out_be32(&lbc->fmr, priv->fmr | 3);
|
|
if (elbc_fcm_ctrl->use_mdr)
|
|
out_be32(&lbc->mdr, elbc_fcm_ctrl->mdr);
|
|
|
|
dev_vdbg(priv->dev,
|
|
"fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
|
|
in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
|
|
dev_vdbg(priv->dev,
|
|
"fsl_elbc_run_command: fbar=%08x fpar=%08x "
|
|
"fbcr=%08x bank=%d\n",
|
|
in_be32(&lbc->fbar), in_be32(&lbc->fpar),
|
|
in_be32(&lbc->fbcr), priv->bank);
|
|
|
|
ctrl->irq_status = 0;
|
|
/* execute special operation */
|
|
out_be32(&lbc->lsor, priv->bank);
|
|
|
|
/* wait for FCM complete flag or timeout */
|
|
wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
|
|
FCM_TIMEOUT_MSECS * HZ/1000);
|
|
elbc_fcm_ctrl->status = ctrl->irq_status;
|
|
/* store mdr value in case it was needed */
|
|
if (elbc_fcm_ctrl->use_mdr)
|
|
elbc_fcm_ctrl->mdr = in_be32(&lbc->mdr);
|
|
|
|
elbc_fcm_ctrl->use_mdr = 0;
|
|
|
|
if (elbc_fcm_ctrl->status != LTESR_CC) {
|
|
dev_info(priv->dev,
|
|
"command failed: fir %x fcr %x status %x mdr %x\n",
|
|
in_be32(&lbc->fir), in_be32(&lbc->fcr),
|
|
elbc_fcm_ctrl->status, elbc_fcm_ctrl->mdr);
|
|
return -EIO;
|
|
}
|
|
|
|
if (chip->ecc.mode != NAND_ECC_HW)
|
|
return 0;
|
|
|
|
elbc_fcm_ctrl->max_bitflips = 0;
|
|
|
|
if (elbc_fcm_ctrl->read_bytes == mtd->writesize + mtd->oobsize) {
|
|
uint32_t lteccr = in_be32(&lbc->lteccr);
|
|
/*
|
|
* if command was a full page read and the ELBC
|
|
* has the LTECCR register, then bits 12-15 (ppc order) of
|
|
* LTECCR indicates which 512 byte sub-pages had fixed errors.
|
|
* bits 28-31 are uncorrectable errors, marked elsewhere.
|
|
* for small page nand only 1 bit is used.
|
|
* if the ELBC doesn't have the lteccr register it reads 0
|
|
* FIXME: 4 bits can be corrected on NANDs with 2k pages, so
|
|
* count the number of sub-pages with bitflips and update
|
|
* ecc_stats.corrected accordingly.
|
|
*/
|
|
if (lteccr & 0x000F000F)
|
|
out_be32(&lbc->lteccr, 0x000F000F); /* clear lteccr */
|
|
if (lteccr & 0x000F0000) {
|
|
mtd->ecc_stats.corrected++;
|
|
elbc_fcm_ctrl->max_bitflips = 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
|
|
{
|
|
struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
|
|
struct fsl_lbc_ctrl *ctrl = priv->ctrl;
|
|
struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
|
|
|
|
if (priv->page_size) {
|
|
out_be32(&lbc->fir,
|
|
(FIR_OP_CM0 << FIR_OP0_SHIFT) |
|
|
(FIR_OP_CA << FIR_OP1_SHIFT) |
|
|
(FIR_OP_PA << FIR_OP2_SHIFT) |
|
|
(FIR_OP_CM1 << FIR_OP3_SHIFT) |
|
|
(FIR_OP_RBW << FIR_OP4_SHIFT));
|
|
|
|
out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
|
|
(NAND_CMD_READSTART << FCR_CMD1_SHIFT));
|
|
} else {
|
|
out_be32(&lbc->fir,
|
|
(FIR_OP_CM0 << FIR_OP0_SHIFT) |
|
|
(FIR_OP_CA << FIR_OP1_SHIFT) |
|
|
(FIR_OP_PA << FIR_OP2_SHIFT) |
|
|
(FIR_OP_RBW << FIR_OP3_SHIFT));
|
|
|
|
if (oob)
|
|
out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
|
|
else
|
|
out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
|
|
}
|
|
}
|
|
|
|
/* cmdfunc send commands to the FCM */
|
|
static void fsl_elbc_cmdfunc(struct nand_chip *chip, unsigned int command,
|
|
int column, int page_addr)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
|
|
struct fsl_lbc_ctrl *ctrl = priv->ctrl;
|
|
struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
|
|
struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
|
|
|
|
elbc_fcm_ctrl->use_mdr = 0;
|
|
|
|
/* clear the read buffer */
|
|
elbc_fcm_ctrl->read_bytes = 0;
|
|
if (command != NAND_CMD_PAGEPROG)
|
|
elbc_fcm_ctrl->index = 0;
|
|
|
|
switch (command) {
|
|
/* READ0 and READ1 read the entire buffer to use hardware ECC. */
|
|
case NAND_CMD_READ1:
|
|
column += 256;
|
|
|
|
/* fall-through */
|
|
case NAND_CMD_READ0:
|
|
dev_dbg(priv->dev,
|
|
"fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
|
|
" 0x%x, column: 0x%x.\n", page_addr, column);
|
|
|
|
|
|
out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
|
|
set_addr(mtd, 0, page_addr, 0);
|
|
|
|
elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
|
|
elbc_fcm_ctrl->index += column;
|
|
|
|
fsl_elbc_do_read(chip, 0);
|
|
fsl_elbc_run_command(mtd);
|
|
return;
|
|
|
|
/* RNDOUT moves the pointer inside the page */
|
|
case NAND_CMD_RNDOUT:
|
|
dev_dbg(priv->dev,
|
|
"fsl_elbc_cmdfunc: NAND_CMD_RNDOUT, column: 0x%x.\n",
|
|
column);
|
|
|
|
elbc_fcm_ctrl->index = column;
|
|
return;
|
|
|
|
/* READOOB reads only the OOB because no ECC is performed. */
|
|
case NAND_CMD_READOOB:
|
|
dev_vdbg(priv->dev,
|
|
"fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
|
|
" 0x%x, column: 0x%x.\n", page_addr, column);
|
|
|
|
out_be32(&lbc->fbcr, mtd->oobsize - column);
|
|
set_addr(mtd, column, page_addr, 1);
|
|
|
|
elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
|
|
|
|
fsl_elbc_do_read(chip, 1);
|
|
fsl_elbc_run_command(mtd);
|
|
return;
|
|
|
|
case NAND_CMD_READID:
|
|
case NAND_CMD_PARAM:
|
|
dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD %x\n", command);
|
|
|
|
out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) |
|
|
(FIR_OP_UA << FIR_OP1_SHIFT) |
|
|
(FIR_OP_RBW << FIR_OP2_SHIFT));
|
|
out_be32(&lbc->fcr, command << FCR_CMD0_SHIFT);
|
|
/*
|
|
* although currently it's 8 bytes for READID, we always read
|
|
* the maximum 256 bytes(for PARAM)
|
|
*/
|
|
out_be32(&lbc->fbcr, 256);
|
|
elbc_fcm_ctrl->read_bytes = 256;
|
|
elbc_fcm_ctrl->use_mdr = 1;
|
|
elbc_fcm_ctrl->mdr = column;
|
|
set_addr(mtd, 0, 0, 0);
|
|
fsl_elbc_run_command(mtd);
|
|
return;
|
|
|
|
/* ERASE1 stores the block and page address */
|
|
case NAND_CMD_ERASE1:
|
|
dev_vdbg(priv->dev,
|
|
"fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
|
|
"page_addr: 0x%x.\n", page_addr);
|
|
set_addr(mtd, 0, page_addr, 0);
|
|
return;
|
|
|
|
/* ERASE2 uses the block and page address from ERASE1 */
|
|
case NAND_CMD_ERASE2:
|
|
dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
|
|
|
|
out_be32(&lbc->fir,
|
|
(FIR_OP_CM0 << FIR_OP0_SHIFT) |
|
|
(FIR_OP_PA << FIR_OP1_SHIFT) |
|
|
(FIR_OP_CM2 << FIR_OP2_SHIFT) |
|
|
(FIR_OP_CW1 << FIR_OP3_SHIFT) |
|
|
(FIR_OP_RS << FIR_OP4_SHIFT));
|
|
|
|
out_be32(&lbc->fcr,
|
|
(NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
|
|
(NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
|
|
(NAND_CMD_ERASE2 << FCR_CMD2_SHIFT));
|
|
|
|
out_be32(&lbc->fbcr, 0);
|
|
elbc_fcm_ctrl->read_bytes = 0;
|
|
elbc_fcm_ctrl->use_mdr = 1;
|
|
|
|
fsl_elbc_run_command(mtd);
|
|
return;
|
|
|
|
/* SEQIN sets up the addr buffer and all registers except the length */
|
|
case NAND_CMD_SEQIN: {
|
|
__be32 fcr;
|
|
dev_vdbg(priv->dev,
|
|
"fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
|
|
"page_addr: 0x%x, column: 0x%x.\n",
|
|
page_addr, column);
|
|
|
|
elbc_fcm_ctrl->column = column;
|
|
elbc_fcm_ctrl->use_mdr = 1;
|
|
|
|
if (column >= mtd->writesize) {
|
|
/* OOB area */
|
|
column -= mtd->writesize;
|
|
elbc_fcm_ctrl->oob = 1;
|
|
} else {
|
|
WARN_ON(column != 0);
|
|
elbc_fcm_ctrl->oob = 0;
|
|
}
|
|
|
|
fcr = (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
|
|
(NAND_CMD_SEQIN << FCR_CMD2_SHIFT) |
|
|
(NAND_CMD_PAGEPROG << FCR_CMD3_SHIFT);
|
|
|
|
if (priv->page_size) {
|
|
out_be32(&lbc->fir,
|
|
(FIR_OP_CM2 << FIR_OP0_SHIFT) |
|
|
(FIR_OP_CA << FIR_OP1_SHIFT) |
|
|
(FIR_OP_PA << FIR_OP2_SHIFT) |
|
|
(FIR_OP_WB << FIR_OP3_SHIFT) |
|
|
(FIR_OP_CM3 << FIR_OP4_SHIFT) |
|
|
(FIR_OP_CW1 << FIR_OP5_SHIFT) |
|
|
(FIR_OP_RS << FIR_OP6_SHIFT));
|
|
} else {
|
|
out_be32(&lbc->fir,
|
|
(FIR_OP_CM0 << FIR_OP0_SHIFT) |
|
|
(FIR_OP_CM2 << FIR_OP1_SHIFT) |
|
|
(FIR_OP_CA << FIR_OP2_SHIFT) |
|
|
(FIR_OP_PA << FIR_OP3_SHIFT) |
|
|
(FIR_OP_WB << FIR_OP4_SHIFT) |
|
|
(FIR_OP_CM3 << FIR_OP5_SHIFT) |
|
|
(FIR_OP_CW1 << FIR_OP6_SHIFT) |
|
|
(FIR_OP_RS << FIR_OP7_SHIFT));
|
|
|
|
if (elbc_fcm_ctrl->oob)
|
|
/* OOB area --> READOOB */
|
|
fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
|
|
else
|
|
/* First 256 bytes --> READ0 */
|
|
fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
|
|
}
|
|
|
|
out_be32(&lbc->fcr, fcr);
|
|
set_addr(mtd, column, page_addr, elbc_fcm_ctrl->oob);
|
|
return;
|
|
}
|
|
|
|
/* PAGEPROG reuses all of the setup from SEQIN and adds the length */
|
|
case NAND_CMD_PAGEPROG: {
|
|
dev_vdbg(priv->dev,
|
|
"fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
|
|
"writing %d bytes.\n", elbc_fcm_ctrl->index);
|
|
|
|
/* if the write did not start at 0 or is not a full page
|
|
* then set the exact length, otherwise use a full page
|
|
* write so the HW generates the ECC.
|
|
*/
|
|
if (elbc_fcm_ctrl->oob || elbc_fcm_ctrl->column != 0 ||
|
|
elbc_fcm_ctrl->index != mtd->writesize + mtd->oobsize)
|
|
out_be32(&lbc->fbcr,
|
|
elbc_fcm_ctrl->index - elbc_fcm_ctrl->column);
|
|
else
|
|
out_be32(&lbc->fbcr, 0);
|
|
|
|
fsl_elbc_run_command(mtd);
|
|
return;
|
|
}
|
|
|
|
/* CMD_STATUS must read the status byte while CEB is active */
|
|
/* Note - it does not wait for the ready line */
|
|
case NAND_CMD_STATUS:
|
|
out_be32(&lbc->fir,
|
|
(FIR_OP_CM0 << FIR_OP0_SHIFT) |
|
|
(FIR_OP_RBW << FIR_OP1_SHIFT));
|
|
out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
|
|
out_be32(&lbc->fbcr, 1);
|
|
set_addr(mtd, 0, 0, 0);
|
|
elbc_fcm_ctrl->read_bytes = 1;
|
|
|
|
fsl_elbc_run_command(mtd);
|
|
|
|
/* The chip always seems to report that it is
|
|
* write-protected, even when it is not.
|
|
*/
|
|
setbits8(elbc_fcm_ctrl->addr, NAND_STATUS_WP);
|
|
return;
|
|
|
|
/* RESET without waiting for the ready line */
|
|
case NAND_CMD_RESET:
|
|
dev_dbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
|
|
out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
|
|
out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
|
|
fsl_elbc_run_command(mtd);
|
|
return;
|
|
|
|
default:
|
|
dev_err(priv->dev,
|
|
"fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
|
|
command);
|
|
}
|
|
}
|
|
|
|
static void fsl_elbc_select_chip(struct nand_chip *chip, int cs)
|
|
{
|
|
/* The hardware does not seem to support multiple
|
|
* chips per bank.
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* Write buf to the FCM Controller Data Buffer
|
|
*/
|
|
static void fsl_elbc_write_buf(struct nand_chip *chip, const u8 *buf, int len)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
|
|
struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
|
|
unsigned int bufsize = mtd->writesize + mtd->oobsize;
|
|
|
|
if (len <= 0) {
|
|
dev_err(priv->dev, "write_buf of %d bytes", len);
|
|
elbc_fcm_ctrl->status = 0;
|
|
return;
|
|
}
|
|
|
|
if ((unsigned int)len > bufsize - elbc_fcm_ctrl->index) {
|
|
dev_err(priv->dev,
|
|
"write_buf beyond end of buffer "
|
|
"(%d requested, %u available)\n",
|
|
len, bufsize - elbc_fcm_ctrl->index);
|
|
len = bufsize - elbc_fcm_ctrl->index;
|
|
}
|
|
|
|
memcpy_toio(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], buf, len);
|
|
/*
|
|
* This is workaround for the weird elbc hangs during nand write,
|
|
* Scott Wood says: "...perhaps difference in how long it takes a
|
|
* write to make it through the localbus compared to a write to IMMR
|
|
* is causing problems, and sync isn't helping for some reason."
|
|
* Reading back the last byte helps though.
|
|
*/
|
|
in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index] + len - 1);
|
|
|
|
elbc_fcm_ctrl->index += len;
|
|
}
|
|
|
|
/*
|
|
* read a byte from either the FCM hardware buffer if it has any data left
|
|
* otherwise issue a command to read a single byte.
|
|
*/
|
|
static u8 fsl_elbc_read_byte(struct nand_chip *chip)
|
|
{
|
|
struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
|
|
struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
|
|
|
|
/* If there are still bytes in the FCM, then use the next byte. */
|
|
if (elbc_fcm_ctrl->index < elbc_fcm_ctrl->read_bytes)
|
|
return in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index++]);
|
|
|
|
dev_err(priv->dev, "read_byte beyond end of buffer\n");
|
|
return ERR_BYTE;
|
|
}
|
|
|
|
/*
|
|
* Read from the FCM Controller Data Buffer
|
|
*/
|
|
static void fsl_elbc_read_buf(struct nand_chip *chip, u8 *buf, int len)
|
|
{
|
|
struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
|
|
struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
|
|
int avail;
|
|
|
|
if (len < 0)
|
|
return;
|
|
|
|
avail = min((unsigned int)len,
|
|
elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
|
|
memcpy_fromio(buf, &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], avail);
|
|
elbc_fcm_ctrl->index += avail;
|
|
|
|
if (len > avail)
|
|
dev_err(priv->dev,
|
|
"read_buf beyond end of buffer "
|
|
"(%d requested, %d available)\n",
|
|
len, avail);
|
|
}
|
|
|
|
/* This function is called after Program and Erase Operations to
|
|
* check for success or failure.
|
|
*/
|
|
static int fsl_elbc_wait(struct nand_chip *chip)
|
|
{
|
|
struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
|
|
struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
|
|
|
|
if (elbc_fcm_ctrl->status != LTESR_CC)
|
|
return NAND_STATUS_FAIL;
|
|
|
|
/* The chip always seems to report that it is
|
|
* write-protected, even when it is not.
|
|
*/
|
|
return (elbc_fcm_ctrl->mdr & 0xff) | NAND_STATUS_WP;
|
|
}
|
|
|
|
static int fsl_elbc_read_page(struct nand_chip *chip, uint8_t *buf,
|
|
int oob_required, int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
|
|
struct fsl_lbc_ctrl *ctrl = priv->ctrl;
|
|
struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
|
|
|
|
nand_read_page_op(chip, page, 0, buf, mtd->writesize);
|
|
if (oob_required)
|
|
fsl_elbc_read_buf(chip, chip->oob_poi, mtd->oobsize);
|
|
|
|
if (fsl_elbc_wait(chip) & NAND_STATUS_FAIL)
|
|
mtd->ecc_stats.failed++;
|
|
|
|
return elbc_fcm_ctrl->max_bitflips;
|
|
}
|
|
|
|
/* ECC will be calculated automatically, and errors will be detected in
|
|
* waitfunc.
|
|
*/
|
|
static int fsl_elbc_write_page(struct nand_chip *chip, const uint8_t *buf,
|
|
int oob_required, int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
|
|
fsl_elbc_write_buf(chip, chip->oob_poi, mtd->oobsize);
|
|
|
|
return nand_prog_page_end_op(chip);
|
|
}
|
|
|
|
/* ECC will be calculated automatically, and errors will be detected in
|
|
* waitfunc.
|
|
*/
|
|
static int fsl_elbc_write_subpage(struct nand_chip *chip, uint32_t offset,
|
|
uint32_t data_len, const uint8_t *buf,
|
|
int oob_required, int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
nand_prog_page_begin_op(chip, page, 0, NULL, 0);
|
|
fsl_elbc_write_buf(chip, buf, mtd->writesize);
|
|
fsl_elbc_write_buf(chip, chip->oob_poi, mtd->oobsize);
|
|
return nand_prog_page_end_op(chip);
|
|
}
|
|
|
|
static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
|
|
{
|
|
struct fsl_lbc_ctrl *ctrl = priv->ctrl;
|
|
struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
|
|
struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
|
|
struct nand_chip *chip = &priv->chip;
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
|
|
|
|
/* Fill in fsl_elbc_mtd structure */
|
|
mtd->dev.parent = priv->dev;
|
|
nand_set_flash_node(chip, priv->dev->of_node);
|
|
|
|
/* set timeout to maximum */
|
|
priv->fmr = 15 << FMR_CWTO_SHIFT;
|
|
if (in_be32(&lbc->bank[priv->bank].or) & OR_FCM_PGS)
|
|
priv->fmr |= FMR_ECCM;
|
|
|
|
/* fill in nand_chip structure */
|
|
/* set up function call table */
|
|
chip->legacy.read_byte = fsl_elbc_read_byte;
|
|
chip->legacy.write_buf = fsl_elbc_write_buf;
|
|
chip->legacy.read_buf = fsl_elbc_read_buf;
|
|
chip->legacy.select_chip = fsl_elbc_select_chip;
|
|
chip->legacy.cmdfunc = fsl_elbc_cmdfunc;
|
|
chip->legacy.waitfunc = fsl_elbc_wait;
|
|
chip->legacy.set_features = nand_get_set_features_notsupp;
|
|
chip->legacy.get_features = nand_get_set_features_notsupp;
|
|
|
|
chip->bbt_td = &bbt_main_descr;
|
|
chip->bbt_md = &bbt_mirror_descr;
|
|
|
|
/* set up nand options */
|
|
chip->bbt_options = NAND_BBT_USE_FLASH;
|
|
|
|
chip->controller = &elbc_fcm_ctrl->controller;
|
|
nand_set_controller_data(chip, priv);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fsl_elbc_attach_chip(struct nand_chip *chip)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
|
|
struct fsl_lbc_ctrl *ctrl = priv->ctrl;
|
|
struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
|
|
unsigned int al;
|
|
|
|
switch (chip->ecc.mode) {
|
|
/*
|
|
* if ECC was not chosen in DT, decide whether to use HW or SW ECC from
|
|
* CS Base Register
|
|
*/
|
|
case NAND_ECC_NONE:
|
|
/* If CS Base Register selects full hardware ECC then use it */
|
|
if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
|
|
BR_DECC_CHK_GEN) {
|
|
chip->ecc.read_page = fsl_elbc_read_page;
|
|
chip->ecc.write_page = fsl_elbc_write_page;
|
|
chip->ecc.write_subpage = fsl_elbc_write_subpage;
|
|
|
|
chip->ecc.mode = NAND_ECC_HW;
|
|
mtd_set_ooblayout(mtd, &fsl_elbc_ooblayout_ops);
|
|
chip->ecc.size = 512;
|
|
chip->ecc.bytes = 3;
|
|
chip->ecc.strength = 1;
|
|
} else {
|
|
/* otherwise fall back to default software ECC */
|
|
chip->ecc.mode = NAND_ECC_SOFT;
|
|
chip->ecc.algo = NAND_ECC_HAMMING;
|
|
}
|
|
break;
|
|
|
|
/* if SW ECC was chosen in DT, we do not need to set anything here */
|
|
case NAND_ECC_SOFT:
|
|
break;
|
|
|
|
/* should we also implement NAND_ECC_HW to do as the code above? */
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* calculate FMR Address Length field */
|
|
al = 0;
|
|
if (chip->pagemask & 0xffff0000)
|
|
al++;
|
|
if (chip->pagemask & 0xff000000)
|
|
al++;
|
|
|
|
priv->fmr |= al << FMR_AL_SHIFT;
|
|
|
|
dev_dbg(priv->dev, "fsl_elbc_init: nand->numchips = %d\n",
|
|
nanddev_ntargets(&chip->base));
|
|
dev_dbg(priv->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
|
|
nanddev_target_size(&chip->base));
|
|
dev_dbg(priv->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
|
|
chip->pagemask);
|
|
dev_dbg(priv->dev, "fsl_elbc_init: nand->legacy.chip_delay = %d\n",
|
|
chip->legacy.chip_delay);
|
|
dev_dbg(priv->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
|
|
chip->badblockpos);
|
|
dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
|
|
chip->chip_shift);
|
|
dev_dbg(priv->dev, "fsl_elbc_init: nand->page_shift = %d\n",
|
|
chip->page_shift);
|
|
dev_dbg(priv->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
|
|
chip->phys_erase_shift);
|
|
dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
|
|
chip->ecc.mode);
|
|
dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
|
|
chip->ecc.steps);
|
|
dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
|
|
chip->ecc.bytes);
|
|
dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
|
|
chip->ecc.total);
|
|
dev_dbg(priv->dev, "fsl_elbc_init: mtd->ooblayout = %p\n",
|
|
mtd->ooblayout);
|
|
dev_dbg(priv->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
|
|
dev_dbg(priv->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size);
|
|
dev_dbg(priv->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
|
|
mtd->erasesize);
|
|
dev_dbg(priv->dev, "fsl_elbc_init: mtd->writesize = %d\n",
|
|
mtd->writesize);
|
|
dev_dbg(priv->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
|
|
mtd->oobsize);
|
|
|
|
/* adjust Option Register and ECC to match Flash page size */
|
|
if (mtd->writesize == 512) {
|
|
priv->page_size = 0;
|
|
clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
|
|
} else if (mtd->writesize == 2048) {
|
|
priv->page_size = 1;
|
|
setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
|
|
} else {
|
|
dev_err(priv->dev,
|
|
"fsl_elbc_init: page size %d is not supported\n",
|
|
mtd->writesize);
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct nand_controller_ops fsl_elbc_controller_ops = {
|
|
.attach_chip = fsl_elbc_attach_chip,
|
|
};
|
|
|
|
static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
|
|
{
|
|
struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
|
|
struct mtd_info *mtd = nand_to_mtd(&priv->chip);
|
|
|
|
kfree(mtd->name);
|
|
|
|
if (priv->vbase)
|
|
iounmap(priv->vbase);
|
|
|
|
elbc_fcm_ctrl->chips[priv->bank] = NULL;
|
|
kfree(priv);
|
|
return 0;
|
|
}
|
|
|
|
static DEFINE_MUTEX(fsl_elbc_nand_mutex);
|
|
|
|
static int fsl_elbc_nand_probe(struct platform_device *pdev)
|
|
{
|
|
struct fsl_lbc_regs __iomem *lbc;
|
|
struct fsl_elbc_mtd *priv;
|
|
struct resource res;
|
|
struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl;
|
|
static const char *part_probe_types[]
|
|
= { "cmdlinepart", "RedBoot", "ofpart", NULL };
|
|
int ret;
|
|
int bank;
|
|
struct device *dev;
|
|
struct device_node *node = pdev->dev.of_node;
|
|
struct mtd_info *mtd;
|
|
|
|
if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
|
|
return -ENODEV;
|
|
lbc = fsl_lbc_ctrl_dev->regs;
|
|
dev = fsl_lbc_ctrl_dev->dev;
|
|
|
|
/* get, allocate and map the memory resource */
|
|
ret = of_address_to_resource(node, 0, &res);
|
|
if (ret) {
|
|
dev_err(dev, "failed to get resource\n");
|
|
return ret;
|
|
}
|
|
|
|
/* find which chip select it is connected to */
|
|
for (bank = 0; bank < MAX_BANKS; bank++)
|
|
if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
|
|
(in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
|
|
(in_be32(&lbc->bank[bank].br) &
|
|
in_be32(&lbc->bank[bank].or) & BR_BA)
|
|
== fsl_lbc_addr(res.start))
|
|
break;
|
|
|
|
if (bank >= MAX_BANKS) {
|
|
dev_err(dev, "address did not match any chip selects\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
|
|
if (!priv)
|
|
return -ENOMEM;
|
|
|
|
mutex_lock(&fsl_elbc_nand_mutex);
|
|
if (!fsl_lbc_ctrl_dev->nand) {
|
|
elbc_fcm_ctrl = kzalloc(sizeof(*elbc_fcm_ctrl), GFP_KERNEL);
|
|
if (!elbc_fcm_ctrl) {
|
|
mutex_unlock(&fsl_elbc_nand_mutex);
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
elbc_fcm_ctrl->counter++;
|
|
|
|
nand_controller_init(&elbc_fcm_ctrl->controller);
|
|
fsl_lbc_ctrl_dev->nand = elbc_fcm_ctrl;
|
|
} else {
|
|
elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
|
|
}
|
|
mutex_unlock(&fsl_elbc_nand_mutex);
|
|
|
|
elbc_fcm_ctrl->chips[bank] = priv;
|
|
priv->bank = bank;
|
|
priv->ctrl = fsl_lbc_ctrl_dev;
|
|
priv->dev = &pdev->dev;
|
|
dev_set_drvdata(priv->dev, priv);
|
|
|
|
priv->vbase = ioremap(res.start, resource_size(&res));
|
|
if (!priv->vbase) {
|
|
dev_err(dev, "failed to map chip region\n");
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
mtd = nand_to_mtd(&priv->chip);
|
|
mtd->name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start);
|
|
if (!nand_to_mtd(&priv->chip)->name) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
ret = fsl_elbc_chip_init(priv);
|
|
if (ret)
|
|
goto err;
|
|
|
|
priv->chip.controller->ops = &fsl_elbc_controller_ops;
|
|
ret = nand_scan(&priv->chip, 1);
|
|
if (ret)
|
|
goto err;
|
|
|
|
/* First look for RedBoot table or partitions on the command
|
|
* line, these take precedence over device tree information */
|
|
ret = mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0);
|
|
if (ret)
|
|
goto cleanup_nand;
|
|
|
|
pr_info("eLBC NAND device at 0x%llx, bank %d\n",
|
|
(unsigned long long)res.start, priv->bank);
|
|
|
|
return 0;
|
|
|
|
cleanup_nand:
|
|
nand_cleanup(&priv->chip);
|
|
err:
|
|
fsl_elbc_chip_remove(priv);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int fsl_elbc_nand_remove(struct platform_device *pdev)
|
|
{
|
|
struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
|
|
struct fsl_elbc_mtd *priv = dev_get_drvdata(&pdev->dev);
|
|
|
|
nand_release(&priv->chip);
|
|
fsl_elbc_chip_remove(priv);
|
|
|
|
mutex_lock(&fsl_elbc_nand_mutex);
|
|
elbc_fcm_ctrl->counter--;
|
|
if (!elbc_fcm_ctrl->counter) {
|
|
fsl_lbc_ctrl_dev->nand = NULL;
|
|
kfree(elbc_fcm_ctrl);
|
|
}
|
|
mutex_unlock(&fsl_elbc_nand_mutex);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
static const struct of_device_id fsl_elbc_nand_match[] = {
|
|
{ .compatible = "fsl,elbc-fcm-nand", },
|
|
{}
|
|
};
|
|
MODULE_DEVICE_TABLE(of, fsl_elbc_nand_match);
|
|
|
|
static struct platform_driver fsl_elbc_nand_driver = {
|
|
.driver = {
|
|
.name = "fsl,elbc-fcm-nand",
|
|
.of_match_table = fsl_elbc_nand_match,
|
|
},
|
|
.probe = fsl_elbc_nand_probe,
|
|
.remove = fsl_elbc_nand_remove,
|
|
};
|
|
|
|
module_platform_driver(fsl_elbc_nand_driver);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Freescale");
|
|
MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");
|