mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
a94dae867c
The macros do_each_path/while_each_path lead to a smatch warning:
drivers/infiniband/ulp/rtrs/rtrs-clt.c:1196 rtrs_clt_failover_req() warn: inconsistent indenting
drivers/infiniband/ulp/rtrs/rtrs-clt.c:2890 rtrs_clt_request() warn: inconsistent indenting
Also checkpatch complains:
ERROR: Macros with multiple statements should be enclosed in a do - while loop
The macros are used only in two places: for a normal IO path and for the
failover path triggered after errors.
Get rid of the macros and just use a for loop iterating over the list of
paths in both places. It is easier to read and also less lines of code.
Fixes: 6a98d71dae
("RDMA/rtrs: client: main functionality")
Link: https://lore.kernel.org/r/20200522053924.528980-1-danil.kipnis@cloud.ionos.com
Reported-by: kbuild test robot <lkp@intel.com>
Signed-off-by: Danil Kipnis <danil.kipnis@cloud.ionos.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2993 lines
76 KiB
C
2993 lines
76 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* RDMA Transport Layer
|
|
*
|
|
* Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
|
|
* Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
|
|
* Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
|
|
*/
|
|
|
|
#undef pr_fmt
|
|
#define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/rculist.h>
|
|
|
|
#include "rtrs-clt.h"
|
|
#include "rtrs-log.h"
|
|
|
|
#define RTRS_CONNECT_TIMEOUT_MS 30000
|
|
/*
|
|
* Wait a bit before trying to reconnect after a failure
|
|
* in order to give server time to finish clean up which
|
|
* leads to "false positives" failed reconnect attempts
|
|
*/
|
|
#define RTRS_RECONNECT_BACKOFF 1000
|
|
|
|
MODULE_DESCRIPTION("RDMA Transport Client");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
static const struct rtrs_rdma_dev_pd_ops dev_pd_ops;
|
|
static struct rtrs_rdma_dev_pd dev_pd = {
|
|
.ops = &dev_pd_ops
|
|
};
|
|
|
|
static struct workqueue_struct *rtrs_wq;
|
|
static struct class *rtrs_clt_dev_class;
|
|
|
|
static inline bool rtrs_clt_is_connected(const struct rtrs_clt *clt)
|
|
{
|
|
struct rtrs_clt_sess *sess;
|
|
bool connected = false;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(sess, &clt->paths_list, s.entry)
|
|
connected |= READ_ONCE(sess->state) == RTRS_CLT_CONNECTED;
|
|
rcu_read_unlock();
|
|
|
|
return connected;
|
|
}
|
|
|
|
static struct rtrs_permit *
|
|
__rtrs_get_permit(struct rtrs_clt *clt, enum rtrs_clt_con_type con_type)
|
|
{
|
|
size_t max_depth = clt->queue_depth;
|
|
struct rtrs_permit *permit;
|
|
int bit;
|
|
|
|
/*
|
|
* Adapted from null_blk get_tag(). Callers from different cpus may
|
|
* grab the same bit, since find_first_zero_bit is not atomic.
|
|
* But then the test_and_set_bit_lock will fail for all the
|
|
* callers but one, so that they will loop again.
|
|
* This way an explicit spinlock is not required.
|
|
*/
|
|
do {
|
|
bit = find_first_zero_bit(clt->permits_map, max_depth);
|
|
if (unlikely(bit >= max_depth))
|
|
return NULL;
|
|
} while (unlikely(test_and_set_bit_lock(bit, clt->permits_map)));
|
|
|
|
permit = get_permit(clt, bit);
|
|
WARN_ON(permit->mem_id != bit);
|
|
permit->cpu_id = raw_smp_processor_id();
|
|
permit->con_type = con_type;
|
|
|
|
return permit;
|
|
}
|
|
|
|
static inline void __rtrs_put_permit(struct rtrs_clt *clt,
|
|
struct rtrs_permit *permit)
|
|
{
|
|
clear_bit_unlock(permit->mem_id, clt->permits_map);
|
|
}
|
|
|
|
/**
|
|
* rtrs_clt_get_permit() - allocates permit for future RDMA operation
|
|
* @clt: Current session
|
|
* @con_type: Type of connection to use with the permit
|
|
* @can_wait: Wait type
|
|
*
|
|
* Description:
|
|
* Allocates permit for the following RDMA operation. Permit is used
|
|
* to preallocate all resources and to propagate memory pressure
|
|
* up earlier.
|
|
*
|
|
* Context:
|
|
* Can sleep if @wait == RTRS_TAG_WAIT
|
|
*/
|
|
struct rtrs_permit *rtrs_clt_get_permit(struct rtrs_clt *clt,
|
|
enum rtrs_clt_con_type con_type,
|
|
int can_wait)
|
|
{
|
|
struct rtrs_permit *permit;
|
|
DEFINE_WAIT(wait);
|
|
|
|
permit = __rtrs_get_permit(clt, con_type);
|
|
if (likely(permit) || !can_wait)
|
|
return permit;
|
|
|
|
do {
|
|
prepare_to_wait(&clt->permits_wait, &wait,
|
|
TASK_UNINTERRUPTIBLE);
|
|
permit = __rtrs_get_permit(clt, con_type);
|
|
if (likely(permit))
|
|
break;
|
|
|
|
io_schedule();
|
|
} while (1);
|
|
|
|
finish_wait(&clt->permits_wait, &wait);
|
|
|
|
return permit;
|
|
}
|
|
EXPORT_SYMBOL(rtrs_clt_get_permit);
|
|
|
|
/**
|
|
* rtrs_clt_put_permit() - puts allocated permit
|
|
* @clt: Current session
|
|
* @permit: Permit to be freed
|
|
*
|
|
* Context:
|
|
* Does not matter
|
|
*/
|
|
void rtrs_clt_put_permit(struct rtrs_clt *clt, struct rtrs_permit *permit)
|
|
{
|
|
if (WARN_ON(!test_bit(permit->mem_id, clt->permits_map)))
|
|
return;
|
|
|
|
__rtrs_put_permit(clt, permit);
|
|
|
|
/*
|
|
* rtrs_clt_get_permit() adds itself to the &clt->permits_wait list
|
|
* before calling schedule(). So if rtrs_clt_get_permit() is sleeping
|
|
* it must have added itself to &clt->permits_wait before
|
|
* __rtrs_put_permit() finished.
|
|
* Hence it is safe to guard wake_up() with a waitqueue_active() test.
|
|
*/
|
|
if (waitqueue_active(&clt->permits_wait))
|
|
wake_up(&clt->permits_wait);
|
|
}
|
|
EXPORT_SYMBOL(rtrs_clt_put_permit);
|
|
|
|
void *rtrs_permit_to_pdu(struct rtrs_permit *permit)
|
|
{
|
|
return permit + 1;
|
|
}
|
|
EXPORT_SYMBOL(rtrs_permit_to_pdu);
|
|
|
|
/**
|
|
* rtrs_permit_to_clt_con() - returns RDMA connection pointer by the permit
|
|
* @sess: client session pointer
|
|
* @permit: permit for the allocation of the RDMA buffer
|
|
* Note:
|
|
* IO connection starts from 1.
|
|
* 0 connection is for user messages.
|
|
*/
|
|
static
|
|
struct rtrs_clt_con *rtrs_permit_to_clt_con(struct rtrs_clt_sess *sess,
|
|
struct rtrs_permit *permit)
|
|
{
|
|
int id = 0;
|
|
|
|
if (likely(permit->con_type == RTRS_IO_CON))
|
|
id = (permit->cpu_id % (sess->s.con_num - 1)) + 1;
|
|
|
|
return to_clt_con(sess->s.con[id]);
|
|
}
|
|
|
|
/**
|
|
* __rtrs_clt_change_state() - change the session state through session state
|
|
* machine.
|
|
*
|
|
* @sess: client session to change the state of.
|
|
* @new_state: state to change to.
|
|
*
|
|
* returns true if successful, false if the requested state can not be set.
|
|
*
|
|
* Locks:
|
|
* state_wq lock must be hold.
|
|
*/
|
|
static bool __rtrs_clt_change_state(struct rtrs_clt_sess *sess,
|
|
enum rtrs_clt_state new_state)
|
|
{
|
|
enum rtrs_clt_state old_state;
|
|
bool changed = false;
|
|
|
|
lockdep_assert_held(&sess->state_wq.lock);
|
|
|
|
old_state = sess->state;
|
|
switch (new_state) {
|
|
case RTRS_CLT_CONNECTING:
|
|
switch (old_state) {
|
|
case RTRS_CLT_RECONNECTING:
|
|
changed = true;
|
|
fallthrough;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case RTRS_CLT_RECONNECTING:
|
|
switch (old_state) {
|
|
case RTRS_CLT_CONNECTED:
|
|
case RTRS_CLT_CONNECTING_ERR:
|
|
case RTRS_CLT_CLOSED:
|
|
changed = true;
|
|
fallthrough;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case RTRS_CLT_CONNECTED:
|
|
switch (old_state) {
|
|
case RTRS_CLT_CONNECTING:
|
|
changed = true;
|
|
fallthrough;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case RTRS_CLT_CONNECTING_ERR:
|
|
switch (old_state) {
|
|
case RTRS_CLT_CONNECTING:
|
|
changed = true;
|
|
fallthrough;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case RTRS_CLT_CLOSING:
|
|
switch (old_state) {
|
|
case RTRS_CLT_CONNECTING:
|
|
case RTRS_CLT_CONNECTING_ERR:
|
|
case RTRS_CLT_RECONNECTING:
|
|
case RTRS_CLT_CONNECTED:
|
|
changed = true;
|
|
fallthrough;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case RTRS_CLT_CLOSED:
|
|
switch (old_state) {
|
|
case RTRS_CLT_CLOSING:
|
|
changed = true;
|
|
fallthrough;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case RTRS_CLT_DEAD:
|
|
switch (old_state) {
|
|
case RTRS_CLT_CLOSED:
|
|
changed = true;
|
|
fallthrough;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (changed) {
|
|
sess->state = new_state;
|
|
wake_up_locked(&sess->state_wq);
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
static bool rtrs_clt_change_state_from_to(struct rtrs_clt_sess *sess,
|
|
enum rtrs_clt_state old_state,
|
|
enum rtrs_clt_state new_state)
|
|
{
|
|
bool changed = false;
|
|
|
|
spin_lock_irq(&sess->state_wq.lock);
|
|
if (sess->state == old_state)
|
|
changed = __rtrs_clt_change_state(sess, new_state);
|
|
spin_unlock_irq(&sess->state_wq.lock);
|
|
|
|
return changed;
|
|
}
|
|
|
|
static void rtrs_rdma_error_recovery(struct rtrs_clt_con *con)
|
|
{
|
|
struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
|
|
|
|
if (rtrs_clt_change_state_from_to(sess,
|
|
RTRS_CLT_CONNECTED,
|
|
RTRS_CLT_RECONNECTING)) {
|
|
struct rtrs_clt *clt = sess->clt;
|
|
unsigned int delay_ms;
|
|
|
|
/*
|
|
* Normal scenario, reconnect if we were successfully connected
|
|
*/
|
|
delay_ms = clt->reconnect_delay_sec * 1000;
|
|
queue_delayed_work(rtrs_wq, &sess->reconnect_dwork,
|
|
msecs_to_jiffies(delay_ms));
|
|
} else {
|
|
/*
|
|
* Error can happen just on establishing new connection,
|
|
* so notify waiter with error state, waiter is responsible
|
|
* for cleaning the rest and reconnect if needed.
|
|
*/
|
|
rtrs_clt_change_state_from_to(sess,
|
|
RTRS_CLT_CONNECTING,
|
|
RTRS_CLT_CONNECTING_ERR);
|
|
}
|
|
}
|
|
|
|
static void rtrs_clt_fast_reg_done(struct ib_cq *cq, struct ib_wc *wc)
|
|
{
|
|
struct rtrs_clt_con *con = cq->cq_context;
|
|
|
|
if (unlikely(wc->status != IB_WC_SUCCESS)) {
|
|
rtrs_err(con->c.sess, "Failed IB_WR_REG_MR: %s\n",
|
|
ib_wc_status_msg(wc->status));
|
|
rtrs_rdma_error_recovery(con);
|
|
}
|
|
}
|
|
|
|
static struct ib_cqe fast_reg_cqe = {
|
|
.done = rtrs_clt_fast_reg_done
|
|
};
|
|
|
|
static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno,
|
|
bool notify, bool can_wait);
|
|
|
|
static void rtrs_clt_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
|
|
{
|
|
struct rtrs_clt_io_req *req =
|
|
container_of(wc->wr_cqe, typeof(*req), inv_cqe);
|
|
struct rtrs_clt_con *con = cq->cq_context;
|
|
|
|
if (unlikely(wc->status != IB_WC_SUCCESS)) {
|
|
rtrs_err(con->c.sess, "Failed IB_WR_LOCAL_INV: %s\n",
|
|
ib_wc_status_msg(wc->status));
|
|
rtrs_rdma_error_recovery(con);
|
|
}
|
|
req->need_inv = false;
|
|
if (likely(req->need_inv_comp))
|
|
complete(&req->inv_comp);
|
|
else
|
|
/* Complete request from INV callback */
|
|
complete_rdma_req(req, req->inv_errno, true, false);
|
|
}
|
|
|
|
static int rtrs_inv_rkey(struct rtrs_clt_io_req *req)
|
|
{
|
|
struct rtrs_clt_con *con = req->con;
|
|
struct ib_send_wr wr = {
|
|
.opcode = IB_WR_LOCAL_INV,
|
|
.wr_cqe = &req->inv_cqe,
|
|
.send_flags = IB_SEND_SIGNALED,
|
|
.ex.invalidate_rkey = req->mr->rkey,
|
|
};
|
|
req->inv_cqe.done = rtrs_clt_inv_rkey_done;
|
|
|
|
return ib_post_send(con->c.qp, &wr, NULL);
|
|
}
|
|
|
|
static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno,
|
|
bool notify, bool can_wait)
|
|
{
|
|
struct rtrs_clt_con *con = req->con;
|
|
struct rtrs_clt_sess *sess;
|
|
int err;
|
|
|
|
if (WARN_ON(!req->in_use))
|
|
return;
|
|
if (WARN_ON(!req->con))
|
|
return;
|
|
sess = to_clt_sess(con->c.sess);
|
|
|
|
if (req->sg_cnt) {
|
|
if (unlikely(req->dir == DMA_FROM_DEVICE && req->need_inv)) {
|
|
/*
|
|
* We are here to invalidate read requests
|
|
* ourselves. In normal scenario server should
|
|
* send INV for all read requests, but
|
|
* we are here, thus two things could happen:
|
|
*
|
|
* 1. this is failover, when errno != 0
|
|
* and can_wait == 1,
|
|
*
|
|
* 2. something totally bad happened and
|
|
* server forgot to send INV, so we
|
|
* should do that ourselves.
|
|
*/
|
|
|
|
if (likely(can_wait)) {
|
|
req->need_inv_comp = true;
|
|
} else {
|
|
/* This should be IO path, so always notify */
|
|
WARN_ON(!notify);
|
|
/* Save errno for INV callback */
|
|
req->inv_errno = errno;
|
|
}
|
|
|
|
err = rtrs_inv_rkey(req);
|
|
if (unlikely(err)) {
|
|
rtrs_err(con->c.sess, "Send INV WR key=%#x: %d\n",
|
|
req->mr->rkey, err);
|
|
} else if (likely(can_wait)) {
|
|
wait_for_completion(&req->inv_comp);
|
|
} else {
|
|
/*
|
|
* Something went wrong, so request will be
|
|
* completed from INV callback.
|
|
*/
|
|
WARN_ON_ONCE(1);
|
|
|
|
return;
|
|
}
|
|
}
|
|
ib_dma_unmap_sg(sess->s.dev->ib_dev, req->sglist,
|
|
req->sg_cnt, req->dir);
|
|
}
|
|
if (sess->clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
|
|
atomic_dec(&sess->stats->inflight);
|
|
|
|
req->in_use = false;
|
|
req->con = NULL;
|
|
|
|
if (notify)
|
|
req->conf(req->priv, errno);
|
|
}
|
|
|
|
static int rtrs_post_send_rdma(struct rtrs_clt_con *con,
|
|
struct rtrs_clt_io_req *req,
|
|
struct rtrs_rbuf *rbuf, u32 off,
|
|
u32 imm, struct ib_send_wr *wr)
|
|
{
|
|
struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
|
|
enum ib_send_flags flags;
|
|
struct ib_sge sge;
|
|
|
|
if (unlikely(!req->sg_size)) {
|
|
rtrs_wrn(con->c.sess,
|
|
"Doing RDMA Write failed, no data supplied\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* user data and user message in the first list element */
|
|
sge.addr = req->iu->dma_addr;
|
|
sge.length = req->sg_size;
|
|
sge.lkey = sess->s.dev->ib_pd->local_dma_lkey;
|
|
|
|
/*
|
|
* From time to time we have to post signalled sends,
|
|
* or send queue will fill up and only QP reset can help.
|
|
*/
|
|
flags = atomic_inc_return(&con->io_cnt) % sess->queue_depth ?
|
|
0 : IB_SEND_SIGNALED;
|
|
|
|
ib_dma_sync_single_for_device(sess->s.dev->ib_dev, req->iu->dma_addr,
|
|
req->sg_size, DMA_TO_DEVICE);
|
|
|
|
return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, &sge, 1,
|
|
rbuf->rkey, rbuf->addr + off,
|
|
imm, flags, wr);
|
|
}
|
|
|
|
static void process_io_rsp(struct rtrs_clt_sess *sess, u32 msg_id,
|
|
s16 errno, bool w_inval)
|
|
{
|
|
struct rtrs_clt_io_req *req;
|
|
|
|
if (WARN_ON(msg_id >= sess->queue_depth))
|
|
return;
|
|
|
|
req = &sess->reqs[msg_id];
|
|
/* Drop need_inv if server responded with send with invalidation */
|
|
req->need_inv &= !w_inval;
|
|
complete_rdma_req(req, errno, true, false);
|
|
}
|
|
|
|
static void rtrs_clt_recv_done(struct rtrs_clt_con *con, struct ib_wc *wc)
|
|
{
|
|
struct rtrs_iu *iu;
|
|
int err;
|
|
struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
|
|
|
|
WARN_ON(sess->flags != RTRS_MSG_NEW_RKEY_F);
|
|
iu = container_of(wc->wr_cqe, struct rtrs_iu,
|
|
cqe);
|
|
err = rtrs_iu_post_recv(&con->c, iu);
|
|
if (unlikely(err)) {
|
|
rtrs_err(con->c.sess, "post iu failed %d\n", err);
|
|
rtrs_rdma_error_recovery(con);
|
|
}
|
|
}
|
|
|
|
static void rtrs_clt_rkey_rsp_done(struct rtrs_clt_con *con, struct ib_wc *wc)
|
|
{
|
|
struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
|
|
struct rtrs_msg_rkey_rsp *msg;
|
|
u32 imm_type, imm_payload;
|
|
bool w_inval = false;
|
|
struct rtrs_iu *iu;
|
|
u32 buf_id;
|
|
int err;
|
|
|
|
WARN_ON(sess->flags != RTRS_MSG_NEW_RKEY_F);
|
|
|
|
iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
|
|
|
|
if (unlikely(wc->byte_len < sizeof(*msg))) {
|
|
rtrs_err(con->c.sess, "rkey response is malformed: size %d\n",
|
|
wc->byte_len);
|
|
goto out;
|
|
}
|
|
ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, iu->dma_addr,
|
|
iu->size, DMA_FROM_DEVICE);
|
|
msg = iu->buf;
|
|
if (unlikely(le16_to_cpu(msg->type) != RTRS_MSG_RKEY_RSP)) {
|
|
rtrs_err(sess->clt, "rkey response is malformed: type %d\n",
|
|
le16_to_cpu(msg->type));
|
|
goto out;
|
|
}
|
|
buf_id = le16_to_cpu(msg->buf_id);
|
|
if (WARN_ON(buf_id >= sess->queue_depth))
|
|
goto out;
|
|
|
|
rtrs_from_imm(be32_to_cpu(wc->ex.imm_data), &imm_type, &imm_payload);
|
|
if (likely(imm_type == RTRS_IO_RSP_IMM ||
|
|
imm_type == RTRS_IO_RSP_W_INV_IMM)) {
|
|
u32 msg_id;
|
|
|
|
w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM);
|
|
rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err);
|
|
|
|
if (WARN_ON(buf_id != msg_id))
|
|
goto out;
|
|
sess->rbufs[buf_id].rkey = le32_to_cpu(msg->rkey);
|
|
process_io_rsp(sess, msg_id, err, w_inval);
|
|
}
|
|
ib_dma_sync_single_for_device(sess->s.dev->ib_dev, iu->dma_addr,
|
|
iu->size, DMA_FROM_DEVICE);
|
|
return rtrs_clt_recv_done(con, wc);
|
|
out:
|
|
rtrs_rdma_error_recovery(con);
|
|
}
|
|
|
|
static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc);
|
|
|
|
static struct ib_cqe io_comp_cqe = {
|
|
.done = rtrs_clt_rdma_done
|
|
};
|
|
|
|
/*
|
|
* Post x2 empty WRs: first is for this RDMA with IMM,
|
|
* second is for RECV with INV, which happened earlier.
|
|
*/
|
|
static int rtrs_post_recv_empty_x2(struct rtrs_con *con, struct ib_cqe *cqe)
|
|
{
|
|
struct ib_recv_wr wr_arr[2], *wr;
|
|
int i;
|
|
|
|
memset(wr_arr, 0, sizeof(wr_arr));
|
|
for (i = 0; i < ARRAY_SIZE(wr_arr); i++) {
|
|
wr = &wr_arr[i];
|
|
wr->wr_cqe = cqe;
|
|
if (i)
|
|
/* Chain backwards */
|
|
wr->next = &wr_arr[i - 1];
|
|
}
|
|
|
|
return ib_post_recv(con->qp, wr, NULL);
|
|
}
|
|
|
|
static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc)
|
|
{
|
|
struct rtrs_clt_con *con = cq->cq_context;
|
|
struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
|
|
u32 imm_type, imm_payload;
|
|
bool w_inval = false;
|
|
int err;
|
|
|
|
if (unlikely(wc->status != IB_WC_SUCCESS)) {
|
|
if (wc->status != IB_WC_WR_FLUSH_ERR) {
|
|
rtrs_err(sess->clt, "RDMA failed: %s\n",
|
|
ib_wc_status_msg(wc->status));
|
|
rtrs_rdma_error_recovery(con);
|
|
}
|
|
return;
|
|
}
|
|
rtrs_clt_update_wc_stats(con);
|
|
|
|
switch (wc->opcode) {
|
|
case IB_WC_RECV_RDMA_WITH_IMM:
|
|
/*
|
|
* post_recv() RDMA write completions of IO reqs (read/write)
|
|
* and hb
|
|
*/
|
|
if (WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done))
|
|
return;
|
|
rtrs_from_imm(be32_to_cpu(wc->ex.imm_data),
|
|
&imm_type, &imm_payload);
|
|
if (likely(imm_type == RTRS_IO_RSP_IMM ||
|
|
imm_type == RTRS_IO_RSP_W_INV_IMM)) {
|
|
u32 msg_id;
|
|
|
|
w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM);
|
|
rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err);
|
|
|
|
process_io_rsp(sess, msg_id, err, w_inval);
|
|
} else if (imm_type == RTRS_HB_MSG_IMM) {
|
|
WARN_ON(con->c.cid);
|
|
rtrs_send_hb_ack(&sess->s);
|
|
if (sess->flags == RTRS_MSG_NEW_RKEY_F)
|
|
return rtrs_clt_recv_done(con, wc);
|
|
} else if (imm_type == RTRS_HB_ACK_IMM) {
|
|
WARN_ON(con->c.cid);
|
|
sess->s.hb_missed_cnt = 0;
|
|
if (sess->flags == RTRS_MSG_NEW_RKEY_F)
|
|
return rtrs_clt_recv_done(con, wc);
|
|
} else {
|
|
rtrs_wrn(con->c.sess, "Unknown IMM type %u\n",
|
|
imm_type);
|
|
}
|
|
if (w_inval)
|
|
/*
|
|
* Post x2 empty WRs: first is for this RDMA with IMM,
|
|
* second is for RECV with INV, which happened earlier.
|
|
*/
|
|
err = rtrs_post_recv_empty_x2(&con->c, &io_comp_cqe);
|
|
else
|
|
err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
|
|
if (unlikely(err)) {
|
|
rtrs_err(con->c.sess, "rtrs_post_recv_empty(): %d\n",
|
|
err);
|
|
rtrs_rdma_error_recovery(con);
|
|
break;
|
|
}
|
|
break;
|
|
case IB_WC_RECV:
|
|
/*
|
|
* Key invalidations from server side
|
|
*/
|
|
WARN_ON(!(wc->wc_flags & IB_WC_WITH_INVALIDATE ||
|
|
wc->wc_flags & IB_WC_WITH_IMM));
|
|
WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done);
|
|
if (sess->flags == RTRS_MSG_NEW_RKEY_F) {
|
|
if (wc->wc_flags & IB_WC_WITH_INVALIDATE)
|
|
return rtrs_clt_recv_done(con, wc);
|
|
|
|
return rtrs_clt_rkey_rsp_done(con, wc);
|
|
}
|
|
break;
|
|
case IB_WC_RDMA_WRITE:
|
|
/*
|
|
* post_send() RDMA write completions of IO reqs (read/write)
|
|
* and hb
|
|
*/
|
|
break;
|
|
|
|
default:
|
|
rtrs_wrn(sess->clt, "Unexpected WC type: %d\n", wc->opcode);
|
|
return;
|
|
}
|
|
}
|
|
|
|
static int post_recv_io(struct rtrs_clt_con *con, size_t q_size)
|
|
{
|
|
int err, i;
|
|
struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
|
|
|
|
for (i = 0; i < q_size; i++) {
|
|
if (sess->flags == RTRS_MSG_NEW_RKEY_F) {
|
|
struct rtrs_iu *iu = &con->rsp_ius[i];
|
|
|
|
err = rtrs_iu_post_recv(&con->c, iu);
|
|
} else {
|
|
err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
|
|
}
|
|
if (unlikely(err))
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int post_recv_sess(struct rtrs_clt_sess *sess)
|
|
{
|
|
size_t q_size = 0;
|
|
int err, cid;
|
|
|
|
for (cid = 0; cid < sess->s.con_num; cid++) {
|
|
if (cid == 0)
|
|
q_size = SERVICE_CON_QUEUE_DEPTH;
|
|
else
|
|
q_size = sess->queue_depth;
|
|
|
|
/*
|
|
* x2 for RDMA read responses + FR key invalidations,
|
|
* RDMA writes do not require any FR registrations.
|
|
*/
|
|
q_size *= 2;
|
|
|
|
err = post_recv_io(to_clt_con(sess->s.con[cid]), q_size);
|
|
if (unlikely(err)) {
|
|
rtrs_err(sess->clt, "post_recv_io(), err: %d\n", err);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct path_it {
|
|
int i;
|
|
struct list_head skip_list;
|
|
struct rtrs_clt *clt;
|
|
struct rtrs_clt_sess *(*next_path)(struct path_it *it);
|
|
};
|
|
|
|
/**
|
|
* list_next_or_null_rr_rcu - get next list element in round-robin fashion.
|
|
* @head: the head for the list.
|
|
* @ptr: the list head to take the next element from.
|
|
* @type: the type of the struct this is embedded in.
|
|
* @memb: the name of the list_head within the struct.
|
|
*
|
|
* Next element returned in round-robin fashion, i.e. head will be skipped,
|
|
* but if list is observed as empty, NULL will be returned.
|
|
*
|
|
* This primitive may safely run concurrently with the _rcu list-mutation
|
|
* primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
|
|
*/
|
|
#define list_next_or_null_rr_rcu(head, ptr, type, memb) \
|
|
({ \
|
|
list_next_or_null_rcu(head, ptr, type, memb) ?: \
|
|
list_next_or_null_rcu(head, READ_ONCE((ptr)->next), \
|
|
type, memb); \
|
|
})
|
|
|
|
/**
|
|
* get_next_path_rr() - Returns path in round-robin fashion.
|
|
* @it: the path pointer
|
|
*
|
|
* Related to @MP_POLICY_RR
|
|
*
|
|
* Locks:
|
|
* rcu_read_lock() must be hold.
|
|
*/
|
|
static struct rtrs_clt_sess *get_next_path_rr(struct path_it *it)
|
|
{
|
|
struct rtrs_clt_sess __rcu **ppcpu_path;
|
|
struct rtrs_clt_sess *path;
|
|
struct rtrs_clt *clt;
|
|
|
|
clt = it->clt;
|
|
|
|
/*
|
|
* Here we use two RCU objects: @paths_list and @pcpu_path
|
|
* pointer. See rtrs_clt_remove_path_from_arr() for details
|
|
* how that is handled.
|
|
*/
|
|
|
|
ppcpu_path = this_cpu_ptr(clt->pcpu_path);
|
|
path = rcu_dereference(*ppcpu_path);
|
|
if (unlikely(!path))
|
|
path = list_first_or_null_rcu(&clt->paths_list,
|
|
typeof(*path), s.entry);
|
|
else
|
|
path = list_next_or_null_rr_rcu(&clt->paths_list,
|
|
&path->s.entry,
|
|
typeof(*path),
|
|
s.entry);
|
|
rcu_assign_pointer(*ppcpu_path, path);
|
|
|
|
return path;
|
|
}
|
|
|
|
/**
|
|
* get_next_path_min_inflight() - Returns path with minimal inflight count.
|
|
* @it: the path pointer
|
|
*
|
|
* Related to @MP_POLICY_MIN_INFLIGHT
|
|
*
|
|
* Locks:
|
|
* rcu_read_lock() must be hold.
|
|
*/
|
|
static struct rtrs_clt_sess *get_next_path_min_inflight(struct path_it *it)
|
|
{
|
|
struct rtrs_clt_sess *min_path = NULL;
|
|
struct rtrs_clt *clt = it->clt;
|
|
struct rtrs_clt_sess *sess;
|
|
int min_inflight = INT_MAX;
|
|
int inflight;
|
|
|
|
list_for_each_entry_rcu(sess, &clt->paths_list, s.entry) {
|
|
if (unlikely(!list_empty(raw_cpu_ptr(sess->mp_skip_entry))))
|
|
continue;
|
|
|
|
inflight = atomic_read(&sess->stats->inflight);
|
|
|
|
if (inflight < min_inflight) {
|
|
min_inflight = inflight;
|
|
min_path = sess;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* add the path to the skip list, so that next time we can get
|
|
* a different one
|
|
*/
|
|
if (min_path)
|
|
list_add(raw_cpu_ptr(min_path->mp_skip_entry), &it->skip_list);
|
|
|
|
return min_path;
|
|
}
|
|
|
|
static inline void path_it_init(struct path_it *it, struct rtrs_clt *clt)
|
|
{
|
|
INIT_LIST_HEAD(&it->skip_list);
|
|
it->clt = clt;
|
|
it->i = 0;
|
|
|
|
if (clt->mp_policy == MP_POLICY_RR)
|
|
it->next_path = get_next_path_rr;
|
|
else
|
|
it->next_path = get_next_path_min_inflight;
|
|
}
|
|
|
|
static inline void path_it_deinit(struct path_it *it)
|
|
{
|
|
struct list_head *skip, *tmp;
|
|
/*
|
|
* The skip_list is used only for the MIN_INFLIGHT policy.
|
|
* We need to remove paths from it, so that next IO can insert
|
|
* paths (->mp_skip_entry) into a skip_list again.
|
|
*/
|
|
list_for_each_safe(skip, tmp, &it->skip_list)
|
|
list_del_init(skip);
|
|
}
|
|
|
|
/**
|
|
* rtrs_clt_init_req() Initialize an rtrs_clt_io_req holding information
|
|
* about an inflight IO.
|
|
* The user buffer holding user control message (not data) is copied into
|
|
* the corresponding buffer of rtrs_iu (req->iu->buf), which later on will
|
|
* also hold the control message of rtrs.
|
|
* @req: an io request holding information about IO.
|
|
* @sess: client session
|
|
* @conf: conformation callback function to notify upper layer.
|
|
* @permit: permit for allocation of RDMA remote buffer
|
|
* @priv: private pointer
|
|
* @vec: kernel vector containing control message
|
|
* @usr_len: length of the user message
|
|
* @sg: scater list for IO data
|
|
* @sg_cnt: number of scater list entries
|
|
* @data_len: length of the IO data
|
|
* @dir: direction of the IO.
|
|
*/
|
|
static void rtrs_clt_init_req(struct rtrs_clt_io_req *req,
|
|
struct rtrs_clt_sess *sess,
|
|
void (*conf)(void *priv, int errno),
|
|
struct rtrs_permit *permit, void *priv,
|
|
const struct kvec *vec, size_t usr_len,
|
|
struct scatterlist *sg, size_t sg_cnt,
|
|
size_t data_len, int dir)
|
|
{
|
|
struct iov_iter iter;
|
|
size_t len;
|
|
|
|
req->permit = permit;
|
|
req->in_use = true;
|
|
req->usr_len = usr_len;
|
|
req->data_len = data_len;
|
|
req->sglist = sg;
|
|
req->sg_cnt = sg_cnt;
|
|
req->priv = priv;
|
|
req->dir = dir;
|
|
req->con = rtrs_permit_to_clt_con(sess, permit);
|
|
req->conf = conf;
|
|
req->need_inv = false;
|
|
req->need_inv_comp = false;
|
|
req->inv_errno = 0;
|
|
|
|
iov_iter_kvec(&iter, READ, vec, 1, usr_len);
|
|
len = _copy_from_iter(req->iu->buf, usr_len, &iter);
|
|
WARN_ON(len != usr_len);
|
|
|
|
reinit_completion(&req->inv_comp);
|
|
}
|
|
|
|
static struct rtrs_clt_io_req *
|
|
rtrs_clt_get_req(struct rtrs_clt_sess *sess,
|
|
void (*conf)(void *priv, int errno),
|
|
struct rtrs_permit *permit, void *priv,
|
|
const struct kvec *vec, size_t usr_len,
|
|
struct scatterlist *sg, size_t sg_cnt,
|
|
size_t data_len, int dir)
|
|
{
|
|
struct rtrs_clt_io_req *req;
|
|
|
|
req = &sess->reqs[permit->mem_id];
|
|
rtrs_clt_init_req(req, sess, conf, permit, priv, vec, usr_len,
|
|
sg, sg_cnt, data_len, dir);
|
|
return req;
|
|
}
|
|
|
|
static struct rtrs_clt_io_req *
|
|
rtrs_clt_get_copy_req(struct rtrs_clt_sess *alive_sess,
|
|
struct rtrs_clt_io_req *fail_req)
|
|
{
|
|
struct rtrs_clt_io_req *req;
|
|
struct kvec vec = {
|
|
.iov_base = fail_req->iu->buf,
|
|
.iov_len = fail_req->usr_len
|
|
};
|
|
|
|
req = &alive_sess->reqs[fail_req->permit->mem_id];
|
|
rtrs_clt_init_req(req, alive_sess, fail_req->conf, fail_req->permit,
|
|
fail_req->priv, &vec, fail_req->usr_len,
|
|
fail_req->sglist, fail_req->sg_cnt,
|
|
fail_req->data_len, fail_req->dir);
|
|
return req;
|
|
}
|
|
|
|
static int rtrs_post_rdma_write_sg(struct rtrs_clt_con *con,
|
|
struct rtrs_clt_io_req *req,
|
|
struct rtrs_rbuf *rbuf,
|
|
u32 size, u32 imm)
|
|
{
|
|
struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
|
|
struct ib_sge *sge = req->sge;
|
|
enum ib_send_flags flags;
|
|
struct scatterlist *sg;
|
|
size_t num_sge;
|
|
int i;
|
|
|
|
for_each_sg(req->sglist, sg, req->sg_cnt, i) {
|
|
sge[i].addr = sg_dma_address(sg);
|
|
sge[i].length = sg_dma_len(sg);
|
|
sge[i].lkey = sess->s.dev->ib_pd->local_dma_lkey;
|
|
}
|
|
sge[i].addr = req->iu->dma_addr;
|
|
sge[i].length = size;
|
|
sge[i].lkey = sess->s.dev->ib_pd->local_dma_lkey;
|
|
|
|
num_sge = 1 + req->sg_cnt;
|
|
|
|
/*
|
|
* From time to time we have to post signalled sends,
|
|
* or send queue will fill up and only QP reset can help.
|
|
*/
|
|
flags = atomic_inc_return(&con->io_cnt) % sess->queue_depth ?
|
|
0 : IB_SEND_SIGNALED;
|
|
|
|
ib_dma_sync_single_for_device(sess->s.dev->ib_dev, req->iu->dma_addr,
|
|
size, DMA_TO_DEVICE);
|
|
|
|
return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, sge, num_sge,
|
|
rbuf->rkey, rbuf->addr, imm,
|
|
flags, NULL);
|
|
}
|
|
|
|
static int rtrs_clt_write_req(struct rtrs_clt_io_req *req)
|
|
{
|
|
struct rtrs_clt_con *con = req->con;
|
|
struct rtrs_sess *s = con->c.sess;
|
|
struct rtrs_clt_sess *sess = to_clt_sess(s);
|
|
struct rtrs_msg_rdma_write *msg;
|
|
|
|
struct rtrs_rbuf *rbuf;
|
|
int ret, count = 0;
|
|
u32 imm, buf_id;
|
|
|
|
const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len;
|
|
|
|
if (unlikely(tsize > sess->chunk_size)) {
|
|
rtrs_wrn(s, "Write request failed, size too big %zu > %d\n",
|
|
tsize, sess->chunk_size);
|
|
return -EMSGSIZE;
|
|
}
|
|
if (req->sg_cnt) {
|
|
count = ib_dma_map_sg(sess->s.dev->ib_dev, req->sglist,
|
|
req->sg_cnt, req->dir);
|
|
if (unlikely(!count)) {
|
|
rtrs_wrn(s, "Write request failed, map failed\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
/* put rtrs msg after sg and user message */
|
|
msg = req->iu->buf + req->usr_len;
|
|
msg->type = cpu_to_le16(RTRS_MSG_WRITE);
|
|
msg->usr_len = cpu_to_le16(req->usr_len);
|
|
|
|
/* rtrs message on server side will be after user data and message */
|
|
imm = req->permit->mem_off + req->data_len + req->usr_len;
|
|
imm = rtrs_to_io_req_imm(imm);
|
|
buf_id = req->permit->mem_id;
|
|
req->sg_size = tsize;
|
|
rbuf = &sess->rbufs[buf_id];
|
|
|
|
/*
|
|
* Update stats now, after request is successfully sent it is not
|
|
* safe anymore to touch it.
|
|
*/
|
|
rtrs_clt_update_all_stats(req, WRITE);
|
|
|
|
ret = rtrs_post_rdma_write_sg(req->con, req, rbuf,
|
|
req->usr_len + sizeof(*msg),
|
|
imm);
|
|
if (unlikely(ret)) {
|
|
rtrs_err(s, "Write request failed: %d\n", ret);
|
|
if (sess->clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
|
|
atomic_dec(&sess->stats->inflight);
|
|
if (req->sg_cnt)
|
|
ib_dma_unmap_sg(sess->s.dev->ib_dev, req->sglist,
|
|
req->sg_cnt, req->dir);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int rtrs_map_sg_fr(struct rtrs_clt_io_req *req, size_t count)
|
|
{
|
|
int nr;
|
|
|
|
/* Align the MR to a 4K page size to match the block virt boundary */
|
|
nr = ib_map_mr_sg(req->mr, req->sglist, count, NULL, SZ_4K);
|
|
if (nr < 0)
|
|
return nr;
|
|
if (unlikely(nr < req->sg_cnt))
|
|
return -EINVAL;
|
|
ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
|
|
|
|
return nr;
|
|
}
|
|
|
|
static int rtrs_clt_read_req(struct rtrs_clt_io_req *req)
|
|
{
|
|
struct rtrs_clt_con *con = req->con;
|
|
struct rtrs_sess *s = con->c.sess;
|
|
struct rtrs_clt_sess *sess = to_clt_sess(s);
|
|
struct rtrs_msg_rdma_read *msg;
|
|
struct rtrs_ib_dev *dev;
|
|
|
|
struct ib_reg_wr rwr;
|
|
struct ib_send_wr *wr = NULL;
|
|
|
|
int ret, count = 0;
|
|
u32 imm, buf_id;
|
|
|
|
const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len;
|
|
|
|
s = &sess->s;
|
|
dev = sess->s.dev;
|
|
|
|
if (unlikely(tsize > sess->chunk_size)) {
|
|
rtrs_wrn(s,
|
|
"Read request failed, message size is %zu, bigger than CHUNK_SIZE %d\n",
|
|
tsize, sess->chunk_size);
|
|
return -EMSGSIZE;
|
|
}
|
|
|
|
if (req->sg_cnt) {
|
|
count = ib_dma_map_sg(dev->ib_dev, req->sglist, req->sg_cnt,
|
|
req->dir);
|
|
if (unlikely(!count)) {
|
|
rtrs_wrn(s,
|
|
"Read request failed, dma map failed\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
/* put our message into req->buf after user message*/
|
|
msg = req->iu->buf + req->usr_len;
|
|
msg->type = cpu_to_le16(RTRS_MSG_READ);
|
|
msg->usr_len = cpu_to_le16(req->usr_len);
|
|
|
|
if (count) {
|
|
ret = rtrs_map_sg_fr(req, count);
|
|
if (ret < 0) {
|
|
rtrs_err_rl(s,
|
|
"Read request failed, failed to map fast reg. data, err: %d\n",
|
|
ret);
|
|
ib_dma_unmap_sg(dev->ib_dev, req->sglist, req->sg_cnt,
|
|
req->dir);
|
|
return ret;
|
|
}
|
|
rwr = (struct ib_reg_wr) {
|
|
.wr.opcode = IB_WR_REG_MR,
|
|
.wr.wr_cqe = &fast_reg_cqe,
|
|
.mr = req->mr,
|
|
.key = req->mr->rkey,
|
|
.access = (IB_ACCESS_LOCAL_WRITE |
|
|
IB_ACCESS_REMOTE_WRITE),
|
|
};
|
|
wr = &rwr.wr;
|
|
|
|
msg->sg_cnt = cpu_to_le16(1);
|
|
msg->flags = cpu_to_le16(RTRS_MSG_NEED_INVAL_F);
|
|
|
|
msg->desc[0].addr = cpu_to_le64(req->mr->iova);
|
|
msg->desc[0].key = cpu_to_le32(req->mr->rkey);
|
|
msg->desc[0].len = cpu_to_le32(req->mr->length);
|
|
|
|
/* Further invalidation is required */
|
|
req->need_inv = !!RTRS_MSG_NEED_INVAL_F;
|
|
|
|
} else {
|
|
msg->sg_cnt = 0;
|
|
msg->flags = 0;
|
|
}
|
|
/*
|
|
* rtrs message will be after the space reserved for disk data and
|
|
* user message
|
|
*/
|
|
imm = req->permit->mem_off + req->data_len + req->usr_len;
|
|
imm = rtrs_to_io_req_imm(imm);
|
|
buf_id = req->permit->mem_id;
|
|
|
|
req->sg_size = sizeof(*msg);
|
|
req->sg_size += le16_to_cpu(msg->sg_cnt) * sizeof(struct rtrs_sg_desc);
|
|
req->sg_size += req->usr_len;
|
|
|
|
/*
|
|
* Update stats now, after request is successfully sent it is not
|
|
* safe anymore to touch it.
|
|
*/
|
|
rtrs_clt_update_all_stats(req, READ);
|
|
|
|
ret = rtrs_post_send_rdma(req->con, req, &sess->rbufs[buf_id],
|
|
req->data_len, imm, wr);
|
|
if (unlikely(ret)) {
|
|
rtrs_err(s, "Read request failed: %d\n", ret);
|
|
if (sess->clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
|
|
atomic_dec(&sess->stats->inflight);
|
|
req->need_inv = false;
|
|
if (req->sg_cnt)
|
|
ib_dma_unmap_sg(dev->ib_dev, req->sglist,
|
|
req->sg_cnt, req->dir);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* rtrs_clt_failover_req() Try to find an active path for a failed request
|
|
* @clt: clt context
|
|
* @fail_req: a failed io request.
|
|
*/
|
|
static int rtrs_clt_failover_req(struct rtrs_clt *clt,
|
|
struct rtrs_clt_io_req *fail_req)
|
|
{
|
|
struct rtrs_clt_sess *alive_sess;
|
|
struct rtrs_clt_io_req *req;
|
|
int err = -ECONNABORTED;
|
|
struct path_it it;
|
|
|
|
rcu_read_lock();
|
|
for (path_it_init(&it, clt);
|
|
(alive_sess = it.next_path(&it)) && it.i < it.clt->paths_num;
|
|
it.i++) {
|
|
if (unlikely(READ_ONCE(alive_sess->state) !=
|
|
RTRS_CLT_CONNECTED))
|
|
continue;
|
|
req = rtrs_clt_get_copy_req(alive_sess, fail_req);
|
|
if (req->dir == DMA_TO_DEVICE)
|
|
err = rtrs_clt_write_req(req);
|
|
else
|
|
err = rtrs_clt_read_req(req);
|
|
if (unlikely(err)) {
|
|
req->in_use = false;
|
|
continue;
|
|
}
|
|
/* Success path */
|
|
rtrs_clt_inc_failover_cnt(alive_sess->stats);
|
|
break;
|
|
}
|
|
path_it_deinit(&it);
|
|
rcu_read_unlock();
|
|
|
|
return err;
|
|
}
|
|
|
|
static void fail_all_outstanding_reqs(struct rtrs_clt_sess *sess)
|
|
{
|
|
struct rtrs_clt *clt = sess->clt;
|
|
struct rtrs_clt_io_req *req;
|
|
int i, err;
|
|
|
|
if (!sess->reqs)
|
|
return;
|
|
for (i = 0; i < sess->queue_depth; ++i) {
|
|
req = &sess->reqs[i];
|
|
if (!req->in_use)
|
|
continue;
|
|
|
|
/*
|
|
* Safely (without notification) complete failed request.
|
|
* After completion this request is still useble and can
|
|
* be failovered to another path.
|
|
*/
|
|
complete_rdma_req(req, -ECONNABORTED, false, true);
|
|
|
|
err = rtrs_clt_failover_req(clt, req);
|
|
if (unlikely(err))
|
|
/* Failover failed, notify anyway */
|
|
req->conf(req->priv, err);
|
|
}
|
|
}
|
|
|
|
static void free_sess_reqs(struct rtrs_clt_sess *sess)
|
|
{
|
|
struct rtrs_clt_io_req *req;
|
|
int i;
|
|
|
|
if (!sess->reqs)
|
|
return;
|
|
for (i = 0; i < sess->queue_depth; ++i) {
|
|
req = &sess->reqs[i];
|
|
if (req->mr)
|
|
ib_dereg_mr(req->mr);
|
|
kfree(req->sge);
|
|
rtrs_iu_free(req->iu, DMA_TO_DEVICE,
|
|
sess->s.dev->ib_dev, 1);
|
|
}
|
|
kfree(sess->reqs);
|
|
sess->reqs = NULL;
|
|
}
|
|
|
|
static int alloc_sess_reqs(struct rtrs_clt_sess *sess)
|
|
{
|
|
struct rtrs_clt_io_req *req;
|
|
struct rtrs_clt *clt = sess->clt;
|
|
int i, err = -ENOMEM;
|
|
|
|
sess->reqs = kcalloc(sess->queue_depth, sizeof(*sess->reqs),
|
|
GFP_KERNEL);
|
|
if (!sess->reqs)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < sess->queue_depth; ++i) {
|
|
req = &sess->reqs[i];
|
|
req->iu = rtrs_iu_alloc(1, sess->max_hdr_size, GFP_KERNEL,
|
|
sess->s.dev->ib_dev,
|
|
DMA_TO_DEVICE,
|
|
rtrs_clt_rdma_done);
|
|
if (!req->iu)
|
|
goto out;
|
|
|
|
req->sge = kmalloc_array(clt->max_segments + 1,
|
|
sizeof(*req->sge), GFP_KERNEL);
|
|
if (!req->sge)
|
|
goto out;
|
|
|
|
req->mr = ib_alloc_mr(sess->s.dev->ib_pd, IB_MR_TYPE_MEM_REG,
|
|
sess->max_pages_per_mr);
|
|
if (IS_ERR(req->mr)) {
|
|
err = PTR_ERR(req->mr);
|
|
req->mr = NULL;
|
|
pr_err("Failed to alloc sess->max_pages_per_mr %d\n",
|
|
sess->max_pages_per_mr);
|
|
goto out;
|
|
}
|
|
|
|
init_completion(&req->inv_comp);
|
|
}
|
|
|
|
return 0;
|
|
|
|
out:
|
|
free_sess_reqs(sess);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int alloc_permits(struct rtrs_clt *clt)
|
|
{
|
|
unsigned int chunk_bits;
|
|
int err, i;
|
|
|
|
clt->permits_map = kcalloc(BITS_TO_LONGS(clt->queue_depth),
|
|
sizeof(long), GFP_KERNEL);
|
|
if (!clt->permits_map) {
|
|
err = -ENOMEM;
|
|
goto out_err;
|
|
}
|
|
clt->permits = kcalloc(clt->queue_depth, permit_size(clt), GFP_KERNEL);
|
|
if (!clt->permits) {
|
|
err = -ENOMEM;
|
|
goto err_map;
|
|
}
|
|
chunk_bits = ilog2(clt->queue_depth - 1) + 1;
|
|
for (i = 0; i < clt->queue_depth; i++) {
|
|
struct rtrs_permit *permit;
|
|
|
|
permit = get_permit(clt, i);
|
|
permit->mem_id = i;
|
|
permit->mem_off = i << (MAX_IMM_PAYL_BITS - chunk_bits);
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_map:
|
|
kfree(clt->permits_map);
|
|
clt->permits_map = NULL;
|
|
out_err:
|
|
return err;
|
|
}
|
|
|
|
static void free_permits(struct rtrs_clt *clt)
|
|
{
|
|
kfree(clt->permits_map);
|
|
clt->permits_map = NULL;
|
|
kfree(clt->permits);
|
|
clt->permits = NULL;
|
|
}
|
|
|
|
static void query_fast_reg_mode(struct rtrs_clt_sess *sess)
|
|
{
|
|
struct ib_device *ib_dev;
|
|
u64 max_pages_per_mr;
|
|
int mr_page_shift;
|
|
|
|
ib_dev = sess->s.dev->ib_dev;
|
|
|
|
/*
|
|
* Use the smallest page size supported by the HCA, down to a
|
|
* minimum of 4096 bytes. We're unlikely to build large sglists
|
|
* out of smaller entries.
|
|
*/
|
|
mr_page_shift = max(12, ffs(ib_dev->attrs.page_size_cap) - 1);
|
|
max_pages_per_mr = ib_dev->attrs.max_mr_size;
|
|
do_div(max_pages_per_mr, (1ull << mr_page_shift));
|
|
sess->max_pages_per_mr =
|
|
min3(sess->max_pages_per_mr, (u32)max_pages_per_mr,
|
|
ib_dev->attrs.max_fast_reg_page_list_len);
|
|
sess->max_send_sge = ib_dev->attrs.max_send_sge;
|
|
}
|
|
|
|
static bool rtrs_clt_change_state_get_old(struct rtrs_clt_sess *sess,
|
|
enum rtrs_clt_state new_state,
|
|
enum rtrs_clt_state *old_state)
|
|
{
|
|
bool changed;
|
|
|
|
spin_lock_irq(&sess->state_wq.lock);
|
|
*old_state = sess->state;
|
|
changed = __rtrs_clt_change_state(sess, new_state);
|
|
spin_unlock_irq(&sess->state_wq.lock);
|
|
|
|
return changed;
|
|
}
|
|
|
|
static bool rtrs_clt_change_state(struct rtrs_clt_sess *sess,
|
|
enum rtrs_clt_state new_state)
|
|
{
|
|
enum rtrs_clt_state old_state;
|
|
|
|
return rtrs_clt_change_state_get_old(sess, new_state, &old_state);
|
|
}
|
|
|
|
static void rtrs_clt_hb_err_handler(struct rtrs_con *c)
|
|
{
|
|
struct rtrs_clt_con *con = container_of(c, typeof(*con), c);
|
|
|
|
rtrs_rdma_error_recovery(con);
|
|
}
|
|
|
|
static void rtrs_clt_init_hb(struct rtrs_clt_sess *sess)
|
|
{
|
|
rtrs_init_hb(&sess->s, &io_comp_cqe,
|
|
RTRS_HB_INTERVAL_MS,
|
|
RTRS_HB_MISSED_MAX,
|
|
rtrs_clt_hb_err_handler,
|
|
rtrs_wq);
|
|
}
|
|
|
|
static void rtrs_clt_start_hb(struct rtrs_clt_sess *sess)
|
|
{
|
|
rtrs_start_hb(&sess->s);
|
|
}
|
|
|
|
static void rtrs_clt_stop_hb(struct rtrs_clt_sess *sess)
|
|
{
|
|
rtrs_stop_hb(&sess->s);
|
|
}
|
|
|
|
static void rtrs_clt_reconnect_work(struct work_struct *work);
|
|
static void rtrs_clt_close_work(struct work_struct *work);
|
|
|
|
static struct rtrs_clt_sess *alloc_sess(struct rtrs_clt *clt,
|
|
const struct rtrs_addr *path,
|
|
size_t con_num, u16 max_segments,
|
|
size_t max_segment_size)
|
|
{
|
|
struct rtrs_clt_sess *sess;
|
|
int err = -ENOMEM;
|
|
int cpu;
|
|
|
|
sess = kzalloc(sizeof(*sess), GFP_KERNEL);
|
|
if (!sess)
|
|
goto err;
|
|
|
|
/* Extra connection for user messages */
|
|
con_num += 1;
|
|
|
|
sess->s.con = kcalloc(con_num, sizeof(*sess->s.con), GFP_KERNEL);
|
|
if (!sess->s.con)
|
|
goto err_free_sess;
|
|
|
|
sess->stats = kzalloc(sizeof(*sess->stats), GFP_KERNEL);
|
|
if (!sess->stats)
|
|
goto err_free_con;
|
|
|
|
mutex_init(&sess->init_mutex);
|
|
uuid_gen(&sess->s.uuid);
|
|
memcpy(&sess->s.dst_addr, path->dst,
|
|
rdma_addr_size((struct sockaddr *)path->dst));
|
|
|
|
/*
|
|
* rdma_resolve_addr() passes src_addr to cma_bind_addr, which
|
|
* checks the sa_family to be non-zero. If user passed src_addr=NULL
|
|
* the sess->src_addr will contain only zeros, which is then fine.
|
|
*/
|
|
if (path->src)
|
|
memcpy(&sess->s.src_addr, path->src,
|
|
rdma_addr_size((struct sockaddr *)path->src));
|
|
strlcpy(sess->s.sessname, clt->sessname, sizeof(sess->s.sessname));
|
|
sess->s.con_num = con_num;
|
|
sess->clt = clt;
|
|
sess->max_pages_per_mr = max_segments * max_segment_size >> 12;
|
|
init_waitqueue_head(&sess->state_wq);
|
|
sess->state = RTRS_CLT_CONNECTING;
|
|
atomic_set(&sess->connected_cnt, 0);
|
|
INIT_WORK(&sess->close_work, rtrs_clt_close_work);
|
|
INIT_DELAYED_WORK(&sess->reconnect_dwork, rtrs_clt_reconnect_work);
|
|
rtrs_clt_init_hb(sess);
|
|
|
|
sess->mp_skip_entry = alloc_percpu(typeof(*sess->mp_skip_entry));
|
|
if (!sess->mp_skip_entry)
|
|
goto err_free_stats;
|
|
|
|
for_each_possible_cpu(cpu)
|
|
INIT_LIST_HEAD(per_cpu_ptr(sess->mp_skip_entry, cpu));
|
|
|
|
err = rtrs_clt_init_stats(sess->stats);
|
|
if (err)
|
|
goto err_free_percpu;
|
|
|
|
return sess;
|
|
|
|
err_free_percpu:
|
|
free_percpu(sess->mp_skip_entry);
|
|
err_free_stats:
|
|
kfree(sess->stats);
|
|
err_free_con:
|
|
kfree(sess->s.con);
|
|
err_free_sess:
|
|
kfree(sess);
|
|
err:
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
void free_sess(struct rtrs_clt_sess *sess)
|
|
{
|
|
free_percpu(sess->mp_skip_entry);
|
|
mutex_destroy(&sess->init_mutex);
|
|
kfree(sess->s.con);
|
|
kfree(sess->rbufs);
|
|
kfree(sess);
|
|
}
|
|
|
|
static int create_con(struct rtrs_clt_sess *sess, unsigned int cid)
|
|
{
|
|
struct rtrs_clt_con *con;
|
|
|
|
con = kzalloc(sizeof(*con), GFP_KERNEL);
|
|
if (!con)
|
|
return -ENOMEM;
|
|
|
|
/* Map first two connections to the first CPU */
|
|
con->cpu = (cid ? cid - 1 : 0) % nr_cpu_ids;
|
|
con->c.cid = cid;
|
|
con->c.sess = &sess->s;
|
|
atomic_set(&con->io_cnt, 0);
|
|
|
|
sess->s.con[cid] = &con->c;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void destroy_con(struct rtrs_clt_con *con)
|
|
{
|
|
struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
|
|
|
|
sess->s.con[con->c.cid] = NULL;
|
|
kfree(con);
|
|
}
|
|
|
|
static int create_con_cq_qp(struct rtrs_clt_con *con)
|
|
{
|
|
struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
|
|
u16 wr_queue_size;
|
|
int err, cq_vector;
|
|
struct rtrs_msg_rkey_rsp *rsp;
|
|
|
|
/*
|
|
* This function can fail, but still destroy_con_cq_qp() should
|
|
* be called, this is because create_con_cq_qp() is called on cm
|
|
* event path, thus caller/waiter never knows: have we failed before
|
|
* create_con_cq_qp() or after. To solve this dilemma without
|
|
* creating any additional flags just allow destroy_con_cq_qp() be
|
|
* called many times.
|
|
*/
|
|
|
|
if (con->c.cid == 0) {
|
|
/*
|
|
* One completion for each receive and two for each send
|
|
* (send request + registration)
|
|
* + 2 for drain and heartbeat
|
|
* in case qp gets into error state
|
|
*/
|
|
wr_queue_size = SERVICE_CON_QUEUE_DEPTH * 3 + 2;
|
|
/* We must be the first here */
|
|
if (WARN_ON(sess->s.dev))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* The whole session uses device from user connection.
|
|
* Be careful not to close user connection before ib dev
|
|
* is gracefully put.
|
|
*/
|
|
sess->s.dev = rtrs_ib_dev_find_or_add(con->c.cm_id->device,
|
|
&dev_pd);
|
|
if (!sess->s.dev) {
|
|
rtrs_wrn(sess->clt,
|
|
"rtrs_ib_dev_find_get_or_add(): no memory\n");
|
|
return -ENOMEM;
|
|
}
|
|
sess->s.dev_ref = 1;
|
|
query_fast_reg_mode(sess);
|
|
} else {
|
|
/*
|
|
* Here we assume that session members are correctly set.
|
|
* This is always true if user connection (cid == 0) is
|
|
* established first.
|
|
*/
|
|
if (WARN_ON(!sess->s.dev))
|
|
return -EINVAL;
|
|
if (WARN_ON(!sess->queue_depth))
|
|
return -EINVAL;
|
|
|
|
/* Shared between connections */
|
|
sess->s.dev_ref++;
|
|
wr_queue_size =
|
|
min_t(int, sess->s.dev->ib_dev->attrs.max_qp_wr,
|
|
/* QD * (REQ + RSP + FR REGS or INVS) + drain */
|
|
sess->queue_depth * 3 + 1);
|
|
}
|
|
/* alloc iu to recv new rkey reply when server reports flags set */
|
|
if (sess->flags == RTRS_MSG_NEW_RKEY_F || con->c.cid == 0) {
|
|
con->rsp_ius = rtrs_iu_alloc(wr_queue_size, sizeof(*rsp),
|
|
GFP_KERNEL, sess->s.dev->ib_dev,
|
|
DMA_FROM_DEVICE,
|
|
rtrs_clt_rdma_done);
|
|
if (!con->rsp_ius)
|
|
return -ENOMEM;
|
|
con->queue_size = wr_queue_size;
|
|
}
|
|
cq_vector = con->cpu % sess->s.dev->ib_dev->num_comp_vectors;
|
|
err = rtrs_cq_qp_create(&sess->s, &con->c, sess->max_send_sge,
|
|
cq_vector, wr_queue_size, wr_queue_size,
|
|
IB_POLL_SOFTIRQ);
|
|
/*
|
|
* In case of error we do not bother to clean previous allocations,
|
|
* since destroy_con_cq_qp() must be called.
|
|
*/
|
|
return err;
|
|
}
|
|
|
|
static void destroy_con_cq_qp(struct rtrs_clt_con *con)
|
|
{
|
|
struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
|
|
|
|
/*
|
|
* Be careful here: destroy_con_cq_qp() can be called even
|
|
* create_con_cq_qp() failed, see comments there.
|
|
*/
|
|
|
|
rtrs_cq_qp_destroy(&con->c);
|
|
if (con->rsp_ius) {
|
|
rtrs_iu_free(con->rsp_ius, DMA_FROM_DEVICE,
|
|
sess->s.dev->ib_dev, con->queue_size);
|
|
con->rsp_ius = NULL;
|
|
con->queue_size = 0;
|
|
}
|
|
if (sess->s.dev_ref && !--sess->s.dev_ref) {
|
|
rtrs_ib_dev_put(sess->s.dev);
|
|
sess->s.dev = NULL;
|
|
}
|
|
}
|
|
|
|
static void stop_cm(struct rtrs_clt_con *con)
|
|
{
|
|
rdma_disconnect(con->c.cm_id);
|
|
if (con->c.qp)
|
|
ib_drain_qp(con->c.qp);
|
|
}
|
|
|
|
static void destroy_cm(struct rtrs_clt_con *con)
|
|
{
|
|
rdma_destroy_id(con->c.cm_id);
|
|
con->c.cm_id = NULL;
|
|
}
|
|
|
|
static int rtrs_rdma_addr_resolved(struct rtrs_clt_con *con)
|
|
{
|
|
struct rtrs_sess *s = con->c.sess;
|
|
int err;
|
|
|
|
err = create_con_cq_qp(con);
|
|
if (err) {
|
|
rtrs_err(s, "create_con_cq_qp(), err: %d\n", err);
|
|
return err;
|
|
}
|
|
err = rdma_resolve_route(con->c.cm_id, RTRS_CONNECT_TIMEOUT_MS);
|
|
if (err) {
|
|
rtrs_err(s, "Resolving route failed, err: %d\n", err);
|
|
destroy_con_cq_qp(con);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int rtrs_rdma_route_resolved(struct rtrs_clt_con *con)
|
|
{
|
|
struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
|
|
struct rtrs_clt *clt = sess->clt;
|
|
struct rtrs_msg_conn_req msg;
|
|
struct rdma_conn_param param;
|
|
|
|
int err;
|
|
|
|
param = (struct rdma_conn_param) {
|
|
.retry_count = 7,
|
|
.rnr_retry_count = 7,
|
|
.private_data = &msg,
|
|
.private_data_len = sizeof(msg),
|
|
};
|
|
|
|
msg = (struct rtrs_msg_conn_req) {
|
|
.magic = cpu_to_le16(RTRS_MAGIC),
|
|
.version = cpu_to_le16(RTRS_PROTO_VER),
|
|
.cid = cpu_to_le16(con->c.cid),
|
|
.cid_num = cpu_to_le16(sess->s.con_num),
|
|
.recon_cnt = cpu_to_le16(sess->s.recon_cnt),
|
|
};
|
|
uuid_copy(&msg.sess_uuid, &sess->s.uuid);
|
|
uuid_copy(&msg.paths_uuid, &clt->paths_uuid);
|
|
|
|
err = rdma_connect(con->c.cm_id, ¶m);
|
|
if (err)
|
|
rtrs_err(clt, "rdma_connect(): %d\n", err);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int rtrs_rdma_conn_established(struct rtrs_clt_con *con,
|
|
struct rdma_cm_event *ev)
|
|
{
|
|
struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
|
|
struct rtrs_clt *clt = sess->clt;
|
|
const struct rtrs_msg_conn_rsp *msg;
|
|
u16 version, queue_depth;
|
|
int errno;
|
|
u8 len;
|
|
|
|
msg = ev->param.conn.private_data;
|
|
len = ev->param.conn.private_data_len;
|
|
if (len < sizeof(*msg)) {
|
|
rtrs_err(clt, "Invalid RTRS connection response\n");
|
|
return -ECONNRESET;
|
|
}
|
|
if (le16_to_cpu(msg->magic) != RTRS_MAGIC) {
|
|
rtrs_err(clt, "Invalid RTRS magic\n");
|
|
return -ECONNRESET;
|
|
}
|
|
version = le16_to_cpu(msg->version);
|
|
if (version >> 8 != RTRS_PROTO_VER_MAJOR) {
|
|
rtrs_err(clt, "Unsupported major RTRS version: %d, expected %d\n",
|
|
version >> 8, RTRS_PROTO_VER_MAJOR);
|
|
return -ECONNRESET;
|
|
}
|
|
errno = le16_to_cpu(msg->errno);
|
|
if (errno) {
|
|
rtrs_err(clt, "Invalid RTRS message: errno %d\n",
|
|
errno);
|
|
return -ECONNRESET;
|
|
}
|
|
if (con->c.cid == 0) {
|
|
queue_depth = le16_to_cpu(msg->queue_depth);
|
|
|
|
if (queue_depth > MAX_SESS_QUEUE_DEPTH) {
|
|
rtrs_err(clt, "Invalid RTRS message: queue=%d\n",
|
|
queue_depth);
|
|
return -ECONNRESET;
|
|
}
|
|
if (!sess->rbufs || sess->queue_depth < queue_depth) {
|
|
kfree(sess->rbufs);
|
|
sess->rbufs = kcalloc(queue_depth, sizeof(*sess->rbufs),
|
|
GFP_KERNEL);
|
|
if (!sess->rbufs)
|
|
return -ENOMEM;
|
|
}
|
|
sess->queue_depth = queue_depth;
|
|
sess->max_hdr_size = le32_to_cpu(msg->max_hdr_size);
|
|
sess->max_io_size = le32_to_cpu(msg->max_io_size);
|
|
sess->flags = le32_to_cpu(msg->flags);
|
|
sess->chunk_size = sess->max_io_size + sess->max_hdr_size;
|
|
|
|
/*
|
|
* Global queue depth and IO size is always a minimum.
|
|
* If while a reconnection server sends us a value a bit
|
|
* higher - client does not care and uses cached minimum.
|
|
*
|
|
* Since we can have several sessions (paths) restablishing
|
|
* connections in parallel, use lock.
|
|
*/
|
|
mutex_lock(&clt->paths_mutex);
|
|
clt->queue_depth = min_not_zero(sess->queue_depth,
|
|
clt->queue_depth);
|
|
clt->max_io_size = min_not_zero(sess->max_io_size,
|
|
clt->max_io_size);
|
|
mutex_unlock(&clt->paths_mutex);
|
|
|
|
/*
|
|
* Cache the hca_port and hca_name for sysfs
|
|
*/
|
|
sess->hca_port = con->c.cm_id->port_num;
|
|
scnprintf(sess->hca_name, sizeof(sess->hca_name),
|
|
sess->s.dev->ib_dev->name);
|
|
sess->s.src_addr = con->c.cm_id->route.addr.src_addr;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void flag_success_on_conn(struct rtrs_clt_con *con)
|
|
{
|
|
struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
|
|
|
|
atomic_inc(&sess->connected_cnt);
|
|
con->cm_err = 1;
|
|
}
|
|
|
|
static int rtrs_rdma_conn_rejected(struct rtrs_clt_con *con,
|
|
struct rdma_cm_event *ev)
|
|
{
|
|
struct rtrs_sess *s = con->c.sess;
|
|
const struct rtrs_msg_conn_rsp *msg;
|
|
const char *rej_msg;
|
|
int status, errno;
|
|
u8 data_len;
|
|
|
|
status = ev->status;
|
|
rej_msg = rdma_reject_msg(con->c.cm_id, status);
|
|
msg = rdma_consumer_reject_data(con->c.cm_id, ev, &data_len);
|
|
|
|
if (msg && data_len >= sizeof(*msg)) {
|
|
errno = (int16_t)le16_to_cpu(msg->errno);
|
|
if (errno == -EBUSY)
|
|
rtrs_err(s,
|
|
"Previous session is still exists on the server, please reconnect later\n");
|
|
else
|
|
rtrs_err(s,
|
|
"Connect rejected: status %d (%s), rtrs errno %d\n",
|
|
status, rej_msg, errno);
|
|
} else {
|
|
rtrs_err(s,
|
|
"Connect rejected but with malformed message: status %d (%s)\n",
|
|
status, rej_msg);
|
|
}
|
|
|
|
return -ECONNRESET;
|
|
}
|
|
|
|
static void rtrs_clt_close_conns(struct rtrs_clt_sess *sess, bool wait)
|
|
{
|
|
if (rtrs_clt_change_state(sess, RTRS_CLT_CLOSING))
|
|
queue_work(rtrs_wq, &sess->close_work);
|
|
if (wait)
|
|
flush_work(&sess->close_work);
|
|
}
|
|
|
|
static inline void flag_error_on_conn(struct rtrs_clt_con *con, int cm_err)
|
|
{
|
|
if (con->cm_err == 1) {
|
|
struct rtrs_clt_sess *sess;
|
|
|
|
sess = to_clt_sess(con->c.sess);
|
|
if (atomic_dec_and_test(&sess->connected_cnt))
|
|
|
|
wake_up(&sess->state_wq);
|
|
}
|
|
con->cm_err = cm_err;
|
|
}
|
|
|
|
static int rtrs_clt_rdma_cm_handler(struct rdma_cm_id *cm_id,
|
|
struct rdma_cm_event *ev)
|
|
{
|
|
struct rtrs_clt_con *con = cm_id->context;
|
|
struct rtrs_sess *s = con->c.sess;
|
|
struct rtrs_clt_sess *sess = to_clt_sess(s);
|
|
int cm_err = 0;
|
|
|
|
switch (ev->event) {
|
|
case RDMA_CM_EVENT_ADDR_RESOLVED:
|
|
cm_err = rtrs_rdma_addr_resolved(con);
|
|
break;
|
|
case RDMA_CM_EVENT_ROUTE_RESOLVED:
|
|
cm_err = rtrs_rdma_route_resolved(con);
|
|
break;
|
|
case RDMA_CM_EVENT_ESTABLISHED:
|
|
con->cm_err = rtrs_rdma_conn_established(con, ev);
|
|
if (likely(!con->cm_err)) {
|
|
/*
|
|
* Report success and wake up. Here we abuse state_wq,
|
|
* i.e. wake up without state change, but we set cm_err.
|
|
*/
|
|
flag_success_on_conn(con);
|
|
wake_up(&sess->state_wq);
|
|
return 0;
|
|
}
|
|
break;
|
|
case RDMA_CM_EVENT_REJECTED:
|
|
cm_err = rtrs_rdma_conn_rejected(con, ev);
|
|
break;
|
|
case RDMA_CM_EVENT_CONNECT_ERROR:
|
|
case RDMA_CM_EVENT_UNREACHABLE:
|
|
rtrs_wrn(s, "CM error event %d\n", ev->event);
|
|
cm_err = -ECONNRESET;
|
|
break;
|
|
case RDMA_CM_EVENT_ADDR_ERROR:
|
|
case RDMA_CM_EVENT_ROUTE_ERROR:
|
|
cm_err = -EHOSTUNREACH;
|
|
break;
|
|
case RDMA_CM_EVENT_DISCONNECTED:
|
|
case RDMA_CM_EVENT_ADDR_CHANGE:
|
|
case RDMA_CM_EVENT_TIMEWAIT_EXIT:
|
|
cm_err = -ECONNRESET;
|
|
break;
|
|
case RDMA_CM_EVENT_DEVICE_REMOVAL:
|
|
/*
|
|
* Device removal is a special case. Queue close and return 0.
|
|
*/
|
|
rtrs_clt_close_conns(sess, false);
|
|
return 0;
|
|
default:
|
|
rtrs_err(s, "Unexpected RDMA CM event (%d)\n", ev->event);
|
|
cm_err = -ECONNRESET;
|
|
break;
|
|
}
|
|
|
|
if (cm_err) {
|
|
/*
|
|
* cm error makes sense only on connection establishing,
|
|
* in other cases we rely on normal procedure of reconnecting.
|
|
*/
|
|
flag_error_on_conn(con, cm_err);
|
|
rtrs_rdma_error_recovery(con);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int create_cm(struct rtrs_clt_con *con)
|
|
{
|
|
struct rtrs_sess *s = con->c.sess;
|
|
struct rtrs_clt_sess *sess = to_clt_sess(s);
|
|
struct rdma_cm_id *cm_id;
|
|
int err;
|
|
|
|
cm_id = rdma_create_id(&init_net, rtrs_clt_rdma_cm_handler, con,
|
|
sess->s.dst_addr.ss_family == AF_IB ?
|
|
RDMA_PS_IB : RDMA_PS_TCP, IB_QPT_RC);
|
|
if (IS_ERR(cm_id)) {
|
|
err = PTR_ERR(cm_id);
|
|
rtrs_err(s, "Failed to create CM ID, err: %d\n", err);
|
|
|
|
return err;
|
|
}
|
|
con->c.cm_id = cm_id;
|
|
con->cm_err = 0;
|
|
/* allow the port to be reused */
|
|
err = rdma_set_reuseaddr(cm_id, 1);
|
|
if (err != 0) {
|
|
rtrs_err(s, "Set address reuse failed, err: %d\n", err);
|
|
goto destroy_cm;
|
|
}
|
|
err = rdma_resolve_addr(cm_id, (struct sockaddr *)&sess->s.src_addr,
|
|
(struct sockaddr *)&sess->s.dst_addr,
|
|
RTRS_CONNECT_TIMEOUT_MS);
|
|
if (err) {
|
|
rtrs_err(s, "Failed to resolve address, err: %d\n", err);
|
|
goto destroy_cm;
|
|
}
|
|
/*
|
|
* Combine connection status and session events. This is needed
|
|
* for waiting two possible cases: cm_err has something meaningful
|
|
* or session state was really changed to error by device removal.
|
|
*/
|
|
err = wait_event_interruptible_timeout(
|
|
sess->state_wq,
|
|
con->cm_err || sess->state != RTRS_CLT_CONNECTING,
|
|
msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS));
|
|
if (err == 0 || err == -ERESTARTSYS) {
|
|
if (err == 0)
|
|
err = -ETIMEDOUT;
|
|
/* Timedout or interrupted */
|
|
goto errr;
|
|
}
|
|
if (con->cm_err < 0) {
|
|
err = con->cm_err;
|
|
goto errr;
|
|
}
|
|
if (READ_ONCE(sess->state) != RTRS_CLT_CONNECTING) {
|
|
/* Device removal */
|
|
err = -ECONNABORTED;
|
|
goto errr;
|
|
}
|
|
|
|
return 0;
|
|
|
|
errr:
|
|
stop_cm(con);
|
|
/* Is safe to call destroy if cq_qp is not inited */
|
|
destroy_con_cq_qp(con);
|
|
destroy_cm:
|
|
destroy_cm(con);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void rtrs_clt_sess_up(struct rtrs_clt_sess *sess)
|
|
{
|
|
struct rtrs_clt *clt = sess->clt;
|
|
int up;
|
|
|
|
/*
|
|
* We can fire RECONNECTED event only when all paths were
|
|
* connected on rtrs_clt_open(), then each was disconnected
|
|
* and the first one connected again. That's why this nasty
|
|
* game with counter value.
|
|
*/
|
|
|
|
mutex_lock(&clt->paths_ev_mutex);
|
|
up = ++clt->paths_up;
|
|
/*
|
|
* Here it is safe to access paths num directly since up counter
|
|
* is greater than MAX_PATHS_NUM only while rtrs_clt_open() is
|
|
* in progress, thus paths removals are impossible.
|
|
*/
|
|
if (up > MAX_PATHS_NUM && up == MAX_PATHS_NUM + clt->paths_num)
|
|
clt->paths_up = clt->paths_num;
|
|
else if (up == 1)
|
|
clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_RECONNECTED);
|
|
mutex_unlock(&clt->paths_ev_mutex);
|
|
|
|
/* Mark session as established */
|
|
sess->established = true;
|
|
sess->reconnect_attempts = 0;
|
|
sess->stats->reconnects.successful_cnt++;
|
|
}
|
|
|
|
static void rtrs_clt_sess_down(struct rtrs_clt_sess *sess)
|
|
{
|
|
struct rtrs_clt *clt = sess->clt;
|
|
|
|
if (!sess->established)
|
|
return;
|
|
|
|
sess->established = false;
|
|
mutex_lock(&clt->paths_ev_mutex);
|
|
WARN_ON(!clt->paths_up);
|
|
if (--clt->paths_up == 0)
|
|
clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_DISCONNECTED);
|
|
mutex_unlock(&clt->paths_ev_mutex);
|
|
}
|
|
|
|
static void rtrs_clt_stop_and_destroy_conns(struct rtrs_clt_sess *sess)
|
|
{
|
|
struct rtrs_clt_con *con;
|
|
unsigned int cid;
|
|
|
|
WARN_ON(READ_ONCE(sess->state) == RTRS_CLT_CONNECTED);
|
|
|
|
/*
|
|
* Possible race with rtrs_clt_open(), when DEVICE_REMOVAL comes
|
|
* exactly in between. Start destroying after it finishes.
|
|
*/
|
|
mutex_lock(&sess->init_mutex);
|
|
mutex_unlock(&sess->init_mutex);
|
|
|
|
/*
|
|
* All IO paths must observe !CONNECTED state before we
|
|
* free everything.
|
|
*/
|
|
synchronize_rcu();
|
|
|
|
rtrs_clt_stop_hb(sess);
|
|
|
|
/*
|
|
* The order it utterly crucial: firstly disconnect and complete all
|
|
* rdma requests with error (thus set in_use=false for requests),
|
|
* then fail outstanding requests checking in_use for each, and
|
|
* eventually notify upper layer about session disconnection.
|
|
*/
|
|
|
|
for (cid = 0; cid < sess->s.con_num; cid++) {
|
|
if (!sess->s.con[cid])
|
|
break;
|
|
con = to_clt_con(sess->s.con[cid]);
|
|
stop_cm(con);
|
|
}
|
|
fail_all_outstanding_reqs(sess);
|
|
free_sess_reqs(sess);
|
|
rtrs_clt_sess_down(sess);
|
|
|
|
/*
|
|
* Wait for graceful shutdown, namely when peer side invokes
|
|
* rdma_disconnect(). 'connected_cnt' is decremented only on
|
|
* CM events, thus if other side had crashed and hb has detected
|
|
* something is wrong, here we will stuck for exactly timeout ms,
|
|
* since CM does not fire anything. That is fine, we are not in
|
|
* hurry.
|
|
*/
|
|
wait_event_timeout(sess->state_wq, !atomic_read(&sess->connected_cnt),
|
|
msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS));
|
|
|
|
for (cid = 0; cid < sess->s.con_num; cid++) {
|
|
if (!sess->s.con[cid])
|
|
break;
|
|
con = to_clt_con(sess->s.con[cid]);
|
|
destroy_con_cq_qp(con);
|
|
destroy_cm(con);
|
|
destroy_con(con);
|
|
}
|
|
}
|
|
|
|
static inline bool xchg_sessions(struct rtrs_clt_sess __rcu **rcu_ppcpu_path,
|
|
struct rtrs_clt_sess *sess,
|
|
struct rtrs_clt_sess *next)
|
|
{
|
|
struct rtrs_clt_sess **ppcpu_path;
|
|
|
|
/* Call cmpxchg() without sparse warnings */
|
|
ppcpu_path = (typeof(ppcpu_path))rcu_ppcpu_path;
|
|
return sess == cmpxchg(ppcpu_path, sess, next);
|
|
}
|
|
|
|
static void rtrs_clt_remove_path_from_arr(struct rtrs_clt_sess *sess)
|
|
{
|
|
struct rtrs_clt *clt = sess->clt;
|
|
struct rtrs_clt_sess *next;
|
|
bool wait_for_grace = false;
|
|
int cpu;
|
|
|
|
mutex_lock(&clt->paths_mutex);
|
|
list_del_rcu(&sess->s.entry);
|
|
|
|
/* Make sure everybody observes path removal. */
|
|
synchronize_rcu();
|
|
|
|
/*
|
|
* At this point nobody sees @sess in the list, but still we have
|
|
* dangling pointer @pcpu_path which _can_ point to @sess. Since
|
|
* nobody can observe @sess in the list, we guarantee that IO path
|
|
* will not assign @sess to @pcpu_path, i.e. @pcpu_path can be equal
|
|
* to @sess, but can never again become @sess.
|
|
*/
|
|
|
|
/*
|
|
* Decrement paths number only after grace period, because
|
|
* caller of do_each_path() must firstly observe list without
|
|
* path and only then decremented paths number.
|
|
*
|
|
* Otherwise there can be the following situation:
|
|
* o Two paths exist and IO is coming.
|
|
* o One path is removed:
|
|
* CPU#0 CPU#1
|
|
* do_each_path(): rtrs_clt_remove_path_from_arr():
|
|
* path = get_next_path()
|
|
* ^^^ list_del_rcu(path)
|
|
* [!CONNECTED path] clt->paths_num--
|
|
* ^^^^^^^^^
|
|
* load clt->paths_num from 2 to 1
|
|
* ^^^^^^^^^
|
|
* sees 1
|
|
*
|
|
* path is observed as !CONNECTED, but do_each_path() loop
|
|
* ends, because expression i < clt->paths_num is false.
|
|
*/
|
|
clt->paths_num--;
|
|
|
|
/*
|
|
* Get @next connection from current @sess which is going to be
|
|
* removed. If @sess is the last element, then @next is NULL.
|
|
*/
|
|
rcu_read_lock();
|
|
next = list_next_or_null_rr_rcu(&clt->paths_list, &sess->s.entry,
|
|
typeof(*next), s.entry);
|
|
rcu_read_unlock();
|
|
|
|
/*
|
|
* @pcpu paths can still point to the path which is going to be
|
|
* removed, so change the pointer manually.
|
|
*/
|
|
for_each_possible_cpu(cpu) {
|
|
struct rtrs_clt_sess __rcu **ppcpu_path;
|
|
|
|
ppcpu_path = per_cpu_ptr(clt->pcpu_path, cpu);
|
|
if (rcu_dereference_protected(*ppcpu_path,
|
|
lockdep_is_held(&clt->paths_mutex)) != sess)
|
|
/*
|
|
* synchronize_rcu() was called just after deleting
|
|
* entry from the list, thus IO code path cannot
|
|
* change pointer back to the pointer which is going
|
|
* to be removed, we are safe here.
|
|
*/
|
|
continue;
|
|
|
|
/*
|
|
* We race with IO code path, which also changes pointer,
|
|
* thus we have to be careful not to overwrite it.
|
|
*/
|
|
if (xchg_sessions(ppcpu_path, sess, next))
|
|
/*
|
|
* @ppcpu_path was successfully replaced with @next,
|
|
* that means that someone could also pick up the
|
|
* @sess and dereferencing it right now, so wait for
|
|
* a grace period is required.
|
|
*/
|
|
wait_for_grace = true;
|
|
}
|
|
if (wait_for_grace)
|
|
synchronize_rcu();
|
|
|
|
mutex_unlock(&clt->paths_mutex);
|
|
}
|
|
|
|
static void rtrs_clt_add_path_to_arr(struct rtrs_clt_sess *sess,
|
|
struct rtrs_addr *addr)
|
|
{
|
|
struct rtrs_clt *clt = sess->clt;
|
|
|
|
mutex_lock(&clt->paths_mutex);
|
|
clt->paths_num++;
|
|
|
|
list_add_tail_rcu(&sess->s.entry, &clt->paths_list);
|
|
mutex_unlock(&clt->paths_mutex);
|
|
}
|
|
|
|
static void rtrs_clt_close_work(struct work_struct *work)
|
|
{
|
|
struct rtrs_clt_sess *sess;
|
|
|
|
sess = container_of(work, struct rtrs_clt_sess, close_work);
|
|
|
|
cancel_delayed_work_sync(&sess->reconnect_dwork);
|
|
rtrs_clt_stop_and_destroy_conns(sess);
|
|
rtrs_clt_change_state(sess, RTRS_CLT_CLOSED);
|
|
}
|
|
|
|
static int init_conns(struct rtrs_clt_sess *sess)
|
|
{
|
|
unsigned int cid;
|
|
int err;
|
|
|
|
/*
|
|
* On every new session connections increase reconnect counter
|
|
* to avoid clashes with previous sessions not yet closed
|
|
* sessions on a server side.
|
|
*/
|
|
sess->s.recon_cnt++;
|
|
|
|
/* Establish all RDMA connections */
|
|
for (cid = 0; cid < sess->s.con_num; cid++) {
|
|
err = create_con(sess, cid);
|
|
if (err)
|
|
goto destroy;
|
|
|
|
err = create_cm(to_clt_con(sess->s.con[cid]));
|
|
if (err) {
|
|
destroy_con(to_clt_con(sess->s.con[cid]));
|
|
goto destroy;
|
|
}
|
|
}
|
|
err = alloc_sess_reqs(sess);
|
|
if (err)
|
|
goto destroy;
|
|
|
|
rtrs_clt_start_hb(sess);
|
|
|
|
return 0;
|
|
|
|
destroy:
|
|
while (cid--) {
|
|
struct rtrs_clt_con *con = to_clt_con(sess->s.con[cid]);
|
|
|
|
stop_cm(con);
|
|
destroy_con_cq_qp(con);
|
|
destroy_cm(con);
|
|
destroy_con(con);
|
|
}
|
|
/*
|
|
* If we've never taken async path and got an error, say,
|
|
* doing rdma_resolve_addr(), switch to CONNECTION_ERR state
|
|
* manually to keep reconnecting.
|
|
*/
|
|
rtrs_clt_change_state(sess, RTRS_CLT_CONNECTING_ERR);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void rtrs_clt_info_req_done(struct ib_cq *cq, struct ib_wc *wc)
|
|
{
|
|
struct rtrs_clt_con *con = cq->cq_context;
|
|
struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
|
|
struct rtrs_iu *iu;
|
|
|
|
iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
|
|
rtrs_iu_free(iu, DMA_TO_DEVICE, sess->s.dev->ib_dev, 1);
|
|
|
|
if (unlikely(wc->status != IB_WC_SUCCESS)) {
|
|
rtrs_err(sess->clt, "Sess info request send failed: %s\n",
|
|
ib_wc_status_msg(wc->status));
|
|
rtrs_clt_change_state(sess, RTRS_CLT_CONNECTING_ERR);
|
|
return;
|
|
}
|
|
|
|
rtrs_clt_update_wc_stats(con);
|
|
}
|
|
|
|
static int process_info_rsp(struct rtrs_clt_sess *sess,
|
|
const struct rtrs_msg_info_rsp *msg)
|
|
{
|
|
unsigned int sg_cnt, total_len;
|
|
int i, sgi;
|
|
|
|
sg_cnt = le16_to_cpu(msg->sg_cnt);
|
|
if (unlikely(!sg_cnt))
|
|
return -EINVAL;
|
|
/*
|
|
* Check if IB immediate data size is enough to hold the mem_id and
|
|
* the offset inside the memory chunk.
|
|
*/
|
|
if (unlikely((ilog2(sg_cnt - 1) + 1) +
|
|
(ilog2(sess->chunk_size - 1) + 1) >
|
|
MAX_IMM_PAYL_BITS)) {
|
|
rtrs_err(sess->clt,
|
|
"RDMA immediate size (%db) not enough to encode %d buffers of size %dB\n",
|
|
MAX_IMM_PAYL_BITS, sg_cnt, sess->chunk_size);
|
|
return -EINVAL;
|
|
}
|
|
if (unlikely(!sg_cnt || (sess->queue_depth % sg_cnt))) {
|
|
rtrs_err(sess->clt, "Incorrect sg_cnt %d, is not multiple\n",
|
|
sg_cnt);
|
|
return -EINVAL;
|
|
}
|
|
total_len = 0;
|
|
for (sgi = 0, i = 0; sgi < sg_cnt && i < sess->queue_depth; sgi++) {
|
|
const struct rtrs_sg_desc *desc = &msg->desc[sgi];
|
|
u32 len, rkey;
|
|
u64 addr;
|
|
|
|
addr = le64_to_cpu(desc->addr);
|
|
rkey = le32_to_cpu(desc->key);
|
|
len = le32_to_cpu(desc->len);
|
|
|
|
total_len += len;
|
|
|
|
if (unlikely(!len || (len % sess->chunk_size))) {
|
|
rtrs_err(sess->clt, "Incorrect [%d].len %d\n", sgi,
|
|
len);
|
|
return -EINVAL;
|
|
}
|
|
for ( ; len && i < sess->queue_depth; i++) {
|
|
sess->rbufs[i].addr = addr;
|
|
sess->rbufs[i].rkey = rkey;
|
|
|
|
len -= sess->chunk_size;
|
|
addr += sess->chunk_size;
|
|
}
|
|
}
|
|
/* Sanity check */
|
|
if (unlikely(sgi != sg_cnt || i != sess->queue_depth)) {
|
|
rtrs_err(sess->clt, "Incorrect sg vector, not fully mapped\n");
|
|
return -EINVAL;
|
|
}
|
|
if (unlikely(total_len != sess->chunk_size * sess->queue_depth)) {
|
|
rtrs_err(sess->clt, "Incorrect total_len %d\n", total_len);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rtrs_clt_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc)
|
|
{
|
|
struct rtrs_clt_con *con = cq->cq_context;
|
|
struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
|
|
struct rtrs_msg_info_rsp *msg;
|
|
enum rtrs_clt_state state;
|
|
struct rtrs_iu *iu;
|
|
size_t rx_sz;
|
|
int err;
|
|
|
|
state = RTRS_CLT_CONNECTING_ERR;
|
|
|
|
WARN_ON(con->c.cid);
|
|
iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
|
|
if (unlikely(wc->status != IB_WC_SUCCESS)) {
|
|
rtrs_err(sess->clt, "Sess info response recv failed: %s\n",
|
|
ib_wc_status_msg(wc->status));
|
|
goto out;
|
|
}
|
|
WARN_ON(wc->opcode != IB_WC_RECV);
|
|
|
|
if (unlikely(wc->byte_len < sizeof(*msg))) {
|
|
rtrs_err(sess->clt, "Sess info response is malformed: size %d\n",
|
|
wc->byte_len);
|
|
goto out;
|
|
}
|
|
ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, iu->dma_addr,
|
|
iu->size, DMA_FROM_DEVICE);
|
|
msg = iu->buf;
|
|
if (unlikely(le16_to_cpu(msg->type) != RTRS_MSG_INFO_RSP)) {
|
|
rtrs_err(sess->clt, "Sess info response is malformed: type %d\n",
|
|
le16_to_cpu(msg->type));
|
|
goto out;
|
|
}
|
|
rx_sz = sizeof(*msg);
|
|
rx_sz += sizeof(msg->desc[0]) * le16_to_cpu(msg->sg_cnt);
|
|
if (unlikely(wc->byte_len < rx_sz)) {
|
|
rtrs_err(sess->clt, "Sess info response is malformed: size %d\n",
|
|
wc->byte_len);
|
|
goto out;
|
|
}
|
|
err = process_info_rsp(sess, msg);
|
|
if (unlikely(err))
|
|
goto out;
|
|
|
|
err = post_recv_sess(sess);
|
|
if (unlikely(err))
|
|
goto out;
|
|
|
|
state = RTRS_CLT_CONNECTED;
|
|
|
|
out:
|
|
rtrs_clt_update_wc_stats(con);
|
|
rtrs_iu_free(iu, DMA_FROM_DEVICE, sess->s.dev->ib_dev, 1);
|
|
rtrs_clt_change_state(sess, state);
|
|
}
|
|
|
|
static int rtrs_send_sess_info(struct rtrs_clt_sess *sess)
|
|
{
|
|
struct rtrs_clt_con *usr_con = to_clt_con(sess->s.con[0]);
|
|
struct rtrs_msg_info_req *msg;
|
|
struct rtrs_iu *tx_iu, *rx_iu;
|
|
size_t rx_sz;
|
|
int err;
|
|
|
|
rx_sz = sizeof(struct rtrs_msg_info_rsp);
|
|
rx_sz += sizeof(u64) * MAX_SESS_QUEUE_DEPTH;
|
|
|
|
tx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req), GFP_KERNEL,
|
|
sess->s.dev->ib_dev, DMA_TO_DEVICE,
|
|
rtrs_clt_info_req_done);
|
|
rx_iu = rtrs_iu_alloc(1, rx_sz, GFP_KERNEL, sess->s.dev->ib_dev,
|
|
DMA_FROM_DEVICE, rtrs_clt_info_rsp_done);
|
|
if (unlikely(!tx_iu || !rx_iu)) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
/* Prepare for getting info response */
|
|
err = rtrs_iu_post_recv(&usr_con->c, rx_iu);
|
|
if (unlikely(err)) {
|
|
rtrs_err(sess->clt, "rtrs_iu_post_recv(), err: %d\n", err);
|
|
goto out;
|
|
}
|
|
rx_iu = NULL;
|
|
|
|
msg = tx_iu->buf;
|
|
msg->type = cpu_to_le16(RTRS_MSG_INFO_REQ);
|
|
memcpy(msg->sessname, sess->s.sessname, sizeof(msg->sessname));
|
|
|
|
ib_dma_sync_single_for_device(sess->s.dev->ib_dev, tx_iu->dma_addr,
|
|
tx_iu->size, DMA_TO_DEVICE);
|
|
|
|
/* Send info request */
|
|
err = rtrs_iu_post_send(&usr_con->c, tx_iu, sizeof(*msg), NULL);
|
|
if (unlikely(err)) {
|
|
rtrs_err(sess->clt, "rtrs_iu_post_send(), err: %d\n", err);
|
|
goto out;
|
|
}
|
|
tx_iu = NULL;
|
|
|
|
/* Wait for state change */
|
|
wait_event_interruptible_timeout(sess->state_wq,
|
|
sess->state != RTRS_CLT_CONNECTING,
|
|
msecs_to_jiffies(
|
|
RTRS_CONNECT_TIMEOUT_MS));
|
|
if (unlikely(READ_ONCE(sess->state) != RTRS_CLT_CONNECTED)) {
|
|
if (READ_ONCE(sess->state) == RTRS_CLT_CONNECTING_ERR)
|
|
err = -ECONNRESET;
|
|
else
|
|
err = -ETIMEDOUT;
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
if (tx_iu)
|
|
rtrs_iu_free(tx_iu, DMA_TO_DEVICE, sess->s.dev->ib_dev, 1);
|
|
if (rx_iu)
|
|
rtrs_iu_free(rx_iu, DMA_FROM_DEVICE, sess->s.dev->ib_dev, 1);
|
|
if (unlikely(err))
|
|
/* If we've never taken async path because of malloc problems */
|
|
rtrs_clt_change_state(sess, RTRS_CLT_CONNECTING_ERR);
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* init_sess() - establishes all session connections and does handshake
|
|
* @sess: client session.
|
|
* In case of error full close or reconnect procedure should be taken,
|
|
* because reconnect or close async works can be started.
|
|
*/
|
|
static int init_sess(struct rtrs_clt_sess *sess)
|
|
{
|
|
int err;
|
|
|
|
mutex_lock(&sess->init_mutex);
|
|
err = init_conns(sess);
|
|
if (err) {
|
|
rtrs_err(sess->clt, "init_conns(), err: %d\n", err);
|
|
goto out;
|
|
}
|
|
err = rtrs_send_sess_info(sess);
|
|
if (err) {
|
|
rtrs_err(sess->clt, "rtrs_send_sess_info(), err: %d\n", err);
|
|
goto out;
|
|
}
|
|
rtrs_clt_sess_up(sess);
|
|
out:
|
|
mutex_unlock(&sess->init_mutex);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void rtrs_clt_reconnect_work(struct work_struct *work)
|
|
{
|
|
struct rtrs_clt_sess *sess;
|
|
struct rtrs_clt *clt;
|
|
unsigned int delay_ms;
|
|
int err;
|
|
|
|
sess = container_of(to_delayed_work(work), struct rtrs_clt_sess,
|
|
reconnect_dwork);
|
|
clt = sess->clt;
|
|
|
|
if (READ_ONCE(sess->state) != RTRS_CLT_RECONNECTING)
|
|
return;
|
|
|
|
if (sess->reconnect_attempts >= clt->max_reconnect_attempts) {
|
|
/* Close a session completely if max attempts is reached */
|
|
rtrs_clt_close_conns(sess, false);
|
|
return;
|
|
}
|
|
sess->reconnect_attempts++;
|
|
|
|
/* Stop everything */
|
|
rtrs_clt_stop_and_destroy_conns(sess);
|
|
msleep(RTRS_RECONNECT_BACKOFF);
|
|
if (rtrs_clt_change_state(sess, RTRS_CLT_CONNECTING)) {
|
|
err = init_sess(sess);
|
|
if (err)
|
|
goto reconnect_again;
|
|
}
|
|
|
|
return;
|
|
|
|
reconnect_again:
|
|
if (rtrs_clt_change_state(sess, RTRS_CLT_RECONNECTING)) {
|
|
sess->stats->reconnects.fail_cnt++;
|
|
delay_ms = clt->reconnect_delay_sec * 1000;
|
|
queue_delayed_work(rtrs_wq, &sess->reconnect_dwork,
|
|
msecs_to_jiffies(delay_ms));
|
|
}
|
|
}
|
|
|
|
static void rtrs_clt_dev_release(struct device *dev)
|
|
{
|
|
struct rtrs_clt *clt = container_of(dev, struct rtrs_clt, dev);
|
|
|
|
kfree(clt);
|
|
}
|
|
|
|
static struct rtrs_clt *alloc_clt(const char *sessname, size_t paths_num,
|
|
u16 port, size_t pdu_sz, void *priv,
|
|
void (*link_ev)(void *priv,
|
|
enum rtrs_clt_link_ev ev),
|
|
unsigned int max_segments,
|
|
size_t max_segment_size,
|
|
unsigned int reconnect_delay_sec,
|
|
unsigned int max_reconnect_attempts)
|
|
{
|
|
struct rtrs_clt *clt;
|
|
int err;
|
|
|
|
if (!paths_num || paths_num > MAX_PATHS_NUM)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
if (strlen(sessname) >= sizeof(clt->sessname))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
clt = kzalloc(sizeof(*clt), GFP_KERNEL);
|
|
if (!clt)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
clt->pcpu_path = alloc_percpu(typeof(*clt->pcpu_path));
|
|
if (!clt->pcpu_path) {
|
|
kfree(clt);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
uuid_gen(&clt->paths_uuid);
|
|
INIT_LIST_HEAD_RCU(&clt->paths_list);
|
|
clt->paths_num = paths_num;
|
|
clt->paths_up = MAX_PATHS_NUM;
|
|
clt->port = port;
|
|
clt->pdu_sz = pdu_sz;
|
|
clt->max_segments = max_segments;
|
|
clt->max_segment_size = max_segment_size;
|
|
clt->reconnect_delay_sec = reconnect_delay_sec;
|
|
clt->max_reconnect_attempts = max_reconnect_attempts;
|
|
clt->priv = priv;
|
|
clt->link_ev = link_ev;
|
|
clt->mp_policy = MP_POLICY_MIN_INFLIGHT;
|
|
strlcpy(clt->sessname, sessname, sizeof(clt->sessname));
|
|
init_waitqueue_head(&clt->permits_wait);
|
|
mutex_init(&clt->paths_ev_mutex);
|
|
mutex_init(&clt->paths_mutex);
|
|
|
|
clt->dev.class = rtrs_clt_dev_class;
|
|
clt->dev.release = rtrs_clt_dev_release;
|
|
err = dev_set_name(&clt->dev, "%s", sessname);
|
|
if (err) {
|
|
free_percpu(clt->pcpu_path);
|
|
kfree(clt);
|
|
return ERR_PTR(err);
|
|
}
|
|
/*
|
|
* Suppress user space notification until
|
|
* sysfs files are created
|
|
*/
|
|
dev_set_uevent_suppress(&clt->dev, true);
|
|
err = device_register(&clt->dev);
|
|
if (err) {
|
|
free_percpu(clt->pcpu_path);
|
|
put_device(&clt->dev);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
clt->kobj_paths = kobject_create_and_add("paths", &clt->dev.kobj);
|
|
if (!clt->kobj_paths) {
|
|
free_percpu(clt->pcpu_path);
|
|
device_unregister(&clt->dev);
|
|
return NULL;
|
|
}
|
|
err = rtrs_clt_create_sysfs_root_files(clt);
|
|
if (err) {
|
|
free_percpu(clt->pcpu_path);
|
|
kobject_del(clt->kobj_paths);
|
|
kobject_put(clt->kobj_paths);
|
|
device_unregister(&clt->dev);
|
|
return ERR_PTR(err);
|
|
}
|
|
dev_set_uevent_suppress(&clt->dev, false);
|
|
kobject_uevent(&clt->dev.kobj, KOBJ_ADD);
|
|
|
|
return clt;
|
|
}
|
|
|
|
static void wait_for_inflight_permits(struct rtrs_clt *clt)
|
|
{
|
|
if (clt->permits_map) {
|
|
size_t sz = clt->queue_depth;
|
|
|
|
wait_event(clt->permits_wait,
|
|
find_first_bit(clt->permits_map, sz) >= sz);
|
|
}
|
|
}
|
|
|
|
static void free_clt(struct rtrs_clt *clt)
|
|
{
|
|
wait_for_inflight_permits(clt);
|
|
free_permits(clt);
|
|
free_percpu(clt->pcpu_path);
|
|
mutex_destroy(&clt->paths_ev_mutex);
|
|
mutex_destroy(&clt->paths_mutex);
|
|
/* release callback will free clt in last put */
|
|
device_unregister(&clt->dev);
|
|
}
|
|
|
|
/**
|
|
* rtrs_clt_open() - Open a session to an RTRS server
|
|
* @ops: holds the link event callback and the private pointer.
|
|
* @sessname: name of the session
|
|
* @paths: Paths to be established defined by their src and dst addresses
|
|
* @paths_num: Number of elements in the @paths array
|
|
* @port: port to be used by the RTRS session
|
|
* @pdu_sz: Size of extra payload which can be accessed after permit allocation.
|
|
* @reconnect_delay_sec: time between reconnect tries
|
|
* @max_segments: Max. number of segments per IO request
|
|
* @max_segment_size: Max. size of one segment
|
|
* @max_reconnect_attempts: Number of times to reconnect on error before giving
|
|
* up, 0 for * disabled, -1 for forever
|
|
*
|
|
* Starts session establishment with the rtrs_server. The function can block
|
|
* up to ~2000ms before it returns.
|
|
*
|
|
* Return a valid pointer on success otherwise PTR_ERR.
|
|
*/
|
|
struct rtrs_clt *rtrs_clt_open(struct rtrs_clt_ops *ops,
|
|
const char *sessname,
|
|
const struct rtrs_addr *paths,
|
|
size_t paths_num, u16 port,
|
|
size_t pdu_sz, u8 reconnect_delay_sec,
|
|
u16 max_segments,
|
|
size_t max_segment_size,
|
|
s16 max_reconnect_attempts)
|
|
{
|
|
struct rtrs_clt_sess *sess, *tmp;
|
|
struct rtrs_clt *clt;
|
|
int err, i;
|
|
|
|
clt = alloc_clt(sessname, paths_num, port, pdu_sz, ops->priv,
|
|
ops->link_ev,
|
|
max_segments, max_segment_size, reconnect_delay_sec,
|
|
max_reconnect_attempts);
|
|
if (IS_ERR(clt)) {
|
|
err = PTR_ERR(clt);
|
|
goto out;
|
|
}
|
|
for (i = 0; i < paths_num; i++) {
|
|
struct rtrs_clt_sess *sess;
|
|
|
|
sess = alloc_sess(clt, &paths[i], nr_cpu_ids,
|
|
max_segments, max_segment_size);
|
|
if (IS_ERR(sess)) {
|
|
err = PTR_ERR(sess);
|
|
goto close_all_sess;
|
|
}
|
|
list_add_tail_rcu(&sess->s.entry, &clt->paths_list);
|
|
|
|
err = init_sess(sess);
|
|
if (err) {
|
|
list_del_rcu(&sess->s.entry);
|
|
rtrs_clt_close_conns(sess, true);
|
|
free_sess(sess);
|
|
goto close_all_sess;
|
|
}
|
|
|
|
err = rtrs_clt_create_sess_files(sess);
|
|
if (err) {
|
|
list_del_rcu(&sess->s.entry);
|
|
rtrs_clt_close_conns(sess, true);
|
|
free_sess(sess);
|
|
goto close_all_sess;
|
|
}
|
|
}
|
|
err = alloc_permits(clt);
|
|
if (err)
|
|
goto close_all_sess;
|
|
|
|
return clt;
|
|
|
|
close_all_sess:
|
|
list_for_each_entry_safe(sess, tmp, &clt->paths_list, s.entry) {
|
|
rtrs_clt_destroy_sess_files(sess, NULL);
|
|
rtrs_clt_close_conns(sess, true);
|
|
kobject_put(&sess->kobj);
|
|
}
|
|
rtrs_clt_destroy_sysfs_root_files(clt);
|
|
rtrs_clt_destroy_sysfs_root_folders(clt);
|
|
free_clt(clt);
|
|
|
|
out:
|
|
return ERR_PTR(err);
|
|
}
|
|
EXPORT_SYMBOL(rtrs_clt_open);
|
|
|
|
/**
|
|
* rtrs_clt_close() - Close a session
|
|
* @clt: Session handle. Session is freed upon return.
|
|
*/
|
|
void rtrs_clt_close(struct rtrs_clt *clt)
|
|
{
|
|
struct rtrs_clt_sess *sess, *tmp;
|
|
|
|
/* Firstly forbid sysfs access */
|
|
rtrs_clt_destroy_sysfs_root_files(clt);
|
|
rtrs_clt_destroy_sysfs_root_folders(clt);
|
|
|
|
/* Now it is safe to iterate over all paths without locks */
|
|
list_for_each_entry_safe(sess, tmp, &clt->paths_list, s.entry) {
|
|
rtrs_clt_destroy_sess_files(sess, NULL);
|
|
rtrs_clt_close_conns(sess, true);
|
|
kobject_put(&sess->kobj);
|
|
}
|
|
free_clt(clt);
|
|
}
|
|
EXPORT_SYMBOL(rtrs_clt_close);
|
|
|
|
int rtrs_clt_reconnect_from_sysfs(struct rtrs_clt_sess *sess)
|
|
{
|
|
enum rtrs_clt_state old_state;
|
|
int err = -EBUSY;
|
|
bool changed;
|
|
|
|
changed = rtrs_clt_change_state_get_old(sess, RTRS_CLT_RECONNECTING,
|
|
&old_state);
|
|
if (changed) {
|
|
sess->reconnect_attempts = 0;
|
|
queue_delayed_work(rtrs_wq, &sess->reconnect_dwork, 0);
|
|
}
|
|
if (changed || old_state == RTRS_CLT_RECONNECTING) {
|
|
/*
|
|
* flush_delayed_work() queues pending work for immediate
|
|
* execution, so do the flush if we have queued something
|
|
* right now or work is pending.
|
|
*/
|
|
flush_delayed_work(&sess->reconnect_dwork);
|
|
err = (READ_ONCE(sess->state) ==
|
|
RTRS_CLT_CONNECTED ? 0 : -ENOTCONN);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
int rtrs_clt_disconnect_from_sysfs(struct rtrs_clt_sess *sess)
|
|
{
|
|
rtrs_clt_close_conns(sess, true);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int rtrs_clt_remove_path_from_sysfs(struct rtrs_clt_sess *sess,
|
|
const struct attribute *sysfs_self)
|
|
{
|
|
enum rtrs_clt_state old_state;
|
|
bool changed;
|
|
|
|
/*
|
|
* Continue stopping path till state was changed to DEAD or
|
|
* state was observed as DEAD:
|
|
* 1. State was changed to DEAD - we were fast and nobody
|
|
* invoked rtrs_clt_reconnect(), which can again start
|
|
* reconnecting.
|
|
* 2. State was observed as DEAD - we have someone in parallel
|
|
* removing the path.
|
|
*/
|
|
do {
|
|
rtrs_clt_close_conns(sess, true);
|
|
changed = rtrs_clt_change_state_get_old(sess,
|
|
RTRS_CLT_DEAD,
|
|
&old_state);
|
|
} while (!changed && old_state != RTRS_CLT_DEAD);
|
|
|
|
if (likely(changed)) {
|
|
rtrs_clt_destroy_sess_files(sess, sysfs_self);
|
|
rtrs_clt_remove_path_from_arr(sess);
|
|
kobject_put(&sess->kobj);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void rtrs_clt_set_max_reconnect_attempts(struct rtrs_clt *clt, int value)
|
|
{
|
|
clt->max_reconnect_attempts = (unsigned int)value;
|
|
}
|
|
|
|
int rtrs_clt_get_max_reconnect_attempts(const struct rtrs_clt *clt)
|
|
{
|
|
return (int)clt->max_reconnect_attempts;
|
|
}
|
|
|
|
/**
|
|
* rtrs_clt_request() - Request data transfer to/from server via RDMA.
|
|
*
|
|
* @dir: READ/WRITE
|
|
* @ops: callback function to be called as confirmation, and the pointer.
|
|
* @clt: Session
|
|
* @permit: Preallocated permit
|
|
* @vec: Message that is sent to server together with the request.
|
|
* Sum of len of all @vec elements limited to <= IO_MSG_SIZE.
|
|
* Since the msg is copied internally it can be allocated on stack.
|
|
* @nr: Number of elements in @vec.
|
|
* @data_len: length of data sent to/from server
|
|
* @sg: Pages to be sent/received to/from server.
|
|
* @sg_cnt: Number of elements in the @sg
|
|
*
|
|
* Return:
|
|
* 0: Success
|
|
* <0: Error
|
|
*
|
|
* On dir=READ rtrs client will request a data transfer from Server to client.
|
|
* The data that the server will respond with will be stored in @sg when
|
|
* the user receives an %RTRS_CLT_RDMA_EV_RDMA_REQUEST_WRITE_COMPL event.
|
|
* On dir=WRITE rtrs client will rdma write data in sg to server side.
|
|
*/
|
|
int rtrs_clt_request(int dir, struct rtrs_clt_req_ops *ops,
|
|
struct rtrs_clt *clt, struct rtrs_permit *permit,
|
|
const struct kvec *vec, size_t nr, size_t data_len,
|
|
struct scatterlist *sg, unsigned int sg_cnt)
|
|
{
|
|
struct rtrs_clt_io_req *req;
|
|
struct rtrs_clt_sess *sess;
|
|
|
|
enum dma_data_direction dma_dir;
|
|
int err = -ECONNABORTED, i;
|
|
size_t usr_len, hdr_len;
|
|
struct path_it it;
|
|
|
|
/* Get kvec length */
|
|
for (i = 0, usr_len = 0; i < nr; i++)
|
|
usr_len += vec[i].iov_len;
|
|
|
|
if (dir == READ) {
|
|
hdr_len = sizeof(struct rtrs_msg_rdma_read) +
|
|
sg_cnt * sizeof(struct rtrs_sg_desc);
|
|
dma_dir = DMA_FROM_DEVICE;
|
|
} else {
|
|
hdr_len = sizeof(struct rtrs_msg_rdma_write);
|
|
dma_dir = DMA_TO_DEVICE;
|
|
}
|
|
|
|
rcu_read_lock();
|
|
for (path_it_init(&it, clt);
|
|
(sess = it.next_path(&it)) && it.i < it.clt->paths_num; it.i++) {
|
|
if (unlikely(READ_ONCE(sess->state) != RTRS_CLT_CONNECTED))
|
|
continue;
|
|
|
|
if (unlikely(usr_len + hdr_len > sess->max_hdr_size)) {
|
|
rtrs_wrn_rl(sess->clt,
|
|
"%s request failed, user message size is %zu and header length %zu, but max size is %u\n",
|
|
dir == READ ? "Read" : "Write",
|
|
usr_len, hdr_len, sess->max_hdr_size);
|
|
err = -EMSGSIZE;
|
|
break;
|
|
}
|
|
req = rtrs_clt_get_req(sess, ops->conf_fn, permit, ops->priv,
|
|
vec, usr_len, sg, sg_cnt, data_len,
|
|
dma_dir);
|
|
if (dir == READ)
|
|
err = rtrs_clt_read_req(req);
|
|
else
|
|
err = rtrs_clt_write_req(req);
|
|
if (unlikely(err)) {
|
|
req->in_use = false;
|
|
continue;
|
|
}
|
|
/* Success path */
|
|
break;
|
|
}
|
|
path_it_deinit(&it);
|
|
rcu_read_unlock();
|
|
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(rtrs_clt_request);
|
|
|
|
/**
|
|
* rtrs_clt_query() - queries RTRS session attributes
|
|
*@clt: session pointer
|
|
*@attr: query results for session attributes.
|
|
* Returns:
|
|
* 0 on success
|
|
* -ECOMM no connection to the server
|
|
*/
|
|
int rtrs_clt_query(struct rtrs_clt *clt, struct rtrs_attrs *attr)
|
|
{
|
|
if (!rtrs_clt_is_connected(clt))
|
|
return -ECOMM;
|
|
|
|
attr->queue_depth = clt->queue_depth;
|
|
attr->max_io_size = clt->max_io_size;
|
|
attr->sess_kobj = &clt->dev.kobj;
|
|
strlcpy(attr->sessname, clt->sessname, sizeof(attr->sessname));
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(rtrs_clt_query);
|
|
|
|
int rtrs_clt_create_path_from_sysfs(struct rtrs_clt *clt,
|
|
struct rtrs_addr *addr)
|
|
{
|
|
struct rtrs_clt_sess *sess;
|
|
int err;
|
|
|
|
sess = alloc_sess(clt, addr, nr_cpu_ids, clt->max_segments,
|
|
clt->max_segment_size);
|
|
if (IS_ERR(sess))
|
|
return PTR_ERR(sess);
|
|
|
|
/*
|
|
* It is totally safe to add path in CONNECTING state: coming
|
|
* IO will never grab it. Also it is very important to add
|
|
* path before init, since init fires LINK_CONNECTED event.
|
|
*/
|
|
rtrs_clt_add_path_to_arr(sess, addr);
|
|
|
|
err = init_sess(sess);
|
|
if (err)
|
|
goto close_sess;
|
|
|
|
err = rtrs_clt_create_sess_files(sess);
|
|
if (err)
|
|
goto close_sess;
|
|
|
|
return 0;
|
|
|
|
close_sess:
|
|
rtrs_clt_remove_path_from_arr(sess);
|
|
rtrs_clt_close_conns(sess, true);
|
|
free_sess(sess);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int rtrs_clt_ib_dev_init(struct rtrs_ib_dev *dev)
|
|
{
|
|
if (!(dev->ib_dev->attrs.device_cap_flags &
|
|
IB_DEVICE_MEM_MGT_EXTENSIONS)) {
|
|
pr_err("Memory registrations not supported.\n");
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct rtrs_rdma_dev_pd_ops dev_pd_ops = {
|
|
.init = rtrs_clt_ib_dev_init
|
|
};
|
|
|
|
static int __init rtrs_client_init(void)
|
|
{
|
|
rtrs_rdma_dev_pd_init(0, &dev_pd);
|
|
|
|
rtrs_clt_dev_class = class_create(THIS_MODULE, "rtrs-client");
|
|
if (IS_ERR(rtrs_clt_dev_class)) {
|
|
pr_err("Failed to create rtrs-client dev class\n");
|
|
return PTR_ERR(rtrs_clt_dev_class);
|
|
}
|
|
rtrs_wq = alloc_workqueue("rtrs_client_wq", WQ_MEM_RECLAIM, 0);
|
|
if (!rtrs_wq) {
|
|
class_destroy(rtrs_clt_dev_class);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __exit rtrs_client_exit(void)
|
|
{
|
|
destroy_workqueue(rtrs_wq);
|
|
class_destroy(rtrs_clt_dev_class);
|
|
rtrs_rdma_dev_pd_deinit(&dev_pd);
|
|
}
|
|
|
|
module_init(rtrs_client_init);
|
|
module_exit(rtrs_client_exit);
|