mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-20 14:49:06 +07:00
e9c227b253
Reviewed-by: Alex Deucher <alexander.deucher@amd.com> Signed-off-by: Ernst Sjöstrand <ernstp@gmail.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
546 lines
19 KiB
C
546 lines
19 KiB
C
/*
|
|
* Copyright 2016 Advanced Micro Devices, Inc.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include "ppatomfwctrl.h"
|
|
#include "atomfirmware.h"
|
|
#include "pp_debug.h"
|
|
|
|
|
|
static const union atom_voltage_object_v4 *pp_atomfwctrl_lookup_voltage_type_v4(
|
|
const struct atom_voltage_objects_info_v4_1 *voltage_object_info_table,
|
|
uint8_t voltage_type, uint8_t voltage_mode)
|
|
{
|
|
unsigned int size = le16_to_cpu(
|
|
voltage_object_info_table->table_header.structuresize);
|
|
unsigned int offset =
|
|
offsetof(struct atom_voltage_objects_info_v4_1, voltage_object[0]);
|
|
unsigned long start = (unsigned long)voltage_object_info_table;
|
|
|
|
while (offset < size) {
|
|
const union atom_voltage_object_v4 *voltage_object =
|
|
(const union atom_voltage_object_v4 *)(start + offset);
|
|
|
|
if (voltage_type == voltage_object->gpio_voltage_obj.header.voltage_type &&
|
|
voltage_mode == voltage_object->gpio_voltage_obj.header.voltage_mode)
|
|
return voltage_object;
|
|
|
|
offset += le16_to_cpu(voltage_object->gpio_voltage_obj.header.object_size);
|
|
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct atom_voltage_objects_info_v4_1 *pp_atomfwctrl_get_voltage_info_table(
|
|
struct pp_hwmgr *hwmgr)
|
|
{
|
|
const void *table_address;
|
|
uint16_t idx;
|
|
|
|
idx = GetIndexIntoMasterDataTable(voltageobject_info);
|
|
table_address = cgs_atom_get_data_table(hwmgr->device,
|
|
idx, NULL, NULL, NULL);
|
|
|
|
PP_ASSERT_WITH_CODE(
|
|
table_address,
|
|
"Error retrieving BIOS Table Address!",
|
|
return NULL);
|
|
|
|
return (struct atom_voltage_objects_info_v4_1 *)table_address;
|
|
}
|
|
|
|
/**
|
|
* Returns TRUE if the given voltage type is controlled by GPIO pins.
|
|
* voltage_type is one of SET_VOLTAGE_TYPE_ASIC_VDDC, SET_VOLTAGE_TYPE_ASIC_MVDDC, SET_VOLTAGE_TYPE_ASIC_MVDDQ.
|
|
* voltage_mode is one of ATOM_SET_VOLTAGE, ATOM_SET_VOLTAGE_PHASE
|
|
*/
|
|
bool pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(struct pp_hwmgr *hwmgr,
|
|
uint8_t voltage_type, uint8_t voltage_mode)
|
|
{
|
|
struct atom_voltage_objects_info_v4_1 *voltage_info =
|
|
(struct atom_voltage_objects_info_v4_1 *)
|
|
pp_atomfwctrl_get_voltage_info_table(hwmgr);
|
|
bool ret;
|
|
|
|
/* If we cannot find the table do NOT try to control this voltage. */
|
|
PP_ASSERT_WITH_CODE(voltage_info,
|
|
"Could not find Voltage Table in BIOS.",
|
|
return false);
|
|
|
|
ret = (pp_atomfwctrl_lookup_voltage_type_v4(voltage_info,
|
|
voltage_type, voltage_mode)) ? true : false;
|
|
|
|
return ret;
|
|
}
|
|
|
|
int pp_atomfwctrl_get_voltage_table_v4(struct pp_hwmgr *hwmgr,
|
|
uint8_t voltage_type, uint8_t voltage_mode,
|
|
struct pp_atomfwctrl_voltage_table *voltage_table)
|
|
{
|
|
struct atom_voltage_objects_info_v4_1 *voltage_info =
|
|
(struct atom_voltage_objects_info_v4_1 *)
|
|
pp_atomfwctrl_get_voltage_info_table(hwmgr);
|
|
const union atom_voltage_object_v4 *voltage_object;
|
|
unsigned int i;
|
|
int result = 0;
|
|
|
|
PP_ASSERT_WITH_CODE(voltage_info,
|
|
"Could not find Voltage Table in BIOS.",
|
|
return -1);
|
|
|
|
voltage_object = pp_atomfwctrl_lookup_voltage_type_v4(voltage_info,
|
|
voltage_type, voltage_mode);
|
|
|
|
if (!voltage_object)
|
|
return -1;
|
|
|
|
voltage_table->count = 0;
|
|
if (voltage_mode == VOLTAGE_OBJ_GPIO_LUT) {
|
|
PP_ASSERT_WITH_CODE(
|
|
(voltage_object->gpio_voltage_obj.gpio_entry_num <=
|
|
PP_ATOMFWCTRL_MAX_VOLTAGE_ENTRIES),
|
|
"Too many voltage entries!",
|
|
result = -1);
|
|
|
|
if (!result) {
|
|
for (i = 0; i < voltage_object->gpio_voltage_obj.
|
|
gpio_entry_num; i++) {
|
|
voltage_table->entries[i].value =
|
|
le16_to_cpu(voltage_object->gpio_voltage_obj.
|
|
voltage_gpio_lut[i].voltage_level_mv);
|
|
voltage_table->entries[i].smio_low =
|
|
le32_to_cpu(voltage_object->gpio_voltage_obj.
|
|
voltage_gpio_lut[i].voltage_gpio_reg_val);
|
|
}
|
|
voltage_table->count =
|
|
voltage_object->gpio_voltage_obj.gpio_entry_num;
|
|
voltage_table->mask_low =
|
|
le32_to_cpu(
|
|
voltage_object->gpio_voltage_obj.gpio_mask_val);
|
|
voltage_table->phase_delay =
|
|
voltage_object->gpio_voltage_obj.phase_delay_us;
|
|
}
|
|
} else if (voltage_mode == VOLTAGE_OBJ_SVID2) {
|
|
voltage_table->psi1_enable =
|
|
(voltage_object->svid2_voltage_obj.loadline_psi1 & 0x20) >> 5;
|
|
voltage_table->psi0_enable =
|
|
voltage_object->svid2_voltage_obj.psi0_enable & 0x1;
|
|
voltage_table->max_vid_step =
|
|
voltage_object->svid2_voltage_obj.maxvstep;
|
|
voltage_table->telemetry_offset =
|
|
voltage_object->svid2_voltage_obj.telemetry_offset;
|
|
voltage_table->telemetry_slope =
|
|
voltage_object->svid2_voltage_obj.telemetry_gain;
|
|
} else
|
|
PP_ASSERT_WITH_CODE(false,
|
|
"Unsupported Voltage Object Mode!",
|
|
result = -1);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
static struct atom_gpio_pin_lut_v2_1 *pp_atomfwctrl_get_gpio_lookup_table(
|
|
struct pp_hwmgr *hwmgr)
|
|
{
|
|
const void *table_address;
|
|
uint16_t idx;
|
|
|
|
idx = GetIndexIntoMasterDataTable(gpio_pin_lut);
|
|
table_address = cgs_atom_get_data_table(hwmgr->device,
|
|
idx, NULL, NULL, NULL);
|
|
PP_ASSERT_WITH_CODE(table_address,
|
|
"Error retrieving BIOS Table Address!",
|
|
return NULL);
|
|
|
|
return (struct atom_gpio_pin_lut_v2_1 *)table_address;
|
|
}
|
|
|
|
static bool pp_atomfwctrl_lookup_gpio_pin(
|
|
struct atom_gpio_pin_lut_v2_1 *gpio_lookup_table,
|
|
const uint32_t pin_id,
|
|
struct pp_atomfwctrl_gpio_pin_assignment *gpio_pin_assignment)
|
|
{
|
|
unsigned int size = le16_to_cpu(
|
|
gpio_lookup_table->table_header.structuresize);
|
|
unsigned int offset =
|
|
offsetof(struct atom_gpio_pin_lut_v2_1, gpio_pin[0]);
|
|
unsigned long start = (unsigned long)gpio_lookup_table;
|
|
|
|
while (offset < size) {
|
|
const struct atom_gpio_pin_assignment *pin_assignment =
|
|
(const struct atom_gpio_pin_assignment *)(start + offset);
|
|
|
|
if (pin_id == pin_assignment->gpio_id) {
|
|
gpio_pin_assignment->uc_gpio_pin_bit_shift =
|
|
pin_assignment->gpio_bitshift;
|
|
gpio_pin_assignment->us_gpio_pin_aindex =
|
|
le16_to_cpu(pin_assignment->data_a_reg_index);
|
|
return true;
|
|
}
|
|
offset += offsetof(struct atom_gpio_pin_assignment, gpio_id) + 1;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Returns TRUE if the given pin id find in lookup table.
|
|
*/
|
|
bool pp_atomfwctrl_get_pp_assign_pin(struct pp_hwmgr *hwmgr,
|
|
const uint32_t pin_id,
|
|
struct pp_atomfwctrl_gpio_pin_assignment *gpio_pin_assignment)
|
|
{
|
|
bool ret = false;
|
|
struct atom_gpio_pin_lut_v2_1 *gpio_lookup_table =
|
|
pp_atomfwctrl_get_gpio_lookup_table(hwmgr);
|
|
|
|
/* If we cannot find the table do NOT try to control this voltage. */
|
|
PP_ASSERT_WITH_CODE(gpio_lookup_table,
|
|
"Could not find GPIO lookup Table in BIOS.",
|
|
return false);
|
|
|
|
ret = pp_atomfwctrl_lookup_gpio_pin(gpio_lookup_table,
|
|
pin_id, gpio_pin_assignment);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Enter to SelfRefresh mode.
|
|
* @param hwmgr
|
|
*/
|
|
int pp_atomfwctrl_enter_self_refresh(struct pp_hwmgr *hwmgr)
|
|
{
|
|
/* 0 - no action
|
|
* 1 - leave power to video memory always on
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/** pp_atomfwctrl_get_gpu_pll_dividers_vega10().
|
|
*
|
|
* @param hwmgr input parameter: pointer to HwMgr
|
|
* @param clock_type input parameter: Clock type: 1 - GFXCLK, 2 - UCLK, 0 - All other clocks
|
|
* @param clock_value input parameter: Clock
|
|
* @param dividers output parameter:Clock dividers
|
|
*/
|
|
int pp_atomfwctrl_get_gpu_pll_dividers_vega10(struct pp_hwmgr *hwmgr,
|
|
uint32_t clock_type, uint32_t clock_value,
|
|
struct pp_atomfwctrl_clock_dividers_soc15 *dividers)
|
|
{
|
|
struct compute_gpu_clock_input_parameter_v1_8 pll_parameters;
|
|
struct compute_gpu_clock_output_parameter_v1_8 *pll_output;
|
|
int result;
|
|
uint32_t idx;
|
|
|
|
pll_parameters.gpuclock_10khz = (uint32_t)clock_value;
|
|
pll_parameters.gpu_clock_type = clock_type;
|
|
|
|
idx = GetIndexIntoMasterCmdTable(computegpuclockparam);
|
|
result = cgs_atom_exec_cmd_table(hwmgr->device, idx, &pll_parameters);
|
|
|
|
if (!result) {
|
|
pll_output = (struct compute_gpu_clock_output_parameter_v1_8 *)
|
|
&pll_parameters;
|
|
dividers->ulClock = le32_to_cpu(pll_output->gpuclock_10khz);
|
|
dividers->ulDid = le32_to_cpu(pll_output->dfs_did);
|
|
dividers->ulPll_fb_mult = le32_to_cpu(pll_output->pll_fb_mult);
|
|
dividers->ulPll_ss_fbsmult = le32_to_cpu(pll_output->pll_ss_fbsmult);
|
|
dividers->usPll_ss_slew_frac = le16_to_cpu(pll_output->pll_ss_slew_frac);
|
|
dividers->ucPll_ss_enable = pll_output->pll_ss_enable;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
int pp_atomfwctrl_get_avfs_information(struct pp_hwmgr *hwmgr,
|
|
struct pp_atomfwctrl_avfs_parameters *param)
|
|
{
|
|
uint16_t idx;
|
|
uint8_t format_revision, content_revision;
|
|
|
|
struct atom_asic_profiling_info_v4_1 *profile;
|
|
struct atom_asic_profiling_info_v4_2 *profile_v4_2;
|
|
|
|
idx = GetIndexIntoMasterDataTable(asic_profiling_info);
|
|
profile = (struct atom_asic_profiling_info_v4_1 *)
|
|
cgs_atom_get_data_table(hwmgr->device,
|
|
idx, NULL, NULL, NULL);
|
|
|
|
if (!profile)
|
|
return -1;
|
|
|
|
format_revision = ((struct atom_common_table_header *)profile)->format_revision;
|
|
content_revision = ((struct atom_common_table_header *)profile)->content_revision;
|
|
|
|
if (format_revision == 4 && content_revision == 1) {
|
|
param->ulMaxVddc = le32_to_cpu(profile->maxvddc);
|
|
param->ulMinVddc = le32_to_cpu(profile->minvddc);
|
|
param->ulMeanNsigmaAcontant0 =
|
|
le32_to_cpu(profile->avfs_meannsigma_acontant0);
|
|
param->ulMeanNsigmaAcontant1 =
|
|
le32_to_cpu(profile->avfs_meannsigma_acontant1);
|
|
param->ulMeanNsigmaAcontant2 =
|
|
le32_to_cpu(profile->avfs_meannsigma_acontant2);
|
|
param->usMeanNsigmaDcTolSigma =
|
|
le16_to_cpu(profile->avfs_meannsigma_dc_tol_sigma);
|
|
param->usMeanNsigmaPlatformMean =
|
|
le16_to_cpu(profile->avfs_meannsigma_platform_mean);
|
|
param->usMeanNsigmaPlatformSigma =
|
|
le16_to_cpu(profile->avfs_meannsigma_platform_sigma);
|
|
param->ulGbVdroopTableCksoffA0 =
|
|
le32_to_cpu(profile->gb_vdroop_table_cksoff_a0);
|
|
param->ulGbVdroopTableCksoffA1 =
|
|
le32_to_cpu(profile->gb_vdroop_table_cksoff_a1);
|
|
param->ulGbVdroopTableCksoffA2 =
|
|
le32_to_cpu(profile->gb_vdroop_table_cksoff_a2);
|
|
param->ulGbVdroopTableCksonA0 =
|
|
le32_to_cpu(profile->gb_vdroop_table_ckson_a0);
|
|
param->ulGbVdroopTableCksonA1 =
|
|
le32_to_cpu(profile->gb_vdroop_table_ckson_a1);
|
|
param->ulGbVdroopTableCksonA2 =
|
|
le32_to_cpu(profile->gb_vdroop_table_ckson_a2);
|
|
param->ulGbFuseTableCksoffM1 =
|
|
le32_to_cpu(profile->avfsgb_fuse_table_cksoff_m1);
|
|
param->ulGbFuseTableCksoffM2 =
|
|
le32_to_cpu(profile->avfsgb_fuse_table_cksoff_m2);
|
|
param->ulGbFuseTableCksoffB =
|
|
le32_to_cpu(profile->avfsgb_fuse_table_cksoff_b);
|
|
param->ulGbFuseTableCksonM1 =
|
|
le32_to_cpu(profile->avfsgb_fuse_table_ckson_m1);
|
|
param->ulGbFuseTableCksonM2 =
|
|
le32_to_cpu(profile->avfsgb_fuse_table_ckson_m2);
|
|
param->ulGbFuseTableCksonB =
|
|
le32_to_cpu(profile->avfsgb_fuse_table_ckson_b);
|
|
|
|
param->ucEnableGbVdroopTableCkson =
|
|
profile->enable_gb_vdroop_table_ckson;
|
|
param->ucEnableGbFuseTableCkson =
|
|
profile->enable_gb_fuse_table_ckson;
|
|
param->usPsmAgeComfactor =
|
|
le16_to_cpu(profile->psm_age_comfactor);
|
|
|
|
param->ulDispclk2GfxclkM1 =
|
|
le32_to_cpu(profile->dispclk2gfxclk_a);
|
|
param->ulDispclk2GfxclkM2 =
|
|
le32_to_cpu(profile->dispclk2gfxclk_b);
|
|
param->ulDispclk2GfxclkB =
|
|
le32_to_cpu(profile->dispclk2gfxclk_c);
|
|
param->ulDcefclk2GfxclkM1 =
|
|
le32_to_cpu(profile->dcefclk2gfxclk_a);
|
|
param->ulDcefclk2GfxclkM2 =
|
|
le32_to_cpu(profile->dcefclk2gfxclk_b);
|
|
param->ulDcefclk2GfxclkB =
|
|
le32_to_cpu(profile->dcefclk2gfxclk_c);
|
|
param->ulPixelclk2GfxclkM1 =
|
|
le32_to_cpu(profile->pixclk2gfxclk_a);
|
|
param->ulPixelclk2GfxclkM2 =
|
|
le32_to_cpu(profile->pixclk2gfxclk_b);
|
|
param->ulPixelclk2GfxclkB =
|
|
le32_to_cpu(profile->pixclk2gfxclk_c);
|
|
param->ulPhyclk2GfxclkM1 =
|
|
le32_to_cpu(profile->phyclk2gfxclk_a);
|
|
param->ulPhyclk2GfxclkM2 =
|
|
le32_to_cpu(profile->phyclk2gfxclk_b);
|
|
param->ulPhyclk2GfxclkB =
|
|
le32_to_cpu(profile->phyclk2gfxclk_c);
|
|
param->ulAcgGbVdroopTableA0 = 0;
|
|
param->ulAcgGbVdroopTableA1 = 0;
|
|
param->ulAcgGbVdroopTableA2 = 0;
|
|
param->ulAcgGbFuseTableM1 = 0;
|
|
param->ulAcgGbFuseTableM2 = 0;
|
|
param->ulAcgGbFuseTableB = 0;
|
|
param->ucAcgEnableGbVdroopTable = 0;
|
|
param->ucAcgEnableGbFuseTable = 0;
|
|
} else if (format_revision == 4 && content_revision == 2) {
|
|
profile_v4_2 = (struct atom_asic_profiling_info_v4_2 *)profile;
|
|
param->ulMaxVddc = le32_to_cpu(profile_v4_2->maxvddc);
|
|
param->ulMinVddc = le32_to_cpu(profile_v4_2->minvddc);
|
|
param->ulMeanNsigmaAcontant0 =
|
|
le32_to_cpu(profile_v4_2->avfs_meannsigma_acontant0);
|
|
param->ulMeanNsigmaAcontant1 =
|
|
le32_to_cpu(profile_v4_2->avfs_meannsigma_acontant1);
|
|
param->ulMeanNsigmaAcontant2 =
|
|
le32_to_cpu(profile_v4_2->avfs_meannsigma_acontant2);
|
|
param->usMeanNsigmaDcTolSigma =
|
|
le16_to_cpu(profile_v4_2->avfs_meannsigma_dc_tol_sigma);
|
|
param->usMeanNsigmaPlatformMean =
|
|
le16_to_cpu(profile_v4_2->avfs_meannsigma_platform_mean);
|
|
param->usMeanNsigmaPlatformSigma =
|
|
le16_to_cpu(profile_v4_2->avfs_meannsigma_platform_sigma);
|
|
param->ulGbVdroopTableCksoffA0 =
|
|
le32_to_cpu(profile_v4_2->gb_vdroop_table_cksoff_a0);
|
|
param->ulGbVdroopTableCksoffA1 =
|
|
le32_to_cpu(profile_v4_2->gb_vdroop_table_cksoff_a1);
|
|
param->ulGbVdroopTableCksoffA2 =
|
|
le32_to_cpu(profile_v4_2->gb_vdroop_table_cksoff_a2);
|
|
param->ulGbVdroopTableCksonA0 =
|
|
le32_to_cpu(profile_v4_2->gb_vdroop_table_ckson_a0);
|
|
param->ulGbVdroopTableCksonA1 =
|
|
le32_to_cpu(profile_v4_2->gb_vdroop_table_ckson_a1);
|
|
param->ulGbVdroopTableCksonA2 =
|
|
le32_to_cpu(profile_v4_2->gb_vdroop_table_ckson_a2);
|
|
param->ulGbFuseTableCksoffM1 =
|
|
le32_to_cpu(profile_v4_2->avfsgb_fuse_table_cksoff_m1);
|
|
param->ulGbFuseTableCksoffM2 =
|
|
le32_to_cpu(profile_v4_2->avfsgb_fuse_table_cksoff_m2);
|
|
param->ulGbFuseTableCksoffB =
|
|
le32_to_cpu(profile_v4_2->avfsgb_fuse_table_cksoff_b);
|
|
param->ulGbFuseTableCksonM1 =
|
|
le32_to_cpu(profile_v4_2->avfsgb_fuse_table_ckson_m1);
|
|
param->ulGbFuseTableCksonM2 =
|
|
le32_to_cpu(profile_v4_2->avfsgb_fuse_table_ckson_m2);
|
|
param->ulGbFuseTableCksonB =
|
|
le32_to_cpu(profile_v4_2->avfsgb_fuse_table_ckson_b);
|
|
|
|
param->ucEnableGbVdroopTableCkson =
|
|
profile_v4_2->enable_gb_vdroop_table_ckson;
|
|
param->ucEnableGbFuseTableCkson =
|
|
profile_v4_2->enable_gb_fuse_table_ckson;
|
|
param->usPsmAgeComfactor =
|
|
le16_to_cpu(profile_v4_2->psm_age_comfactor);
|
|
|
|
param->ulDispclk2GfxclkM1 =
|
|
le32_to_cpu(profile_v4_2->dispclk2gfxclk_a);
|
|
param->ulDispclk2GfxclkM2 =
|
|
le32_to_cpu(profile_v4_2->dispclk2gfxclk_b);
|
|
param->ulDispclk2GfxclkB =
|
|
le32_to_cpu(profile_v4_2->dispclk2gfxclk_c);
|
|
param->ulDcefclk2GfxclkM1 =
|
|
le32_to_cpu(profile_v4_2->dcefclk2gfxclk_a);
|
|
param->ulDcefclk2GfxclkM2 =
|
|
le32_to_cpu(profile_v4_2->dcefclk2gfxclk_b);
|
|
param->ulDcefclk2GfxclkB =
|
|
le32_to_cpu(profile_v4_2->dcefclk2gfxclk_c);
|
|
param->ulPixelclk2GfxclkM1 =
|
|
le32_to_cpu(profile_v4_2->pixclk2gfxclk_a);
|
|
param->ulPixelclk2GfxclkM2 =
|
|
le32_to_cpu(profile_v4_2->pixclk2gfxclk_b);
|
|
param->ulPixelclk2GfxclkB =
|
|
le32_to_cpu(profile_v4_2->pixclk2gfxclk_c);
|
|
param->ulPhyclk2GfxclkM1 =
|
|
le32_to_cpu(profile->phyclk2gfxclk_a);
|
|
param->ulPhyclk2GfxclkM2 =
|
|
le32_to_cpu(profile_v4_2->phyclk2gfxclk_b);
|
|
param->ulPhyclk2GfxclkB =
|
|
le32_to_cpu(profile_v4_2->phyclk2gfxclk_c);
|
|
param->ulAcgGbVdroopTableA0 = le32_to_cpu(profile_v4_2->acg_gb_vdroop_table_a0);
|
|
param->ulAcgGbVdroopTableA1 = le32_to_cpu(profile_v4_2->acg_gb_vdroop_table_a1);
|
|
param->ulAcgGbVdroopTableA2 = le32_to_cpu(profile_v4_2->acg_gb_vdroop_table_a2);
|
|
param->ulAcgGbFuseTableM1 = le32_to_cpu(profile_v4_2->acg_avfsgb_fuse_table_m1);
|
|
param->ulAcgGbFuseTableM2 = le32_to_cpu(profile_v4_2->acg_avfsgb_fuse_table_m2);
|
|
param->ulAcgGbFuseTableB = le32_to_cpu(profile_v4_2->acg_avfsgb_fuse_table_b);
|
|
param->ucAcgEnableGbVdroopTable = le32_to_cpu(profile_v4_2->enable_acg_gb_vdroop_table);
|
|
param->ucAcgEnableGbFuseTable = le32_to_cpu(profile_v4_2->enable_acg_gb_fuse_table);
|
|
} else {
|
|
pr_info("Invalid VBIOS AVFS ProfilingInfo Revision!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int pp_atomfwctrl_get_gpio_information(struct pp_hwmgr *hwmgr,
|
|
struct pp_atomfwctrl_gpio_parameters *param)
|
|
{
|
|
struct atom_smu_info_v3_1 *info;
|
|
uint16_t idx;
|
|
|
|
idx = GetIndexIntoMasterDataTable(smu_info);
|
|
info = (struct atom_smu_info_v3_1 *)
|
|
cgs_atom_get_data_table(hwmgr->device,
|
|
idx, NULL, NULL, NULL);
|
|
|
|
if (!info) {
|
|
pr_info("Error retrieving BIOS smu_info Table Address!");
|
|
return -1;
|
|
}
|
|
|
|
param->ucAcDcGpio = info->ac_dc_gpio_bit;
|
|
param->ucAcDcPolarity = info->ac_dc_polarity;
|
|
param->ucVR0HotGpio = info->vr0hot_gpio_bit;
|
|
param->ucVR0HotPolarity = info->vr0hot_polarity;
|
|
param->ucVR1HotGpio = info->vr1hot_gpio_bit;
|
|
param->ucVR1HotPolarity = info->vr1hot_polarity;
|
|
param->ucFwCtfGpio = info->fw_ctf_gpio_bit;
|
|
param->ucFwCtfPolarity = info->fw_ctf_polarity;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int pp_atomfwctrl__get_clk_information_by_clkid(struct pp_hwmgr *hwmgr, BIOS_CLKID id, uint32_t *frequency)
|
|
{
|
|
struct atom_get_smu_clock_info_parameters_v3_1 parameters;
|
|
struct atom_get_smu_clock_info_output_parameters_v3_1 *output;
|
|
uint32_t ix;
|
|
|
|
parameters.clk_id = id;
|
|
parameters.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
|
|
|
|
ix = GetIndexIntoMasterCmdTable(getsmuclockinfo);
|
|
if (!cgs_atom_exec_cmd_table(hwmgr->device, ix, ¶meters)) {
|
|
output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)¶meters;
|
|
*frequency = output->atom_smu_outputclkfreq.smu_clock_freq_hz / 10000;
|
|
} else {
|
|
pr_info("Error execute_table getsmuclockinfo!");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int pp_atomfwctrl_get_vbios_bootup_values(struct pp_hwmgr *hwmgr,
|
|
struct pp_atomfwctrl_bios_boot_up_values *boot_values)
|
|
{
|
|
struct atom_firmware_info_v3_1 *info = NULL;
|
|
uint16_t ix;
|
|
uint32_t frequency = 0;
|
|
|
|
ix = GetIndexIntoMasterDataTable(firmwareinfo);
|
|
info = (struct atom_firmware_info_v3_1 *)
|
|
cgs_atom_get_data_table(hwmgr->device,
|
|
ix, NULL, NULL, NULL);
|
|
|
|
if (!info) {
|
|
pr_info("Error retrieving BIOS firmwareinfo!");
|
|
return -EINVAL;
|
|
}
|
|
|
|
boot_values->ulRevision = info->firmware_revision;
|
|
boot_values->ulGfxClk = info->bootup_sclk_in10khz;
|
|
boot_values->ulUClk = info->bootup_mclk_in10khz;
|
|
boot_values->usVddc = info->bootup_vddc_mv;
|
|
boot_values->usVddci = info->bootup_vddci_mv;
|
|
boot_values->usMvddc = info->bootup_mvddc_mv;
|
|
boot_values->usVddGfx = info->bootup_vddgfx_mv;
|
|
boot_values->ulSocClk = 0;
|
|
boot_values->ulDCEFClk = 0;
|
|
|
|
if (!pp_atomfwctrl__get_clk_information_by_clkid(hwmgr, SMU9_SYSPLL0_SOCCLK_ID, &frequency))
|
|
boot_values->ulSocClk = frequency;
|
|
|
|
if (!pp_atomfwctrl__get_clk_information_by_clkid(hwmgr, SMU9_SYSPLL0_DCEFCLK_ID, &frequency))
|
|
boot_values->ulDCEFClk = frequency;
|
|
|
|
return 0;
|
|
}
|