linux_dsm_epyc7002/drivers/net/cnic.c
Michael Chan 681dbd7107 cnic: Fix locking in start/stop calls.
The slow path ulp_start and ulp_stop calls to the bnx2i driver
are sleepable calls and therefore should not be protected using
rcu_read_lock.  Fix it by using mutex and setting a bit during
these calls.  cnic_unregister_device() will now wait for the bit
to clear before completing the call.

Signed-off-by: Michael Chan <mchan@broadcom.com>
Reviewed-by: Benjamin Li <benli@broadcom.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-08-15 18:50:44 -07:00

2770 lines
66 KiB
C

/* cnic.c: Broadcom CNIC core network driver.
*
* Copyright (c) 2006-2009 Broadcom Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation.
*
* Original skeleton written by: John(Zongxi) Chen (zongxi@broadcom.com)
* Modified and maintained by: Michael Chan <mchan@broadcom.com>
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/uio_driver.h>
#include <linux/in.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
#define BCM_VLAN 1
#endif
#include <net/ip.h>
#include <net/tcp.h>
#include <net/route.h>
#include <net/ipv6.h>
#include <net/ip6_route.h>
#include <scsi/iscsi_if.h>
#include "cnic_if.h"
#include "bnx2.h"
#include "cnic.h"
#include "cnic_defs.h"
#define DRV_MODULE_NAME "cnic"
#define PFX DRV_MODULE_NAME ": "
static char version[] __devinitdata =
"Broadcom NetXtreme II CNIC Driver " DRV_MODULE_NAME " v" CNIC_MODULE_VERSION " (" CNIC_MODULE_RELDATE ")\n";
MODULE_AUTHOR("Michael Chan <mchan@broadcom.com> and John(Zongxi) "
"Chen (zongxi@broadcom.com");
MODULE_DESCRIPTION("Broadcom NetXtreme II CNIC Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(CNIC_MODULE_VERSION);
static LIST_HEAD(cnic_dev_list);
static DEFINE_RWLOCK(cnic_dev_lock);
static DEFINE_MUTEX(cnic_lock);
static struct cnic_ulp_ops *cnic_ulp_tbl[MAX_CNIC_ULP_TYPE];
static int cnic_service_bnx2(void *, void *);
static int cnic_ctl(void *, struct cnic_ctl_info *);
static struct cnic_ops cnic_bnx2_ops = {
.cnic_owner = THIS_MODULE,
.cnic_handler = cnic_service_bnx2,
.cnic_ctl = cnic_ctl,
};
static void cnic_shutdown_bnx2_rx_ring(struct cnic_dev *);
static void cnic_init_bnx2_tx_ring(struct cnic_dev *);
static void cnic_init_bnx2_rx_ring(struct cnic_dev *);
static int cnic_cm_set_pg(struct cnic_sock *);
static int cnic_uio_open(struct uio_info *uinfo, struct inode *inode)
{
struct cnic_dev *dev = uinfo->priv;
struct cnic_local *cp = dev->cnic_priv;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (cp->uio_dev != -1)
return -EBUSY;
cp->uio_dev = iminor(inode);
cnic_shutdown_bnx2_rx_ring(dev);
cnic_init_bnx2_tx_ring(dev);
cnic_init_bnx2_rx_ring(dev);
return 0;
}
static int cnic_uio_close(struct uio_info *uinfo, struct inode *inode)
{
struct cnic_dev *dev = uinfo->priv;
struct cnic_local *cp = dev->cnic_priv;
cp->uio_dev = -1;
return 0;
}
static inline void cnic_hold(struct cnic_dev *dev)
{
atomic_inc(&dev->ref_count);
}
static inline void cnic_put(struct cnic_dev *dev)
{
atomic_dec(&dev->ref_count);
}
static inline void csk_hold(struct cnic_sock *csk)
{
atomic_inc(&csk->ref_count);
}
static inline void csk_put(struct cnic_sock *csk)
{
atomic_dec(&csk->ref_count);
}
static struct cnic_dev *cnic_from_netdev(struct net_device *netdev)
{
struct cnic_dev *cdev;
read_lock(&cnic_dev_lock);
list_for_each_entry(cdev, &cnic_dev_list, list) {
if (netdev == cdev->netdev) {
cnic_hold(cdev);
read_unlock(&cnic_dev_lock);
return cdev;
}
}
read_unlock(&cnic_dev_lock);
return NULL;
}
static void cnic_ctx_wr(struct cnic_dev *dev, u32 cid_addr, u32 off, u32 val)
{
struct cnic_local *cp = dev->cnic_priv;
struct cnic_eth_dev *ethdev = cp->ethdev;
struct drv_ctl_info info;
struct drv_ctl_io *io = &info.data.io;
info.cmd = DRV_CTL_CTX_WR_CMD;
io->cid_addr = cid_addr;
io->offset = off;
io->data = val;
ethdev->drv_ctl(dev->netdev, &info);
}
static void cnic_reg_wr_ind(struct cnic_dev *dev, u32 off, u32 val)
{
struct cnic_local *cp = dev->cnic_priv;
struct cnic_eth_dev *ethdev = cp->ethdev;
struct drv_ctl_info info;
struct drv_ctl_io *io = &info.data.io;
info.cmd = DRV_CTL_IO_WR_CMD;
io->offset = off;
io->data = val;
ethdev->drv_ctl(dev->netdev, &info);
}
static u32 cnic_reg_rd_ind(struct cnic_dev *dev, u32 off)
{
struct cnic_local *cp = dev->cnic_priv;
struct cnic_eth_dev *ethdev = cp->ethdev;
struct drv_ctl_info info;
struct drv_ctl_io *io = &info.data.io;
info.cmd = DRV_CTL_IO_RD_CMD;
io->offset = off;
ethdev->drv_ctl(dev->netdev, &info);
return io->data;
}
static int cnic_in_use(struct cnic_sock *csk)
{
return test_bit(SK_F_INUSE, &csk->flags);
}
static void cnic_kwq_completion(struct cnic_dev *dev, u32 count)
{
struct cnic_local *cp = dev->cnic_priv;
struct cnic_eth_dev *ethdev = cp->ethdev;
struct drv_ctl_info info;
info.cmd = DRV_CTL_COMPLETION_CMD;
info.data.comp.comp_count = count;
ethdev->drv_ctl(dev->netdev, &info);
}
static int cnic_send_nlmsg(struct cnic_local *cp, u32 type,
struct cnic_sock *csk)
{
struct iscsi_path path_req;
char *buf = NULL;
u16 len = 0;
u32 msg_type = ISCSI_KEVENT_IF_DOWN;
struct cnic_ulp_ops *ulp_ops;
if (cp->uio_dev == -1)
return -ENODEV;
if (csk) {
len = sizeof(path_req);
buf = (char *) &path_req;
memset(&path_req, 0, len);
msg_type = ISCSI_KEVENT_PATH_REQ;
path_req.handle = (u64) csk->l5_cid;
if (test_bit(SK_F_IPV6, &csk->flags)) {
memcpy(&path_req.dst.v6_addr, &csk->dst_ip[0],
sizeof(struct in6_addr));
path_req.ip_addr_len = 16;
} else {
memcpy(&path_req.dst.v4_addr, &csk->dst_ip[0],
sizeof(struct in_addr));
path_req.ip_addr_len = 4;
}
path_req.vlan_id = csk->vlan_id;
path_req.pmtu = csk->mtu;
}
rcu_read_lock();
ulp_ops = rcu_dereference(cnic_ulp_tbl[CNIC_ULP_ISCSI]);
if (ulp_ops)
ulp_ops->iscsi_nl_send_msg(cp->dev, msg_type, buf, len);
rcu_read_unlock();
return 0;
}
static int cnic_iscsi_nl_msg_recv(struct cnic_dev *dev, u32 msg_type,
char *buf, u16 len)
{
int rc = -EINVAL;
switch (msg_type) {
case ISCSI_UEVENT_PATH_UPDATE: {
struct cnic_local *cp;
u32 l5_cid;
struct cnic_sock *csk;
struct iscsi_path *path_resp;
if (len < sizeof(*path_resp))
break;
path_resp = (struct iscsi_path *) buf;
cp = dev->cnic_priv;
l5_cid = (u32) path_resp->handle;
if (l5_cid >= MAX_CM_SK_TBL_SZ)
break;
csk = &cp->csk_tbl[l5_cid];
csk_hold(csk);
if (cnic_in_use(csk)) {
memcpy(csk->ha, path_resp->mac_addr, 6);
if (test_bit(SK_F_IPV6, &csk->flags))
memcpy(&csk->src_ip[0], &path_resp->src.v6_addr,
sizeof(struct in6_addr));
else
memcpy(&csk->src_ip[0], &path_resp->src.v4_addr,
sizeof(struct in_addr));
if (is_valid_ether_addr(csk->ha))
cnic_cm_set_pg(csk);
}
csk_put(csk);
rc = 0;
}
}
return rc;
}
static int cnic_offld_prep(struct cnic_sock *csk)
{
if (test_and_set_bit(SK_F_OFFLD_SCHED, &csk->flags))
return 0;
if (!test_bit(SK_F_CONNECT_START, &csk->flags)) {
clear_bit(SK_F_OFFLD_SCHED, &csk->flags);
return 0;
}
return 1;
}
static int cnic_close_prep(struct cnic_sock *csk)
{
clear_bit(SK_F_CONNECT_START, &csk->flags);
smp_mb__after_clear_bit();
if (test_and_clear_bit(SK_F_OFFLD_COMPLETE, &csk->flags)) {
while (test_and_set_bit(SK_F_OFFLD_SCHED, &csk->flags))
msleep(1);
return 1;
}
return 0;
}
static int cnic_abort_prep(struct cnic_sock *csk)
{
clear_bit(SK_F_CONNECT_START, &csk->flags);
smp_mb__after_clear_bit();
while (test_and_set_bit(SK_F_OFFLD_SCHED, &csk->flags))
msleep(1);
if (test_and_clear_bit(SK_F_OFFLD_COMPLETE, &csk->flags)) {
csk->state = L4_KCQE_OPCODE_VALUE_RESET_COMP;
return 1;
}
return 0;
}
static void cnic_uio_stop(void)
{
struct cnic_dev *dev;
read_lock(&cnic_dev_lock);
list_for_each_entry(dev, &cnic_dev_list, list) {
struct cnic_local *cp = dev->cnic_priv;
if (cp->cnic_uinfo)
cnic_send_nlmsg(cp, ISCSI_KEVENT_IF_DOWN, NULL);
}
read_unlock(&cnic_dev_lock);
}
int cnic_register_driver(int ulp_type, struct cnic_ulp_ops *ulp_ops)
{
struct cnic_dev *dev;
if (ulp_type >= MAX_CNIC_ULP_TYPE) {
printk(KERN_ERR PFX "cnic_register_driver: Bad type %d\n",
ulp_type);
return -EINVAL;
}
mutex_lock(&cnic_lock);
if (cnic_ulp_tbl[ulp_type]) {
printk(KERN_ERR PFX "cnic_register_driver: Type %d has already "
"been registered\n", ulp_type);
mutex_unlock(&cnic_lock);
return -EBUSY;
}
read_lock(&cnic_dev_lock);
list_for_each_entry(dev, &cnic_dev_list, list) {
struct cnic_local *cp = dev->cnic_priv;
clear_bit(ULP_F_INIT, &cp->ulp_flags[ulp_type]);
}
read_unlock(&cnic_dev_lock);
rcu_assign_pointer(cnic_ulp_tbl[ulp_type], ulp_ops);
mutex_unlock(&cnic_lock);
/* Prevent race conditions with netdev_event */
rtnl_lock();
read_lock(&cnic_dev_lock);
list_for_each_entry(dev, &cnic_dev_list, list) {
struct cnic_local *cp = dev->cnic_priv;
if (!test_and_set_bit(ULP_F_INIT, &cp->ulp_flags[ulp_type]))
ulp_ops->cnic_init(dev);
}
read_unlock(&cnic_dev_lock);
rtnl_unlock();
return 0;
}
int cnic_unregister_driver(int ulp_type)
{
struct cnic_dev *dev;
if (ulp_type >= MAX_CNIC_ULP_TYPE) {
printk(KERN_ERR PFX "cnic_unregister_driver: Bad type %d\n",
ulp_type);
return -EINVAL;
}
mutex_lock(&cnic_lock);
if (!cnic_ulp_tbl[ulp_type]) {
printk(KERN_ERR PFX "cnic_unregister_driver: Type %d has not "
"been registered\n", ulp_type);
goto out_unlock;
}
read_lock(&cnic_dev_lock);
list_for_each_entry(dev, &cnic_dev_list, list) {
struct cnic_local *cp = dev->cnic_priv;
if (rcu_dereference(cp->ulp_ops[ulp_type])) {
printk(KERN_ERR PFX "cnic_unregister_driver: Type %d "
"still has devices registered\n", ulp_type);
read_unlock(&cnic_dev_lock);
goto out_unlock;
}
}
read_unlock(&cnic_dev_lock);
if (ulp_type == CNIC_ULP_ISCSI)
cnic_uio_stop();
rcu_assign_pointer(cnic_ulp_tbl[ulp_type], NULL);
mutex_unlock(&cnic_lock);
synchronize_rcu();
return 0;
out_unlock:
mutex_unlock(&cnic_lock);
return -EINVAL;
}
static int cnic_start_hw(struct cnic_dev *);
static void cnic_stop_hw(struct cnic_dev *);
static int cnic_register_device(struct cnic_dev *dev, int ulp_type,
void *ulp_ctx)
{
struct cnic_local *cp = dev->cnic_priv;
struct cnic_ulp_ops *ulp_ops;
if (ulp_type >= MAX_CNIC_ULP_TYPE) {
printk(KERN_ERR PFX "cnic_register_device: Bad type %d\n",
ulp_type);
return -EINVAL;
}
mutex_lock(&cnic_lock);
if (cnic_ulp_tbl[ulp_type] == NULL) {
printk(KERN_ERR PFX "cnic_register_device: Driver with type %d "
"has not been registered\n", ulp_type);
mutex_unlock(&cnic_lock);
return -EAGAIN;
}
if (rcu_dereference(cp->ulp_ops[ulp_type])) {
printk(KERN_ERR PFX "cnic_register_device: Type %d has already "
"been registered to this device\n", ulp_type);
mutex_unlock(&cnic_lock);
return -EBUSY;
}
clear_bit(ULP_F_START, &cp->ulp_flags[ulp_type]);
cp->ulp_handle[ulp_type] = ulp_ctx;
ulp_ops = cnic_ulp_tbl[ulp_type];
rcu_assign_pointer(cp->ulp_ops[ulp_type], ulp_ops);
cnic_hold(dev);
if (test_bit(CNIC_F_CNIC_UP, &dev->flags))
if (!test_and_set_bit(ULP_F_START, &cp->ulp_flags[ulp_type]))
ulp_ops->cnic_start(cp->ulp_handle[ulp_type]);
mutex_unlock(&cnic_lock);
return 0;
}
EXPORT_SYMBOL(cnic_register_driver);
static int cnic_unregister_device(struct cnic_dev *dev, int ulp_type)
{
struct cnic_local *cp = dev->cnic_priv;
int i = 0;
if (ulp_type >= MAX_CNIC_ULP_TYPE) {
printk(KERN_ERR PFX "cnic_unregister_device: Bad type %d\n",
ulp_type);
return -EINVAL;
}
mutex_lock(&cnic_lock);
if (rcu_dereference(cp->ulp_ops[ulp_type])) {
rcu_assign_pointer(cp->ulp_ops[ulp_type], NULL);
cnic_put(dev);
} else {
printk(KERN_ERR PFX "cnic_unregister_device: device not "
"registered to this ulp type %d\n", ulp_type);
mutex_unlock(&cnic_lock);
return -EINVAL;
}
mutex_unlock(&cnic_lock);
synchronize_rcu();
while (test_bit(ULP_F_CALL_PENDING, &cp->ulp_flags[ulp_type]) &&
i < 20) {
msleep(100);
i++;
}
if (test_bit(ULP_F_CALL_PENDING, &cp->ulp_flags[ulp_type]))
printk(KERN_WARNING PFX "%s: Failed waiting for ULP up call"
" to complete.\n", dev->netdev->name);
return 0;
}
EXPORT_SYMBOL(cnic_unregister_driver);
static int cnic_init_id_tbl(struct cnic_id_tbl *id_tbl, u32 size, u32 start_id)
{
id_tbl->start = start_id;
id_tbl->max = size;
id_tbl->next = 0;
spin_lock_init(&id_tbl->lock);
id_tbl->table = kzalloc(DIV_ROUND_UP(size, 32) * 4, GFP_KERNEL);
if (!id_tbl->table)
return -ENOMEM;
return 0;
}
static void cnic_free_id_tbl(struct cnic_id_tbl *id_tbl)
{
kfree(id_tbl->table);
id_tbl->table = NULL;
}
static int cnic_alloc_id(struct cnic_id_tbl *id_tbl, u32 id)
{
int ret = -1;
id -= id_tbl->start;
if (id >= id_tbl->max)
return ret;
spin_lock(&id_tbl->lock);
if (!test_bit(id, id_tbl->table)) {
set_bit(id, id_tbl->table);
ret = 0;
}
spin_unlock(&id_tbl->lock);
return ret;
}
/* Returns -1 if not successful */
static u32 cnic_alloc_new_id(struct cnic_id_tbl *id_tbl)
{
u32 id;
spin_lock(&id_tbl->lock);
id = find_next_zero_bit(id_tbl->table, id_tbl->max, id_tbl->next);
if (id >= id_tbl->max) {
id = -1;
if (id_tbl->next != 0) {
id = find_first_zero_bit(id_tbl->table, id_tbl->next);
if (id >= id_tbl->next)
id = -1;
}
}
if (id < id_tbl->max) {
set_bit(id, id_tbl->table);
id_tbl->next = (id + 1) & (id_tbl->max - 1);
id += id_tbl->start;
}
spin_unlock(&id_tbl->lock);
return id;
}
static void cnic_free_id(struct cnic_id_tbl *id_tbl, u32 id)
{
if (id == -1)
return;
id -= id_tbl->start;
if (id >= id_tbl->max)
return;
clear_bit(id, id_tbl->table);
}
static void cnic_free_dma(struct cnic_dev *dev, struct cnic_dma *dma)
{
int i;
if (!dma->pg_arr)
return;
for (i = 0; i < dma->num_pages; i++) {
if (dma->pg_arr[i]) {
pci_free_consistent(dev->pcidev, BCM_PAGE_SIZE,
dma->pg_arr[i], dma->pg_map_arr[i]);
dma->pg_arr[i] = NULL;
}
}
if (dma->pgtbl) {
pci_free_consistent(dev->pcidev, dma->pgtbl_size,
dma->pgtbl, dma->pgtbl_map);
dma->pgtbl = NULL;
}
kfree(dma->pg_arr);
dma->pg_arr = NULL;
dma->num_pages = 0;
}
static void cnic_setup_page_tbl(struct cnic_dev *dev, struct cnic_dma *dma)
{
int i;
u32 *page_table = dma->pgtbl;
for (i = 0; i < dma->num_pages; i++) {
/* Each entry needs to be in big endian format. */
*page_table = (u32) ((u64) dma->pg_map_arr[i] >> 32);
page_table++;
*page_table = (u32) dma->pg_map_arr[i];
page_table++;
}
}
static int cnic_alloc_dma(struct cnic_dev *dev, struct cnic_dma *dma,
int pages, int use_pg_tbl)
{
int i, size;
struct cnic_local *cp = dev->cnic_priv;
size = pages * (sizeof(void *) + sizeof(dma_addr_t));
dma->pg_arr = kzalloc(size, GFP_ATOMIC);
if (dma->pg_arr == NULL)
return -ENOMEM;
dma->pg_map_arr = (dma_addr_t *) (dma->pg_arr + pages);
dma->num_pages = pages;
for (i = 0; i < pages; i++) {
dma->pg_arr[i] = pci_alloc_consistent(dev->pcidev,
BCM_PAGE_SIZE,
&dma->pg_map_arr[i]);
if (dma->pg_arr[i] == NULL)
goto error;
}
if (!use_pg_tbl)
return 0;
dma->pgtbl_size = ((pages * 8) + BCM_PAGE_SIZE - 1) &
~(BCM_PAGE_SIZE - 1);
dma->pgtbl = pci_alloc_consistent(dev->pcidev, dma->pgtbl_size,
&dma->pgtbl_map);
if (dma->pgtbl == NULL)
goto error;
cp->setup_pgtbl(dev, dma);
return 0;
error:
cnic_free_dma(dev, dma);
return -ENOMEM;
}
static void cnic_free_resc(struct cnic_dev *dev)
{
struct cnic_local *cp = dev->cnic_priv;
int i = 0;
if (cp->cnic_uinfo) {
while (cp->uio_dev != -1 && i < 15) {
msleep(100);
i++;
}
uio_unregister_device(cp->cnic_uinfo);
kfree(cp->cnic_uinfo);
cp->cnic_uinfo = NULL;
}
if (cp->l2_buf) {
pci_free_consistent(dev->pcidev, cp->l2_buf_size,
cp->l2_buf, cp->l2_buf_map);
cp->l2_buf = NULL;
}
if (cp->l2_ring) {
pci_free_consistent(dev->pcidev, cp->l2_ring_size,
cp->l2_ring, cp->l2_ring_map);
cp->l2_ring = NULL;
}
for (i = 0; i < cp->ctx_blks; i++) {
if (cp->ctx_arr[i].ctx) {
pci_free_consistent(dev->pcidev, cp->ctx_blk_size,
cp->ctx_arr[i].ctx,
cp->ctx_arr[i].mapping);
cp->ctx_arr[i].ctx = NULL;
}
}
kfree(cp->ctx_arr);
cp->ctx_arr = NULL;
cp->ctx_blks = 0;
cnic_free_dma(dev, &cp->gbl_buf_info);
cnic_free_dma(dev, &cp->conn_buf_info);
cnic_free_dma(dev, &cp->kwq_info);
cnic_free_dma(dev, &cp->kcq_info);
kfree(cp->iscsi_tbl);
cp->iscsi_tbl = NULL;
kfree(cp->ctx_tbl);
cp->ctx_tbl = NULL;
cnic_free_id_tbl(&cp->cid_tbl);
}
static int cnic_alloc_context(struct cnic_dev *dev)
{
struct cnic_local *cp = dev->cnic_priv;
if (CHIP_NUM(cp) == CHIP_NUM_5709) {
int i, k, arr_size;
cp->ctx_blk_size = BCM_PAGE_SIZE;
cp->cids_per_blk = BCM_PAGE_SIZE / 128;
arr_size = BNX2_MAX_CID / cp->cids_per_blk *
sizeof(struct cnic_ctx);
cp->ctx_arr = kzalloc(arr_size, GFP_KERNEL);
if (cp->ctx_arr == NULL)
return -ENOMEM;
k = 0;
for (i = 0; i < 2; i++) {
u32 j, reg, off, lo, hi;
if (i == 0)
off = BNX2_PG_CTX_MAP;
else
off = BNX2_ISCSI_CTX_MAP;
reg = cnic_reg_rd_ind(dev, off);
lo = reg >> 16;
hi = reg & 0xffff;
for (j = lo; j < hi; j += cp->cids_per_blk, k++)
cp->ctx_arr[k].cid = j;
}
cp->ctx_blks = k;
if (cp->ctx_blks >= (BNX2_MAX_CID / cp->cids_per_blk)) {
cp->ctx_blks = 0;
return -ENOMEM;
}
for (i = 0; i < cp->ctx_blks; i++) {
cp->ctx_arr[i].ctx =
pci_alloc_consistent(dev->pcidev, BCM_PAGE_SIZE,
&cp->ctx_arr[i].mapping);
if (cp->ctx_arr[i].ctx == NULL)
return -ENOMEM;
}
}
return 0;
}
static int cnic_alloc_bnx2_resc(struct cnic_dev *dev)
{
struct cnic_local *cp = dev->cnic_priv;
struct uio_info *uinfo;
int ret;
ret = cnic_alloc_dma(dev, &cp->kwq_info, KWQ_PAGE_CNT, 1);
if (ret)
goto error;
cp->kwq = (struct kwqe **) cp->kwq_info.pg_arr;
ret = cnic_alloc_dma(dev, &cp->kcq_info, KCQ_PAGE_CNT, 1);
if (ret)
goto error;
cp->kcq = (struct kcqe **) cp->kcq_info.pg_arr;
ret = cnic_alloc_context(dev);
if (ret)
goto error;
cp->l2_ring_size = 2 * BCM_PAGE_SIZE;
cp->l2_ring = pci_alloc_consistent(dev->pcidev, cp->l2_ring_size,
&cp->l2_ring_map);
if (!cp->l2_ring)
goto error;
cp->l2_buf_size = (cp->l2_rx_ring_size + 1) * cp->l2_single_buf_size;
cp->l2_buf_size = PAGE_ALIGN(cp->l2_buf_size);
cp->l2_buf = pci_alloc_consistent(dev->pcidev, cp->l2_buf_size,
&cp->l2_buf_map);
if (!cp->l2_buf)
goto error;
uinfo = kzalloc(sizeof(*uinfo), GFP_ATOMIC);
if (!uinfo)
goto error;
uinfo->mem[0].addr = dev->netdev->base_addr;
uinfo->mem[0].internal_addr = dev->regview;
uinfo->mem[0].size = dev->netdev->mem_end - dev->netdev->mem_start;
uinfo->mem[0].memtype = UIO_MEM_PHYS;
uinfo->mem[1].addr = (unsigned long) cp->status_blk & PAGE_MASK;
if (cp->ethdev->drv_state & CNIC_DRV_STATE_USING_MSIX)
uinfo->mem[1].size = BNX2_SBLK_MSIX_ALIGN_SIZE * 9;
else
uinfo->mem[1].size = BNX2_SBLK_MSIX_ALIGN_SIZE;
uinfo->mem[1].memtype = UIO_MEM_LOGICAL;
uinfo->mem[2].addr = (unsigned long) cp->l2_ring;
uinfo->mem[2].size = cp->l2_ring_size;
uinfo->mem[2].memtype = UIO_MEM_LOGICAL;
uinfo->mem[3].addr = (unsigned long) cp->l2_buf;
uinfo->mem[3].size = cp->l2_buf_size;
uinfo->mem[3].memtype = UIO_MEM_LOGICAL;
uinfo->name = "bnx2_cnic";
uinfo->version = CNIC_MODULE_VERSION;
uinfo->irq = UIO_IRQ_CUSTOM;
uinfo->open = cnic_uio_open;
uinfo->release = cnic_uio_close;
uinfo->priv = dev;
ret = uio_register_device(&dev->pcidev->dev, uinfo);
if (ret) {
kfree(uinfo);
goto error;
}
cp->cnic_uinfo = uinfo;
return 0;
error:
cnic_free_resc(dev);
return ret;
}
static inline u32 cnic_kwq_avail(struct cnic_local *cp)
{
return cp->max_kwq_idx -
((cp->kwq_prod_idx - cp->kwq_con_idx) & cp->max_kwq_idx);
}
static int cnic_submit_bnx2_kwqes(struct cnic_dev *dev, struct kwqe *wqes[],
u32 num_wqes)
{
struct cnic_local *cp = dev->cnic_priv;
struct kwqe *prod_qe;
u16 prod, sw_prod, i;
if (!test_bit(CNIC_F_CNIC_UP, &dev->flags))
return -EAGAIN; /* bnx2 is down */
spin_lock_bh(&cp->cnic_ulp_lock);
if (num_wqes > cnic_kwq_avail(cp) &&
!(cp->cnic_local_flags & CNIC_LCL_FL_KWQ_INIT)) {
spin_unlock_bh(&cp->cnic_ulp_lock);
return -EAGAIN;
}
cp->cnic_local_flags &= ~CNIC_LCL_FL_KWQ_INIT;
prod = cp->kwq_prod_idx;
sw_prod = prod & MAX_KWQ_IDX;
for (i = 0; i < num_wqes; i++) {
prod_qe = &cp->kwq[KWQ_PG(sw_prod)][KWQ_IDX(sw_prod)];
memcpy(prod_qe, wqes[i], sizeof(struct kwqe));
prod++;
sw_prod = prod & MAX_KWQ_IDX;
}
cp->kwq_prod_idx = prod;
CNIC_WR16(dev, cp->kwq_io_addr, cp->kwq_prod_idx);
spin_unlock_bh(&cp->cnic_ulp_lock);
return 0;
}
static void service_kcqes(struct cnic_dev *dev, int num_cqes)
{
struct cnic_local *cp = dev->cnic_priv;
int i, j;
i = 0;
j = 1;
while (num_cqes) {
struct cnic_ulp_ops *ulp_ops;
int ulp_type;
u32 kcqe_op_flag = cp->completed_kcq[i]->kcqe_op_flag;
u32 kcqe_layer = kcqe_op_flag & KCQE_FLAGS_LAYER_MASK;
if (unlikely(kcqe_op_flag & KCQE_RAMROD_COMPLETION))
cnic_kwq_completion(dev, 1);
while (j < num_cqes) {
u32 next_op = cp->completed_kcq[i + j]->kcqe_op_flag;
if ((next_op & KCQE_FLAGS_LAYER_MASK) != kcqe_layer)
break;
if (unlikely(next_op & KCQE_RAMROD_COMPLETION))
cnic_kwq_completion(dev, 1);
j++;
}
if (kcqe_layer == KCQE_FLAGS_LAYER_MASK_L5_RDMA)
ulp_type = CNIC_ULP_RDMA;
else if (kcqe_layer == KCQE_FLAGS_LAYER_MASK_L5_ISCSI)
ulp_type = CNIC_ULP_ISCSI;
else if (kcqe_layer == KCQE_FLAGS_LAYER_MASK_L4)
ulp_type = CNIC_ULP_L4;
else if (kcqe_layer == KCQE_FLAGS_LAYER_MASK_L2)
goto end;
else {
printk(KERN_ERR PFX "%s: Unknown type of KCQE(0x%x)\n",
dev->netdev->name, kcqe_op_flag);
goto end;
}
rcu_read_lock();
ulp_ops = rcu_dereference(cp->ulp_ops[ulp_type]);
if (likely(ulp_ops)) {
ulp_ops->indicate_kcqes(cp->ulp_handle[ulp_type],
cp->completed_kcq + i, j);
}
rcu_read_unlock();
end:
num_cqes -= j;
i += j;
j = 1;
}
return;
}
static u16 cnic_bnx2_next_idx(u16 idx)
{
return idx + 1;
}
static u16 cnic_bnx2_hw_idx(u16 idx)
{
return idx;
}
static int cnic_get_kcqes(struct cnic_dev *dev, u16 hw_prod, u16 *sw_prod)
{
struct cnic_local *cp = dev->cnic_priv;
u16 i, ri, last;
struct kcqe *kcqe;
int kcqe_cnt = 0, last_cnt = 0;
i = ri = last = *sw_prod;
ri &= MAX_KCQ_IDX;
while ((i != hw_prod) && (kcqe_cnt < MAX_COMPLETED_KCQE)) {
kcqe = &cp->kcq[KCQ_PG(ri)][KCQ_IDX(ri)];
cp->completed_kcq[kcqe_cnt++] = kcqe;
i = cp->next_idx(i);
ri = i & MAX_KCQ_IDX;
if (likely(!(kcqe->kcqe_op_flag & KCQE_FLAGS_NEXT))) {
last_cnt = kcqe_cnt;
last = i;
}
}
*sw_prod = last;
return last_cnt;
}
static void cnic_chk_bnx2_pkt_rings(struct cnic_local *cp)
{
u16 rx_cons = *cp->rx_cons_ptr;
u16 tx_cons = *cp->tx_cons_ptr;
if (cp->tx_cons != tx_cons || cp->rx_cons != rx_cons) {
cp->tx_cons = tx_cons;
cp->rx_cons = rx_cons;
uio_event_notify(cp->cnic_uinfo);
}
}
static int cnic_service_bnx2(void *data, void *status_blk)
{
struct cnic_dev *dev = data;
struct status_block *sblk = status_blk;
struct cnic_local *cp = dev->cnic_priv;
u32 status_idx = sblk->status_idx;
u16 hw_prod, sw_prod;
int kcqe_cnt;
if (unlikely(!test_bit(CNIC_F_CNIC_UP, &dev->flags)))
return status_idx;
cp->kwq_con_idx = *cp->kwq_con_idx_ptr;
hw_prod = sblk->status_completion_producer_index;
sw_prod = cp->kcq_prod_idx;
while (sw_prod != hw_prod) {
kcqe_cnt = cnic_get_kcqes(dev, hw_prod, &sw_prod);
if (kcqe_cnt == 0)
goto done;
service_kcqes(dev, kcqe_cnt);
/* Tell compiler that status_blk fields can change. */
barrier();
if (status_idx != sblk->status_idx) {
status_idx = sblk->status_idx;
cp->kwq_con_idx = *cp->kwq_con_idx_ptr;
hw_prod = sblk->status_completion_producer_index;
} else
break;
}
done:
CNIC_WR16(dev, cp->kcq_io_addr, sw_prod);
cp->kcq_prod_idx = sw_prod;
cnic_chk_bnx2_pkt_rings(cp);
return status_idx;
}
static void cnic_service_bnx2_msix(unsigned long data)
{
struct cnic_dev *dev = (struct cnic_dev *) data;
struct cnic_local *cp = dev->cnic_priv;
struct status_block_msix *status_blk = cp->bnx2_status_blk;
u32 status_idx = status_blk->status_idx;
u16 hw_prod, sw_prod;
int kcqe_cnt;
cp->kwq_con_idx = status_blk->status_cmd_consumer_index;
hw_prod = status_blk->status_completion_producer_index;
sw_prod = cp->kcq_prod_idx;
while (sw_prod != hw_prod) {
kcqe_cnt = cnic_get_kcqes(dev, hw_prod, &sw_prod);
if (kcqe_cnt == 0)
goto done;
service_kcqes(dev, kcqe_cnt);
/* Tell compiler that status_blk fields can change. */
barrier();
if (status_idx != status_blk->status_idx) {
status_idx = status_blk->status_idx;
cp->kwq_con_idx = status_blk->status_cmd_consumer_index;
hw_prod = status_blk->status_completion_producer_index;
} else
break;
}
done:
CNIC_WR16(dev, cp->kcq_io_addr, sw_prod);
cp->kcq_prod_idx = sw_prod;
cnic_chk_bnx2_pkt_rings(cp);
cp->last_status_idx = status_idx;
CNIC_WR(dev, BNX2_PCICFG_INT_ACK_CMD, cp->int_num |
BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | cp->last_status_idx);
}
static irqreturn_t cnic_irq(int irq, void *dev_instance)
{
struct cnic_dev *dev = dev_instance;
struct cnic_local *cp = dev->cnic_priv;
u16 prod = cp->kcq_prod_idx & MAX_KCQ_IDX;
if (cp->ack_int)
cp->ack_int(dev);
prefetch(cp->status_blk);
prefetch(&cp->kcq[KCQ_PG(prod)][KCQ_IDX(prod)]);
if (likely(test_bit(CNIC_F_CNIC_UP, &dev->flags)))
tasklet_schedule(&cp->cnic_irq_task);
return IRQ_HANDLED;
}
static void cnic_ulp_stop(struct cnic_dev *dev)
{
struct cnic_local *cp = dev->cnic_priv;
int if_type;
if (cp->cnic_uinfo)
cnic_send_nlmsg(cp, ISCSI_KEVENT_IF_DOWN, NULL);
for (if_type = 0; if_type < MAX_CNIC_ULP_TYPE; if_type++) {
struct cnic_ulp_ops *ulp_ops;
mutex_lock(&cnic_lock);
ulp_ops = cp->ulp_ops[if_type];
if (!ulp_ops) {
mutex_unlock(&cnic_lock);
continue;
}
set_bit(ULP_F_CALL_PENDING, &cp->ulp_flags[if_type]);
mutex_unlock(&cnic_lock);
if (test_and_clear_bit(ULP_F_START, &cp->ulp_flags[if_type]))
ulp_ops->cnic_stop(cp->ulp_handle[if_type]);
clear_bit(ULP_F_CALL_PENDING, &cp->ulp_flags[if_type]);
}
}
static void cnic_ulp_start(struct cnic_dev *dev)
{
struct cnic_local *cp = dev->cnic_priv;
int if_type;
for (if_type = 0; if_type < MAX_CNIC_ULP_TYPE; if_type++) {
struct cnic_ulp_ops *ulp_ops;
mutex_lock(&cnic_lock);
ulp_ops = cp->ulp_ops[if_type];
if (!ulp_ops || !ulp_ops->cnic_start) {
mutex_unlock(&cnic_lock);
continue;
}
set_bit(ULP_F_CALL_PENDING, &cp->ulp_flags[if_type]);
mutex_unlock(&cnic_lock);
if (!test_and_set_bit(ULP_F_START, &cp->ulp_flags[if_type]))
ulp_ops->cnic_start(cp->ulp_handle[if_type]);
clear_bit(ULP_F_CALL_PENDING, &cp->ulp_flags[if_type]);
}
}
static int cnic_ctl(void *data, struct cnic_ctl_info *info)
{
struct cnic_dev *dev = data;
switch (info->cmd) {
case CNIC_CTL_STOP_CMD:
cnic_hold(dev);
cnic_ulp_stop(dev);
cnic_stop_hw(dev);
cnic_put(dev);
break;
case CNIC_CTL_START_CMD:
cnic_hold(dev);
if (!cnic_start_hw(dev))
cnic_ulp_start(dev);
cnic_put(dev);
break;
default:
return -EINVAL;
}
return 0;
}
static void cnic_ulp_init(struct cnic_dev *dev)
{
int i;
struct cnic_local *cp = dev->cnic_priv;
rcu_read_lock();
for (i = 0; i < MAX_CNIC_ULP_TYPE_EXT; i++) {
struct cnic_ulp_ops *ulp_ops;
ulp_ops = rcu_dereference(cnic_ulp_tbl[i]);
if (!ulp_ops || !ulp_ops->cnic_init)
continue;
if (!test_and_set_bit(ULP_F_INIT, &cp->ulp_flags[i]))
ulp_ops->cnic_init(dev);
}
rcu_read_unlock();
}
static void cnic_ulp_exit(struct cnic_dev *dev)
{
int i;
struct cnic_local *cp = dev->cnic_priv;
rcu_read_lock();
for (i = 0; i < MAX_CNIC_ULP_TYPE_EXT; i++) {
struct cnic_ulp_ops *ulp_ops;
ulp_ops = rcu_dereference(cnic_ulp_tbl[i]);
if (!ulp_ops || !ulp_ops->cnic_exit)
continue;
if (test_and_clear_bit(ULP_F_INIT, &cp->ulp_flags[i]))
ulp_ops->cnic_exit(dev);
}
rcu_read_unlock();
}
static int cnic_cm_offload_pg(struct cnic_sock *csk)
{
struct cnic_dev *dev = csk->dev;
struct l4_kwq_offload_pg *l4kwqe;
struct kwqe *wqes[1];
l4kwqe = (struct l4_kwq_offload_pg *) &csk->kwqe1;
memset(l4kwqe, 0, sizeof(*l4kwqe));
wqes[0] = (struct kwqe *) l4kwqe;
l4kwqe->op_code = L4_KWQE_OPCODE_VALUE_OFFLOAD_PG;
l4kwqe->flags =
L4_LAYER_CODE << L4_KWQ_OFFLOAD_PG_LAYER_CODE_SHIFT;
l4kwqe->l2hdr_nbytes = ETH_HLEN;
l4kwqe->da0 = csk->ha[0];
l4kwqe->da1 = csk->ha[1];
l4kwqe->da2 = csk->ha[2];
l4kwqe->da3 = csk->ha[3];
l4kwqe->da4 = csk->ha[4];
l4kwqe->da5 = csk->ha[5];
l4kwqe->sa0 = dev->mac_addr[0];
l4kwqe->sa1 = dev->mac_addr[1];
l4kwqe->sa2 = dev->mac_addr[2];
l4kwqe->sa3 = dev->mac_addr[3];
l4kwqe->sa4 = dev->mac_addr[4];
l4kwqe->sa5 = dev->mac_addr[5];
l4kwqe->etype = ETH_P_IP;
l4kwqe->ipid_count = DEF_IPID_COUNT;
l4kwqe->host_opaque = csk->l5_cid;
if (csk->vlan_id) {
l4kwqe->pg_flags |= L4_KWQ_OFFLOAD_PG_VLAN_TAGGING;
l4kwqe->vlan_tag = csk->vlan_id;
l4kwqe->l2hdr_nbytes += 4;
}
return dev->submit_kwqes(dev, wqes, 1);
}
static int cnic_cm_update_pg(struct cnic_sock *csk)
{
struct cnic_dev *dev = csk->dev;
struct l4_kwq_update_pg *l4kwqe;
struct kwqe *wqes[1];
l4kwqe = (struct l4_kwq_update_pg *) &csk->kwqe1;
memset(l4kwqe, 0, sizeof(*l4kwqe));
wqes[0] = (struct kwqe *) l4kwqe;
l4kwqe->opcode = L4_KWQE_OPCODE_VALUE_UPDATE_PG;
l4kwqe->flags =
L4_LAYER_CODE << L4_KWQ_UPDATE_PG_LAYER_CODE_SHIFT;
l4kwqe->pg_cid = csk->pg_cid;
l4kwqe->da0 = csk->ha[0];
l4kwqe->da1 = csk->ha[1];
l4kwqe->da2 = csk->ha[2];
l4kwqe->da3 = csk->ha[3];
l4kwqe->da4 = csk->ha[4];
l4kwqe->da5 = csk->ha[5];
l4kwqe->pg_host_opaque = csk->l5_cid;
l4kwqe->pg_valids = L4_KWQ_UPDATE_PG_VALIDS_DA;
return dev->submit_kwqes(dev, wqes, 1);
}
static int cnic_cm_upload_pg(struct cnic_sock *csk)
{
struct cnic_dev *dev = csk->dev;
struct l4_kwq_upload *l4kwqe;
struct kwqe *wqes[1];
l4kwqe = (struct l4_kwq_upload *) &csk->kwqe1;
memset(l4kwqe, 0, sizeof(*l4kwqe));
wqes[0] = (struct kwqe *) l4kwqe;
l4kwqe->opcode = L4_KWQE_OPCODE_VALUE_UPLOAD_PG;
l4kwqe->flags =
L4_LAYER_CODE << L4_KWQ_UPLOAD_LAYER_CODE_SHIFT;
l4kwqe->cid = csk->pg_cid;
return dev->submit_kwqes(dev, wqes, 1);
}
static int cnic_cm_conn_req(struct cnic_sock *csk)
{
struct cnic_dev *dev = csk->dev;
struct l4_kwq_connect_req1 *l4kwqe1;
struct l4_kwq_connect_req2 *l4kwqe2;
struct l4_kwq_connect_req3 *l4kwqe3;
struct kwqe *wqes[3];
u8 tcp_flags = 0;
int num_wqes = 2;
l4kwqe1 = (struct l4_kwq_connect_req1 *) &csk->kwqe1;
l4kwqe2 = (struct l4_kwq_connect_req2 *) &csk->kwqe2;
l4kwqe3 = (struct l4_kwq_connect_req3 *) &csk->kwqe3;
memset(l4kwqe1, 0, sizeof(*l4kwqe1));
memset(l4kwqe2, 0, sizeof(*l4kwqe2));
memset(l4kwqe3, 0, sizeof(*l4kwqe3));
l4kwqe3->op_code = L4_KWQE_OPCODE_VALUE_CONNECT3;
l4kwqe3->flags =
L4_LAYER_CODE << L4_KWQ_CONNECT_REQ3_LAYER_CODE_SHIFT;
l4kwqe3->ka_timeout = csk->ka_timeout;
l4kwqe3->ka_interval = csk->ka_interval;
l4kwqe3->ka_max_probe_count = csk->ka_max_probe_count;
l4kwqe3->tos = csk->tos;
l4kwqe3->ttl = csk->ttl;
l4kwqe3->snd_seq_scale = csk->snd_seq_scale;
l4kwqe3->pmtu = csk->mtu;
l4kwqe3->rcv_buf = csk->rcv_buf;
l4kwqe3->snd_buf = csk->snd_buf;
l4kwqe3->seed = csk->seed;
wqes[0] = (struct kwqe *) l4kwqe1;
if (test_bit(SK_F_IPV6, &csk->flags)) {
wqes[1] = (struct kwqe *) l4kwqe2;
wqes[2] = (struct kwqe *) l4kwqe3;
num_wqes = 3;
l4kwqe1->conn_flags = L4_KWQ_CONNECT_REQ1_IP_V6;
l4kwqe2->op_code = L4_KWQE_OPCODE_VALUE_CONNECT2;
l4kwqe2->flags =
L4_KWQ_CONNECT_REQ2_LINKED_WITH_NEXT |
L4_LAYER_CODE << L4_KWQ_CONNECT_REQ2_LAYER_CODE_SHIFT;
l4kwqe2->src_ip_v6_2 = be32_to_cpu(csk->src_ip[1]);
l4kwqe2->src_ip_v6_3 = be32_to_cpu(csk->src_ip[2]);
l4kwqe2->src_ip_v6_4 = be32_to_cpu(csk->src_ip[3]);
l4kwqe2->dst_ip_v6_2 = be32_to_cpu(csk->dst_ip[1]);
l4kwqe2->dst_ip_v6_3 = be32_to_cpu(csk->dst_ip[2]);
l4kwqe2->dst_ip_v6_4 = be32_to_cpu(csk->dst_ip[3]);
l4kwqe3->mss = l4kwqe3->pmtu - sizeof(struct ipv6hdr) -
sizeof(struct tcphdr);
} else {
wqes[1] = (struct kwqe *) l4kwqe3;
l4kwqe3->mss = l4kwqe3->pmtu - sizeof(struct iphdr) -
sizeof(struct tcphdr);
}
l4kwqe1->op_code = L4_KWQE_OPCODE_VALUE_CONNECT1;
l4kwqe1->flags =
(L4_LAYER_CODE << L4_KWQ_CONNECT_REQ1_LAYER_CODE_SHIFT) |
L4_KWQ_CONNECT_REQ3_LINKED_WITH_NEXT;
l4kwqe1->cid = csk->cid;
l4kwqe1->pg_cid = csk->pg_cid;
l4kwqe1->src_ip = be32_to_cpu(csk->src_ip[0]);
l4kwqe1->dst_ip = be32_to_cpu(csk->dst_ip[0]);
l4kwqe1->src_port = be16_to_cpu(csk->src_port);
l4kwqe1->dst_port = be16_to_cpu(csk->dst_port);
if (csk->tcp_flags & SK_TCP_NO_DELAY_ACK)
tcp_flags |= L4_KWQ_CONNECT_REQ1_NO_DELAY_ACK;
if (csk->tcp_flags & SK_TCP_KEEP_ALIVE)
tcp_flags |= L4_KWQ_CONNECT_REQ1_KEEP_ALIVE;
if (csk->tcp_flags & SK_TCP_NAGLE)
tcp_flags |= L4_KWQ_CONNECT_REQ1_NAGLE_ENABLE;
if (csk->tcp_flags & SK_TCP_TIMESTAMP)
tcp_flags |= L4_KWQ_CONNECT_REQ1_TIME_STAMP;
if (csk->tcp_flags & SK_TCP_SACK)
tcp_flags |= L4_KWQ_CONNECT_REQ1_SACK;
if (csk->tcp_flags & SK_TCP_SEG_SCALING)
tcp_flags |= L4_KWQ_CONNECT_REQ1_SEG_SCALING;
l4kwqe1->tcp_flags = tcp_flags;
return dev->submit_kwqes(dev, wqes, num_wqes);
}
static int cnic_cm_close_req(struct cnic_sock *csk)
{
struct cnic_dev *dev = csk->dev;
struct l4_kwq_close_req *l4kwqe;
struct kwqe *wqes[1];
l4kwqe = (struct l4_kwq_close_req *) &csk->kwqe2;
memset(l4kwqe, 0, sizeof(*l4kwqe));
wqes[0] = (struct kwqe *) l4kwqe;
l4kwqe->op_code = L4_KWQE_OPCODE_VALUE_CLOSE;
l4kwqe->flags = L4_LAYER_CODE << L4_KWQ_CLOSE_REQ_LAYER_CODE_SHIFT;
l4kwqe->cid = csk->cid;
return dev->submit_kwqes(dev, wqes, 1);
}
static int cnic_cm_abort_req(struct cnic_sock *csk)
{
struct cnic_dev *dev = csk->dev;
struct l4_kwq_reset_req *l4kwqe;
struct kwqe *wqes[1];
l4kwqe = (struct l4_kwq_reset_req *) &csk->kwqe2;
memset(l4kwqe, 0, sizeof(*l4kwqe));
wqes[0] = (struct kwqe *) l4kwqe;
l4kwqe->op_code = L4_KWQE_OPCODE_VALUE_RESET;
l4kwqe->flags = L4_LAYER_CODE << L4_KWQ_RESET_REQ_LAYER_CODE_SHIFT;
l4kwqe->cid = csk->cid;
return dev->submit_kwqes(dev, wqes, 1);
}
static int cnic_cm_create(struct cnic_dev *dev, int ulp_type, u32 cid,
u32 l5_cid, struct cnic_sock **csk, void *context)
{
struct cnic_local *cp = dev->cnic_priv;
struct cnic_sock *csk1;
if (l5_cid >= MAX_CM_SK_TBL_SZ)
return -EINVAL;
csk1 = &cp->csk_tbl[l5_cid];
if (atomic_read(&csk1->ref_count))
return -EAGAIN;
if (test_and_set_bit(SK_F_INUSE, &csk1->flags))
return -EBUSY;
csk1->dev = dev;
csk1->cid = cid;
csk1->l5_cid = l5_cid;
csk1->ulp_type = ulp_type;
csk1->context = context;
csk1->ka_timeout = DEF_KA_TIMEOUT;
csk1->ka_interval = DEF_KA_INTERVAL;
csk1->ka_max_probe_count = DEF_KA_MAX_PROBE_COUNT;
csk1->tos = DEF_TOS;
csk1->ttl = DEF_TTL;
csk1->snd_seq_scale = DEF_SND_SEQ_SCALE;
csk1->rcv_buf = DEF_RCV_BUF;
csk1->snd_buf = DEF_SND_BUF;
csk1->seed = DEF_SEED;
*csk = csk1;
return 0;
}
static void cnic_cm_cleanup(struct cnic_sock *csk)
{
if (csk->src_port) {
struct cnic_dev *dev = csk->dev;
struct cnic_local *cp = dev->cnic_priv;
cnic_free_id(&cp->csk_port_tbl, csk->src_port);
csk->src_port = 0;
}
}
static void cnic_close_conn(struct cnic_sock *csk)
{
if (test_bit(SK_F_PG_OFFLD_COMPLETE, &csk->flags)) {
cnic_cm_upload_pg(csk);
clear_bit(SK_F_PG_OFFLD_COMPLETE, &csk->flags);
}
cnic_cm_cleanup(csk);
}
static int cnic_cm_destroy(struct cnic_sock *csk)
{
if (!cnic_in_use(csk))
return -EINVAL;
csk_hold(csk);
clear_bit(SK_F_INUSE, &csk->flags);
smp_mb__after_clear_bit();
while (atomic_read(&csk->ref_count) != 1)
msleep(1);
cnic_cm_cleanup(csk);
csk->flags = 0;
csk_put(csk);
return 0;
}
static inline u16 cnic_get_vlan(struct net_device *dev,
struct net_device **vlan_dev)
{
if (dev->priv_flags & IFF_802_1Q_VLAN) {
*vlan_dev = vlan_dev_real_dev(dev);
return vlan_dev_vlan_id(dev);
}
*vlan_dev = dev;
return 0;
}
static int cnic_get_v4_route(struct sockaddr_in *dst_addr,
struct dst_entry **dst)
{
#if defined(CONFIG_INET)
struct flowi fl;
int err;
struct rtable *rt;
memset(&fl, 0, sizeof(fl));
fl.nl_u.ip4_u.daddr = dst_addr->sin_addr.s_addr;
err = ip_route_output_key(&init_net, &rt, &fl);
if (!err)
*dst = &rt->u.dst;
return err;
#else
return -ENETUNREACH;
#endif
}
static int cnic_get_v6_route(struct sockaddr_in6 *dst_addr,
struct dst_entry **dst)
{
#if defined(CONFIG_IPV6) || (defined(CONFIG_IPV6_MODULE) && defined(MODULE))
struct flowi fl;
memset(&fl, 0, sizeof(fl));
ipv6_addr_copy(&fl.fl6_dst, &dst_addr->sin6_addr);
if (ipv6_addr_type(&fl.fl6_dst) & IPV6_ADDR_LINKLOCAL)
fl.oif = dst_addr->sin6_scope_id;
*dst = ip6_route_output(&init_net, NULL, &fl);
if (*dst)
return 0;
#endif
return -ENETUNREACH;
}
static struct cnic_dev *cnic_cm_select_dev(struct sockaddr_in *dst_addr,
int ulp_type)
{
struct cnic_dev *dev = NULL;
struct dst_entry *dst;
struct net_device *netdev = NULL;
int err = -ENETUNREACH;
if (dst_addr->sin_family == AF_INET)
err = cnic_get_v4_route(dst_addr, &dst);
else if (dst_addr->sin_family == AF_INET6) {
struct sockaddr_in6 *dst_addr6 =
(struct sockaddr_in6 *) dst_addr;
err = cnic_get_v6_route(dst_addr6, &dst);
} else
return NULL;
if (err)
return NULL;
if (!dst->dev)
goto done;
cnic_get_vlan(dst->dev, &netdev);
dev = cnic_from_netdev(netdev);
done:
dst_release(dst);
if (dev)
cnic_put(dev);
return dev;
}
static int cnic_resolve_addr(struct cnic_sock *csk, struct cnic_sockaddr *saddr)
{
struct cnic_dev *dev = csk->dev;
struct cnic_local *cp = dev->cnic_priv;
return cnic_send_nlmsg(cp, ISCSI_KEVENT_PATH_REQ, csk);
}
static int cnic_get_route(struct cnic_sock *csk, struct cnic_sockaddr *saddr)
{
struct cnic_dev *dev = csk->dev;
struct cnic_local *cp = dev->cnic_priv;
int is_v6, err, rc = -ENETUNREACH;
struct dst_entry *dst;
struct net_device *realdev;
u32 local_port;
if (saddr->local.v6.sin6_family == AF_INET6 &&
saddr->remote.v6.sin6_family == AF_INET6)
is_v6 = 1;
else if (saddr->local.v4.sin_family == AF_INET &&
saddr->remote.v4.sin_family == AF_INET)
is_v6 = 0;
else
return -EINVAL;
clear_bit(SK_F_IPV6, &csk->flags);
if (is_v6) {
#if defined(CONFIG_IPV6) || (defined(CONFIG_IPV6_MODULE) && defined(MODULE))
set_bit(SK_F_IPV6, &csk->flags);
err = cnic_get_v6_route(&saddr->remote.v6, &dst);
if (err)
return err;
if (!dst || dst->error || !dst->dev)
goto err_out;
memcpy(&csk->dst_ip[0], &saddr->remote.v6.sin6_addr,
sizeof(struct in6_addr));
csk->dst_port = saddr->remote.v6.sin6_port;
local_port = saddr->local.v6.sin6_port;
#else
return rc;
#endif
} else {
err = cnic_get_v4_route(&saddr->remote.v4, &dst);
if (err)
return err;
if (!dst || dst->error || !dst->dev)
goto err_out;
csk->dst_ip[0] = saddr->remote.v4.sin_addr.s_addr;
csk->dst_port = saddr->remote.v4.sin_port;
local_port = saddr->local.v4.sin_port;
}
csk->vlan_id = cnic_get_vlan(dst->dev, &realdev);
if (realdev != dev->netdev)
goto err_out;
if (local_port >= CNIC_LOCAL_PORT_MIN &&
local_port < CNIC_LOCAL_PORT_MAX) {
if (cnic_alloc_id(&cp->csk_port_tbl, local_port))
local_port = 0;
} else
local_port = 0;
if (!local_port) {
local_port = cnic_alloc_new_id(&cp->csk_port_tbl);
if (local_port == -1) {
rc = -ENOMEM;
goto err_out;
}
}
csk->src_port = local_port;
csk->mtu = dst_mtu(dst);
rc = 0;
err_out:
dst_release(dst);
return rc;
}
static void cnic_init_csk_state(struct cnic_sock *csk)
{
csk->state = 0;
clear_bit(SK_F_OFFLD_SCHED, &csk->flags);
clear_bit(SK_F_CLOSING, &csk->flags);
}
static int cnic_cm_connect(struct cnic_sock *csk, struct cnic_sockaddr *saddr)
{
int err = 0;
if (!cnic_in_use(csk))
return -EINVAL;
if (test_and_set_bit(SK_F_CONNECT_START, &csk->flags))
return -EINVAL;
cnic_init_csk_state(csk);
err = cnic_get_route(csk, saddr);
if (err)
goto err_out;
err = cnic_resolve_addr(csk, saddr);
if (!err)
return 0;
err_out:
clear_bit(SK_F_CONNECT_START, &csk->flags);
return err;
}
static int cnic_cm_abort(struct cnic_sock *csk)
{
struct cnic_local *cp = csk->dev->cnic_priv;
u32 opcode;
if (!cnic_in_use(csk))
return -EINVAL;
if (cnic_abort_prep(csk))
return cnic_cm_abort_req(csk);
/* Getting here means that we haven't started connect, or
* connect was not successful.
*/
csk->state = L4_KCQE_OPCODE_VALUE_RESET_COMP;
if (test_bit(SK_F_PG_OFFLD_COMPLETE, &csk->flags))
opcode = csk->state;
else
opcode = L5CM_RAMROD_CMD_ID_TERMINATE_OFFLOAD;
cp->close_conn(csk, opcode);
return 0;
}
static int cnic_cm_close(struct cnic_sock *csk)
{
if (!cnic_in_use(csk))
return -EINVAL;
if (cnic_close_prep(csk)) {
csk->state = L4_KCQE_OPCODE_VALUE_CLOSE_COMP;
return cnic_cm_close_req(csk);
}
return 0;
}
static void cnic_cm_upcall(struct cnic_local *cp, struct cnic_sock *csk,
u8 opcode)
{
struct cnic_ulp_ops *ulp_ops;
int ulp_type = csk->ulp_type;
rcu_read_lock();
ulp_ops = rcu_dereference(cp->ulp_ops[ulp_type]);
if (ulp_ops) {
if (opcode == L4_KCQE_OPCODE_VALUE_CONNECT_COMPLETE)
ulp_ops->cm_connect_complete(csk);
else if (opcode == L4_KCQE_OPCODE_VALUE_CLOSE_COMP)
ulp_ops->cm_close_complete(csk);
else if (opcode == L4_KCQE_OPCODE_VALUE_RESET_RECEIVED)
ulp_ops->cm_remote_abort(csk);
else if (opcode == L4_KCQE_OPCODE_VALUE_RESET_COMP)
ulp_ops->cm_abort_complete(csk);
else if (opcode == L4_KCQE_OPCODE_VALUE_CLOSE_RECEIVED)
ulp_ops->cm_remote_close(csk);
}
rcu_read_unlock();
}
static int cnic_cm_set_pg(struct cnic_sock *csk)
{
if (cnic_offld_prep(csk)) {
if (test_bit(SK_F_PG_OFFLD_COMPLETE, &csk->flags))
cnic_cm_update_pg(csk);
else
cnic_cm_offload_pg(csk);
}
return 0;
}
static void cnic_cm_process_offld_pg(struct cnic_dev *dev, struct l4_kcq *kcqe)
{
struct cnic_local *cp = dev->cnic_priv;
u32 l5_cid = kcqe->pg_host_opaque;
u8 opcode = kcqe->op_code;
struct cnic_sock *csk = &cp->csk_tbl[l5_cid];
csk_hold(csk);
if (!cnic_in_use(csk))
goto done;
if (opcode == L4_KCQE_OPCODE_VALUE_UPDATE_PG) {
clear_bit(SK_F_OFFLD_SCHED, &csk->flags);
goto done;
}
csk->pg_cid = kcqe->pg_cid;
set_bit(SK_F_PG_OFFLD_COMPLETE, &csk->flags);
cnic_cm_conn_req(csk);
done:
csk_put(csk);
}
static void cnic_cm_process_kcqe(struct cnic_dev *dev, struct kcqe *kcqe)
{
struct cnic_local *cp = dev->cnic_priv;
struct l4_kcq *l4kcqe = (struct l4_kcq *) kcqe;
u8 opcode = l4kcqe->op_code;
u32 l5_cid;
struct cnic_sock *csk;
if (opcode == L4_KCQE_OPCODE_VALUE_OFFLOAD_PG ||
opcode == L4_KCQE_OPCODE_VALUE_UPDATE_PG) {
cnic_cm_process_offld_pg(dev, l4kcqe);
return;
}
l5_cid = l4kcqe->conn_id;
if (opcode & 0x80)
l5_cid = l4kcqe->cid;
if (l5_cid >= MAX_CM_SK_TBL_SZ)
return;
csk = &cp->csk_tbl[l5_cid];
csk_hold(csk);
if (!cnic_in_use(csk)) {
csk_put(csk);
return;
}
switch (opcode) {
case L4_KCQE_OPCODE_VALUE_CONNECT_COMPLETE:
if (l4kcqe->status == 0)
set_bit(SK_F_OFFLD_COMPLETE, &csk->flags);
smp_mb__before_clear_bit();
clear_bit(SK_F_OFFLD_SCHED, &csk->flags);
cnic_cm_upcall(cp, csk, opcode);
break;
case L4_KCQE_OPCODE_VALUE_RESET_RECEIVED:
if (test_and_clear_bit(SK_F_OFFLD_COMPLETE, &csk->flags))
csk->state = opcode;
/* fall through */
case L4_KCQE_OPCODE_VALUE_CLOSE_COMP:
case L4_KCQE_OPCODE_VALUE_RESET_COMP:
cp->close_conn(csk, opcode);
break;
case L4_KCQE_OPCODE_VALUE_CLOSE_RECEIVED:
cnic_cm_upcall(cp, csk, opcode);
break;
}
csk_put(csk);
}
static void cnic_cm_indicate_kcqe(void *data, struct kcqe *kcqe[], u32 num)
{
struct cnic_dev *dev = data;
int i;
for (i = 0; i < num; i++)
cnic_cm_process_kcqe(dev, kcqe[i]);
}
static struct cnic_ulp_ops cm_ulp_ops = {
.indicate_kcqes = cnic_cm_indicate_kcqe,
};
static void cnic_cm_free_mem(struct cnic_dev *dev)
{
struct cnic_local *cp = dev->cnic_priv;
kfree(cp->csk_tbl);
cp->csk_tbl = NULL;
cnic_free_id_tbl(&cp->csk_port_tbl);
}
static int cnic_cm_alloc_mem(struct cnic_dev *dev)
{
struct cnic_local *cp = dev->cnic_priv;
cp->csk_tbl = kzalloc(sizeof(struct cnic_sock) * MAX_CM_SK_TBL_SZ,
GFP_KERNEL);
if (!cp->csk_tbl)
return -ENOMEM;
if (cnic_init_id_tbl(&cp->csk_port_tbl, CNIC_LOCAL_PORT_RANGE,
CNIC_LOCAL_PORT_MIN)) {
cnic_cm_free_mem(dev);
return -ENOMEM;
}
return 0;
}
static int cnic_ready_to_close(struct cnic_sock *csk, u32 opcode)
{
if ((opcode == csk->state) ||
(opcode == L4_KCQE_OPCODE_VALUE_RESET_RECEIVED &&
csk->state == L4_KCQE_OPCODE_VALUE_CLOSE_COMP)) {
if (!test_and_set_bit(SK_F_CLOSING, &csk->flags))
return 1;
}
return 0;
}
static void cnic_close_bnx2_conn(struct cnic_sock *csk, u32 opcode)
{
struct cnic_dev *dev = csk->dev;
struct cnic_local *cp = dev->cnic_priv;
clear_bit(SK_F_CONNECT_START, &csk->flags);
if (cnic_ready_to_close(csk, opcode)) {
cnic_close_conn(csk);
cnic_cm_upcall(cp, csk, opcode);
}
}
static void cnic_cm_stop_bnx2_hw(struct cnic_dev *dev)
{
}
static int cnic_cm_init_bnx2_hw(struct cnic_dev *dev)
{
u32 seed;
get_random_bytes(&seed, 4);
cnic_ctx_wr(dev, 45, 0, seed);
return 0;
}
static int cnic_cm_open(struct cnic_dev *dev)
{
struct cnic_local *cp = dev->cnic_priv;
int err;
err = cnic_cm_alloc_mem(dev);
if (err)
return err;
err = cp->start_cm(dev);
if (err)
goto err_out;
dev->cm_create = cnic_cm_create;
dev->cm_destroy = cnic_cm_destroy;
dev->cm_connect = cnic_cm_connect;
dev->cm_abort = cnic_cm_abort;
dev->cm_close = cnic_cm_close;
dev->cm_select_dev = cnic_cm_select_dev;
cp->ulp_handle[CNIC_ULP_L4] = dev;
rcu_assign_pointer(cp->ulp_ops[CNIC_ULP_L4], &cm_ulp_ops);
return 0;
err_out:
cnic_cm_free_mem(dev);
return err;
}
static int cnic_cm_shutdown(struct cnic_dev *dev)
{
struct cnic_local *cp = dev->cnic_priv;
int i;
cp->stop_cm(dev);
if (!cp->csk_tbl)
return 0;
for (i = 0; i < MAX_CM_SK_TBL_SZ; i++) {
struct cnic_sock *csk = &cp->csk_tbl[i];
clear_bit(SK_F_INUSE, &csk->flags);
cnic_cm_cleanup(csk);
}
cnic_cm_free_mem(dev);
return 0;
}
static void cnic_init_context(struct cnic_dev *dev, u32 cid)
{
struct cnic_local *cp = dev->cnic_priv;
u32 cid_addr;
int i;
if (CHIP_NUM(cp) == CHIP_NUM_5709)
return;
cid_addr = GET_CID_ADDR(cid);
for (i = 0; i < CTX_SIZE; i += 4)
cnic_ctx_wr(dev, cid_addr, i, 0);
}
static int cnic_setup_5709_context(struct cnic_dev *dev, int valid)
{
struct cnic_local *cp = dev->cnic_priv;
int ret = 0, i;
u32 valid_bit = valid ? BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID : 0;
if (CHIP_NUM(cp) != CHIP_NUM_5709)
return 0;
for (i = 0; i < cp->ctx_blks; i++) {
int j;
u32 idx = cp->ctx_arr[i].cid / cp->cids_per_blk;
u32 val;
memset(cp->ctx_arr[i].ctx, 0, BCM_PAGE_SIZE);
CNIC_WR(dev, BNX2_CTX_HOST_PAGE_TBL_DATA0,
(cp->ctx_arr[i].mapping & 0xffffffff) | valid_bit);
CNIC_WR(dev, BNX2_CTX_HOST_PAGE_TBL_DATA1,
(u64) cp->ctx_arr[i].mapping >> 32);
CNIC_WR(dev, BNX2_CTX_HOST_PAGE_TBL_CTRL, idx |
BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
for (j = 0; j < 10; j++) {
val = CNIC_RD(dev, BNX2_CTX_HOST_PAGE_TBL_CTRL);
if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
break;
udelay(5);
}
if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
ret = -EBUSY;
break;
}
}
return ret;
}
static void cnic_free_irq(struct cnic_dev *dev)
{
struct cnic_local *cp = dev->cnic_priv;
struct cnic_eth_dev *ethdev = cp->ethdev;
if (ethdev->drv_state & CNIC_DRV_STATE_USING_MSIX) {
cp->disable_int_sync(dev);
tasklet_disable(&cp->cnic_irq_task);
free_irq(ethdev->irq_arr[0].vector, dev);
}
}
static int cnic_init_bnx2_irq(struct cnic_dev *dev)
{
struct cnic_local *cp = dev->cnic_priv;
struct cnic_eth_dev *ethdev = cp->ethdev;
if (ethdev->drv_state & CNIC_DRV_STATE_USING_MSIX) {
int err, i = 0;
int sblk_num = cp->status_blk_num;
u32 base = ((sblk_num - 1) * BNX2_HC_SB_CONFIG_SIZE) +
BNX2_HC_SB_CONFIG_1;
CNIC_WR(dev, base, BNX2_HC_SB_CONFIG_1_ONE_SHOT);
CNIC_WR(dev, base + BNX2_HC_COMP_PROD_TRIP_OFF, (2 << 16) | 8);
CNIC_WR(dev, base + BNX2_HC_COM_TICKS_OFF, (64 << 16) | 220);
CNIC_WR(dev, base + BNX2_HC_CMD_TICKS_OFF, (64 << 16) | 220);
cp->bnx2_status_blk = cp->status_blk;
cp->last_status_idx = cp->bnx2_status_blk->status_idx;
tasklet_init(&cp->cnic_irq_task, &cnic_service_bnx2_msix,
(unsigned long) dev);
err = request_irq(ethdev->irq_arr[0].vector, cnic_irq, 0,
"cnic", dev);
if (err) {
tasklet_disable(&cp->cnic_irq_task);
return err;
}
while (cp->bnx2_status_blk->status_completion_producer_index &&
i < 10) {
CNIC_WR(dev, BNX2_HC_COALESCE_NOW,
1 << (11 + sblk_num));
udelay(10);
i++;
barrier();
}
if (cp->bnx2_status_blk->status_completion_producer_index) {
cnic_free_irq(dev);
goto failed;
}
} else {
struct status_block *sblk = cp->status_blk;
u32 hc_cmd = CNIC_RD(dev, BNX2_HC_COMMAND);
int i = 0;
while (sblk->status_completion_producer_index && i < 10) {
CNIC_WR(dev, BNX2_HC_COMMAND,
hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
udelay(10);
i++;
barrier();
}
if (sblk->status_completion_producer_index)
goto failed;
}
return 0;
failed:
printk(KERN_ERR PFX "%s: " "KCQ index not resetting to 0.\n",
dev->netdev->name);
return -EBUSY;
}
static void cnic_enable_bnx2_int(struct cnic_dev *dev)
{
struct cnic_local *cp = dev->cnic_priv;
struct cnic_eth_dev *ethdev = cp->ethdev;
if (!(ethdev->drv_state & CNIC_DRV_STATE_USING_MSIX))
return;
CNIC_WR(dev, BNX2_PCICFG_INT_ACK_CMD, cp->int_num |
BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | cp->last_status_idx);
}
static void cnic_disable_bnx2_int_sync(struct cnic_dev *dev)
{
struct cnic_local *cp = dev->cnic_priv;
struct cnic_eth_dev *ethdev = cp->ethdev;
if (!(ethdev->drv_state & CNIC_DRV_STATE_USING_MSIX))
return;
CNIC_WR(dev, BNX2_PCICFG_INT_ACK_CMD, cp->int_num |
BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
CNIC_RD(dev, BNX2_PCICFG_INT_ACK_CMD);
synchronize_irq(ethdev->irq_arr[0].vector);
}
static void cnic_init_bnx2_tx_ring(struct cnic_dev *dev)
{
struct cnic_local *cp = dev->cnic_priv;
struct cnic_eth_dev *ethdev = cp->ethdev;
u32 cid_addr, tx_cid, sb_id;
u32 val, offset0, offset1, offset2, offset3;
int i;
struct tx_bd *txbd;
dma_addr_t buf_map;
struct status_block *s_blk = cp->status_blk;
sb_id = cp->status_blk_num;
tx_cid = 20;
cnic_init_context(dev, tx_cid);
cnic_init_context(dev, tx_cid + 1);
cp->tx_cons_ptr = &s_blk->status_tx_quick_consumer_index2;
if (ethdev->drv_state & CNIC_DRV_STATE_USING_MSIX) {
struct status_block_msix *sblk = cp->status_blk;
tx_cid = TX_TSS_CID + sb_id - 1;
cnic_init_context(dev, tx_cid);
CNIC_WR(dev, BNX2_TSCH_TSS_CFG, (sb_id << 24) |
(TX_TSS_CID << 7));
cp->tx_cons_ptr = &sblk->status_tx_quick_consumer_index;
}
cp->tx_cons = *cp->tx_cons_ptr;
cid_addr = GET_CID_ADDR(tx_cid);
if (CHIP_NUM(cp) == CHIP_NUM_5709) {
u32 cid_addr2 = GET_CID_ADDR(tx_cid + 4) + 0x40;
for (i = 0; i < PHY_CTX_SIZE; i += 4)
cnic_ctx_wr(dev, cid_addr2, i, 0);
offset0 = BNX2_L2CTX_TYPE_XI;
offset1 = BNX2_L2CTX_CMD_TYPE_XI;
offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
} else {
offset0 = BNX2_L2CTX_TYPE;
offset1 = BNX2_L2CTX_CMD_TYPE;
offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
}
val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
cnic_ctx_wr(dev, cid_addr, offset0, val);
val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
cnic_ctx_wr(dev, cid_addr, offset1, val);
txbd = (struct tx_bd *) cp->l2_ring;
buf_map = cp->l2_buf_map;
for (i = 0; i < MAX_TX_DESC_CNT; i++, txbd++) {
txbd->tx_bd_haddr_hi = (u64) buf_map >> 32;
txbd->tx_bd_haddr_lo = (u64) buf_map & 0xffffffff;
}
val = (u64) cp->l2_ring_map >> 32;
cnic_ctx_wr(dev, cid_addr, offset2, val);
txbd->tx_bd_haddr_hi = val;
val = (u64) cp->l2_ring_map & 0xffffffff;
cnic_ctx_wr(dev, cid_addr, offset3, val);
txbd->tx_bd_haddr_lo = val;
}
static void cnic_init_bnx2_rx_ring(struct cnic_dev *dev)
{
struct cnic_local *cp = dev->cnic_priv;
struct cnic_eth_dev *ethdev = cp->ethdev;
u32 cid_addr, sb_id, val, coal_reg, coal_val;
int i;
struct rx_bd *rxbd;
struct status_block *s_blk = cp->status_blk;
sb_id = cp->status_blk_num;
cnic_init_context(dev, 2);
cp->rx_cons_ptr = &s_blk->status_rx_quick_consumer_index2;
coal_reg = BNX2_HC_COMMAND;
coal_val = CNIC_RD(dev, coal_reg);
if (ethdev->drv_state & CNIC_DRV_STATE_USING_MSIX) {
struct status_block_msix *sblk = cp->status_blk;
cp->rx_cons_ptr = &sblk->status_rx_quick_consumer_index;
coal_reg = BNX2_HC_COALESCE_NOW;
coal_val = 1 << (11 + sb_id);
}
i = 0;
while (!(*cp->rx_cons_ptr != 0) && i < 10) {
CNIC_WR(dev, coal_reg, coal_val);
udelay(10);
i++;
barrier();
}
cp->rx_cons = *cp->rx_cons_ptr;
cid_addr = GET_CID_ADDR(2);
val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
BNX2_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
cnic_ctx_wr(dev, cid_addr, BNX2_L2CTX_CTX_TYPE, val);
if (sb_id == 0)
val = 2 << BNX2_L2CTX_STATUSB_NUM_SHIFT;
else
val = BNX2_L2CTX_STATUSB_NUM(sb_id);
cnic_ctx_wr(dev, cid_addr, BNX2_L2CTX_HOST_BDIDX, val);
rxbd = (struct rx_bd *) (cp->l2_ring + BCM_PAGE_SIZE);
for (i = 0; i < MAX_RX_DESC_CNT; i++, rxbd++) {
dma_addr_t buf_map;
int n = (i % cp->l2_rx_ring_size) + 1;
buf_map = cp->l2_buf_map + (n * cp->l2_single_buf_size);
rxbd->rx_bd_len = cp->l2_single_buf_size;
rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
rxbd->rx_bd_haddr_hi = (u64) buf_map >> 32;
rxbd->rx_bd_haddr_lo = (u64) buf_map & 0xffffffff;
}
val = (u64) (cp->l2_ring_map + BCM_PAGE_SIZE) >> 32;
cnic_ctx_wr(dev, cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
rxbd->rx_bd_haddr_hi = val;
val = (u64) (cp->l2_ring_map + BCM_PAGE_SIZE) & 0xffffffff;
cnic_ctx_wr(dev, cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
rxbd->rx_bd_haddr_lo = val;
val = cnic_reg_rd_ind(dev, BNX2_RXP_SCRATCH_RXP_FLOOD);
cnic_reg_wr_ind(dev, BNX2_RXP_SCRATCH_RXP_FLOOD, val | (1 << 2));
}
static void cnic_shutdown_bnx2_rx_ring(struct cnic_dev *dev)
{
struct kwqe *wqes[1], l2kwqe;
memset(&l2kwqe, 0, sizeof(l2kwqe));
wqes[0] = &l2kwqe;
l2kwqe.kwqe_op_flag = (L2_LAYER_CODE << KWQE_FLAGS_LAYER_SHIFT) |
(L2_KWQE_OPCODE_VALUE_FLUSH <<
KWQE_OPCODE_SHIFT) | 2;
dev->submit_kwqes(dev, wqes, 1);
}
static void cnic_set_bnx2_mac(struct cnic_dev *dev)
{
struct cnic_local *cp = dev->cnic_priv;
u32 val;
val = cp->func << 2;
cp->shmem_base = cnic_reg_rd_ind(dev, BNX2_SHM_HDR_ADDR_0 + val);
val = cnic_reg_rd_ind(dev, cp->shmem_base +
BNX2_PORT_HW_CFG_ISCSI_MAC_UPPER);
dev->mac_addr[0] = (u8) (val >> 8);
dev->mac_addr[1] = (u8) val;
CNIC_WR(dev, BNX2_EMAC_MAC_MATCH4, val);
val = cnic_reg_rd_ind(dev, cp->shmem_base +
BNX2_PORT_HW_CFG_ISCSI_MAC_LOWER);
dev->mac_addr[2] = (u8) (val >> 24);
dev->mac_addr[3] = (u8) (val >> 16);
dev->mac_addr[4] = (u8) (val >> 8);
dev->mac_addr[5] = (u8) val;
CNIC_WR(dev, BNX2_EMAC_MAC_MATCH5, val);
val = 4 | BNX2_RPM_SORT_USER2_BC_EN;
if (CHIP_NUM(cp) != CHIP_NUM_5709)
val |= BNX2_RPM_SORT_USER2_PROM_VLAN;
CNIC_WR(dev, BNX2_RPM_SORT_USER2, 0x0);
CNIC_WR(dev, BNX2_RPM_SORT_USER2, val);
CNIC_WR(dev, BNX2_RPM_SORT_USER2, val | BNX2_RPM_SORT_USER2_ENA);
}
static int cnic_start_bnx2_hw(struct cnic_dev *dev)
{
struct cnic_local *cp = dev->cnic_priv;
struct cnic_eth_dev *ethdev = cp->ethdev;
struct status_block *sblk = cp->status_blk;
u32 val;
int err;
cnic_set_bnx2_mac(dev);
val = CNIC_RD(dev, BNX2_MQ_CONFIG);
val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
if (BCM_PAGE_BITS > 12)
val |= (12 - 8) << 4;
else
val |= (BCM_PAGE_BITS - 8) << 4;
CNIC_WR(dev, BNX2_MQ_CONFIG, val);
CNIC_WR(dev, BNX2_HC_COMP_PROD_TRIP, (2 << 16) | 8);
CNIC_WR(dev, BNX2_HC_COM_TICKS, (64 << 16) | 220);
CNIC_WR(dev, BNX2_HC_CMD_TICKS, (64 << 16) | 220);
err = cnic_setup_5709_context(dev, 1);
if (err)
return err;
cnic_init_context(dev, KWQ_CID);
cnic_init_context(dev, KCQ_CID);
cp->kwq_cid_addr = GET_CID_ADDR(KWQ_CID);
cp->kwq_io_addr = MB_GET_CID_ADDR(KWQ_CID) + L5_KRNLQ_HOST_QIDX;
cp->max_kwq_idx = MAX_KWQ_IDX;
cp->kwq_prod_idx = 0;
cp->kwq_con_idx = 0;
cp->cnic_local_flags |= CNIC_LCL_FL_KWQ_INIT;
if (CHIP_NUM(cp) == CHIP_NUM_5706 || CHIP_NUM(cp) == CHIP_NUM_5708)
cp->kwq_con_idx_ptr = &sblk->status_rx_quick_consumer_index15;
else
cp->kwq_con_idx_ptr = &sblk->status_cmd_consumer_index;
/* Initialize the kernel work queue context. */
val = KRNLQ_TYPE_TYPE_KRNLQ | KRNLQ_SIZE_TYPE_SIZE |
(BCM_PAGE_BITS - 8) | KRNLQ_FLAGS_QE_SELF_SEQ;
cnic_ctx_wr(dev, cp->kwq_cid_addr, L5_KRNLQ_TYPE, val);
val = (BCM_PAGE_SIZE / sizeof(struct kwqe) - 1) << 16;
cnic_ctx_wr(dev, cp->kwq_cid_addr, L5_KRNLQ_QE_SELF_SEQ_MAX, val);
val = ((BCM_PAGE_SIZE / sizeof(struct kwqe)) << 16) | KWQ_PAGE_CNT;
cnic_ctx_wr(dev, cp->kwq_cid_addr, L5_KRNLQ_PGTBL_NPAGES, val);
val = (u32) ((u64) cp->kwq_info.pgtbl_map >> 32);
cnic_ctx_wr(dev, cp->kwq_cid_addr, L5_KRNLQ_PGTBL_HADDR_HI, val);
val = (u32) cp->kwq_info.pgtbl_map;
cnic_ctx_wr(dev, cp->kwq_cid_addr, L5_KRNLQ_PGTBL_HADDR_LO, val);
cp->kcq_cid_addr = GET_CID_ADDR(KCQ_CID);
cp->kcq_io_addr = MB_GET_CID_ADDR(KCQ_CID) + L5_KRNLQ_HOST_QIDX;
cp->kcq_prod_idx = 0;
/* Initialize the kernel complete queue context. */
val = KRNLQ_TYPE_TYPE_KRNLQ | KRNLQ_SIZE_TYPE_SIZE |
(BCM_PAGE_BITS - 8) | KRNLQ_FLAGS_QE_SELF_SEQ;
cnic_ctx_wr(dev, cp->kcq_cid_addr, L5_KRNLQ_TYPE, val);
val = (BCM_PAGE_SIZE / sizeof(struct kcqe) - 1) << 16;
cnic_ctx_wr(dev, cp->kcq_cid_addr, L5_KRNLQ_QE_SELF_SEQ_MAX, val);
val = ((BCM_PAGE_SIZE / sizeof(struct kcqe)) << 16) | KCQ_PAGE_CNT;
cnic_ctx_wr(dev, cp->kcq_cid_addr, L5_KRNLQ_PGTBL_NPAGES, val);
val = (u32) ((u64) cp->kcq_info.pgtbl_map >> 32);
cnic_ctx_wr(dev, cp->kcq_cid_addr, L5_KRNLQ_PGTBL_HADDR_HI, val);
val = (u32) cp->kcq_info.pgtbl_map;
cnic_ctx_wr(dev, cp->kcq_cid_addr, L5_KRNLQ_PGTBL_HADDR_LO, val);
cp->int_num = 0;
if (ethdev->drv_state & CNIC_DRV_STATE_USING_MSIX) {
u32 sb_id = cp->status_blk_num;
u32 sb = BNX2_L2CTX_STATUSB_NUM(sb_id);
cp->int_num = sb_id << BNX2_PCICFG_INT_ACK_CMD_INT_NUM_SHIFT;
cnic_ctx_wr(dev, cp->kwq_cid_addr, L5_KRNLQ_HOST_QIDX, sb);
cnic_ctx_wr(dev, cp->kcq_cid_addr, L5_KRNLQ_HOST_QIDX, sb);
}
/* Enable Commnad Scheduler notification when we write to the
* host producer index of the kernel contexts. */
CNIC_WR(dev, BNX2_MQ_KNL_CMD_MASK1, 2);
/* Enable Command Scheduler notification when we write to either
* the Send Queue or Receive Queue producer indexes of the kernel
* bypass contexts. */
CNIC_WR(dev, BNX2_MQ_KNL_BYP_CMD_MASK1, 7);
CNIC_WR(dev, BNX2_MQ_KNL_BYP_WRITE_MASK1, 7);
/* Notify COM when the driver post an application buffer. */
CNIC_WR(dev, BNX2_MQ_KNL_RX_V2P_MASK2, 0x2000);
/* Set the CP and COM doorbells. These two processors polls the
* doorbell for a non zero value before running. This must be done
* after setting up the kernel queue contexts. */
cnic_reg_wr_ind(dev, BNX2_CP_SCRATCH + 0x20, 1);
cnic_reg_wr_ind(dev, BNX2_COM_SCRATCH + 0x20, 1);
cnic_init_bnx2_tx_ring(dev);
cnic_init_bnx2_rx_ring(dev);
err = cnic_init_bnx2_irq(dev);
if (err) {
printk(KERN_ERR PFX "%s: cnic_init_irq failed\n",
dev->netdev->name);
cnic_reg_wr_ind(dev, BNX2_CP_SCRATCH + 0x20, 0);
cnic_reg_wr_ind(dev, BNX2_COM_SCRATCH + 0x20, 0);
return err;
}
return 0;
}
static int cnic_register_netdev(struct cnic_dev *dev)
{
struct cnic_local *cp = dev->cnic_priv;
struct cnic_eth_dev *ethdev = cp->ethdev;
int err;
if (!ethdev)
return -ENODEV;
if (ethdev->drv_state & CNIC_DRV_STATE_REGD)
return 0;
err = ethdev->drv_register_cnic(dev->netdev, cp->cnic_ops, dev);
if (err)
printk(KERN_ERR PFX "%s: register_cnic failed\n",
dev->netdev->name);
return err;
}
static void cnic_unregister_netdev(struct cnic_dev *dev)
{
struct cnic_local *cp = dev->cnic_priv;
struct cnic_eth_dev *ethdev = cp->ethdev;
if (!ethdev)
return;
ethdev->drv_unregister_cnic(dev->netdev);
}
static int cnic_start_hw(struct cnic_dev *dev)
{
struct cnic_local *cp = dev->cnic_priv;
struct cnic_eth_dev *ethdev = cp->ethdev;
int err;
if (test_bit(CNIC_F_CNIC_UP, &dev->flags))
return -EALREADY;
dev->regview = ethdev->io_base;
cp->chip_id = ethdev->chip_id;
pci_dev_get(dev->pcidev);
cp->func = PCI_FUNC(dev->pcidev->devfn);
cp->status_blk = ethdev->irq_arr[0].status_blk;
cp->status_blk_num = ethdev->irq_arr[0].status_blk_num;
err = cp->alloc_resc(dev);
if (err) {
printk(KERN_ERR PFX "%s: allocate resource failure\n",
dev->netdev->name);
goto err1;
}
err = cp->start_hw(dev);
if (err)
goto err1;
err = cnic_cm_open(dev);
if (err)
goto err1;
set_bit(CNIC_F_CNIC_UP, &dev->flags);
cp->enable_int(dev);
return 0;
err1:
cp->free_resc(dev);
pci_dev_put(dev->pcidev);
return err;
}
static void cnic_stop_bnx2_hw(struct cnic_dev *dev)
{
cnic_disable_bnx2_int_sync(dev);
cnic_reg_wr_ind(dev, BNX2_CP_SCRATCH + 0x20, 0);
cnic_reg_wr_ind(dev, BNX2_COM_SCRATCH + 0x20, 0);
cnic_init_context(dev, KWQ_CID);
cnic_init_context(dev, KCQ_CID);
cnic_setup_5709_context(dev, 0);
cnic_free_irq(dev);
cnic_free_resc(dev);
}
static void cnic_stop_hw(struct cnic_dev *dev)
{
if (test_bit(CNIC_F_CNIC_UP, &dev->flags)) {
struct cnic_local *cp = dev->cnic_priv;
clear_bit(CNIC_F_CNIC_UP, &dev->flags);
rcu_assign_pointer(cp->ulp_ops[CNIC_ULP_L4], NULL);
synchronize_rcu();
cnic_cm_shutdown(dev);
cp->stop_hw(dev);
pci_dev_put(dev->pcidev);
}
}
static void cnic_free_dev(struct cnic_dev *dev)
{
int i = 0;
while ((atomic_read(&dev->ref_count) != 0) && i < 10) {
msleep(100);
i++;
}
if (atomic_read(&dev->ref_count) != 0)
printk(KERN_ERR PFX "%s: Failed waiting for ref count to go"
" to zero.\n", dev->netdev->name);
printk(KERN_INFO PFX "Removed CNIC device: %s\n", dev->netdev->name);
dev_put(dev->netdev);
kfree(dev);
}
static struct cnic_dev *cnic_alloc_dev(struct net_device *dev,
struct pci_dev *pdev)
{
struct cnic_dev *cdev;
struct cnic_local *cp;
int alloc_size;
alloc_size = sizeof(struct cnic_dev) + sizeof(struct cnic_local);
cdev = kzalloc(alloc_size , GFP_KERNEL);
if (cdev == NULL) {
printk(KERN_ERR PFX "%s: allocate dev struct failure\n",
dev->name);
return NULL;
}
cdev->netdev = dev;
cdev->cnic_priv = (char *)cdev + sizeof(struct cnic_dev);
cdev->register_device = cnic_register_device;
cdev->unregister_device = cnic_unregister_device;
cdev->iscsi_nl_msg_recv = cnic_iscsi_nl_msg_recv;
cp = cdev->cnic_priv;
cp->dev = cdev;
cp->uio_dev = -1;
cp->l2_single_buf_size = 0x400;
cp->l2_rx_ring_size = 3;
spin_lock_init(&cp->cnic_ulp_lock);
printk(KERN_INFO PFX "Added CNIC device: %s\n", dev->name);
return cdev;
}
static struct cnic_dev *init_bnx2_cnic(struct net_device *dev)
{
struct pci_dev *pdev;
struct cnic_dev *cdev;
struct cnic_local *cp;
struct cnic_eth_dev *ethdev = NULL;
struct cnic_eth_dev *(*probe)(struct net_device *) = NULL;
probe = symbol_get(bnx2_cnic_probe);
if (probe) {
ethdev = (*probe)(dev);
symbol_put(bnx2_cnic_probe);
}
if (!ethdev)
return NULL;
pdev = ethdev->pdev;
if (!pdev)
return NULL;
dev_hold(dev);
pci_dev_get(pdev);
if (pdev->device == PCI_DEVICE_ID_NX2_5709 ||
pdev->device == PCI_DEVICE_ID_NX2_5709S) {
u8 rev;
pci_read_config_byte(pdev, PCI_REVISION_ID, &rev);
if (rev < 0x10) {
pci_dev_put(pdev);
goto cnic_err;
}
}
pci_dev_put(pdev);
cdev = cnic_alloc_dev(dev, pdev);
if (cdev == NULL)
goto cnic_err;
set_bit(CNIC_F_BNX2_CLASS, &cdev->flags);
cdev->submit_kwqes = cnic_submit_bnx2_kwqes;
cp = cdev->cnic_priv;
cp->ethdev = ethdev;
cdev->pcidev = pdev;
cp->cnic_ops = &cnic_bnx2_ops;
cp->start_hw = cnic_start_bnx2_hw;
cp->stop_hw = cnic_stop_bnx2_hw;
cp->setup_pgtbl = cnic_setup_page_tbl;
cp->alloc_resc = cnic_alloc_bnx2_resc;
cp->free_resc = cnic_free_resc;
cp->start_cm = cnic_cm_init_bnx2_hw;
cp->stop_cm = cnic_cm_stop_bnx2_hw;
cp->enable_int = cnic_enable_bnx2_int;
cp->disable_int_sync = cnic_disable_bnx2_int_sync;
cp->close_conn = cnic_close_bnx2_conn;
cp->next_idx = cnic_bnx2_next_idx;
cp->hw_idx = cnic_bnx2_hw_idx;
return cdev;
cnic_err:
dev_put(dev);
return NULL;
}
static struct cnic_dev *is_cnic_dev(struct net_device *dev)
{
struct ethtool_drvinfo drvinfo;
struct cnic_dev *cdev = NULL;
if (dev->ethtool_ops && dev->ethtool_ops->get_drvinfo) {
memset(&drvinfo, 0, sizeof(drvinfo));
dev->ethtool_ops->get_drvinfo(dev, &drvinfo);
if (!strcmp(drvinfo.driver, "bnx2"))
cdev = init_bnx2_cnic(dev);
if (cdev) {
write_lock(&cnic_dev_lock);
list_add(&cdev->list, &cnic_dev_list);
write_unlock(&cnic_dev_lock);
}
}
return cdev;
}
/**
* netdev event handler
*/
static int cnic_netdev_event(struct notifier_block *this, unsigned long event,
void *ptr)
{
struct net_device *netdev = ptr;
struct cnic_dev *dev;
int if_type;
int new_dev = 0;
dev = cnic_from_netdev(netdev);
if (!dev && (event == NETDEV_REGISTER || event == NETDEV_UP)) {
/* Check for the hot-plug device */
dev = is_cnic_dev(netdev);
if (dev) {
new_dev = 1;
cnic_hold(dev);
}
}
if (dev) {
struct cnic_local *cp = dev->cnic_priv;
if (new_dev)
cnic_ulp_init(dev);
else if (event == NETDEV_UNREGISTER)
cnic_ulp_exit(dev);
else if (event == NETDEV_UP) {
if (cnic_register_netdev(dev) != 0) {
cnic_put(dev);
goto done;
}
if (!cnic_start_hw(dev))
cnic_ulp_start(dev);
}
rcu_read_lock();
for (if_type = 0; if_type < MAX_CNIC_ULP_TYPE; if_type++) {
struct cnic_ulp_ops *ulp_ops;
void *ctx;
ulp_ops = rcu_dereference(cp->ulp_ops[if_type]);
if (!ulp_ops || !ulp_ops->indicate_netevent)
continue;
ctx = cp->ulp_handle[if_type];
ulp_ops->indicate_netevent(ctx, event);
}
rcu_read_unlock();
if (event == NETDEV_GOING_DOWN) {
cnic_ulp_stop(dev);
cnic_stop_hw(dev);
cnic_unregister_netdev(dev);
} else if (event == NETDEV_UNREGISTER) {
write_lock(&cnic_dev_lock);
list_del_init(&dev->list);
write_unlock(&cnic_dev_lock);
cnic_put(dev);
cnic_free_dev(dev);
goto done;
}
cnic_put(dev);
}
done:
return NOTIFY_DONE;
}
static struct notifier_block cnic_netdev_notifier = {
.notifier_call = cnic_netdev_event
};
static void cnic_release(void)
{
struct cnic_dev *dev;
while (!list_empty(&cnic_dev_list)) {
dev = list_entry(cnic_dev_list.next, struct cnic_dev, list);
if (test_bit(CNIC_F_CNIC_UP, &dev->flags)) {
cnic_ulp_stop(dev);
cnic_stop_hw(dev);
}
cnic_ulp_exit(dev);
cnic_unregister_netdev(dev);
list_del_init(&dev->list);
cnic_free_dev(dev);
}
}
static int __init cnic_init(void)
{
int rc = 0;
printk(KERN_INFO "%s", version);
rc = register_netdevice_notifier(&cnic_netdev_notifier);
if (rc) {
cnic_release();
return rc;
}
return 0;
}
static void __exit cnic_exit(void)
{
unregister_netdevice_notifier(&cnic_netdev_notifier);
cnic_release();
return;
}
module_init(cnic_init);
module_exit(cnic_exit);