mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-18 07:36:52 +07:00
f861854e1b
Perf doesn't take the left period into account when auto-reload is
enabled with fixed period sampling mode in context switch.
Here is the MSR trace of the perf command as below.
(The MSR trace is simplified from a ftrace log.)
#perf record -e cycles:p -c 2000000 -- ./triad_loop
//The MSR trace of task schedule out
//perf disable all counters, disable PEBS, disable GP counter 0,
//read GP counter 0, and re-enable all counters.
//The counter 0 stops at 0xfffffff82840
write_msr: MSR_CORE_PERF_GLOBAL_CTRL(38f), value 0
write_msr: MSR_IA32_PEBS_ENABLE(3f1), value 0
write_msr: MSR_P6_EVNTSEL0(186), value 40003003c
rdpmc: 0, value fffffff82840
write_msr: MSR_CORE_PERF_GLOBAL_CTRL(38f), value f000000ff
//The MSR trace of the same task schedule in again
//perf disable all counters, enable and set GP counter 0,
//enable PEBS, and re-enable all counters.
//0xffffffe17b80 (-2000000) is written to GP counter 0.
write_msr: MSR_CORE_PERF_GLOBAL_CTRL(38f), value 0
write_msr: MSR_IA32_PMC0(4c1), value ffffffe17b80
write_msr: MSR_P6_EVNTSEL0(186), value 40043003c
write_msr: MSR_IA32_PEBS_ENABLE(3f1), value 1
write_msr: MSR_CORE_PERF_GLOBAL_CTRL(38f), value f000000ff
When the same task schedule in again, the counter should starts from
previous left. However, it starts from the fixed period -2000000 again.
A special variant of intel_pmu_save_and_restart() is used for
auto-reload, which doesn't update the hwc->period_left.
When the monitored task schedules in again, perf doesn't know the left
period. The fixed period is used, which is inaccurate.
With auto-reload, the counter always has a negative counter value. So
the left period is -value. Update the period_left in
intel_pmu_save_and_restart_reload().
With the patch:
//The MSR trace of task schedule out
write_msr: MSR_CORE_PERF_GLOBAL_CTRL(38f), value 0
write_msr: MSR_IA32_PEBS_ENABLE(3f1), value 0
write_msr: MSR_P6_EVNTSEL0(186), value 40003003c
rdpmc: 0, value ffffffe25cbc
write_msr: MSR_CORE_PERF_GLOBAL_CTRL(38f), value f000000ff
//The MSR trace of the same task schedule in again
write_msr: MSR_CORE_PERF_GLOBAL_CTRL(38f), value 0
write_msr: MSR_IA32_PMC0(4c1), value ffffffe25cbc
write_msr: MSR_P6_EVNTSEL0(186), value 40043003c
write_msr: MSR_IA32_PEBS_ENABLE(3f1), value 1
write_msr: MSR_CORE_PERF_GLOBAL_CTRL(38f), value f000000ff
Fixes: d31fc13fdc
("perf/x86/intel: Fix event update for auto-reload")
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200121190125.3389-1-kan.liang@linux.intel.com
2104 lines
58 KiB
C
2104 lines
58 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#include <linux/bitops.h>
|
|
#include <linux/types.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <asm/cpu_entry_area.h>
|
|
#include <asm/perf_event.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/insn.h>
|
|
#include <asm/io.h>
|
|
|
|
#include "../perf_event.h"
|
|
|
|
/* Waste a full page so it can be mapped into the cpu_entry_area */
|
|
DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store);
|
|
|
|
/* The size of a BTS record in bytes: */
|
|
#define BTS_RECORD_SIZE 24
|
|
|
|
#define PEBS_FIXUP_SIZE PAGE_SIZE
|
|
|
|
/*
|
|
* pebs_record_32 for p4 and core not supported
|
|
|
|
struct pebs_record_32 {
|
|
u32 flags, ip;
|
|
u32 ax, bc, cx, dx;
|
|
u32 si, di, bp, sp;
|
|
};
|
|
|
|
*/
|
|
|
|
union intel_x86_pebs_dse {
|
|
u64 val;
|
|
struct {
|
|
unsigned int ld_dse:4;
|
|
unsigned int ld_stlb_miss:1;
|
|
unsigned int ld_locked:1;
|
|
unsigned int ld_reserved:26;
|
|
};
|
|
struct {
|
|
unsigned int st_l1d_hit:1;
|
|
unsigned int st_reserved1:3;
|
|
unsigned int st_stlb_miss:1;
|
|
unsigned int st_locked:1;
|
|
unsigned int st_reserved2:26;
|
|
};
|
|
};
|
|
|
|
|
|
/*
|
|
* Map PEBS Load Latency Data Source encodings to generic
|
|
* memory data source information
|
|
*/
|
|
#define P(a, b) PERF_MEM_S(a, b)
|
|
#define OP_LH (P(OP, LOAD) | P(LVL, HIT))
|
|
#define LEVEL(x) P(LVLNUM, x)
|
|
#define REM P(REMOTE, REMOTE)
|
|
#define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
|
|
|
|
/* Version for Sandy Bridge and later */
|
|
static u64 pebs_data_source[] = {
|
|
P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
|
|
OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x01: L1 local */
|
|
OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
|
|
OP_LH | P(LVL, L2) | LEVEL(L2) | P(SNOOP, NONE), /* 0x03: L2 hit */
|
|
OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, NONE), /* 0x04: L3 hit */
|
|
OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, MISS), /* 0x05: L3 hit, snoop miss */
|
|
OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT), /* 0x06: L3 hit, snoop hit */
|
|
OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x07: L3 hit, snoop hitm */
|
|
OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x08: L3 miss snoop hit */
|
|
OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
|
|
OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, HIT), /* 0x0a: L3 miss, shared */
|
|
OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x0b: L3 miss, shared */
|
|
OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | SNOOP_NONE_MISS, /* 0x0c: L3 miss, excl */
|
|
OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */
|
|
OP_LH | P(LVL, IO) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */
|
|
OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */
|
|
};
|
|
|
|
/* Patch up minor differences in the bits */
|
|
void __init intel_pmu_pebs_data_source_nhm(void)
|
|
{
|
|
pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
|
|
pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
|
|
pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
|
|
}
|
|
|
|
void __init intel_pmu_pebs_data_source_skl(bool pmem)
|
|
{
|
|
u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4);
|
|
|
|
pebs_data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT);
|
|
pebs_data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT);
|
|
pebs_data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
|
|
pebs_data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD);
|
|
pebs_data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM);
|
|
}
|
|
|
|
static u64 precise_store_data(u64 status)
|
|
{
|
|
union intel_x86_pebs_dse dse;
|
|
u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
|
|
|
|
dse.val = status;
|
|
|
|
/*
|
|
* bit 4: TLB access
|
|
* 1 = stored missed 2nd level TLB
|
|
*
|
|
* so it either hit the walker or the OS
|
|
* otherwise hit 2nd level TLB
|
|
*/
|
|
if (dse.st_stlb_miss)
|
|
val |= P(TLB, MISS);
|
|
else
|
|
val |= P(TLB, HIT);
|
|
|
|
/*
|
|
* bit 0: hit L1 data cache
|
|
* if not set, then all we know is that
|
|
* it missed L1D
|
|
*/
|
|
if (dse.st_l1d_hit)
|
|
val |= P(LVL, HIT);
|
|
else
|
|
val |= P(LVL, MISS);
|
|
|
|
/*
|
|
* bit 5: Locked prefix
|
|
*/
|
|
if (dse.st_locked)
|
|
val |= P(LOCK, LOCKED);
|
|
|
|
return val;
|
|
}
|
|
|
|
static u64 precise_datala_hsw(struct perf_event *event, u64 status)
|
|
{
|
|
union perf_mem_data_src dse;
|
|
|
|
dse.val = PERF_MEM_NA;
|
|
|
|
if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
|
|
dse.mem_op = PERF_MEM_OP_STORE;
|
|
else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
|
|
dse.mem_op = PERF_MEM_OP_LOAD;
|
|
|
|
/*
|
|
* L1 info only valid for following events:
|
|
*
|
|
* MEM_UOPS_RETIRED.STLB_MISS_STORES
|
|
* MEM_UOPS_RETIRED.LOCK_STORES
|
|
* MEM_UOPS_RETIRED.SPLIT_STORES
|
|
* MEM_UOPS_RETIRED.ALL_STORES
|
|
*/
|
|
if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
|
|
if (status & 1)
|
|
dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
|
|
else
|
|
dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
|
|
}
|
|
return dse.val;
|
|
}
|
|
|
|
static u64 load_latency_data(u64 status)
|
|
{
|
|
union intel_x86_pebs_dse dse;
|
|
u64 val;
|
|
|
|
dse.val = status;
|
|
|
|
/*
|
|
* use the mapping table for bit 0-3
|
|
*/
|
|
val = pebs_data_source[dse.ld_dse];
|
|
|
|
/*
|
|
* Nehalem models do not support TLB, Lock infos
|
|
*/
|
|
if (x86_pmu.pebs_no_tlb) {
|
|
val |= P(TLB, NA) | P(LOCK, NA);
|
|
return val;
|
|
}
|
|
/*
|
|
* bit 4: TLB access
|
|
* 0 = did not miss 2nd level TLB
|
|
* 1 = missed 2nd level TLB
|
|
*/
|
|
if (dse.ld_stlb_miss)
|
|
val |= P(TLB, MISS) | P(TLB, L2);
|
|
else
|
|
val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
|
|
|
|
/*
|
|
* bit 5: locked prefix
|
|
*/
|
|
if (dse.ld_locked)
|
|
val |= P(LOCK, LOCKED);
|
|
|
|
return val;
|
|
}
|
|
|
|
struct pebs_record_core {
|
|
u64 flags, ip;
|
|
u64 ax, bx, cx, dx;
|
|
u64 si, di, bp, sp;
|
|
u64 r8, r9, r10, r11;
|
|
u64 r12, r13, r14, r15;
|
|
};
|
|
|
|
struct pebs_record_nhm {
|
|
u64 flags, ip;
|
|
u64 ax, bx, cx, dx;
|
|
u64 si, di, bp, sp;
|
|
u64 r8, r9, r10, r11;
|
|
u64 r12, r13, r14, r15;
|
|
u64 status, dla, dse, lat;
|
|
};
|
|
|
|
/*
|
|
* Same as pebs_record_nhm, with two additional fields.
|
|
*/
|
|
struct pebs_record_hsw {
|
|
u64 flags, ip;
|
|
u64 ax, bx, cx, dx;
|
|
u64 si, di, bp, sp;
|
|
u64 r8, r9, r10, r11;
|
|
u64 r12, r13, r14, r15;
|
|
u64 status, dla, dse, lat;
|
|
u64 real_ip, tsx_tuning;
|
|
};
|
|
|
|
union hsw_tsx_tuning {
|
|
struct {
|
|
u32 cycles_last_block : 32,
|
|
hle_abort : 1,
|
|
rtm_abort : 1,
|
|
instruction_abort : 1,
|
|
non_instruction_abort : 1,
|
|
retry : 1,
|
|
data_conflict : 1,
|
|
capacity_writes : 1,
|
|
capacity_reads : 1;
|
|
};
|
|
u64 value;
|
|
};
|
|
|
|
#define PEBS_HSW_TSX_FLAGS 0xff00000000ULL
|
|
|
|
/* Same as HSW, plus TSC */
|
|
|
|
struct pebs_record_skl {
|
|
u64 flags, ip;
|
|
u64 ax, bx, cx, dx;
|
|
u64 si, di, bp, sp;
|
|
u64 r8, r9, r10, r11;
|
|
u64 r12, r13, r14, r15;
|
|
u64 status, dla, dse, lat;
|
|
u64 real_ip, tsx_tuning;
|
|
u64 tsc;
|
|
};
|
|
|
|
void init_debug_store_on_cpu(int cpu)
|
|
{
|
|
struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
|
|
|
|
if (!ds)
|
|
return;
|
|
|
|
wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
|
|
(u32)((u64)(unsigned long)ds),
|
|
(u32)((u64)(unsigned long)ds >> 32));
|
|
}
|
|
|
|
void fini_debug_store_on_cpu(int cpu)
|
|
{
|
|
if (!per_cpu(cpu_hw_events, cpu).ds)
|
|
return;
|
|
|
|
wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
|
|
}
|
|
|
|
static DEFINE_PER_CPU(void *, insn_buffer);
|
|
|
|
static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot)
|
|
{
|
|
unsigned long start = (unsigned long)cea;
|
|
phys_addr_t pa;
|
|
size_t msz = 0;
|
|
|
|
pa = virt_to_phys(addr);
|
|
|
|
preempt_disable();
|
|
for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE)
|
|
cea_set_pte(cea, pa, prot);
|
|
|
|
/*
|
|
* This is a cross-CPU update of the cpu_entry_area, we must shoot down
|
|
* all TLB entries for it.
|
|
*/
|
|
flush_tlb_kernel_range(start, start + size);
|
|
preempt_enable();
|
|
}
|
|
|
|
static void ds_clear_cea(void *cea, size_t size)
|
|
{
|
|
unsigned long start = (unsigned long)cea;
|
|
size_t msz = 0;
|
|
|
|
preempt_disable();
|
|
for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE)
|
|
cea_set_pte(cea, 0, PAGE_NONE);
|
|
|
|
flush_tlb_kernel_range(start, start + size);
|
|
preempt_enable();
|
|
}
|
|
|
|
static void *dsalloc_pages(size_t size, gfp_t flags, int cpu)
|
|
{
|
|
unsigned int order = get_order(size);
|
|
int node = cpu_to_node(cpu);
|
|
struct page *page;
|
|
|
|
page = __alloc_pages_node(node, flags | __GFP_ZERO, order);
|
|
return page ? page_address(page) : NULL;
|
|
}
|
|
|
|
static void dsfree_pages(const void *buffer, size_t size)
|
|
{
|
|
if (buffer)
|
|
free_pages((unsigned long)buffer, get_order(size));
|
|
}
|
|
|
|
static int alloc_pebs_buffer(int cpu)
|
|
{
|
|
struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
|
|
struct debug_store *ds = hwev->ds;
|
|
size_t bsiz = x86_pmu.pebs_buffer_size;
|
|
int max, node = cpu_to_node(cpu);
|
|
void *buffer, *insn_buff, *cea;
|
|
|
|
if (!x86_pmu.pebs)
|
|
return 0;
|
|
|
|
buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu);
|
|
if (unlikely(!buffer))
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* HSW+ already provides us the eventing ip; no need to allocate this
|
|
* buffer then.
|
|
*/
|
|
if (x86_pmu.intel_cap.pebs_format < 2) {
|
|
insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
|
|
if (!insn_buff) {
|
|
dsfree_pages(buffer, bsiz);
|
|
return -ENOMEM;
|
|
}
|
|
per_cpu(insn_buffer, cpu) = insn_buff;
|
|
}
|
|
hwev->ds_pebs_vaddr = buffer;
|
|
/* Update the cpu entry area mapping */
|
|
cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
|
|
ds->pebs_buffer_base = (unsigned long) cea;
|
|
ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL);
|
|
ds->pebs_index = ds->pebs_buffer_base;
|
|
max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size);
|
|
ds->pebs_absolute_maximum = ds->pebs_buffer_base + max;
|
|
return 0;
|
|
}
|
|
|
|
static void release_pebs_buffer(int cpu)
|
|
{
|
|
struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
|
|
void *cea;
|
|
|
|
if (!x86_pmu.pebs)
|
|
return;
|
|
|
|
kfree(per_cpu(insn_buffer, cpu));
|
|
per_cpu(insn_buffer, cpu) = NULL;
|
|
|
|
/* Clear the fixmap */
|
|
cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
|
|
ds_clear_cea(cea, x86_pmu.pebs_buffer_size);
|
|
dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size);
|
|
hwev->ds_pebs_vaddr = NULL;
|
|
}
|
|
|
|
static int alloc_bts_buffer(int cpu)
|
|
{
|
|
struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
|
|
struct debug_store *ds = hwev->ds;
|
|
void *buffer, *cea;
|
|
int max;
|
|
|
|
if (!x86_pmu.bts)
|
|
return 0;
|
|
|
|
buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu);
|
|
if (unlikely(!buffer)) {
|
|
WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
|
|
return -ENOMEM;
|
|
}
|
|
hwev->ds_bts_vaddr = buffer;
|
|
/* Update the fixmap */
|
|
cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
|
|
ds->bts_buffer_base = (unsigned long) cea;
|
|
ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL);
|
|
ds->bts_index = ds->bts_buffer_base;
|
|
max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
|
|
ds->bts_absolute_maximum = ds->bts_buffer_base +
|
|
max * BTS_RECORD_SIZE;
|
|
ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
|
|
(max / 16) * BTS_RECORD_SIZE;
|
|
return 0;
|
|
}
|
|
|
|
static void release_bts_buffer(int cpu)
|
|
{
|
|
struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
|
|
void *cea;
|
|
|
|
if (!x86_pmu.bts)
|
|
return;
|
|
|
|
/* Clear the fixmap */
|
|
cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
|
|
ds_clear_cea(cea, BTS_BUFFER_SIZE);
|
|
dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE);
|
|
hwev->ds_bts_vaddr = NULL;
|
|
}
|
|
|
|
static int alloc_ds_buffer(int cpu)
|
|
{
|
|
struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store;
|
|
|
|
memset(ds, 0, sizeof(*ds));
|
|
per_cpu(cpu_hw_events, cpu).ds = ds;
|
|
return 0;
|
|
}
|
|
|
|
static void release_ds_buffer(int cpu)
|
|
{
|
|
per_cpu(cpu_hw_events, cpu).ds = NULL;
|
|
}
|
|
|
|
void release_ds_buffers(void)
|
|
{
|
|
int cpu;
|
|
|
|
if (!x86_pmu.bts && !x86_pmu.pebs)
|
|
return;
|
|
|
|
for_each_possible_cpu(cpu)
|
|
release_ds_buffer(cpu);
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
/*
|
|
* Again, ignore errors from offline CPUs, they will no longer
|
|
* observe cpu_hw_events.ds and not program the DS_AREA when
|
|
* they come up.
|
|
*/
|
|
fini_debug_store_on_cpu(cpu);
|
|
}
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
release_pebs_buffer(cpu);
|
|
release_bts_buffer(cpu);
|
|
}
|
|
}
|
|
|
|
void reserve_ds_buffers(void)
|
|
{
|
|
int bts_err = 0, pebs_err = 0;
|
|
int cpu;
|
|
|
|
x86_pmu.bts_active = 0;
|
|
x86_pmu.pebs_active = 0;
|
|
|
|
if (!x86_pmu.bts && !x86_pmu.pebs)
|
|
return;
|
|
|
|
if (!x86_pmu.bts)
|
|
bts_err = 1;
|
|
|
|
if (!x86_pmu.pebs)
|
|
pebs_err = 1;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
if (alloc_ds_buffer(cpu)) {
|
|
bts_err = 1;
|
|
pebs_err = 1;
|
|
}
|
|
|
|
if (!bts_err && alloc_bts_buffer(cpu))
|
|
bts_err = 1;
|
|
|
|
if (!pebs_err && alloc_pebs_buffer(cpu))
|
|
pebs_err = 1;
|
|
|
|
if (bts_err && pebs_err)
|
|
break;
|
|
}
|
|
|
|
if (bts_err) {
|
|
for_each_possible_cpu(cpu)
|
|
release_bts_buffer(cpu);
|
|
}
|
|
|
|
if (pebs_err) {
|
|
for_each_possible_cpu(cpu)
|
|
release_pebs_buffer(cpu);
|
|
}
|
|
|
|
if (bts_err && pebs_err) {
|
|
for_each_possible_cpu(cpu)
|
|
release_ds_buffer(cpu);
|
|
} else {
|
|
if (x86_pmu.bts && !bts_err)
|
|
x86_pmu.bts_active = 1;
|
|
|
|
if (x86_pmu.pebs && !pebs_err)
|
|
x86_pmu.pebs_active = 1;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
/*
|
|
* Ignores wrmsr_on_cpu() errors for offline CPUs they
|
|
* will get this call through intel_pmu_cpu_starting().
|
|
*/
|
|
init_debug_store_on_cpu(cpu);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* BTS
|
|
*/
|
|
|
|
struct event_constraint bts_constraint =
|
|
EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
|
|
|
|
void intel_pmu_enable_bts(u64 config)
|
|
{
|
|
unsigned long debugctlmsr;
|
|
|
|
debugctlmsr = get_debugctlmsr();
|
|
|
|
debugctlmsr |= DEBUGCTLMSR_TR;
|
|
debugctlmsr |= DEBUGCTLMSR_BTS;
|
|
if (config & ARCH_PERFMON_EVENTSEL_INT)
|
|
debugctlmsr |= DEBUGCTLMSR_BTINT;
|
|
|
|
if (!(config & ARCH_PERFMON_EVENTSEL_OS))
|
|
debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
|
|
|
|
if (!(config & ARCH_PERFMON_EVENTSEL_USR))
|
|
debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
|
|
|
|
update_debugctlmsr(debugctlmsr);
|
|
}
|
|
|
|
void intel_pmu_disable_bts(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
unsigned long debugctlmsr;
|
|
|
|
if (!cpuc->ds)
|
|
return;
|
|
|
|
debugctlmsr = get_debugctlmsr();
|
|
|
|
debugctlmsr &=
|
|
~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
|
|
DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
|
|
|
|
update_debugctlmsr(debugctlmsr);
|
|
}
|
|
|
|
int intel_pmu_drain_bts_buffer(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct debug_store *ds = cpuc->ds;
|
|
struct bts_record {
|
|
u64 from;
|
|
u64 to;
|
|
u64 flags;
|
|
};
|
|
struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
|
|
struct bts_record *at, *base, *top;
|
|
struct perf_output_handle handle;
|
|
struct perf_event_header header;
|
|
struct perf_sample_data data;
|
|
unsigned long skip = 0;
|
|
struct pt_regs regs;
|
|
|
|
if (!event)
|
|
return 0;
|
|
|
|
if (!x86_pmu.bts_active)
|
|
return 0;
|
|
|
|
base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
|
|
top = (struct bts_record *)(unsigned long)ds->bts_index;
|
|
|
|
if (top <= base)
|
|
return 0;
|
|
|
|
memset(®s, 0, sizeof(regs));
|
|
|
|
ds->bts_index = ds->bts_buffer_base;
|
|
|
|
perf_sample_data_init(&data, 0, event->hw.last_period);
|
|
|
|
/*
|
|
* BTS leaks kernel addresses in branches across the cpl boundary,
|
|
* such as traps or system calls, so unless the user is asking for
|
|
* kernel tracing (and right now it's not possible), we'd need to
|
|
* filter them out. But first we need to count how many of those we
|
|
* have in the current batch. This is an extra O(n) pass, however,
|
|
* it's much faster than the other one especially considering that
|
|
* n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
|
|
* alloc_bts_buffer()).
|
|
*/
|
|
for (at = base; at < top; at++) {
|
|
/*
|
|
* Note that right now *this* BTS code only works if
|
|
* attr::exclude_kernel is set, but let's keep this extra
|
|
* check here in case that changes.
|
|
*/
|
|
if (event->attr.exclude_kernel &&
|
|
(kernel_ip(at->from) || kernel_ip(at->to)))
|
|
skip++;
|
|
}
|
|
|
|
/*
|
|
* Prepare a generic sample, i.e. fill in the invariant fields.
|
|
* We will overwrite the from and to address before we output
|
|
* the sample.
|
|
*/
|
|
rcu_read_lock();
|
|
perf_prepare_sample(&header, &data, event, ®s);
|
|
|
|
if (perf_output_begin(&handle, event, header.size *
|
|
(top - base - skip)))
|
|
goto unlock;
|
|
|
|
for (at = base; at < top; at++) {
|
|
/* Filter out any records that contain kernel addresses. */
|
|
if (event->attr.exclude_kernel &&
|
|
(kernel_ip(at->from) || kernel_ip(at->to)))
|
|
continue;
|
|
|
|
data.ip = at->from;
|
|
data.addr = at->to;
|
|
|
|
perf_output_sample(&handle, &header, &data, event);
|
|
}
|
|
|
|
perf_output_end(&handle);
|
|
|
|
/* There's new data available. */
|
|
event->hw.interrupts++;
|
|
event->pending_kill = POLL_IN;
|
|
unlock:
|
|
rcu_read_unlock();
|
|
return 1;
|
|
}
|
|
|
|
static inline void intel_pmu_drain_pebs_buffer(void)
|
|
{
|
|
struct pt_regs regs;
|
|
|
|
x86_pmu.drain_pebs(®s);
|
|
}
|
|
|
|
/*
|
|
* PEBS
|
|
*/
|
|
struct event_constraint intel_core2_pebs_event_constraints[] = {
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
|
|
/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
struct event_constraint intel_atom_pebs_event_constraints[] = {
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
|
|
/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
|
|
/* Allow all events as PEBS with no flags */
|
|
INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
struct event_constraint intel_slm_pebs_event_constraints[] = {
|
|
/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1),
|
|
/* Allow all events as PEBS with no flags */
|
|
INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
struct event_constraint intel_glm_pebs_event_constraints[] = {
|
|
/* Allow all events as PEBS with no flags */
|
|
INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
struct event_constraint intel_nehalem_pebs_event_constraints[] = {
|
|
INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */
|
|
INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
|
|
/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
struct event_constraint intel_westmere_pebs_event_constraints[] = {
|
|
INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */
|
|
INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
|
|
/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
struct event_constraint intel_snb_pebs_event_constraints[] = {
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
|
|
INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
|
|
INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
|
|
/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
|
|
/* Allow all events as PEBS with no flags */
|
|
INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
struct event_constraint intel_ivb_pebs_event_constraints[] = {
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
|
|
INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
|
|
INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
|
|
/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
|
|
/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
|
|
/* Allow all events as PEBS with no flags */
|
|
INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
struct event_constraint intel_hsw_pebs_event_constraints[] = {
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
|
|
INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
|
|
/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
|
|
/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
|
|
/* Allow all events as PEBS with no flags */
|
|
INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
struct event_constraint intel_bdw_pebs_event_constraints[] = {
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
|
|
INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
|
|
/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
|
|
/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
|
|
/* Allow all events as PEBS with no flags */
|
|
INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
|
|
struct event_constraint intel_skl_pebs_event_constraints[] = {
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
|
|
/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
|
|
/* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
|
|
INTEL_PLD_CONSTRAINT(0x1cd, 0xf), /* MEM_TRANS_RETIRED.* */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_L3_MISS_RETIRED.* */
|
|
/* Allow all events as PEBS with no flags */
|
|
INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
struct event_constraint intel_icl_pebs_event_constraints[] = {
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL), /* SLOTS */
|
|
|
|
INTEL_PLD_CONSTRAINT(0x1cd, 0xff), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x1d0, 0xf), /* MEM_INST_RETIRED.LOAD */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x2d0, 0xf), /* MEM_INST_RETIRED.STORE */
|
|
|
|
INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */
|
|
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
|
|
|
|
/*
|
|
* Everything else is handled by PMU_FL_PEBS_ALL, because we
|
|
* need the full constraints from the main table.
|
|
*/
|
|
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
struct event_constraint *intel_pebs_constraints(struct perf_event *event)
|
|
{
|
|
struct event_constraint *c;
|
|
|
|
if (!event->attr.precise_ip)
|
|
return NULL;
|
|
|
|
if (x86_pmu.pebs_constraints) {
|
|
for_each_event_constraint(c, x86_pmu.pebs_constraints) {
|
|
if (constraint_match(c, event->hw.config)) {
|
|
event->hw.flags |= c->flags;
|
|
return c;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Extended PEBS support
|
|
* Makes the PEBS code search the normal constraints.
|
|
*/
|
|
if (x86_pmu.flags & PMU_FL_PEBS_ALL)
|
|
return NULL;
|
|
|
|
return &emptyconstraint;
|
|
}
|
|
|
|
/*
|
|
* We need the sched_task callback even for per-cpu events when we use
|
|
* the large interrupt threshold, such that we can provide PID and TID
|
|
* to PEBS samples.
|
|
*/
|
|
static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
|
|
{
|
|
if (cpuc->n_pebs == cpuc->n_pebs_via_pt)
|
|
return false;
|
|
|
|
return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
|
|
}
|
|
|
|
void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
if (!sched_in && pebs_needs_sched_cb(cpuc))
|
|
intel_pmu_drain_pebs_buffer();
|
|
}
|
|
|
|
static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
|
|
{
|
|
struct debug_store *ds = cpuc->ds;
|
|
u64 threshold;
|
|
int reserved;
|
|
|
|
if (cpuc->n_pebs_via_pt)
|
|
return;
|
|
|
|
if (x86_pmu.flags & PMU_FL_PEBS_ALL)
|
|
reserved = x86_pmu.max_pebs_events + x86_pmu.num_counters_fixed;
|
|
else
|
|
reserved = x86_pmu.max_pebs_events;
|
|
|
|
if (cpuc->n_pebs == cpuc->n_large_pebs) {
|
|
threshold = ds->pebs_absolute_maximum -
|
|
reserved * cpuc->pebs_record_size;
|
|
} else {
|
|
threshold = ds->pebs_buffer_base + cpuc->pebs_record_size;
|
|
}
|
|
|
|
ds->pebs_interrupt_threshold = threshold;
|
|
}
|
|
|
|
static void adaptive_pebs_record_size_update(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
u64 pebs_data_cfg = cpuc->pebs_data_cfg;
|
|
int sz = sizeof(struct pebs_basic);
|
|
|
|
if (pebs_data_cfg & PEBS_DATACFG_MEMINFO)
|
|
sz += sizeof(struct pebs_meminfo);
|
|
if (pebs_data_cfg & PEBS_DATACFG_GP)
|
|
sz += sizeof(struct pebs_gprs);
|
|
if (pebs_data_cfg & PEBS_DATACFG_XMMS)
|
|
sz += sizeof(struct pebs_xmm);
|
|
if (pebs_data_cfg & PEBS_DATACFG_LBRS)
|
|
sz += x86_pmu.lbr_nr * sizeof(struct pebs_lbr_entry);
|
|
|
|
cpuc->pebs_record_size = sz;
|
|
}
|
|
|
|
#define PERF_PEBS_MEMINFO_TYPE (PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC | \
|
|
PERF_SAMPLE_PHYS_ADDR | PERF_SAMPLE_WEIGHT | \
|
|
PERF_SAMPLE_TRANSACTION)
|
|
|
|
static u64 pebs_update_adaptive_cfg(struct perf_event *event)
|
|
{
|
|
struct perf_event_attr *attr = &event->attr;
|
|
u64 sample_type = attr->sample_type;
|
|
u64 pebs_data_cfg = 0;
|
|
bool gprs, tsx_weight;
|
|
|
|
if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) &&
|
|
attr->precise_ip > 1)
|
|
return pebs_data_cfg;
|
|
|
|
if (sample_type & PERF_PEBS_MEMINFO_TYPE)
|
|
pebs_data_cfg |= PEBS_DATACFG_MEMINFO;
|
|
|
|
/*
|
|
* We need GPRs when:
|
|
* + user requested them
|
|
* + precise_ip < 2 for the non event IP
|
|
* + For RTM TSX weight we need GPRs for the abort code.
|
|
*/
|
|
gprs = (sample_type & PERF_SAMPLE_REGS_INTR) &&
|
|
(attr->sample_regs_intr & PEBS_GP_REGS);
|
|
|
|
tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT) &&
|
|
((attr->config & INTEL_ARCH_EVENT_MASK) ==
|
|
x86_pmu.rtm_abort_event);
|
|
|
|
if (gprs || (attr->precise_ip < 2) || tsx_weight)
|
|
pebs_data_cfg |= PEBS_DATACFG_GP;
|
|
|
|
if ((sample_type & PERF_SAMPLE_REGS_INTR) &&
|
|
(attr->sample_regs_intr & PERF_REG_EXTENDED_MASK))
|
|
pebs_data_cfg |= PEBS_DATACFG_XMMS;
|
|
|
|
if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
|
|
/*
|
|
* For now always log all LBRs. Could configure this
|
|
* later.
|
|
*/
|
|
pebs_data_cfg |= PEBS_DATACFG_LBRS |
|
|
((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT);
|
|
}
|
|
|
|
return pebs_data_cfg;
|
|
}
|
|
|
|
static void
|
|
pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc,
|
|
struct perf_event *event, bool add)
|
|
{
|
|
struct pmu *pmu = event->ctx->pmu;
|
|
/*
|
|
* Make sure we get updated with the first PEBS
|
|
* event. It will trigger also during removal, but
|
|
* that does not hurt:
|
|
*/
|
|
bool update = cpuc->n_pebs == 1;
|
|
|
|
if (needed_cb != pebs_needs_sched_cb(cpuc)) {
|
|
if (!needed_cb)
|
|
perf_sched_cb_inc(pmu);
|
|
else
|
|
perf_sched_cb_dec(pmu);
|
|
|
|
update = true;
|
|
}
|
|
|
|
/*
|
|
* The PEBS record doesn't shrink on pmu::del(). Doing so would require
|
|
* iterating all remaining PEBS events to reconstruct the config.
|
|
*/
|
|
if (x86_pmu.intel_cap.pebs_baseline && add) {
|
|
u64 pebs_data_cfg;
|
|
|
|
/* Clear pebs_data_cfg and pebs_record_size for first PEBS. */
|
|
if (cpuc->n_pebs == 1) {
|
|
cpuc->pebs_data_cfg = 0;
|
|
cpuc->pebs_record_size = sizeof(struct pebs_basic);
|
|
}
|
|
|
|
pebs_data_cfg = pebs_update_adaptive_cfg(event);
|
|
|
|
/* Update pebs_record_size if new event requires more data. */
|
|
if (pebs_data_cfg & ~cpuc->pebs_data_cfg) {
|
|
cpuc->pebs_data_cfg |= pebs_data_cfg;
|
|
adaptive_pebs_record_size_update();
|
|
update = true;
|
|
}
|
|
}
|
|
|
|
if (update)
|
|
pebs_update_threshold(cpuc);
|
|
}
|
|
|
|
void intel_pmu_pebs_add(struct perf_event *event)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
bool needed_cb = pebs_needs_sched_cb(cpuc);
|
|
|
|
cpuc->n_pebs++;
|
|
if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
|
|
cpuc->n_large_pebs++;
|
|
if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
|
|
cpuc->n_pebs_via_pt++;
|
|
|
|
pebs_update_state(needed_cb, cpuc, event, true);
|
|
}
|
|
|
|
static void intel_pmu_pebs_via_pt_disable(struct perf_event *event)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
if (!is_pebs_pt(event))
|
|
return;
|
|
|
|
if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK))
|
|
cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK;
|
|
}
|
|
|
|
static void intel_pmu_pebs_via_pt_enable(struct perf_event *event)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
struct debug_store *ds = cpuc->ds;
|
|
|
|
if (!is_pebs_pt(event))
|
|
return;
|
|
|
|
if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
|
|
cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD;
|
|
|
|
cpuc->pebs_enabled |= PEBS_OUTPUT_PT;
|
|
|
|
wrmsrl(MSR_RELOAD_PMC0 + hwc->idx, ds->pebs_event_reset[hwc->idx]);
|
|
}
|
|
|
|
void intel_pmu_pebs_enable(struct perf_event *event)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
struct debug_store *ds = cpuc->ds;
|
|
|
|
hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
|
|
|
|
cpuc->pebs_enabled |= 1ULL << hwc->idx;
|
|
|
|
if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5))
|
|
cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
|
|
else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
|
|
cpuc->pebs_enabled |= 1ULL << 63;
|
|
|
|
if (x86_pmu.intel_cap.pebs_baseline) {
|
|
hwc->config |= ICL_EVENTSEL_ADAPTIVE;
|
|
if (cpuc->pebs_data_cfg != cpuc->active_pebs_data_cfg) {
|
|
wrmsrl(MSR_PEBS_DATA_CFG, cpuc->pebs_data_cfg);
|
|
cpuc->active_pebs_data_cfg = cpuc->pebs_data_cfg;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Use auto-reload if possible to save a MSR write in the PMI.
|
|
* This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
|
|
*/
|
|
if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
|
|
unsigned int idx = hwc->idx;
|
|
|
|
if (idx >= INTEL_PMC_IDX_FIXED)
|
|
idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED);
|
|
ds->pebs_event_reset[idx] =
|
|
(u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
|
|
} else {
|
|
ds->pebs_event_reset[hwc->idx] = 0;
|
|
}
|
|
|
|
intel_pmu_pebs_via_pt_enable(event);
|
|
}
|
|
|
|
void intel_pmu_pebs_del(struct perf_event *event)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
bool needed_cb = pebs_needs_sched_cb(cpuc);
|
|
|
|
cpuc->n_pebs--;
|
|
if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
|
|
cpuc->n_large_pebs--;
|
|
if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
|
|
cpuc->n_pebs_via_pt--;
|
|
|
|
pebs_update_state(needed_cb, cpuc, event, false);
|
|
}
|
|
|
|
void intel_pmu_pebs_disable(struct perf_event *event)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
|
|
if (cpuc->n_pebs == cpuc->n_large_pebs &&
|
|
cpuc->n_pebs != cpuc->n_pebs_via_pt)
|
|
intel_pmu_drain_pebs_buffer();
|
|
|
|
cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
|
|
|
|
if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) &&
|
|
(x86_pmu.version < 5))
|
|
cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
|
|
else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
|
|
cpuc->pebs_enabled &= ~(1ULL << 63);
|
|
|
|
intel_pmu_pebs_via_pt_disable(event);
|
|
|
|
if (cpuc->enabled)
|
|
wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
|
|
|
|
hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
|
|
}
|
|
|
|
void intel_pmu_pebs_enable_all(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
if (cpuc->pebs_enabled)
|
|
wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
|
|
}
|
|
|
|
void intel_pmu_pebs_disable_all(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
if (cpuc->pebs_enabled)
|
|
wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
|
|
}
|
|
|
|
static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
unsigned long from = cpuc->lbr_entries[0].from;
|
|
unsigned long old_to, to = cpuc->lbr_entries[0].to;
|
|
unsigned long ip = regs->ip;
|
|
int is_64bit = 0;
|
|
void *kaddr;
|
|
int size;
|
|
|
|
/*
|
|
* We don't need to fixup if the PEBS assist is fault like
|
|
*/
|
|
if (!x86_pmu.intel_cap.pebs_trap)
|
|
return 1;
|
|
|
|
/*
|
|
* No LBR entry, no basic block, no rewinding
|
|
*/
|
|
if (!cpuc->lbr_stack.nr || !from || !to)
|
|
return 0;
|
|
|
|
/*
|
|
* Basic blocks should never cross user/kernel boundaries
|
|
*/
|
|
if (kernel_ip(ip) != kernel_ip(to))
|
|
return 0;
|
|
|
|
/*
|
|
* unsigned math, either ip is before the start (impossible) or
|
|
* the basic block is larger than 1 page (sanity)
|
|
*/
|
|
if ((ip - to) > PEBS_FIXUP_SIZE)
|
|
return 0;
|
|
|
|
/*
|
|
* We sampled a branch insn, rewind using the LBR stack
|
|
*/
|
|
if (ip == to) {
|
|
set_linear_ip(regs, from);
|
|
return 1;
|
|
}
|
|
|
|
size = ip - to;
|
|
if (!kernel_ip(ip)) {
|
|
int bytes;
|
|
u8 *buf = this_cpu_read(insn_buffer);
|
|
|
|
/* 'size' must fit our buffer, see above */
|
|
bytes = copy_from_user_nmi(buf, (void __user *)to, size);
|
|
if (bytes != 0)
|
|
return 0;
|
|
|
|
kaddr = buf;
|
|
} else {
|
|
kaddr = (void *)to;
|
|
}
|
|
|
|
do {
|
|
struct insn insn;
|
|
|
|
old_to = to;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32);
|
|
#endif
|
|
insn_init(&insn, kaddr, size, is_64bit);
|
|
insn_get_length(&insn);
|
|
/*
|
|
* Make sure there was not a problem decoding the
|
|
* instruction and getting the length. This is
|
|
* doubly important because we have an infinite
|
|
* loop if insn.length=0.
|
|
*/
|
|
if (!insn.length)
|
|
break;
|
|
|
|
to += insn.length;
|
|
kaddr += insn.length;
|
|
size -= insn.length;
|
|
} while (to < ip);
|
|
|
|
if (to == ip) {
|
|
set_linear_ip(regs, old_to);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Even though we decoded the basic block, the instruction stream
|
|
* never matched the given IP, either the TO or the IP got corrupted.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
static inline u64 intel_get_tsx_weight(u64 tsx_tuning)
|
|
{
|
|
if (tsx_tuning) {
|
|
union hsw_tsx_tuning tsx = { .value = tsx_tuning };
|
|
return tsx.cycles_last_block;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax)
|
|
{
|
|
u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
|
|
|
|
/* For RTM XABORTs also log the abort code from AX */
|
|
if ((txn & PERF_TXN_TRANSACTION) && (ax & 1))
|
|
txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
|
|
return txn;
|
|
}
|
|
|
|
static inline u64 get_pebs_status(void *n)
|
|
{
|
|
if (x86_pmu.intel_cap.pebs_format < 4)
|
|
return ((struct pebs_record_nhm *)n)->status;
|
|
return ((struct pebs_basic *)n)->applicable_counters;
|
|
}
|
|
|
|
#define PERF_X86_EVENT_PEBS_HSW_PREC \
|
|
(PERF_X86_EVENT_PEBS_ST_HSW | \
|
|
PERF_X86_EVENT_PEBS_LD_HSW | \
|
|
PERF_X86_EVENT_PEBS_NA_HSW)
|
|
|
|
static u64 get_data_src(struct perf_event *event, u64 aux)
|
|
{
|
|
u64 val = PERF_MEM_NA;
|
|
int fl = event->hw.flags;
|
|
bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
|
|
|
|
if (fl & PERF_X86_EVENT_PEBS_LDLAT)
|
|
val = load_latency_data(aux);
|
|
else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
|
|
val = precise_datala_hsw(event, aux);
|
|
else if (fst)
|
|
val = precise_store_data(aux);
|
|
return val;
|
|
}
|
|
|
|
static void setup_pebs_fixed_sample_data(struct perf_event *event,
|
|
struct pt_regs *iregs, void *__pebs,
|
|
struct perf_sample_data *data,
|
|
struct pt_regs *regs)
|
|
{
|
|
/*
|
|
* We cast to the biggest pebs_record but are careful not to
|
|
* unconditionally access the 'extra' entries.
|
|
*/
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct pebs_record_skl *pebs = __pebs;
|
|
u64 sample_type;
|
|
int fll;
|
|
|
|
if (pebs == NULL)
|
|
return;
|
|
|
|
sample_type = event->attr.sample_type;
|
|
fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT;
|
|
|
|
perf_sample_data_init(data, 0, event->hw.last_period);
|
|
|
|
data->period = event->hw.last_period;
|
|
|
|
/*
|
|
* Use latency for weight (only avail with PEBS-LL)
|
|
*/
|
|
if (fll && (sample_type & PERF_SAMPLE_WEIGHT))
|
|
data->weight = pebs->lat;
|
|
|
|
/*
|
|
* data.data_src encodes the data source
|
|
*/
|
|
if (sample_type & PERF_SAMPLE_DATA_SRC)
|
|
data->data_src.val = get_data_src(event, pebs->dse);
|
|
|
|
/*
|
|
* We must however always use iregs for the unwinder to stay sane; the
|
|
* record BP,SP,IP can point into thin air when the record is from a
|
|
* previous PMI context or an (I)RET happened between the record and
|
|
* PMI.
|
|
*/
|
|
if (sample_type & PERF_SAMPLE_CALLCHAIN)
|
|
data->callchain = perf_callchain(event, iregs);
|
|
|
|
/*
|
|
* We use the interrupt regs as a base because the PEBS record does not
|
|
* contain a full regs set, specifically it seems to lack segment
|
|
* descriptors, which get used by things like user_mode().
|
|
*
|
|
* In the simple case fix up only the IP for PERF_SAMPLE_IP.
|
|
*/
|
|
*regs = *iregs;
|
|
|
|
/*
|
|
* Initialize regs_>flags from PEBS,
|
|
* Clear exact bit (which uses x86 EFLAGS Reserved bit 3),
|
|
* i.e., do not rely on it being zero:
|
|
*/
|
|
regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT;
|
|
|
|
if (sample_type & PERF_SAMPLE_REGS_INTR) {
|
|
regs->ax = pebs->ax;
|
|
regs->bx = pebs->bx;
|
|
regs->cx = pebs->cx;
|
|
regs->dx = pebs->dx;
|
|
regs->si = pebs->si;
|
|
regs->di = pebs->di;
|
|
|
|
regs->bp = pebs->bp;
|
|
regs->sp = pebs->sp;
|
|
|
|
#ifndef CONFIG_X86_32
|
|
regs->r8 = pebs->r8;
|
|
regs->r9 = pebs->r9;
|
|
regs->r10 = pebs->r10;
|
|
regs->r11 = pebs->r11;
|
|
regs->r12 = pebs->r12;
|
|
regs->r13 = pebs->r13;
|
|
regs->r14 = pebs->r14;
|
|
regs->r15 = pebs->r15;
|
|
#endif
|
|
}
|
|
|
|
if (event->attr.precise_ip > 1) {
|
|
/*
|
|
* Haswell and later processors have an 'eventing IP'
|
|
* (real IP) which fixes the off-by-1 skid in hardware.
|
|
* Use it when precise_ip >= 2 :
|
|
*/
|
|
if (x86_pmu.intel_cap.pebs_format >= 2) {
|
|
set_linear_ip(regs, pebs->real_ip);
|
|
regs->flags |= PERF_EFLAGS_EXACT;
|
|
} else {
|
|
/* Otherwise, use PEBS off-by-1 IP: */
|
|
set_linear_ip(regs, pebs->ip);
|
|
|
|
/*
|
|
* With precise_ip >= 2, try to fix up the off-by-1 IP
|
|
* using the LBR. If successful, the fixup function
|
|
* corrects regs->ip and calls set_linear_ip() on regs:
|
|
*/
|
|
if (intel_pmu_pebs_fixup_ip(regs))
|
|
regs->flags |= PERF_EFLAGS_EXACT;
|
|
}
|
|
} else {
|
|
/*
|
|
* When precise_ip == 1, return the PEBS off-by-1 IP,
|
|
* no fixup attempted:
|
|
*/
|
|
set_linear_ip(regs, pebs->ip);
|
|
}
|
|
|
|
|
|
if ((sample_type & (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR)) &&
|
|
x86_pmu.intel_cap.pebs_format >= 1)
|
|
data->addr = pebs->dla;
|
|
|
|
if (x86_pmu.intel_cap.pebs_format >= 2) {
|
|
/* Only set the TSX weight when no memory weight. */
|
|
if ((sample_type & PERF_SAMPLE_WEIGHT) && !fll)
|
|
data->weight = intel_get_tsx_weight(pebs->tsx_tuning);
|
|
|
|
if (sample_type & PERF_SAMPLE_TRANSACTION)
|
|
data->txn = intel_get_tsx_transaction(pebs->tsx_tuning,
|
|
pebs->ax);
|
|
}
|
|
|
|
/*
|
|
* v3 supplies an accurate time stamp, so we use that
|
|
* for the time stamp.
|
|
*
|
|
* We can only do this for the default trace clock.
|
|
*/
|
|
if (x86_pmu.intel_cap.pebs_format >= 3 &&
|
|
event->attr.use_clockid == 0)
|
|
data->time = native_sched_clock_from_tsc(pebs->tsc);
|
|
|
|
if (has_branch_stack(event))
|
|
data->br_stack = &cpuc->lbr_stack;
|
|
}
|
|
|
|
static void adaptive_pebs_save_regs(struct pt_regs *regs,
|
|
struct pebs_gprs *gprs)
|
|
{
|
|
regs->ax = gprs->ax;
|
|
regs->bx = gprs->bx;
|
|
regs->cx = gprs->cx;
|
|
regs->dx = gprs->dx;
|
|
regs->si = gprs->si;
|
|
regs->di = gprs->di;
|
|
regs->bp = gprs->bp;
|
|
regs->sp = gprs->sp;
|
|
#ifndef CONFIG_X86_32
|
|
regs->r8 = gprs->r8;
|
|
regs->r9 = gprs->r9;
|
|
regs->r10 = gprs->r10;
|
|
regs->r11 = gprs->r11;
|
|
regs->r12 = gprs->r12;
|
|
regs->r13 = gprs->r13;
|
|
regs->r14 = gprs->r14;
|
|
regs->r15 = gprs->r15;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* With adaptive PEBS the layout depends on what fields are configured.
|
|
*/
|
|
|
|
static void setup_pebs_adaptive_sample_data(struct perf_event *event,
|
|
struct pt_regs *iregs, void *__pebs,
|
|
struct perf_sample_data *data,
|
|
struct pt_regs *regs)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct pebs_basic *basic = __pebs;
|
|
void *next_record = basic + 1;
|
|
u64 sample_type;
|
|
u64 format_size;
|
|
struct pebs_meminfo *meminfo = NULL;
|
|
struct pebs_gprs *gprs = NULL;
|
|
struct x86_perf_regs *perf_regs;
|
|
|
|
if (basic == NULL)
|
|
return;
|
|
|
|
perf_regs = container_of(regs, struct x86_perf_regs, regs);
|
|
perf_regs->xmm_regs = NULL;
|
|
|
|
sample_type = event->attr.sample_type;
|
|
format_size = basic->format_size;
|
|
perf_sample_data_init(data, 0, event->hw.last_period);
|
|
data->period = event->hw.last_period;
|
|
|
|
if (event->attr.use_clockid == 0)
|
|
data->time = native_sched_clock_from_tsc(basic->tsc);
|
|
|
|
/*
|
|
* We must however always use iregs for the unwinder to stay sane; the
|
|
* record BP,SP,IP can point into thin air when the record is from a
|
|
* previous PMI context or an (I)RET happened between the record and
|
|
* PMI.
|
|
*/
|
|
if (sample_type & PERF_SAMPLE_CALLCHAIN)
|
|
data->callchain = perf_callchain(event, iregs);
|
|
|
|
*regs = *iregs;
|
|
/* The ip in basic is EventingIP */
|
|
set_linear_ip(regs, basic->ip);
|
|
regs->flags = PERF_EFLAGS_EXACT;
|
|
|
|
/*
|
|
* The record for MEMINFO is in front of GP
|
|
* But PERF_SAMPLE_TRANSACTION needs gprs->ax.
|
|
* Save the pointer here but process later.
|
|
*/
|
|
if (format_size & PEBS_DATACFG_MEMINFO) {
|
|
meminfo = next_record;
|
|
next_record = meminfo + 1;
|
|
}
|
|
|
|
if (format_size & PEBS_DATACFG_GP) {
|
|
gprs = next_record;
|
|
next_record = gprs + 1;
|
|
|
|
if (event->attr.precise_ip < 2) {
|
|
set_linear_ip(regs, gprs->ip);
|
|
regs->flags &= ~PERF_EFLAGS_EXACT;
|
|
}
|
|
|
|
if (sample_type & PERF_SAMPLE_REGS_INTR)
|
|
adaptive_pebs_save_regs(regs, gprs);
|
|
}
|
|
|
|
if (format_size & PEBS_DATACFG_MEMINFO) {
|
|
if (sample_type & PERF_SAMPLE_WEIGHT)
|
|
data->weight = meminfo->latency ?:
|
|
intel_get_tsx_weight(meminfo->tsx_tuning);
|
|
|
|
if (sample_type & PERF_SAMPLE_DATA_SRC)
|
|
data->data_src.val = get_data_src(event, meminfo->aux);
|
|
|
|
if (sample_type & (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR))
|
|
data->addr = meminfo->address;
|
|
|
|
if (sample_type & PERF_SAMPLE_TRANSACTION)
|
|
data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning,
|
|
gprs ? gprs->ax : 0);
|
|
}
|
|
|
|
if (format_size & PEBS_DATACFG_XMMS) {
|
|
struct pebs_xmm *xmm = next_record;
|
|
|
|
next_record = xmm + 1;
|
|
perf_regs->xmm_regs = xmm->xmm;
|
|
}
|
|
|
|
if (format_size & PEBS_DATACFG_LBRS) {
|
|
struct pebs_lbr *lbr = next_record;
|
|
int num_lbr = ((format_size >> PEBS_DATACFG_LBR_SHIFT)
|
|
& 0xff) + 1;
|
|
next_record = next_record + num_lbr*sizeof(struct pebs_lbr_entry);
|
|
|
|
if (has_branch_stack(event)) {
|
|
intel_pmu_store_pebs_lbrs(lbr);
|
|
data->br_stack = &cpuc->lbr_stack;
|
|
}
|
|
}
|
|
|
|
WARN_ONCE(next_record != __pebs + (format_size >> 48),
|
|
"PEBS record size %llu, expected %llu, config %llx\n",
|
|
format_size >> 48,
|
|
(u64)(next_record - __pebs),
|
|
basic->format_size);
|
|
}
|
|
|
|
static inline void *
|
|
get_next_pebs_record_by_bit(void *base, void *top, int bit)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
void *at;
|
|
u64 pebs_status;
|
|
|
|
/*
|
|
* fmt0 does not have a status bitfield (does not use
|
|
* perf_record_nhm format)
|
|
*/
|
|
if (x86_pmu.intel_cap.pebs_format < 1)
|
|
return base;
|
|
|
|
if (base == NULL)
|
|
return NULL;
|
|
|
|
for (at = base; at < top; at += cpuc->pebs_record_size) {
|
|
unsigned long status = get_pebs_status(at);
|
|
|
|
if (test_bit(bit, (unsigned long *)&status)) {
|
|
/* PEBS v3 has accurate status bits */
|
|
if (x86_pmu.intel_cap.pebs_format >= 3)
|
|
return at;
|
|
|
|
if (status == (1 << bit))
|
|
return at;
|
|
|
|
/* clear non-PEBS bit and re-check */
|
|
pebs_status = status & cpuc->pebs_enabled;
|
|
pebs_status &= PEBS_COUNTER_MASK;
|
|
if (pebs_status == (1 << bit))
|
|
return at;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void intel_pmu_auto_reload_read(struct perf_event *event)
|
|
{
|
|
WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD));
|
|
|
|
perf_pmu_disable(event->pmu);
|
|
intel_pmu_drain_pebs_buffer();
|
|
perf_pmu_enable(event->pmu);
|
|
}
|
|
|
|
/*
|
|
* Special variant of intel_pmu_save_and_restart() for auto-reload.
|
|
*/
|
|
static int
|
|
intel_pmu_save_and_restart_reload(struct perf_event *event, int count)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
int shift = 64 - x86_pmu.cntval_bits;
|
|
u64 period = hwc->sample_period;
|
|
u64 prev_raw_count, new_raw_count;
|
|
s64 new, old;
|
|
|
|
WARN_ON(!period);
|
|
|
|
/*
|
|
* drain_pebs() only happens when the PMU is disabled.
|
|
*/
|
|
WARN_ON(this_cpu_read(cpu_hw_events.enabled));
|
|
|
|
prev_raw_count = local64_read(&hwc->prev_count);
|
|
rdpmcl(hwc->event_base_rdpmc, new_raw_count);
|
|
local64_set(&hwc->prev_count, new_raw_count);
|
|
|
|
/*
|
|
* Since the counter increments a negative counter value and
|
|
* overflows on the sign switch, giving the interval:
|
|
*
|
|
* [-period, 0]
|
|
*
|
|
* the difference between two consequtive reads is:
|
|
*
|
|
* A) value2 - value1;
|
|
* when no overflows have happened in between,
|
|
*
|
|
* B) (0 - value1) + (value2 - (-period));
|
|
* when one overflow happened in between,
|
|
*
|
|
* C) (0 - value1) + (n - 1) * (period) + (value2 - (-period));
|
|
* when @n overflows happened in between.
|
|
*
|
|
* Here A) is the obvious difference, B) is the extension to the
|
|
* discrete interval, where the first term is to the top of the
|
|
* interval and the second term is from the bottom of the next
|
|
* interval and C) the extension to multiple intervals, where the
|
|
* middle term is the whole intervals covered.
|
|
*
|
|
* An equivalent of C, by reduction, is:
|
|
*
|
|
* value2 - value1 + n * period
|
|
*/
|
|
new = ((s64)(new_raw_count << shift) >> shift);
|
|
old = ((s64)(prev_raw_count << shift) >> shift);
|
|
local64_add(new - old + count * period, &event->count);
|
|
|
|
local64_set(&hwc->period_left, -new);
|
|
|
|
perf_event_update_userpage(event);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __intel_pmu_pebs_event(struct perf_event *event,
|
|
struct pt_regs *iregs,
|
|
void *base, void *top,
|
|
int bit, int count,
|
|
void (*setup_sample)(struct perf_event *,
|
|
struct pt_regs *,
|
|
void *,
|
|
struct perf_sample_data *,
|
|
struct pt_regs *))
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
struct perf_sample_data data;
|
|
struct x86_perf_regs perf_regs;
|
|
struct pt_regs *regs = &perf_regs.regs;
|
|
void *at = get_next_pebs_record_by_bit(base, top, bit);
|
|
|
|
if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
|
|
/*
|
|
* Now, auto-reload is only enabled in fixed period mode.
|
|
* The reload value is always hwc->sample_period.
|
|
* May need to change it, if auto-reload is enabled in
|
|
* freq mode later.
|
|
*/
|
|
intel_pmu_save_and_restart_reload(event, count);
|
|
} else if (!intel_pmu_save_and_restart(event))
|
|
return;
|
|
|
|
while (count > 1) {
|
|
setup_sample(event, iregs, at, &data, regs);
|
|
perf_event_output(event, &data, regs);
|
|
at += cpuc->pebs_record_size;
|
|
at = get_next_pebs_record_by_bit(at, top, bit);
|
|
count--;
|
|
}
|
|
|
|
setup_sample(event, iregs, at, &data, regs);
|
|
|
|
/*
|
|
* All but the last records are processed.
|
|
* The last one is left to be able to call the overflow handler.
|
|
*/
|
|
if (perf_event_overflow(event, &data, regs)) {
|
|
x86_pmu_stop(event, 0);
|
|
return;
|
|
}
|
|
|
|
}
|
|
|
|
static void intel_pmu_drain_pebs_core(struct pt_regs *iregs)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct debug_store *ds = cpuc->ds;
|
|
struct perf_event *event = cpuc->events[0]; /* PMC0 only */
|
|
struct pebs_record_core *at, *top;
|
|
int n;
|
|
|
|
if (!x86_pmu.pebs_active)
|
|
return;
|
|
|
|
at = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
|
|
top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
|
|
|
|
/*
|
|
* Whatever else happens, drain the thing
|
|
*/
|
|
ds->pebs_index = ds->pebs_buffer_base;
|
|
|
|
if (!test_bit(0, cpuc->active_mask))
|
|
return;
|
|
|
|
WARN_ON_ONCE(!event);
|
|
|
|
if (!event->attr.precise_ip)
|
|
return;
|
|
|
|
n = top - at;
|
|
if (n <= 0) {
|
|
if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
|
|
intel_pmu_save_and_restart_reload(event, 0);
|
|
return;
|
|
}
|
|
|
|
__intel_pmu_pebs_event(event, iregs, at, top, 0, n,
|
|
setup_pebs_fixed_sample_data);
|
|
}
|
|
|
|
static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, int size)
|
|
{
|
|
struct perf_event *event;
|
|
int bit;
|
|
|
|
/*
|
|
* The drain_pebs() could be called twice in a short period
|
|
* for auto-reload event in pmu::read(). There are no
|
|
* overflows have happened in between.
|
|
* It needs to call intel_pmu_save_and_restart_reload() to
|
|
* update the event->count for this case.
|
|
*/
|
|
for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled, size) {
|
|
event = cpuc->events[bit];
|
|
if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
|
|
intel_pmu_save_and_restart_reload(event, 0);
|
|
}
|
|
}
|
|
|
|
static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct debug_store *ds = cpuc->ds;
|
|
struct perf_event *event;
|
|
void *base, *at, *top;
|
|
short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
|
|
short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
|
|
int bit, i, size;
|
|
u64 mask;
|
|
|
|
if (!x86_pmu.pebs_active)
|
|
return;
|
|
|
|
base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
|
|
top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
|
|
|
|
ds->pebs_index = ds->pebs_buffer_base;
|
|
|
|
mask = (1ULL << x86_pmu.max_pebs_events) - 1;
|
|
size = x86_pmu.max_pebs_events;
|
|
if (x86_pmu.flags & PMU_FL_PEBS_ALL) {
|
|
mask |= ((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED;
|
|
size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed;
|
|
}
|
|
|
|
if (unlikely(base >= top)) {
|
|
intel_pmu_pebs_event_update_no_drain(cpuc, size);
|
|
return;
|
|
}
|
|
|
|
for (at = base; at < top; at += x86_pmu.pebs_record_size) {
|
|
struct pebs_record_nhm *p = at;
|
|
u64 pebs_status;
|
|
|
|
pebs_status = p->status & cpuc->pebs_enabled;
|
|
pebs_status &= mask;
|
|
|
|
/* PEBS v3 has more accurate status bits */
|
|
if (x86_pmu.intel_cap.pebs_format >= 3) {
|
|
for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
|
|
counts[bit]++;
|
|
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* On some CPUs the PEBS status can be zero when PEBS is
|
|
* racing with clearing of GLOBAL_STATUS.
|
|
*
|
|
* Normally we would drop that record, but in the
|
|
* case when there is only a single active PEBS event
|
|
* we can assume it's for that event.
|
|
*/
|
|
if (!pebs_status && cpuc->pebs_enabled &&
|
|
!(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
|
|
pebs_status = cpuc->pebs_enabled;
|
|
|
|
bit = find_first_bit((unsigned long *)&pebs_status,
|
|
x86_pmu.max_pebs_events);
|
|
if (bit >= x86_pmu.max_pebs_events)
|
|
continue;
|
|
|
|
/*
|
|
* The PEBS hardware does not deal well with the situation
|
|
* when events happen near to each other and multiple bits
|
|
* are set. But it should happen rarely.
|
|
*
|
|
* If these events include one PEBS and multiple non-PEBS
|
|
* events, it doesn't impact PEBS record. The record will
|
|
* be handled normally. (slow path)
|
|
*
|
|
* If these events include two or more PEBS events, the
|
|
* records for the events can be collapsed into a single
|
|
* one, and it's not possible to reconstruct all events
|
|
* that caused the PEBS record. It's called collision.
|
|
* If collision happened, the record will be dropped.
|
|
*/
|
|
if (p->status != (1ULL << bit)) {
|
|
for_each_set_bit(i, (unsigned long *)&pebs_status, size)
|
|
error[i]++;
|
|
continue;
|
|
}
|
|
|
|
counts[bit]++;
|
|
}
|
|
|
|
for_each_set_bit(bit, (unsigned long *)&mask, size) {
|
|
if ((counts[bit] == 0) && (error[bit] == 0))
|
|
continue;
|
|
|
|
event = cpuc->events[bit];
|
|
if (WARN_ON_ONCE(!event))
|
|
continue;
|
|
|
|
if (WARN_ON_ONCE(!event->attr.precise_ip))
|
|
continue;
|
|
|
|
/* log dropped samples number */
|
|
if (error[bit]) {
|
|
perf_log_lost_samples(event, error[bit]);
|
|
|
|
if (perf_event_account_interrupt(event))
|
|
x86_pmu_stop(event, 0);
|
|
}
|
|
|
|
if (counts[bit]) {
|
|
__intel_pmu_pebs_event(event, iregs, base,
|
|
top, bit, counts[bit],
|
|
setup_pebs_fixed_sample_data);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs)
|
|
{
|
|
short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct debug_store *ds = cpuc->ds;
|
|
struct perf_event *event;
|
|
void *base, *at, *top;
|
|
int bit, size;
|
|
u64 mask;
|
|
|
|
if (!x86_pmu.pebs_active)
|
|
return;
|
|
|
|
base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base;
|
|
top = (struct pebs_basic *)(unsigned long)ds->pebs_index;
|
|
|
|
ds->pebs_index = ds->pebs_buffer_base;
|
|
|
|
mask = ((1ULL << x86_pmu.max_pebs_events) - 1) |
|
|
(((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED);
|
|
size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed;
|
|
|
|
if (unlikely(base >= top)) {
|
|
intel_pmu_pebs_event_update_no_drain(cpuc, size);
|
|
return;
|
|
}
|
|
|
|
for (at = base; at < top; at += cpuc->pebs_record_size) {
|
|
u64 pebs_status;
|
|
|
|
pebs_status = get_pebs_status(at) & cpuc->pebs_enabled;
|
|
pebs_status &= mask;
|
|
|
|
for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
|
|
counts[bit]++;
|
|
}
|
|
|
|
for_each_set_bit(bit, (unsigned long *)&mask, size) {
|
|
if (counts[bit] == 0)
|
|
continue;
|
|
|
|
event = cpuc->events[bit];
|
|
if (WARN_ON_ONCE(!event))
|
|
continue;
|
|
|
|
if (WARN_ON_ONCE(!event->attr.precise_ip))
|
|
continue;
|
|
|
|
__intel_pmu_pebs_event(event, iregs, base,
|
|
top, bit, counts[bit],
|
|
setup_pebs_adaptive_sample_data);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* BTS, PEBS probe and setup
|
|
*/
|
|
|
|
void __init intel_ds_init(void)
|
|
{
|
|
/*
|
|
* No support for 32bit formats
|
|
*/
|
|
if (!boot_cpu_has(X86_FEATURE_DTES64))
|
|
return;
|
|
|
|
x86_pmu.bts = boot_cpu_has(X86_FEATURE_BTS);
|
|
x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
|
|
x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
|
|
if (x86_pmu.version <= 4)
|
|
x86_pmu.pebs_no_isolation = 1;
|
|
|
|
if (x86_pmu.pebs) {
|
|
char pebs_type = x86_pmu.intel_cap.pebs_trap ? '+' : '-';
|
|
char *pebs_qual = "";
|
|
int format = x86_pmu.intel_cap.pebs_format;
|
|
|
|
if (format < 4)
|
|
x86_pmu.intel_cap.pebs_baseline = 0;
|
|
|
|
switch (format) {
|
|
case 0:
|
|
pr_cont("PEBS fmt0%c, ", pebs_type);
|
|
x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
|
|
/*
|
|
* Using >PAGE_SIZE buffers makes the WRMSR to
|
|
* PERF_GLOBAL_CTRL in intel_pmu_enable_all()
|
|
* mysteriously hang on Core2.
|
|
*
|
|
* As a workaround, we don't do this.
|
|
*/
|
|
x86_pmu.pebs_buffer_size = PAGE_SIZE;
|
|
x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
|
|
break;
|
|
|
|
case 1:
|
|
pr_cont("PEBS fmt1%c, ", pebs_type);
|
|
x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
|
|
x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
|
|
break;
|
|
|
|
case 2:
|
|
pr_cont("PEBS fmt2%c, ", pebs_type);
|
|
x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
|
|
x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
|
|
break;
|
|
|
|
case 3:
|
|
pr_cont("PEBS fmt3%c, ", pebs_type);
|
|
x86_pmu.pebs_record_size =
|
|
sizeof(struct pebs_record_skl);
|
|
x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
|
|
x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
|
|
break;
|
|
|
|
case 4:
|
|
x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl;
|
|
x86_pmu.pebs_record_size = sizeof(struct pebs_basic);
|
|
if (x86_pmu.intel_cap.pebs_baseline) {
|
|
x86_pmu.large_pebs_flags |=
|
|
PERF_SAMPLE_BRANCH_STACK |
|
|
PERF_SAMPLE_TIME;
|
|
x86_pmu.flags |= PMU_FL_PEBS_ALL;
|
|
pebs_qual = "-baseline";
|
|
x86_get_pmu()->capabilities |= PERF_PMU_CAP_EXTENDED_REGS;
|
|
} else {
|
|
/* Only basic record supported */
|
|
x86_pmu.large_pebs_flags &=
|
|
~(PERF_SAMPLE_ADDR |
|
|
PERF_SAMPLE_TIME |
|
|
PERF_SAMPLE_DATA_SRC |
|
|
PERF_SAMPLE_TRANSACTION |
|
|
PERF_SAMPLE_REGS_USER |
|
|
PERF_SAMPLE_REGS_INTR);
|
|
}
|
|
pr_cont("PEBS fmt4%c%s, ", pebs_type, pebs_qual);
|
|
|
|
if (x86_pmu.intel_cap.pebs_output_pt_available) {
|
|
pr_cont("PEBS-via-PT, ");
|
|
x86_get_pmu()->capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
|
|
x86_pmu.pebs = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
void perf_restore_debug_store(void)
|
|
{
|
|
struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
|
|
|
|
if (!x86_pmu.bts && !x86_pmu.pebs)
|
|
return;
|
|
|
|
wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
|
|
}
|