linux_dsm_epyc7002/include/linux/mmzone.h
Linus Torvalds 90975ef712 Merge git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux-2.6-cpumask
* git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux-2.6-cpumask: (36 commits)
  cpumask: remove cpumask allocation from idle_balance, fix
  numa, cpumask: move numa_node_id default implementation to topology.h, fix
  cpumask: remove cpumask allocation from idle_balance
  x86: cpumask: x86 mmio-mod.c use cpumask_var_t for downed_cpus
  x86: cpumask: update 32-bit APM not to mug current->cpus_allowed
  x86: microcode: cleanup
  x86: cpumask: use work_on_cpu in arch/x86/kernel/microcode_core.c
  cpumask: fix CONFIG_CPUMASK_OFFSTACK=y cpu hotunplug crash
  numa, cpumask: move numa_node_id default implementation to topology.h
  cpumask: convert node_to_cpumask_map[] to cpumask_var_t
  cpumask: remove x86 cpumask_t uses.
  cpumask: use cpumask_var_t in uv_flush_tlb_others.
  cpumask: remove cpumask_t assignment from vector_allocation_domain()
  cpumask: make Xen use the new operators.
  cpumask: clean up summit's send_IPI functions
  cpumask: use new cpumask functions throughout x86
  x86: unify cpu_callin_mask/cpu_callout_mask/cpu_initialized_mask/cpu_sibling_setup_mask
  cpumask: convert struct cpuinfo_x86's llc_shared_map to cpumask_var_t
  cpumask: convert node_to_cpumask_map[] to cpumask_var_t
  x86: unify 32 and 64-bit node_to_cpumask_map
  ...
2009-04-05 10:33:07 -07:00

1103 lines
34 KiB
C

#ifndef _LINUX_MMZONE_H
#define _LINUX_MMZONE_H
#ifndef __ASSEMBLY__
#ifndef __GENERATING_BOUNDS_H
#include <linux/spinlock.h>
#include <linux/list.h>
#include <linux/wait.h>
#include <linux/bitops.h>
#include <linux/cache.h>
#include <linux/threads.h>
#include <linux/numa.h>
#include <linux/init.h>
#include <linux/seqlock.h>
#include <linux/nodemask.h>
#include <linux/pageblock-flags.h>
#include <linux/bounds.h>
#include <asm/atomic.h>
#include <asm/page.h>
/* Free memory management - zoned buddy allocator. */
#ifndef CONFIG_FORCE_MAX_ZONEORDER
#define MAX_ORDER 11
#else
#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
#endif
#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
/*
* PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
* costly to service. That is between allocation orders which should
* coelesce naturally under reasonable reclaim pressure and those which
* will not.
*/
#define PAGE_ALLOC_COSTLY_ORDER 3
#define MIGRATE_UNMOVABLE 0
#define MIGRATE_RECLAIMABLE 1
#define MIGRATE_MOVABLE 2
#define MIGRATE_RESERVE 3
#define MIGRATE_ISOLATE 4 /* can't allocate from here */
#define MIGRATE_TYPES 5
#define for_each_migratetype_order(order, type) \
for (order = 0; order < MAX_ORDER; order++) \
for (type = 0; type < MIGRATE_TYPES; type++)
extern int page_group_by_mobility_disabled;
static inline int get_pageblock_migratetype(struct page *page)
{
if (unlikely(page_group_by_mobility_disabled))
return MIGRATE_UNMOVABLE;
return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
}
struct free_area {
struct list_head free_list[MIGRATE_TYPES];
unsigned long nr_free;
};
struct pglist_data;
/*
* zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
* So add a wild amount of padding here to ensure that they fall into separate
* cachelines. There are very few zone structures in the machine, so space
* consumption is not a concern here.
*/
#if defined(CONFIG_SMP)
struct zone_padding {
char x[0];
} ____cacheline_internodealigned_in_smp;
#define ZONE_PADDING(name) struct zone_padding name;
#else
#define ZONE_PADDING(name)
#endif
enum zone_stat_item {
/* First 128 byte cacheline (assuming 64 bit words) */
NR_FREE_PAGES,
NR_LRU_BASE,
NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
NR_ACTIVE_ANON, /* " " " " " */
NR_INACTIVE_FILE, /* " " " " " */
NR_ACTIVE_FILE, /* " " " " " */
#ifdef CONFIG_UNEVICTABLE_LRU
NR_UNEVICTABLE, /* " " " " " */
NR_MLOCK, /* mlock()ed pages found and moved off LRU */
#else
NR_UNEVICTABLE = NR_ACTIVE_FILE, /* avoid compiler errors in dead code */
NR_MLOCK = NR_ACTIVE_FILE,
#endif
NR_ANON_PAGES, /* Mapped anonymous pages */
NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
only modified from process context */
NR_FILE_PAGES,
NR_FILE_DIRTY,
NR_WRITEBACK,
NR_SLAB_RECLAIMABLE,
NR_SLAB_UNRECLAIMABLE,
NR_PAGETABLE, /* used for pagetables */
NR_UNSTABLE_NFS, /* NFS unstable pages */
NR_BOUNCE,
NR_VMSCAN_WRITE,
/* Second 128 byte cacheline */
NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
#ifdef CONFIG_NUMA
NUMA_HIT, /* allocated in intended node */
NUMA_MISS, /* allocated in non intended node */
NUMA_FOREIGN, /* was intended here, hit elsewhere */
NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
NUMA_LOCAL, /* allocation from local node */
NUMA_OTHER, /* allocation from other node */
#endif
NR_VM_ZONE_STAT_ITEMS };
/*
* We do arithmetic on the LRU lists in various places in the code,
* so it is important to keep the active lists LRU_ACTIVE higher in
* the array than the corresponding inactive lists, and to keep
* the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
*
* This has to be kept in sync with the statistics in zone_stat_item
* above and the descriptions in vmstat_text in mm/vmstat.c
*/
#define LRU_BASE 0
#define LRU_ACTIVE 1
#define LRU_FILE 2
enum lru_list {
LRU_INACTIVE_ANON = LRU_BASE,
LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
#ifdef CONFIG_UNEVICTABLE_LRU
LRU_UNEVICTABLE,
#else
LRU_UNEVICTABLE = LRU_ACTIVE_FILE, /* avoid compiler errors in dead code */
#endif
NR_LRU_LISTS
};
#define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
#define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
static inline int is_file_lru(enum lru_list l)
{
return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
}
static inline int is_active_lru(enum lru_list l)
{
return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
}
static inline int is_unevictable_lru(enum lru_list l)
{
#ifdef CONFIG_UNEVICTABLE_LRU
return (l == LRU_UNEVICTABLE);
#else
return 0;
#endif
}
struct per_cpu_pages {
int count; /* number of pages in the list */
int high; /* high watermark, emptying needed */
int batch; /* chunk size for buddy add/remove */
struct list_head list; /* the list of pages */
};
struct per_cpu_pageset {
struct per_cpu_pages pcp;
#ifdef CONFIG_NUMA
s8 expire;
#endif
#ifdef CONFIG_SMP
s8 stat_threshold;
s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
#endif
} ____cacheline_aligned_in_smp;
#ifdef CONFIG_NUMA
#define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
#else
#define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
#endif
#endif /* !__GENERATING_BOUNDS.H */
enum zone_type {
#ifdef CONFIG_ZONE_DMA
/*
* ZONE_DMA is used when there are devices that are not able
* to do DMA to all of addressable memory (ZONE_NORMAL). Then we
* carve out the portion of memory that is needed for these devices.
* The range is arch specific.
*
* Some examples
*
* Architecture Limit
* ---------------------------
* parisc, ia64, sparc <4G
* s390 <2G
* arm Various
* alpha Unlimited or 0-16MB.
*
* i386, x86_64 and multiple other arches
* <16M.
*/
ZONE_DMA,
#endif
#ifdef CONFIG_ZONE_DMA32
/*
* x86_64 needs two ZONE_DMAs because it supports devices that are
* only able to do DMA to the lower 16M but also 32 bit devices that
* can only do DMA areas below 4G.
*/
ZONE_DMA32,
#endif
/*
* Normal addressable memory is in ZONE_NORMAL. DMA operations can be
* performed on pages in ZONE_NORMAL if the DMA devices support
* transfers to all addressable memory.
*/
ZONE_NORMAL,
#ifdef CONFIG_HIGHMEM
/*
* A memory area that is only addressable by the kernel through
* mapping portions into its own address space. This is for example
* used by i386 to allow the kernel to address the memory beyond
* 900MB. The kernel will set up special mappings (page
* table entries on i386) for each page that the kernel needs to
* access.
*/
ZONE_HIGHMEM,
#endif
ZONE_MOVABLE,
__MAX_NR_ZONES
};
#ifndef __GENERATING_BOUNDS_H
/*
* When a memory allocation must conform to specific limitations (such
* as being suitable for DMA) the caller will pass in hints to the
* allocator in the gfp_mask, in the zone modifier bits. These bits
* are used to select a priority ordered list of memory zones which
* match the requested limits. See gfp_zone() in include/linux/gfp.h
*/
#if MAX_NR_ZONES < 2
#define ZONES_SHIFT 0
#elif MAX_NR_ZONES <= 2
#define ZONES_SHIFT 1
#elif MAX_NR_ZONES <= 4
#define ZONES_SHIFT 2
#else
#error ZONES_SHIFT -- too many zones configured adjust calculation
#endif
struct zone_reclaim_stat {
/*
* The pageout code in vmscan.c keeps track of how many of the
* mem/swap backed and file backed pages are refeferenced.
* The higher the rotated/scanned ratio, the more valuable
* that cache is.
*
* The anon LRU stats live in [0], file LRU stats in [1]
*/
unsigned long recent_rotated[2];
unsigned long recent_scanned[2];
};
struct zone {
/* Fields commonly accessed by the page allocator */
unsigned long pages_min, pages_low, pages_high;
/*
* We don't know if the memory that we're going to allocate will be freeable
* or/and it will be released eventually, so to avoid totally wasting several
* GB of ram we must reserve some of the lower zone memory (otherwise we risk
* to run OOM on the lower zones despite there's tons of freeable ram
* on the higher zones). This array is recalculated at runtime if the
* sysctl_lowmem_reserve_ratio sysctl changes.
*/
unsigned long lowmem_reserve[MAX_NR_ZONES];
#ifdef CONFIG_NUMA
int node;
/*
* zone reclaim becomes active if more unmapped pages exist.
*/
unsigned long min_unmapped_pages;
unsigned long min_slab_pages;
struct per_cpu_pageset *pageset[NR_CPUS];
#else
struct per_cpu_pageset pageset[NR_CPUS];
#endif
/*
* free areas of different sizes
*/
spinlock_t lock;
#ifdef CONFIG_MEMORY_HOTPLUG
/* see spanned/present_pages for more description */
seqlock_t span_seqlock;
#endif
struct free_area free_area[MAX_ORDER];
#ifndef CONFIG_SPARSEMEM
/*
* Flags for a pageblock_nr_pages block. See pageblock-flags.h.
* In SPARSEMEM, this map is stored in struct mem_section
*/
unsigned long *pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
ZONE_PADDING(_pad1_)
/* Fields commonly accessed by the page reclaim scanner */
spinlock_t lru_lock;
struct {
struct list_head list;
unsigned long nr_scan;
} lru[NR_LRU_LISTS];
struct zone_reclaim_stat reclaim_stat;
unsigned long pages_scanned; /* since last reclaim */
unsigned long flags; /* zone flags, see below */
/* Zone statistics */
atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
/*
* prev_priority holds the scanning priority for this zone. It is
* defined as the scanning priority at which we achieved our reclaim
* target at the previous try_to_free_pages() or balance_pgdat()
* invokation.
*
* We use prev_priority as a measure of how much stress page reclaim is
* under - it drives the swappiness decision: whether to unmap mapped
* pages.
*
* Access to both this field is quite racy even on uniprocessor. But
* it is expected to average out OK.
*/
int prev_priority;
/*
* The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
* this zone's LRU. Maintained by the pageout code.
*/
unsigned int inactive_ratio;
ZONE_PADDING(_pad2_)
/* Rarely used or read-mostly fields */
/*
* wait_table -- the array holding the hash table
* wait_table_hash_nr_entries -- the size of the hash table array
* wait_table_bits -- wait_table_size == (1 << wait_table_bits)
*
* The purpose of all these is to keep track of the people
* waiting for a page to become available and make them
* runnable again when possible. The trouble is that this
* consumes a lot of space, especially when so few things
* wait on pages at a given time. So instead of using
* per-page waitqueues, we use a waitqueue hash table.
*
* The bucket discipline is to sleep on the same queue when
* colliding and wake all in that wait queue when removing.
* When something wakes, it must check to be sure its page is
* truly available, a la thundering herd. The cost of a
* collision is great, but given the expected load of the
* table, they should be so rare as to be outweighed by the
* benefits from the saved space.
*
* __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
* primary users of these fields, and in mm/page_alloc.c
* free_area_init_core() performs the initialization of them.
*/
wait_queue_head_t * wait_table;
unsigned long wait_table_hash_nr_entries;
unsigned long wait_table_bits;
/*
* Discontig memory support fields.
*/
struct pglist_data *zone_pgdat;
/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
unsigned long zone_start_pfn;
/*
* zone_start_pfn, spanned_pages and present_pages are all
* protected by span_seqlock. It is a seqlock because it has
* to be read outside of zone->lock, and it is done in the main
* allocator path. But, it is written quite infrequently.
*
* The lock is declared along with zone->lock because it is
* frequently read in proximity to zone->lock. It's good to
* give them a chance of being in the same cacheline.
*/
unsigned long spanned_pages; /* total size, including holes */
unsigned long present_pages; /* amount of memory (excluding holes) */
/*
* rarely used fields:
*/
const char *name;
} ____cacheline_internodealigned_in_smp;
typedef enum {
ZONE_ALL_UNRECLAIMABLE, /* all pages pinned */
ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
} zone_flags_t;
static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
{
set_bit(flag, &zone->flags);
}
static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
{
return test_and_set_bit(flag, &zone->flags);
}
static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
{
clear_bit(flag, &zone->flags);
}
static inline int zone_is_all_unreclaimable(const struct zone *zone)
{
return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags);
}
static inline int zone_is_reclaim_locked(const struct zone *zone)
{
return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
}
static inline int zone_is_oom_locked(const struct zone *zone)
{
return test_bit(ZONE_OOM_LOCKED, &zone->flags);
}
/*
* The "priority" of VM scanning is how much of the queues we will scan in one
* go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
* queues ("queue_length >> 12") during an aging round.
*/
#define DEF_PRIORITY 12
/* Maximum number of zones on a zonelist */
#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
#ifdef CONFIG_NUMA
/*
* The NUMA zonelists are doubled becausse we need zonelists that restrict the
* allocations to a single node for GFP_THISNODE.
*
* [0] : Zonelist with fallback
* [1] : No fallback (GFP_THISNODE)
*/
#define MAX_ZONELISTS 2
/*
* We cache key information from each zonelist for smaller cache
* footprint when scanning for free pages in get_page_from_freelist().
*
* 1) The BITMAP fullzones tracks which zones in a zonelist have come
* up short of free memory since the last time (last_fullzone_zap)
* we zero'd fullzones.
* 2) The array z_to_n[] maps each zone in the zonelist to its node
* id, so that we can efficiently evaluate whether that node is
* set in the current tasks mems_allowed.
*
* Both fullzones and z_to_n[] are one-to-one with the zonelist,
* indexed by a zones offset in the zonelist zones[] array.
*
* The get_page_from_freelist() routine does two scans. During the
* first scan, we skip zones whose corresponding bit in 'fullzones'
* is set or whose corresponding node in current->mems_allowed (which
* comes from cpusets) is not set. During the second scan, we bypass
* this zonelist_cache, to ensure we look methodically at each zone.
*
* Once per second, we zero out (zap) fullzones, forcing us to
* reconsider nodes that might have regained more free memory.
* The field last_full_zap is the time we last zapped fullzones.
*
* This mechanism reduces the amount of time we waste repeatedly
* reexaming zones for free memory when they just came up low on
* memory momentarilly ago.
*
* The zonelist_cache struct members logically belong in struct
* zonelist. However, the mempolicy zonelists constructed for
* MPOL_BIND are intentionally variable length (and usually much
* shorter). A general purpose mechanism for handling structs with
* multiple variable length members is more mechanism than we want
* here. We resort to some special case hackery instead.
*
* The MPOL_BIND zonelists don't need this zonelist_cache (in good
* part because they are shorter), so we put the fixed length stuff
* at the front of the zonelist struct, ending in a variable length
* zones[], as is needed by MPOL_BIND.
*
* Then we put the optional zonelist cache on the end of the zonelist
* struct. This optional stuff is found by a 'zlcache_ptr' pointer in
* the fixed length portion at the front of the struct. This pointer
* both enables us to find the zonelist cache, and in the case of
* MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
* to know that the zonelist cache is not there.
*
* The end result is that struct zonelists come in two flavors:
* 1) The full, fixed length version, shown below, and
* 2) The custom zonelists for MPOL_BIND.
* The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
*
* Even though there may be multiple CPU cores on a node modifying
* fullzones or last_full_zap in the same zonelist_cache at the same
* time, we don't lock it. This is just hint data - if it is wrong now
* and then, the allocator will still function, perhaps a bit slower.
*/
struct zonelist_cache {
unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
unsigned long last_full_zap; /* when last zap'd (jiffies) */
};
#else
#define MAX_ZONELISTS 1
struct zonelist_cache;
#endif
/*
* This struct contains information about a zone in a zonelist. It is stored
* here to avoid dereferences into large structures and lookups of tables
*/
struct zoneref {
struct zone *zone; /* Pointer to actual zone */
int zone_idx; /* zone_idx(zoneref->zone) */
};
/*
* One allocation request operates on a zonelist. A zonelist
* is a list of zones, the first one is the 'goal' of the
* allocation, the other zones are fallback zones, in decreasing
* priority.
*
* If zlcache_ptr is not NULL, then it is just the address of zlcache,
* as explained above. If zlcache_ptr is NULL, there is no zlcache.
* *
* To speed the reading of the zonelist, the zonerefs contain the zone index
* of the entry being read. Helper functions to access information given
* a struct zoneref are
*
* zonelist_zone() - Return the struct zone * for an entry in _zonerefs
* zonelist_zone_idx() - Return the index of the zone for an entry
* zonelist_node_idx() - Return the index of the node for an entry
*/
struct zonelist {
struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
#ifdef CONFIG_NUMA
struct zonelist_cache zlcache; // optional ...
#endif
};
#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
struct node_active_region {
unsigned long start_pfn;
unsigned long end_pfn;
int nid;
};
#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
#ifndef CONFIG_DISCONTIGMEM
/* The array of struct pages - for discontigmem use pgdat->lmem_map */
extern struct page *mem_map;
#endif
/*
* The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
* (mostly NUMA machines?) to denote a higher-level memory zone than the
* zone denotes.
*
* On NUMA machines, each NUMA node would have a pg_data_t to describe
* it's memory layout.
*
* Memory statistics and page replacement data structures are maintained on a
* per-zone basis.
*/
struct bootmem_data;
typedef struct pglist_data {
struct zone node_zones[MAX_NR_ZONES];
struct zonelist node_zonelists[MAX_ZONELISTS];
int nr_zones;
#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
struct page *node_mem_map;
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
struct page_cgroup *node_page_cgroup;
#endif
#endif
struct bootmem_data *bdata;
#ifdef CONFIG_MEMORY_HOTPLUG
/*
* Must be held any time you expect node_start_pfn, node_present_pages
* or node_spanned_pages stay constant. Holding this will also
* guarantee that any pfn_valid() stays that way.
*
* Nests above zone->lock and zone->size_seqlock.
*/
spinlock_t node_size_lock;
#endif
unsigned long node_start_pfn;
unsigned long node_present_pages; /* total number of physical pages */
unsigned long node_spanned_pages; /* total size of physical page
range, including holes */
int node_id;
wait_queue_head_t kswapd_wait;
struct task_struct *kswapd;
int kswapd_max_order;
} pg_data_t;
#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
#ifdef CONFIG_FLAT_NODE_MEM_MAP
#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
#else
#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
#endif
#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
#include <linux/memory_hotplug.h>
void get_zone_counts(unsigned long *active, unsigned long *inactive,
unsigned long *free);
void build_all_zonelists(void);
void wakeup_kswapd(struct zone *zone, int order);
int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
int classzone_idx, int alloc_flags);
enum memmap_context {
MEMMAP_EARLY,
MEMMAP_HOTPLUG,
};
extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
unsigned long size,
enum memmap_context context);
#ifdef CONFIG_HAVE_MEMORY_PRESENT
void memory_present(int nid, unsigned long start, unsigned long end);
#else
static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
#endif
#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
#endif
/*
* zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
*/
#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
static inline int populated_zone(struct zone *zone)
{
return (!!zone->present_pages);
}
extern int movable_zone;
static inline int zone_movable_is_highmem(void)
{
#if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
return movable_zone == ZONE_HIGHMEM;
#else
return 0;
#endif
}
static inline int is_highmem_idx(enum zone_type idx)
{
#ifdef CONFIG_HIGHMEM
return (idx == ZONE_HIGHMEM ||
(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
#else
return 0;
#endif
}
static inline int is_normal_idx(enum zone_type idx)
{
return (idx == ZONE_NORMAL);
}
/**
* is_highmem - helper function to quickly check if a struct zone is a
* highmem zone or not. This is an attempt to keep references
* to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
* @zone - pointer to struct zone variable
*/
static inline int is_highmem(struct zone *zone)
{
#ifdef CONFIG_HIGHMEM
int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
(zone_off == ZONE_MOVABLE * sizeof(*zone) &&
zone_movable_is_highmem());
#else
return 0;
#endif
}
static inline int is_normal(struct zone *zone)
{
return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
}
static inline int is_dma32(struct zone *zone)
{
#ifdef CONFIG_ZONE_DMA32
return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
#else
return 0;
#endif
}
static inline int is_dma(struct zone *zone)
{
#ifdef CONFIG_ZONE_DMA
return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
#else
return 0;
#endif
}
/* These two functions are used to setup the per zone pages min values */
struct ctl_table;
struct file;
int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
void __user *, size_t *, loff_t *);
extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
void __user *, size_t *, loff_t *);
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
void __user *, size_t *, loff_t *);
int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
struct file *, void __user *, size_t *, loff_t *);
int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
struct file *, void __user *, size_t *, loff_t *);
extern int numa_zonelist_order_handler(struct ctl_table *, int,
struct file *, void __user *, size_t *, loff_t *);
extern char numa_zonelist_order[];
#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
#ifndef CONFIG_NEED_MULTIPLE_NODES
extern struct pglist_data contig_page_data;
#define NODE_DATA(nid) (&contig_page_data)
#define NODE_MEM_MAP(nid) mem_map
#else /* CONFIG_NEED_MULTIPLE_NODES */
#include <asm/mmzone.h>
#endif /* !CONFIG_NEED_MULTIPLE_NODES */
extern struct pglist_data *first_online_pgdat(void);
extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
extern struct zone *next_zone(struct zone *zone);
/**
* for_each_online_pgdat - helper macro to iterate over all online nodes
* @pgdat - pointer to a pg_data_t variable
*/
#define for_each_online_pgdat(pgdat) \
for (pgdat = first_online_pgdat(); \
pgdat; \
pgdat = next_online_pgdat(pgdat))
/**
* for_each_zone - helper macro to iterate over all memory zones
* @zone - pointer to struct zone variable
*
* The user only needs to declare the zone variable, for_each_zone
* fills it in.
*/
#define for_each_zone(zone) \
for (zone = (first_online_pgdat())->node_zones; \
zone; \
zone = next_zone(zone))
#define for_each_populated_zone(zone) \
for (zone = (first_online_pgdat())->node_zones; \
zone; \
zone = next_zone(zone)) \
if (!populated_zone(zone)) \
; /* do nothing */ \
else
static inline struct zone *zonelist_zone(struct zoneref *zoneref)
{
return zoneref->zone;
}
static inline int zonelist_zone_idx(struct zoneref *zoneref)
{
return zoneref->zone_idx;
}
static inline int zonelist_node_idx(struct zoneref *zoneref)
{
#ifdef CONFIG_NUMA
/* zone_to_nid not available in this context */
return zoneref->zone->node;
#else
return 0;
#endif /* CONFIG_NUMA */
}
/**
* next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
* @z - The cursor used as a starting point for the search
* @highest_zoneidx - The zone index of the highest zone to return
* @nodes - An optional nodemask to filter the zonelist with
* @zone - The first suitable zone found is returned via this parameter
*
* This function returns the next zone at or below a given zone index that is
* within the allowed nodemask using a cursor as the starting point for the
* search. The zoneref returned is a cursor that represents the current zone
* being examined. It should be advanced by one before calling
* next_zones_zonelist again.
*/
struct zoneref *next_zones_zonelist(struct zoneref *z,
enum zone_type highest_zoneidx,
nodemask_t *nodes,
struct zone **zone);
/**
* first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
* @zonelist - The zonelist to search for a suitable zone
* @highest_zoneidx - The zone index of the highest zone to return
* @nodes - An optional nodemask to filter the zonelist with
* @zone - The first suitable zone found is returned via this parameter
*
* This function returns the first zone at or below a given zone index that is
* within the allowed nodemask. The zoneref returned is a cursor that can be
* used to iterate the zonelist with next_zones_zonelist by advancing it by
* one before calling.
*/
static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
enum zone_type highest_zoneidx,
nodemask_t *nodes,
struct zone **zone)
{
return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
zone);
}
/**
* for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
* @zone - The current zone in the iterator
* @z - The current pointer within zonelist->zones being iterated
* @zlist - The zonelist being iterated
* @highidx - The zone index of the highest zone to return
* @nodemask - Nodemask allowed by the allocator
*
* This iterator iterates though all zones at or below a given zone index and
* within a given nodemask
*/
#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
zone; \
z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
/**
* for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
* @zone - The current zone in the iterator
* @z - The current pointer within zonelist->zones being iterated
* @zlist - The zonelist being iterated
* @highidx - The zone index of the highest zone to return
*
* This iterator iterates though all zones at or below a given zone index.
*/
#define for_each_zone_zonelist(zone, z, zlist, highidx) \
for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
#ifdef CONFIG_SPARSEMEM
#include <asm/sparsemem.h>
#endif
#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
!defined(CONFIG_ARCH_POPULATES_NODE_MAP)
static inline unsigned long early_pfn_to_nid(unsigned long pfn)
{
return 0;
}
#endif
#ifdef CONFIG_FLATMEM
#define pfn_to_nid(pfn) (0)
#endif
#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
#ifdef CONFIG_SPARSEMEM
/*
* SECTION_SHIFT #bits space required to store a section #
*
* PA_SECTION_SHIFT physical address to/from section number
* PFN_SECTION_SHIFT pfn to/from section number
*/
#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
#define SECTION_BLOCKFLAGS_BITS \
((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
#error Allocator MAX_ORDER exceeds SECTION_SIZE
#endif
struct page;
struct page_cgroup;
struct mem_section {
/*
* This is, logically, a pointer to an array of struct
* pages. However, it is stored with some other magic.
* (see sparse.c::sparse_init_one_section())
*
* Additionally during early boot we encode node id of
* the location of the section here to guide allocation.
* (see sparse.c::memory_present())
*
* Making it a UL at least makes someone do a cast
* before using it wrong.
*/
unsigned long section_mem_map;
/* See declaration of similar field in struct zone */
unsigned long *pageblock_flags;
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
/*
* If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
* section. (see memcontrol.h/page_cgroup.h about this.)
*/
struct page_cgroup *page_cgroup;
unsigned long pad;
#endif
};
#ifdef CONFIG_SPARSEMEM_EXTREME
#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
#else
#define SECTIONS_PER_ROOT 1
#endif
#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
#define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
#ifdef CONFIG_SPARSEMEM_EXTREME
extern struct mem_section *mem_section[NR_SECTION_ROOTS];
#else
extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
#endif
static inline struct mem_section *__nr_to_section(unsigned long nr)
{
if (!mem_section[SECTION_NR_TO_ROOT(nr)])
return NULL;
return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
}
extern int __section_nr(struct mem_section* ms);
extern unsigned long usemap_size(void);
/*
* We use the lower bits of the mem_map pointer to store
* a little bit of information. There should be at least
* 3 bits here due to 32-bit alignment.
*/
#define SECTION_MARKED_PRESENT (1UL<<0)
#define SECTION_HAS_MEM_MAP (1UL<<1)
#define SECTION_MAP_LAST_BIT (1UL<<2)
#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
#define SECTION_NID_SHIFT 2
static inline struct page *__section_mem_map_addr(struct mem_section *section)
{
unsigned long map = section->section_mem_map;
map &= SECTION_MAP_MASK;
return (struct page *)map;
}
static inline int present_section(struct mem_section *section)
{
return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
}
static inline int present_section_nr(unsigned long nr)
{
return present_section(__nr_to_section(nr));
}
static inline int valid_section(struct mem_section *section)
{
return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
}
static inline int valid_section_nr(unsigned long nr)
{
return valid_section(__nr_to_section(nr));
}
static inline struct mem_section *__pfn_to_section(unsigned long pfn)
{
return __nr_to_section(pfn_to_section_nr(pfn));
}
static inline int pfn_valid(unsigned long pfn)
{
if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
return 0;
return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
}
static inline int pfn_present(unsigned long pfn)
{
if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
return 0;
return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
}
/*
* These are _only_ used during initialisation, therefore they
* can use __initdata ... They could have names to indicate
* this restriction.
*/
#ifdef CONFIG_NUMA
#define pfn_to_nid(pfn) \
({ \
unsigned long __pfn_to_nid_pfn = (pfn); \
page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
})
#else
#define pfn_to_nid(pfn) (0)
#endif
#define early_pfn_valid(pfn) pfn_valid(pfn)
void sparse_init(void);
#else
#define sparse_init() do {} while (0)
#define sparse_index_init(_sec, _nid) do {} while (0)
#endif /* CONFIG_SPARSEMEM */
#ifdef CONFIG_NODES_SPAN_OTHER_NODES
bool early_pfn_in_nid(unsigned long pfn, int nid);
#else
#define early_pfn_in_nid(pfn, nid) (1)
#endif
#ifndef early_pfn_valid
#define early_pfn_valid(pfn) (1)
#endif
void memory_present(int nid, unsigned long start, unsigned long end);
unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
/*
* If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
* need to check pfn validility within that MAX_ORDER_NR_PAGES block.
* pfn_valid_within() should be used in this case; we optimise this away
* when we have no holes within a MAX_ORDER_NR_PAGES block.
*/
#ifdef CONFIG_HOLES_IN_ZONE
#define pfn_valid_within(pfn) pfn_valid(pfn)
#else
#define pfn_valid_within(pfn) (1)
#endif
#endif /* !__GENERATING_BOUNDS.H */
#endif /* !__ASSEMBLY__ */
#endif /* _LINUX_MMZONE_H */