mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-11 23:56:50 +07:00
0c90547b4a
We provided very similar routines internally, but now we can hook into the generic framework by supplying our routines as function pointers in the irq_chip structure instead. Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
296 lines
8.1 KiB
C
296 lines
8.1 KiB
C
/*
|
|
* Copyright 2010 Tilera Corporation. All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation, version 2.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
|
|
* NON INFRINGEMENT. See the GNU General Public License for
|
|
* more details.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/uaccess.h>
|
|
#include <hv/drv_pcie_rc_intf.h>
|
|
#include <arch/spr_def.h>
|
|
#include <asm/traps.h>
|
|
|
|
/* Bit-flag stored in irq_desc->chip_data to indicate HW-cleared irqs. */
|
|
#define IS_HW_CLEARED 1
|
|
|
|
/*
|
|
* The set of interrupts we enable for arch_local_irq_enable().
|
|
* This is initialized to have just a single interrupt that the kernel
|
|
* doesn't actually use as a sentinel. During kernel init,
|
|
* interrupts are added as the kernel gets prepared to support them.
|
|
* NOTE: we could probably initialize them all statically up front.
|
|
*/
|
|
DEFINE_PER_CPU(unsigned long long, interrupts_enabled_mask) =
|
|
INITIAL_INTERRUPTS_ENABLED;
|
|
EXPORT_PER_CPU_SYMBOL(interrupts_enabled_mask);
|
|
|
|
/* Define per-tile device interrupt statistics state. */
|
|
DEFINE_PER_CPU(irq_cpustat_t, irq_stat) ____cacheline_internodealigned_in_smp;
|
|
EXPORT_PER_CPU_SYMBOL(irq_stat);
|
|
|
|
/*
|
|
* Define per-tile irq disable mask; the hardware/HV only has a single
|
|
* mask that we use to implement both masking and disabling.
|
|
*/
|
|
static DEFINE_PER_CPU(unsigned long, irq_disable_mask)
|
|
____cacheline_internodealigned_in_smp;
|
|
|
|
/*
|
|
* Per-tile IRQ nesting depth. Used to make sure we enable newly
|
|
* enabled IRQs before exiting the outermost interrupt.
|
|
*/
|
|
static DEFINE_PER_CPU(int, irq_depth);
|
|
|
|
/* State for allocating IRQs on Gx. */
|
|
#if CHIP_HAS_IPI()
|
|
static unsigned long available_irqs = ~(1UL << IRQ_RESCHEDULE);
|
|
static DEFINE_SPINLOCK(available_irqs_lock);
|
|
#endif
|
|
|
|
#if CHIP_HAS_IPI()
|
|
/* Use SPRs to manipulate device interrupts. */
|
|
#define mask_irqs(irq_mask) __insn_mtspr(SPR_IPI_MASK_SET_K, irq_mask)
|
|
#define unmask_irqs(irq_mask) __insn_mtspr(SPR_IPI_MASK_RESET_K, irq_mask)
|
|
#define clear_irqs(irq_mask) __insn_mtspr(SPR_IPI_EVENT_RESET_K, irq_mask)
|
|
#else
|
|
/* Use HV to manipulate device interrupts. */
|
|
#define mask_irqs(irq_mask) hv_disable_intr(irq_mask)
|
|
#define unmask_irqs(irq_mask) hv_enable_intr(irq_mask)
|
|
#define clear_irqs(irq_mask) hv_clear_intr(irq_mask)
|
|
#endif
|
|
|
|
/*
|
|
* The interrupt handling path, implemented in terms of HV interrupt
|
|
* emulation on TILE64 and TILEPro, and IPI hardware on TILE-Gx.
|
|
*/
|
|
void tile_dev_intr(struct pt_regs *regs, int intnum)
|
|
{
|
|
int depth = __get_cpu_var(irq_depth)++;
|
|
unsigned long original_irqs;
|
|
unsigned long remaining_irqs;
|
|
struct pt_regs *old_regs;
|
|
|
|
#if CHIP_HAS_IPI()
|
|
/*
|
|
* Pending interrupts are listed in an SPR. We might be
|
|
* nested, so be sure to only handle irqs that weren't already
|
|
* masked by a previous interrupt. Then, mask out the ones
|
|
* we're going to handle.
|
|
*/
|
|
unsigned long masked = __insn_mfspr(SPR_IPI_MASK_K);
|
|
original_irqs = __insn_mfspr(SPR_IPI_EVENT_K) & ~masked;
|
|
__insn_mtspr(SPR_IPI_MASK_SET_K, original_irqs);
|
|
#else
|
|
/*
|
|
* Hypervisor performs the equivalent of the Gx code above and
|
|
* then puts the pending interrupt mask into a system save reg
|
|
* for us to find.
|
|
*/
|
|
original_irqs = __insn_mfspr(SPR_SYSTEM_SAVE_K_3);
|
|
#endif
|
|
remaining_irqs = original_irqs;
|
|
|
|
/* Track time spent here in an interrupt context. */
|
|
old_regs = set_irq_regs(regs);
|
|
irq_enter();
|
|
|
|
#ifdef CONFIG_DEBUG_STACKOVERFLOW
|
|
/* Debugging check for stack overflow: less than 1/8th stack free? */
|
|
{
|
|
long sp = stack_pointer - (long) current_thread_info();
|
|
if (unlikely(sp < (sizeof(struct thread_info) + STACK_WARN))) {
|
|
pr_emerg("tile_dev_intr: "
|
|
"stack overflow: %ld\n",
|
|
sp - sizeof(struct thread_info));
|
|
dump_stack();
|
|
}
|
|
}
|
|
#endif
|
|
while (remaining_irqs) {
|
|
unsigned long irq = __ffs(remaining_irqs);
|
|
remaining_irqs &= ~(1UL << irq);
|
|
|
|
/* Count device irqs; Linux IPIs are counted elsewhere. */
|
|
if (irq != IRQ_RESCHEDULE)
|
|
__get_cpu_var(irq_stat).irq_dev_intr_count++;
|
|
|
|
generic_handle_irq(irq);
|
|
}
|
|
|
|
/*
|
|
* If we weren't nested, turn on all enabled interrupts,
|
|
* including any that were reenabled during interrupt
|
|
* handling.
|
|
*/
|
|
if (depth == 0)
|
|
unmask_irqs(~__get_cpu_var(irq_disable_mask));
|
|
|
|
__get_cpu_var(irq_depth)--;
|
|
|
|
/*
|
|
* Track time spent against the current process again and
|
|
* process any softirqs if they are waiting.
|
|
*/
|
|
irq_exit();
|
|
set_irq_regs(old_regs);
|
|
}
|
|
|
|
|
|
/*
|
|
* Remove an irq from the disabled mask. If we're in an interrupt
|
|
* context, defer enabling the HW interrupt until we leave.
|
|
*/
|
|
static void tile_irq_chip_enable(struct irq_data *d)
|
|
{
|
|
get_cpu_var(irq_disable_mask) &= ~(1UL << d->irq);
|
|
if (__get_cpu_var(irq_depth) == 0)
|
|
unmask_irqs(1UL << d->irq);
|
|
put_cpu_var(irq_disable_mask);
|
|
}
|
|
|
|
/*
|
|
* Add an irq to the disabled mask. We disable the HW interrupt
|
|
* immediately so that there's no possibility of it firing. If we're
|
|
* in an interrupt context, the return path is careful to avoid
|
|
* unmasking a newly disabled interrupt.
|
|
*/
|
|
static void tile_irq_chip_disable(struct irq_data *d)
|
|
{
|
|
get_cpu_var(irq_disable_mask) |= (1UL << d->irq);
|
|
mask_irqs(1UL << d->irq);
|
|
put_cpu_var(irq_disable_mask);
|
|
}
|
|
|
|
/* Mask an interrupt. */
|
|
static void tile_irq_chip_mask(struct irq_data *d)
|
|
{
|
|
mask_irqs(1UL << d->irq);
|
|
}
|
|
|
|
/* Unmask an interrupt. */
|
|
static void tile_irq_chip_unmask(struct irq_data *d)
|
|
{
|
|
unmask_irqs(1UL << d->irq);
|
|
}
|
|
|
|
/*
|
|
* Clear an interrupt before processing it so that any new assertions
|
|
* will trigger another irq.
|
|
*/
|
|
static void tile_irq_chip_ack(struct irq_data *d)
|
|
{
|
|
if ((unsigned long)irq_data_get_irq_chip_data(d) != IS_HW_CLEARED)
|
|
clear_irqs(1UL << d->irq);
|
|
}
|
|
|
|
/*
|
|
* For per-cpu interrupts, we need to avoid unmasking any interrupts
|
|
* that we disabled via disable_percpu_irq().
|
|
*/
|
|
static void tile_irq_chip_eoi(struct irq_data *d)
|
|
{
|
|
if (!(__get_cpu_var(irq_disable_mask) & (1UL << d->irq)))
|
|
unmask_irqs(1UL << d->irq);
|
|
}
|
|
|
|
static struct irq_chip tile_irq_chip = {
|
|
.name = "tile_irq_chip",
|
|
.irq_enable = tile_irq_chip_enable,
|
|
.irq_disable = tile_irq_chip_disable,
|
|
.irq_ack = tile_irq_chip_ack,
|
|
.irq_eoi = tile_irq_chip_eoi,
|
|
.irq_mask = tile_irq_chip_mask,
|
|
.irq_unmask = tile_irq_chip_unmask,
|
|
};
|
|
|
|
void __init init_IRQ(void)
|
|
{
|
|
ipi_init();
|
|
}
|
|
|
|
void __cpuinit setup_irq_regs(void)
|
|
{
|
|
/* Enable interrupt delivery. */
|
|
unmask_irqs(~0UL);
|
|
#if CHIP_HAS_IPI()
|
|
arch_local_irq_unmask(INT_IPI_K);
|
|
#endif
|
|
}
|
|
|
|
void tile_irq_activate(unsigned int irq, int tile_irq_type)
|
|
{
|
|
/*
|
|
* We use handle_level_irq() by default because the pending
|
|
* interrupt vector (whether modeled by the HV on TILE64 and
|
|
* TILEPro or implemented in hardware on TILE-Gx) has
|
|
* level-style semantics for each bit. An interrupt fires
|
|
* whenever a bit is high, not just at edges.
|
|
*/
|
|
irq_flow_handler_t handle = handle_level_irq;
|
|
if (tile_irq_type == TILE_IRQ_PERCPU)
|
|
handle = handle_percpu_irq;
|
|
irq_set_chip_and_handler(irq, &tile_irq_chip, handle);
|
|
|
|
/*
|
|
* Flag interrupts that are hardware-cleared so that ack()
|
|
* won't clear them.
|
|
*/
|
|
if (tile_irq_type == TILE_IRQ_HW_CLEAR)
|
|
irq_set_chip_data(irq, (void *)IS_HW_CLEARED);
|
|
}
|
|
EXPORT_SYMBOL(tile_irq_activate);
|
|
|
|
|
|
void ack_bad_irq(unsigned int irq)
|
|
{
|
|
pr_err("unexpected IRQ trap at vector %02x\n", irq);
|
|
}
|
|
|
|
/*
|
|
* Generic, controller-independent functions:
|
|
*/
|
|
|
|
#if CHIP_HAS_IPI()
|
|
int create_irq(void)
|
|
{
|
|
unsigned long flags;
|
|
int result;
|
|
|
|
spin_lock_irqsave(&available_irqs_lock, flags);
|
|
if (available_irqs == 0)
|
|
result = -ENOMEM;
|
|
else {
|
|
result = __ffs(available_irqs);
|
|
available_irqs &= ~(1UL << result);
|
|
dynamic_irq_init(result);
|
|
}
|
|
spin_unlock_irqrestore(&available_irqs_lock, flags);
|
|
|
|
return result;
|
|
}
|
|
EXPORT_SYMBOL(create_irq);
|
|
|
|
void destroy_irq(unsigned int irq)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&available_irqs_lock, flags);
|
|
available_irqs |= (1UL << irq);
|
|
dynamic_irq_cleanup(irq);
|
|
spin_unlock_irqrestore(&available_irqs_lock, flags);
|
|
}
|
|
EXPORT_SYMBOL(destroy_irq);
|
|
#endif
|