linux_dsm_epyc7002/drivers/mtd/nand/raw/gpio.c
Miquel Raynal bace41f80f mtd: rawnand: Use the new ECC engine type enumeration
Mechanical switch from the legacy "mode" enumeration to the new
"engine type" enumeration in drivers and board files.

The device tree parsing is also updated to return the new enumeration
from the old strings.

Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Reviewed-by: Boris Brezillon <boris.brezillon@collabora.com>
Link: https://lore.kernel.org/linux-mtd/20200827085208.16276-11-miquel.raynal@bootlin.com
2020-09-28 15:59:42 +02:00

395 lines
9.4 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Updated, and converted to generic GPIO based driver by Russell King.
*
* Written by Ben Dooks <ben@simtec.co.uk>
* Based on 2.4 version by Mark Whittaker
*
* © 2004 Simtec Electronics
*
* Device driver for NAND flash that uses a memory mapped interface to
* read/write the NAND commands and data, and GPIO pins for control signals
* (the DT binding refers to this as "GPIO assisted NAND flash")
*/
#include <linux/kernel.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/gpio/consumer.h>
#include <linux/io.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/nand-gpio.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/delay.h>
struct gpiomtd {
struct nand_controller base;
void __iomem *io;
void __iomem *io_sync;
struct nand_chip nand_chip;
struct gpio_nand_platdata plat;
struct gpio_desc *nce; /* Optional chip enable */
struct gpio_desc *cle;
struct gpio_desc *ale;
struct gpio_desc *rdy;
struct gpio_desc *nwp; /* Optional write protection */
};
static inline struct gpiomtd *gpio_nand_getpriv(struct mtd_info *mtd)
{
return container_of(mtd_to_nand(mtd), struct gpiomtd, nand_chip);
}
#ifdef CONFIG_ARM
/* gpio_nand_dosync()
*
* Make sure the GPIO state changes occur in-order with writes to NAND
* memory region.
* Needed on PXA due to bus-reordering within the SoC itself (see section on
* I/O ordering in PXA manual (section 2.3, p35)
*/
static void gpio_nand_dosync(struct gpiomtd *gpiomtd)
{
unsigned long tmp;
if (gpiomtd->io_sync) {
/*
* Linux memory barriers don't cater for what's required here.
* What's required is what's here - a read from a separate
* region with a dependency on that read.
*/
tmp = readl(gpiomtd->io_sync);
asm volatile("mov %1, %0\n" : "=r" (tmp) : "r" (tmp));
}
}
#else
static inline void gpio_nand_dosync(struct gpiomtd *gpiomtd) {}
#endif
static int gpio_nand_exec_instr(struct nand_chip *chip,
const struct nand_op_instr *instr)
{
struct gpiomtd *gpiomtd = gpio_nand_getpriv(nand_to_mtd(chip));
unsigned int i;
switch (instr->type) {
case NAND_OP_CMD_INSTR:
gpio_nand_dosync(gpiomtd);
gpiod_set_value(gpiomtd->cle, 1);
gpio_nand_dosync(gpiomtd);
writeb(instr->ctx.cmd.opcode, gpiomtd->io);
gpio_nand_dosync(gpiomtd);
gpiod_set_value(gpiomtd->cle, 0);
return 0;
case NAND_OP_ADDR_INSTR:
gpio_nand_dosync(gpiomtd);
gpiod_set_value(gpiomtd->ale, 1);
gpio_nand_dosync(gpiomtd);
for (i = 0; i < instr->ctx.addr.naddrs; i++)
writeb(instr->ctx.addr.addrs[i], gpiomtd->io);
gpio_nand_dosync(gpiomtd);
gpiod_set_value(gpiomtd->ale, 0);
return 0;
case NAND_OP_DATA_IN_INSTR:
gpio_nand_dosync(gpiomtd);
if ((chip->options & NAND_BUSWIDTH_16) &&
!instr->ctx.data.force_8bit)
ioread16_rep(gpiomtd->io, instr->ctx.data.buf.in,
instr->ctx.data.len / 2);
else
ioread8_rep(gpiomtd->io, instr->ctx.data.buf.in,
instr->ctx.data.len);
return 0;
case NAND_OP_DATA_OUT_INSTR:
gpio_nand_dosync(gpiomtd);
if ((chip->options & NAND_BUSWIDTH_16) &&
!instr->ctx.data.force_8bit)
iowrite16_rep(gpiomtd->io, instr->ctx.data.buf.out,
instr->ctx.data.len / 2);
else
iowrite8_rep(gpiomtd->io, instr->ctx.data.buf.out,
instr->ctx.data.len);
return 0;
case NAND_OP_WAITRDY_INSTR:
if (!gpiomtd->rdy)
return nand_soft_waitrdy(chip, instr->ctx.waitrdy.timeout_ms);
return nand_gpio_waitrdy(chip, gpiomtd->rdy,
instr->ctx.waitrdy.timeout_ms);
default:
return -EINVAL;
}
return 0;
}
static int gpio_nand_exec_op(struct nand_chip *chip,
const struct nand_operation *op,
bool check_only)
{
struct gpiomtd *gpiomtd = gpio_nand_getpriv(nand_to_mtd(chip));
unsigned int i;
int ret = 0;
if (check_only)
return 0;
gpio_nand_dosync(gpiomtd);
gpiod_set_value(gpiomtd->nce, 0);
for (i = 0; i < op->ninstrs; i++) {
ret = gpio_nand_exec_instr(chip, &op->instrs[i]);
if (ret)
break;
if (op->instrs[i].delay_ns)
ndelay(op->instrs[i].delay_ns);
}
gpio_nand_dosync(gpiomtd);
gpiod_set_value(gpiomtd->nce, 1);
return ret;
}
static const struct nand_controller_ops gpio_nand_ops = {
.exec_op = gpio_nand_exec_op,
};
#ifdef CONFIG_OF
static const struct of_device_id gpio_nand_id_table[] = {
{ .compatible = "gpio-control-nand" },
{}
};
MODULE_DEVICE_TABLE(of, gpio_nand_id_table);
static int gpio_nand_get_config_of(const struct device *dev,
struct gpio_nand_platdata *plat)
{
u32 val;
if (!dev->of_node)
return -ENODEV;
if (!of_property_read_u32(dev->of_node, "bank-width", &val)) {
if (val == 2) {
plat->options |= NAND_BUSWIDTH_16;
} else if (val != 1) {
dev_err(dev, "invalid bank-width %u\n", val);
return -EINVAL;
}
}
if (!of_property_read_u32(dev->of_node, "chip-delay", &val))
plat->chip_delay = val;
return 0;
}
static struct resource *gpio_nand_get_io_sync_of(struct platform_device *pdev)
{
struct resource *r;
u64 addr;
if (of_property_read_u64(pdev->dev.of_node,
"gpio-control-nand,io-sync-reg", &addr))
return NULL;
r = devm_kzalloc(&pdev->dev, sizeof(*r), GFP_KERNEL);
if (!r)
return NULL;
r->start = addr;
r->end = r->start + 0x3;
r->flags = IORESOURCE_MEM;
return r;
}
#else /* CONFIG_OF */
static inline int gpio_nand_get_config_of(const struct device *dev,
struct gpio_nand_platdata *plat)
{
return -ENOSYS;
}
static inline struct resource *
gpio_nand_get_io_sync_of(struct platform_device *pdev)
{
return NULL;
}
#endif /* CONFIG_OF */
static inline int gpio_nand_get_config(const struct device *dev,
struct gpio_nand_platdata *plat)
{
int ret = gpio_nand_get_config_of(dev, plat);
if (!ret)
return ret;
if (dev_get_platdata(dev)) {
memcpy(plat, dev_get_platdata(dev), sizeof(*plat));
return 0;
}
return -EINVAL;
}
static inline struct resource *
gpio_nand_get_io_sync(struct platform_device *pdev)
{
struct resource *r = gpio_nand_get_io_sync_of(pdev);
if (r)
return r;
return platform_get_resource(pdev, IORESOURCE_MEM, 1);
}
static int gpio_nand_remove(struct platform_device *pdev)
{
struct gpiomtd *gpiomtd = platform_get_drvdata(pdev);
struct nand_chip *chip = &gpiomtd->nand_chip;
int ret;
ret = mtd_device_unregister(nand_to_mtd(chip));
WARN_ON(ret);
nand_cleanup(chip);
/* Enable write protection and disable the chip */
if (gpiomtd->nwp && !IS_ERR(gpiomtd->nwp))
gpiod_set_value(gpiomtd->nwp, 0);
if (gpiomtd->nce && !IS_ERR(gpiomtd->nce))
gpiod_set_value(gpiomtd->nce, 0);
return 0;
}
static int gpio_nand_probe(struct platform_device *pdev)
{
struct gpiomtd *gpiomtd;
struct nand_chip *chip;
struct mtd_info *mtd;
struct resource *res;
struct device *dev = &pdev->dev;
int ret = 0;
if (!dev->of_node && !dev_get_platdata(dev))
return -EINVAL;
gpiomtd = devm_kzalloc(dev, sizeof(*gpiomtd), GFP_KERNEL);
if (!gpiomtd)
return -ENOMEM;
chip = &gpiomtd->nand_chip;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
gpiomtd->io = devm_ioremap_resource(dev, res);
if (IS_ERR(gpiomtd->io))
return PTR_ERR(gpiomtd->io);
res = gpio_nand_get_io_sync(pdev);
if (res) {
gpiomtd->io_sync = devm_ioremap_resource(dev, res);
if (IS_ERR(gpiomtd->io_sync))
return PTR_ERR(gpiomtd->io_sync);
}
ret = gpio_nand_get_config(dev, &gpiomtd->plat);
if (ret)
return ret;
/* Just enable the chip */
gpiomtd->nce = devm_gpiod_get_optional(dev, "nce", GPIOD_OUT_HIGH);
if (IS_ERR(gpiomtd->nce))
return PTR_ERR(gpiomtd->nce);
/* We disable write protection once we know probe() will succeed */
gpiomtd->nwp = devm_gpiod_get_optional(dev, "nwp", GPIOD_OUT_LOW);
if (IS_ERR(gpiomtd->nwp)) {
ret = PTR_ERR(gpiomtd->nwp);
goto out_ce;
}
gpiomtd->ale = devm_gpiod_get(dev, "ale", GPIOD_OUT_LOW);
if (IS_ERR(gpiomtd->ale)) {
ret = PTR_ERR(gpiomtd->ale);
goto out_ce;
}
gpiomtd->cle = devm_gpiod_get(dev, "cle", GPIOD_OUT_LOW);
if (IS_ERR(gpiomtd->cle)) {
ret = PTR_ERR(gpiomtd->cle);
goto out_ce;
}
gpiomtd->rdy = devm_gpiod_get_optional(dev, "rdy", GPIOD_IN);
if (IS_ERR(gpiomtd->rdy)) {
ret = PTR_ERR(gpiomtd->rdy);
goto out_ce;
}
nand_controller_init(&gpiomtd->base);
gpiomtd->base.ops = &gpio_nand_ops;
nand_set_flash_node(chip, pdev->dev.of_node);
chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
chip->options = gpiomtd->plat.options;
chip->controller = &gpiomtd->base;
mtd = nand_to_mtd(chip);
mtd->dev.parent = dev;
platform_set_drvdata(pdev, gpiomtd);
/* Disable write protection, if wired up */
if (gpiomtd->nwp && !IS_ERR(gpiomtd->nwp))
gpiod_direction_output(gpiomtd->nwp, 1);
ret = nand_scan(chip, 1);
if (ret)
goto err_wp;
if (gpiomtd->plat.adjust_parts)
gpiomtd->plat.adjust_parts(&gpiomtd->plat, mtd->size);
ret = mtd_device_register(mtd, gpiomtd->plat.parts,
gpiomtd->plat.num_parts);
if (!ret)
return 0;
err_wp:
if (gpiomtd->nwp && !IS_ERR(gpiomtd->nwp))
gpiod_set_value(gpiomtd->nwp, 0);
out_ce:
if (gpiomtd->nce && !IS_ERR(gpiomtd->nce))
gpiod_set_value(gpiomtd->nce, 0);
return ret;
}
static struct platform_driver gpio_nand_driver = {
.probe = gpio_nand_probe,
.remove = gpio_nand_remove,
.driver = {
.name = "gpio-nand",
.of_match_table = of_match_ptr(gpio_nand_id_table),
},
};
module_platform_driver(gpio_nand_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
MODULE_DESCRIPTION("GPIO NAND Driver");