linux_dsm_epyc7002/drivers/iio/dac/ad5755.c
Sergiu Cuciurean a49e961c7c iio: dac: ad5755: Replace indio_dev->mlock with own device lock
As part of the general cleanup of indio_dev->mlock, this change replaces
it with a local lock on the device's state structure.
This also changes some internal functions to pass the pointer to the
state-struct vs a ref to indio_dev just to access the state-struct again.

Signed-off-by: Sergiu Cuciurean <sergiu.cuciurean@analog.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2020-05-16 16:17:35 +01:00

808 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* AD5755, AD5755-1, AD5757, AD5735, AD5737 Digital to analog converters driver
*
* Copyright 2012 Analog Devices Inc.
*/
#include <linux/device.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/spi/spi.h>
#include <linux/slab.h>
#include <linux/sysfs.h>
#include <linux/delay.h>
#include <linux/of.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/platform_data/ad5755.h>
#define AD5755_NUM_CHANNELS 4
#define AD5755_ADDR(x) ((x) << 16)
#define AD5755_WRITE_REG_DATA(chan) (chan)
#define AD5755_WRITE_REG_GAIN(chan) (0x08 | (chan))
#define AD5755_WRITE_REG_OFFSET(chan) (0x10 | (chan))
#define AD5755_WRITE_REG_CTRL(chan) (0x1c | (chan))
#define AD5755_READ_REG_DATA(chan) (chan)
#define AD5755_READ_REG_CTRL(chan) (0x4 | (chan))
#define AD5755_READ_REG_GAIN(chan) (0x8 | (chan))
#define AD5755_READ_REG_OFFSET(chan) (0xc | (chan))
#define AD5755_READ_REG_CLEAR(chan) (0x10 | (chan))
#define AD5755_READ_REG_SLEW(chan) (0x14 | (chan))
#define AD5755_READ_REG_STATUS 0x18
#define AD5755_READ_REG_MAIN 0x19
#define AD5755_READ_REG_DC_DC 0x1a
#define AD5755_CTRL_REG_SLEW 0x0
#define AD5755_CTRL_REG_MAIN 0x1
#define AD5755_CTRL_REG_DAC 0x2
#define AD5755_CTRL_REG_DC_DC 0x3
#define AD5755_CTRL_REG_SW 0x4
#define AD5755_READ_FLAG 0x800000
#define AD5755_NOOP 0x1CE000
#define AD5755_DAC_INT_EN BIT(8)
#define AD5755_DAC_CLR_EN BIT(7)
#define AD5755_DAC_OUT_EN BIT(6)
#define AD5755_DAC_INT_CURRENT_SENSE_RESISTOR BIT(5)
#define AD5755_DAC_DC_DC_EN BIT(4)
#define AD5755_DAC_VOLTAGE_OVERRANGE_EN BIT(3)
#define AD5755_DC_DC_MAXV 0
#define AD5755_DC_DC_FREQ_SHIFT 2
#define AD5755_DC_DC_PHASE_SHIFT 4
#define AD5755_EXT_DC_DC_COMP_RES BIT(6)
#define AD5755_SLEW_STEP_SIZE_SHIFT 0
#define AD5755_SLEW_RATE_SHIFT 3
#define AD5755_SLEW_ENABLE BIT(12)
/**
* struct ad5755_chip_info - chip specific information
* @channel_template: channel specification
* @calib_shift: shift for the calibration data registers
* @has_voltage_out: whether the chip has voltage outputs
*/
struct ad5755_chip_info {
const struct iio_chan_spec channel_template;
unsigned int calib_shift;
bool has_voltage_out;
};
/**
* struct ad5755_state - driver instance specific data
* @spi: spi device the driver is attached to
* @chip_info: chip model specific constants, available modes etc
* @pwr_down: bitmask which contains hether a channel is powered down or not
* @ctrl: software shadow of the channel ctrl registers
* @channels: iio channel spec for the device
* @lock lock to protect the data buffer during SPI ops
* @data: spi transfer buffers
*/
struct ad5755_state {
struct spi_device *spi;
const struct ad5755_chip_info *chip_info;
unsigned int pwr_down;
unsigned int ctrl[AD5755_NUM_CHANNELS];
struct iio_chan_spec channels[AD5755_NUM_CHANNELS];
struct mutex lock;
/*
* DMA (thus cache coherency maintenance) requires the
* transfer buffers to live in their own cache lines.
*/
union {
__be32 d32;
u8 d8[4];
} data[2] ____cacheline_aligned;
};
enum ad5755_type {
ID_AD5755,
ID_AD5757,
ID_AD5735,
ID_AD5737,
};
#ifdef CONFIG_OF
static const int ad5755_dcdc_freq_table[][2] = {
{ 250000, AD5755_DC_DC_FREQ_250kHZ },
{ 410000, AD5755_DC_DC_FREQ_410kHZ },
{ 650000, AD5755_DC_DC_FREQ_650kHZ }
};
static const int ad5755_dcdc_maxv_table[][2] = {
{ 23000000, AD5755_DC_DC_MAXV_23V },
{ 24500000, AD5755_DC_DC_MAXV_24V5 },
{ 27000000, AD5755_DC_DC_MAXV_27V },
{ 29500000, AD5755_DC_DC_MAXV_29V5 },
};
static const int ad5755_slew_rate_table[][2] = {
{ 64000, AD5755_SLEW_RATE_64k },
{ 32000, AD5755_SLEW_RATE_32k },
{ 16000, AD5755_SLEW_RATE_16k },
{ 8000, AD5755_SLEW_RATE_8k },
{ 4000, AD5755_SLEW_RATE_4k },
{ 2000, AD5755_SLEW_RATE_2k },
{ 1000, AD5755_SLEW_RATE_1k },
{ 500, AD5755_SLEW_RATE_500 },
{ 250, AD5755_SLEW_RATE_250 },
{ 125, AD5755_SLEW_RATE_125 },
{ 64, AD5755_SLEW_RATE_64 },
{ 32, AD5755_SLEW_RATE_32 },
{ 16, AD5755_SLEW_RATE_16 },
{ 8, AD5755_SLEW_RATE_8 },
{ 4, AD5755_SLEW_RATE_4 },
{ 0, AD5755_SLEW_RATE_0_5 },
};
static const int ad5755_slew_step_table[][2] = {
{ 256, AD5755_SLEW_STEP_SIZE_256 },
{ 128, AD5755_SLEW_STEP_SIZE_128 },
{ 64, AD5755_SLEW_STEP_SIZE_64 },
{ 32, AD5755_SLEW_STEP_SIZE_32 },
{ 16, AD5755_SLEW_STEP_SIZE_16 },
{ 4, AD5755_SLEW_STEP_SIZE_4 },
{ 2, AD5755_SLEW_STEP_SIZE_2 },
{ 1, AD5755_SLEW_STEP_SIZE_1 },
};
#endif
static int ad5755_write_unlocked(struct iio_dev *indio_dev,
unsigned int reg, unsigned int val)
{
struct ad5755_state *st = iio_priv(indio_dev);
st->data[0].d32 = cpu_to_be32((reg << 16) | val);
return spi_write(st->spi, &st->data[0].d8[1], 3);
}
static int ad5755_write_ctrl_unlocked(struct iio_dev *indio_dev,
unsigned int channel, unsigned int reg, unsigned int val)
{
return ad5755_write_unlocked(indio_dev,
AD5755_WRITE_REG_CTRL(channel), (reg << 13) | val);
}
static int ad5755_write(struct iio_dev *indio_dev, unsigned int reg,
unsigned int val)
{
struct ad5755_state *st = iio_priv(indio_dev);
int ret;
mutex_lock(&st->lock);
ret = ad5755_write_unlocked(indio_dev, reg, val);
mutex_unlock(&st->lock);
return ret;
}
static int ad5755_write_ctrl(struct iio_dev *indio_dev, unsigned int channel,
unsigned int reg, unsigned int val)
{
struct ad5755_state *st = iio_priv(indio_dev);
int ret;
mutex_lock(&st->lock);
ret = ad5755_write_ctrl_unlocked(indio_dev, channel, reg, val);
mutex_unlock(&st->lock);
return ret;
}
static int ad5755_read(struct iio_dev *indio_dev, unsigned int addr)
{
struct ad5755_state *st = iio_priv(indio_dev);
int ret;
struct spi_transfer t[] = {
{
.tx_buf = &st->data[0].d8[1],
.len = 3,
.cs_change = 1,
}, {
.tx_buf = &st->data[1].d8[1],
.rx_buf = &st->data[1].d8[1],
.len = 3,
},
};
mutex_lock(&st->lock);
st->data[0].d32 = cpu_to_be32(AD5755_READ_FLAG | (addr << 16));
st->data[1].d32 = cpu_to_be32(AD5755_NOOP);
ret = spi_sync_transfer(st->spi, t, ARRAY_SIZE(t));
if (ret >= 0)
ret = be32_to_cpu(st->data[1].d32) & 0xffff;
mutex_unlock(&st->lock);
return ret;
}
static int ad5755_update_dac_ctrl(struct iio_dev *indio_dev,
unsigned int channel, unsigned int set, unsigned int clr)
{
struct ad5755_state *st = iio_priv(indio_dev);
int ret;
st->ctrl[channel] |= set;
st->ctrl[channel] &= ~clr;
ret = ad5755_write_ctrl_unlocked(indio_dev, channel,
AD5755_CTRL_REG_DAC, st->ctrl[channel]);
return ret;
}
static int ad5755_set_channel_pwr_down(struct iio_dev *indio_dev,
unsigned int channel, bool pwr_down)
{
struct ad5755_state *st = iio_priv(indio_dev);
unsigned int mask = BIT(channel);
mutex_lock(&st->lock);
if ((bool)(st->pwr_down & mask) == pwr_down)
goto out_unlock;
if (!pwr_down) {
st->pwr_down &= ~mask;
ad5755_update_dac_ctrl(indio_dev, channel,
AD5755_DAC_INT_EN | AD5755_DAC_DC_DC_EN, 0);
udelay(200);
ad5755_update_dac_ctrl(indio_dev, channel,
AD5755_DAC_OUT_EN, 0);
} else {
st->pwr_down |= mask;
ad5755_update_dac_ctrl(indio_dev, channel,
0, AD5755_DAC_INT_EN | AD5755_DAC_OUT_EN |
AD5755_DAC_DC_DC_EN);
}
out_unlock:
mutex_unlock(&st->lock);
return 0;
}
static const int ad5755_min_max_table[][2] = {
[AD5755_MODE_VOLTAGE_0V_5V] = { 0, 5000 },
[AD5755_MODE_VOLTAGE_0V_10V] = { 0, 10000 },
[AD5755_MODE_VOLTAGE_PLUSMINUS_5V] = { -5000, 5000 },
[AD5755_MODE_VOLTAGE_PLUSMINUS_10V] = { -10000, 10000 },
[AD5755_MODE_CURRENT_4mA_20mA] = { 4, 20 },
[AD5755_MODE_CURRENT_0mA_20mA] = { 0, 20 },
[AD5755_MODE_CURRENT_0mA_24mA] = { 0, 24 },
};
static void ad5755_get_min_max(struct ad5755_state *st,
struct iio_chan_spec const *chan, int *min, int *max)
{
enum ad5755_mode mode = st->ctrl[chan->channel] & 7;
*min = ad5755_min_max_table[mode][0];
*max = ad5755_min_max_table[mode][1];
}
static inline int ad5755_get_offset(struct ad5755_state *st,
struct iio_chan_spec const *chan)
{
int min, max;
ad5755_get_min_max(st, chan, &min, &max);
return (min * (1 << chan->scan_type.realbits)) / (max - min);
}
static int ad5755_chan_reg_info(struct ad5755_state *st,
struct iio_chan_spec const *chan, long info, bool write,
unsigned int *reg, unsigned int *shift, unsigned int *offset)
{
switch (info) {
case IIO_CHAN_INFO_RAW:
if (write)
*reg = AD5755_WRITE_REG_DATA(chan->address);
else
*reg = AD5755_READ_REG_DATA(chan->address);
*shift = chan->scan_type.shift;
*offset = 0;
break;
case IIO_CHAN_INFO_CALIBBIAS:
if (write)
*reg = AD5755_WRITE_REG_OFFSET(chan->address);
else
*reg = AD5755_READ_REG_OFFSET(chan->address);
*shift = st->chip_info->calib_shift;
*offset = 32768;
break;
case IIO_CHAN_INFO_CALIBSCALE:
if (write)
*reg = AD5755_WRITE_REG_GAIN(chan->address);
else
*reg = AD5755_READ_REG_GAIN(chan->address);
*shift = st->chip_info->calib_shift;
*offset = 0;
break;
default:
return -EINVAL;
}
return 0;
}
static int ad5755_read_raw(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan, int *val, int *val2, long info)
{
struct ad5755_state *st = iio_priv(indio_dev);
unsigned int reg, shift, offset;
int min, max;
int ret;
switch (info) {
case IIO_CHAN_INFO_SCALE:
ad5755_get_min_max(st, chan, &min, &max);
*val = max - min;
*val2 = chan->scan_type.realbits;
return IIO_VAL_FRACTIONAL_LOG2;
case IIO_CHAN_INFO_OFFSET:
*val = ad5755_get_offset(st, chan);
return IIO_VAL_INT;
default:
ret = ad5755_chan_reg_info(st, chan, info, false,
&reg, &shift, &offset);
if (ret)
return ret;
ret = ad5755_read(indio_dev, reg);
if (ret < 0)
return ret;
*val = (ret - offset) >> shift;
return IIO_VAL_INT;
}
return -EINVAL;
}
static int ad5755_write_raw(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan, int val, int val2, long info)
{
struct ad5755_state *st = iio_priv(indio_dev);
unsigned int shift, reg, offset;
int ret;
ret = ad5755_chan_reg_info(st, chan, info, true,
&reg, &shift, &offset);
if (ret)
return ret;
val <<= shift;
val += offset;
if (val < 0 || val > 0xffff)
return -EINVAL;
return ad5755_write(indio_dev, reg, val);
}
static ssize_t ad5755_read_powerdown(struct iio_dev *indio_dev, uintptr_t priv,
const struct iio_chan_spec *chan, char *buf)
{
struct ad5755_state *st = iio_priv(indio_dev);
return sprintf(buf, "%d\n",
(bool)(st->pwr_down & (1 << chan->channel)));
}
static ssize_t ad5755_write_powerdown(struct iio_dev *indio_dev, uintptr_t priv,
struct iio_chan_spec const *chan, const char *buf, size_t len)
{
bool pwr_down;
int ret;
ret = strtobool(buf, &pwr_down);
if (ret)
return ret;
ret = ad5755_set_channel_pwr_down(indio_dev, chan->channel, pwr_down);
return ret ? ret : len;
}
static const struct iio_info ad5755_info = {
.read_raw = ad5755_read_raw,
.write_raw = ad5755_write_raw,
};
static const struct iio_chan_spec_ext_info ad5755_ext_info[] = {
{
.name = "powerdown",
.read = ad5755_read_powerdown,
.write = ad5755_write_powerdown,
.shared = IIO_SEPARATE,
},
{ },
};
#define AD5755_CHANNEL(_bits) { \
.indexed = 1, \
.output = 1, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_OFFSET) | \
BIT(IIO_CHAN_INFO_CALIBSCALE) | \
BIT(IIO_CHAN_INFO_CALIBBIAS), \
.scan_type = { \
.sign = 'u', \
.realbits = (_bits), \
.storagebits = 16, \
.shift = 16 - (_bits), \
}, \
.ext_info = ad5755_ext_info, \
}
static const struct ad5755_chip_info ad5755_chip_info_tbl[] = {
[ID_AD5735] = {
.channel_template = AD5755_CHANNEL(14),
.has_voltage_out = true,
.calib_shift = 4,
},
[ID_AD5737] = {
.channel_template = AD5755_CHANNEL(14),
.has_voltage_out = false,
.calib_shift = 4,
},
[ID_AD5755] = {
.channel_template = AD5755_CHANNEL(16),
.has_voltage_out = true,
.calib_shift = 0,
},
[ID_AD5757] = {
.channel_template = AD5755_CHANNEL(16),
.has_voltage_out = false,
.calib_shift = 0,
},
};
static bool ad5755_is_valid_mode(struct ad5755_state *st, enum ad5755_mode mode)
{
switch (mode) {
case AD5755_MODE_VOLTAGE_0V_5V:
case AD5755_MODE_VOLTAGE_0V_10V:
case AD5755_MODE_VOLTAGE_PLUSMINUS_5V:
case AD5755_MODE_VOLTAGE_PLUSMINUS_10V:
return st->chip_info->has_voltage_out;
case AD5755_MODE_CURRENT_4mA_20mA:
case AD5755_MODE_CURRENT_0mA_20mA:
case AD5755_MODE_CURRENT_0mA_24mA:
return true;
default:
return false;
}
}
static int ad5755_setup_pdata(struct iio_dev *indio_dev,
const struct ad5755_platform_data *pdata)
{
struct ad5755_state *st = iio_priv(indio_dev);
unsigned int val;
unsigned int i;
int ret;
if (pdata->dc_dc_phase > AD5755_DC_DC_PHASE_90_DEGREE ||
pdata->dc_dc_freq > AD5755_DC_DC_FREQ_650kHZ ||
pdata->dc_dc_maxv > AD5755_DC_DC_MAXV_29V5)
return -EINVAL;
val = pdata->dc_dc_maxv << AD5755_DC_DC_MAXV;
val |= pdata->dc_dc_freq << AD5755_DC_DC_FREQ_SHIFT;
val |= pdata->dc_dc_phase << AD5755_DC_DC_PHASE_SHIFT;
if (pdata->ext_dc_dc_compenstation_resistor)
val |= AD5755_EXT_DC_DC_COMP_RES;
ret = ad5755_write_ctrl(indio_dev, 0, AD5755_CTRL_REG_DC_DC, val);
if (ret < 0)
return ret;
for (i = 0; i < ARRAY_SIZE(pdata->dac); ++i) {
val = pdata->dac[i].slew.step_size <<
AD5755_SLEW_STEP_SIZE_SHIFT;
val |= pdata->dac[i].slew.rate <<
AD5755_SLEW_RATE_SHIFT;
if (pdata->dac[i].slew.enable)
val |= AD5755_SLEW_ENABLE;
ret = ad5755_write_ctrl(indio_dev, i,
AD5755_CTRL_REG_SLEW, val);
if (ret < 0)
return ret;
}
for (i = 0; i < ARRAY_SIZE(pdata->dac); ++i) {
if (!ad5755_is_valid_mode(st, pdata->dac[i].mode))
return -EINVAL;
val = 0;
if (!pdata->dac[i].ext_current_sense_resistor)
val |= AD5755_DAC_INT_CURRENT_SENSE_RESISTOR;
if (pdata->dac[i].enable_voltage_overrange)
val |= AD5755_DAC_VOLTAGE_OVERRANGE_EN;
val |= pdata->dac[i].mode;
ret = ad5755_update_dac_ctrl(indio_dev, i, val, 0);
if (ret < 0)
return ret;
}
return 0;
}
static bool ad5755_is_voltage_mode(enum ad5755_mode mode)
{
switch (mode) {
case AD5755_MODE_VOLTAGE_0V_5V:
case AD5755_MODE_VOLTAGE_0V_10V:
case AD5755_MODE_VOLTAGE_PLUSMINUS_5V:
case AD5755_MODE_VOLTAGE_PLUSMINUS_10V:
return true;
default:
return false;
}
}
static int ad5755_init_channels(struct iio_dev *indio_dev,
const struct ad5755_platform_data *pdata)
{
struct ad5755_state *st = iio_priv(indio_dev);
struct iio_chan_spec *channels = st->channels;
unsigned int i;
for (i = 0; i < AD5755_NUM_CHANNELS; ++i) {
channels[i] = st->chip_info->channel_template;
channels[i].channel = i;
channels[i].address = i;
if (pdata && ad5755_is_voltage_mode(pdata->dac[i].mode))
channels[i].type = IIO_VOLTAGE;
else
channels[i].type = IIO_CURRENT;
}
indio_dev->channels = channels;
return 0;
}
#define AD5755_DEFAULT_DAC_PDATA { \
.mode = AD5755_MODE_CURRENT_4mA_20mA, \
.ext_current_sense_resistor = true, \
.enable_voltage_overrange = false, \
.slew = { \
.enable = false, \
.rate = AD5755_SLEW_RATE_64k, \
.step_size = AD5755_SLEW_STEP_SIZE_1, \
}, \
}
static const struct ad5755_platform_data ad5755_default_pdata = {
.ext_dc_dc_compenstation_resistor = false,
.dc_dc_phase = AD5755_DC_DC_PHASE_ALL_SAME_EDGE,
.dc_dc_freq = AD5755_DC_DC_FREQ_410kHZ,
.dc_dc_maxv = AD5755_DC_DC_MAXV_23V,
.dac = {
[0] = AD5755_DEFAULT_DAC_PDATA,
[1] = AD5755_DEFAULT_DAC_PDATA,
[2] = AD5755_DEFAULT_DAC_PDATA,
[3] = AD5755_DEFAULT_DAC_PDATA,
},
};
#ifdef CONFIG_OF
static struct ad5755_platform_data *ad5755_parse_dt(struct device *dev)
{
struct device_node *np = dev->of_node;
struct device_node *pp;
struct ad5755_platform_data *pdata;
unsigned int tmp;
unsigned int tmparray[3];
int devnr, i;
pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return NULL;
pdata->ext_dc_dc_compenstation_resistor =
of_property_read_bool(np, "adi,ext-dc-dc-compenstation-resistor");
if (!of_property_read_u32(np, "adi,dc-dc-phase", &tmp))
pdata->dc_dc_phase = tmp;
else
pdata->dc_dc_phase = AD5755_DC_DC_PHASE_ALL_SAME_EDGE;
pdata->dc_dc_freq = AD5755_DC_DC_FREQ_410kHZ;
if (!of_property_read_u32(np, "adi,dc-dc-freq-hz", &tmp)) {
for (i = 0; i < ARRAY_SIZE(ad5755_dcdc_freq_table); i++) {
if (tmp == ad5755_dcdc_freq_table[i][0]) {
pdata->dc_dc_freq = ad5755_dcdc_freq_table[i][1];
break;
}
}
if (i == ARRAY_SIZE(ad5755_dcdc_freq_table))
dev_err(dev,
"adi,dc-dc-freq out of range selecting 410kHz\n");
}
pdata->dc_dc_maxv = AD5755_DC_DC_MAXV_23V;
if (!of_property_read_u32(np, "adi,dc-dc-max-microvolt", &tmp)) {
for (i = 0; i < ARRAY_SIZE(ad5755_dcdc_maxv_table); i++) {
if (tmp == ad5755_dcdc_maxv_table[i][0]) {
pdata->dc_dc_maxv = ad5755_dcdc_maxv_table[i][1];
break;
}
}
if (i == ARRAY_SIZE(ad5755_dcdc_maxv_table))
dev_err(dev,
"adi,dc-dc-maxv out of range selecting 23V\n");
}
devnr = 0;
for_each_child_of_node(np, pp) {
if (devnr >= AD5755_NUM_CHANNELS) {
dev_err(dev,
"There are too many channels defined in DT\n");
goto error_out;
}
if (!of_property_read_u32(pp, "adi,mode", &tmp))
pdata->dac[devnr].mode = tmp;
else
pdata->dac[devnr].mode = AD5755_MODE_CURRENT_4mA_20mA;
pdata->dac[devnr].ext_current_sense_resistor =
of_property_read_bool(pp, "adi,ext-current-sense-resistor");
pdata->dac[devnr].enable_voltage_overrange =
of_property_read_bool(pp, "adi,enable-voltage-overrange");
if (!of_property_read_u32_array(pp, "adi,slew", tmparray, 3)) {
pdata->dac[devnr].slew.enable = tmparray[0];
pdata->dac[devnr].slew.rate = AD5755_SLEW_RATE_64k;
for (i = 0; i < ARRAY_SIZE(ad5755_slew_rate_table); i++) {
if (tmparray[1] == ad5755_slew_rate_table[i][0]) {
pdata->dac[devnr].slew.rate =
ad5755_slew_rate_table[i][1];
break;
}
}
if (i == ARRAY_SIZE(ad5755_slew_rate_table))
dev_err(dev,
"channel %d slew rate out of range selecting 64kHz\n",
devnr);
pdata->dac[devnr].slew.step_size = AD5755_SLEW_STEP_SIZE_1;
for (i = 0; i < ARRAY_SIZE(ad5755_slew_step_table); i++) {
if (tmparray[2] == ad5755_slew_step_table[i][0]) {
pdata->dac[devnr].slew.step_size =
ad5755_slew_step_table[i][1];
break;
}
}
if (i == ARRAY_SIZE(ad5755_slew_step_table))
dev_err(dev,
"channel %d slew step size out of range selecting 1 LSB\n",
devnr);
} else {
pdata->dac[devnr].slew.enable = false;
pdata->dac[devnr].slew.rate = AD5755_SLEW_RATE_64k;
pdata->dac[devnr].slew.step_size =
AD5755_SLEW_STEP_SIZE_1;
}
devnr++;
}
return pdata;
error_out:
devm_kfree(dev, pdata);
return NULL;
}
#else
static
struct ad5755_platform_data *ad5755_parse_dt(struct device *dev)
{
return NULL;
}
#endif
static int ad5755_probe(struct spi_device *spi)
{
enum ad5755_type type = spi_get_device_id(spi)->driver_data;
const struct ad5755_platform_data *pdata = dev_get_platdata(&spi->dev);
struct iio_dev *indio_dev;
struct ad5755_state *st;
int ret;
indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
if (indio_dev == NULL) {
dev_err(&spi->dev, "Failed to allocate iio device\n");
return -ENOMEM;
}
st = iio_priv(indio_dev);
spi_set_drvdata(spi, indio_dev);
st->chip_info = &ad5755_chip_info_tbl[type];
st->spi = spi;
st->pwr_down = 0xf;
indio_dev->dev.parent = &spi->dev;
indio_dev->name = spi_get_device_id(spi)->name;
indio_dev->info = &ad5755_info;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->num_channels = AD5755_NUM_CHANNELS;
mutex_init(&st->lock);
if (spi->dev.of_node)
pdata = ad5755_parse_dt(&spi->dev);
else
pdata = spi->dev.platform_data;
if (!pdata) {
dev_warn(&spi->dev, "no platform data? using default\n");
pdata = &ad5755_default_pdata;
}
ret = ad5755_init_channels(indio_dev, pdata);
if (ret)
return ret;
ret = ad5755_setup_pdata(indio_dev, pdata);
if (ret)
return ret;
return devm_iio_device_register(&spi->dev, indio_dev);
}
static const struct spi_device_id ad5755_id[] = {
{ "ad5755", ID_AD5755 },
{ "ad5755-1", ID_AD5755 },
{ "ad5757", ID_AD5757 },
{ "ad5735", ID_AD5735 },
{ "ad5737", ID_AD5737 },
{}
};
MODULE_DEVICE_TABLE(spi, ad5755_id);
static const struct of_device_id ad5755_of_match[] = {
{ .compatible = "adi,ad5755" },
{ .compatible = "adi,ad5755-1" },
{ .compatible = "adi,ad5757" },
{ .compatible = "adi,ad5735" },
{ .compatible = "adi,ad5737" },
{ }
};
MODULE_DEVICE_TABLE(of, ad5755_of_match);
static struct spi_driver ad5755_driver = {
.driver = {
.name = "ad5755",
},
.probe = ad5755_probe,
.id_table = ad5755_id,
};
module_spi_driver(ad5755_driver);
MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
MODULE_DESCRIPTION("Analog Devices AD5755/55-1/57/35/37 DAC");
MODULE_LICENSE("GPL v2");