mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-16 01:46:56 +07:00
f99fb607fb
Setup the cpu_logical_map during boot. Moreover, every SBI call and PLIC context are based on the physical hartid. Use the logical CPU to hartid mapping to pass correct hartid to respective functions. Signed-off-by: Atish Patra <atish.patra@wdc.com> Reviewed-by: Anup Patel <anup@brainfault.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Palmer Dabbelt <palmer@sifive.com>
263 lines
6.6 KiB
C
263 lines
6.6 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2017 SiFive
|
|
* Copyright (C) 2018 Christoph Hellwig
|
|
*/
|
|
#define pr_fmt(fmt) "plic: " fmt
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/irqchip.h>
|
|
#include <linux/irqdomain.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/of_irq.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/spinlock.h>
|
|
#include <asm/smp.h>
|
|
|
|
/*
|
|
* This driver implements a version of the RISC-V PLIC with the actual layout
|
|
* specified in chapter 8 of the SiFive U5 Coreplex Series Manual:
|
|
*
|
|
* https://static.dev.sifive.com/U54-MC-RVCoreIP.pdf
|
|
*
|
|
* The largest number supported by devices marked as 'sifive,plic-1.0.0', is
|
|
* 1024, of which device 0 is defined as non-existent by the RISC-V Privileged
|
|
* Spec.
|
|
*/
|
|
|
|
#define MAX_DEVICES 1024
|
|
#define MAX_CONTEXTS 15872
|
|
|
|
/*
|
|
* Each interrupt source has a priority register associated with it.
|
|
* We always hardwire it to one in Linux.
|
|
*/
|
|
#define PRIORITY_BASE 0
|
|
#define PRIORITY_PER_ID 4
|
|
|
|
/*
|
|
* Each hart context has a vector of interrupt enable bits associated with it.
|
|
* There's one bit for each interrupt source.
|
|
*/
|
|
#define ENABLE_BASE 0x2000
|
|
#define ENABLE_PER_HART 0x80
|
|
|
|
/*
|
|
* Each hart context has a set of control registers associated with it. Right
|
|
* now there's only two: a source priority threshold over which the hart will
|
|
* take an interrupt, and a register to claim interrupts.
|
|
*/
|
|
#define CONTEXT_BASE 0x200000
|
|
#define CONTEXT_PER_HART 0x1000
|
|
#define CONTEXT_THRESHOLD 0x00
|
|
#define CONTEXT_CLAIM 0x04
|
|
|
|
static void __iomem *plic_regs;
|
|
|
|
struct plic_handler {
|
|
bool present;
|
|
int ctxid;
|
|
};
|
|
static DEFINE_PER_CPU(struct plic_handler, plic_handlers);
|
|
|
|
static inline void __iomem *plic_hart_offset(int ctxid)
|
|
{
|
|
return plic_regs + CONTEXT_BASE + ctxid * CONTEXT_PER_HART;
|
|
}
|
|
|
|
static inline u32 __iomem *plic_enable_base(int ctxid)
|
|
{
|
|
return plic_regs + ENABLE_BASE + ctxid * ENABLE_PER_HART;
|
|
}
|
|
|
|
/*
|
|
* Protect mask operations on the registers given that we can't assume that
|
|
* atomic memory operations work on them.
|
|
*/
|
|
static DEFINE_RAW_SPINLOCK(plic_toggle_lock);
|
|
|
|
static inline void plic_toggle(int ctxid, int hwirq, int enable)
|
|
{
|
|
u32 __iomem *reg = plic_enable_base(ctxid) + (hwirq / 32);
|
|
u32 hwirq_mask = 1 << (hwirq % 32);
|
|
|
|
raw_spin_lock(&plic_toggle_lock);
|
|
if (enable)
|
|
writel(readl(reg) | hwirq_mask, reg);
|
|
else
|
|
writel(readl(reg) & ~hwirq_mask, reg);
|
|
raw_spin_unlock(&plic_toggle_lock);
|
|
}
|
|
|
|
static inline void plic_irq_toggle(struct irq_data *d, int enable)
|
|
{
|
|
int cpu;
|
|
|
|
writel(enable, plic_regs + PRIORITY_BASE + d->hwirq * PRIORITY_PER_ID);
|
|
for_each_cpu(cpu, irq_data_get_affinity_mask(d)) {
|
|
struct plic_handler *handler = per_cpu_ptr(&plic_handlers, cpu);
|
|
|
|
if (handler->present)
|
|
plic_toggle(handler->ctxid, d->hwirq, enable);
|
|
}
|
|
}
|
|
|
|
static void plic_irq_enable(struct irq_data *d)
|
|
{
|
|
plic_irq_toggle(d, 1);
|
|
}
|
|
|
|
static void plic_irq_disable(struct irq_data *d)
|
|
{
|
|
plic_irq_toggle(d, 0);
|
|
}
|
|
|
|
static struct irq_chip plic_chip = {
|
|
.name = "SiFive PLIC",
|
|
/*
|
|
* There is no need to mask/unmask PLIC interrupts. They are "masked"
|
|
* by reading claim and "unmasked" when writing it back.
|
|
*/
|
|
.irq_enable = plic_irq_enable,
|
|
.irq_disable = plic_irq_disable,
|
|
};
|
|
|
|
static int plic_irqdomain_map(struct irq_domain *d, unsigned int irq,
|
|
irq_hw_number_t hwirq)
|
|
{
|
|
irq_set_chip_and_handler(irq, &plic_chip, handle_simple_irq);
|
|
irq_set_chip_data(irq, NULL);
|
|
irq_set_noprobe(irq);
|
|
return 0;
|
|
}
|
|
|
|
static const struct irq_domain_ops plic_irqdomain_ops = {
|
|
.map = plic_irqdomain_map,
|
|
.xlate = irq_domain_xlate_onecell,
|
|
};
|
|
|
|
static struct irq_domain *plic_irqdomain;
|
|
|
|
/*
|
|
* Handling an interrupt is a two-step process: first you claim the interrupt
|
|
* by reading the claim register, then you complete the interrupt by writing
|
|
* that source ID back to the same claim register. This automatically enables
|
|
* and disables the interrupt, so there's nothing else to do.
|
|
*/
|
|
static void plic_handle_irq(struct pt_regs *regs)
|
|
{
|
|
struct plic_handler *handler = this_cpu_ptr(&plic_handlers);
|
|
void __iomem *claim = plic_hart_offset(handler->ctxid) + CONTEXT_CLAIM;
|
|
irq_hw_number_t hwirq;
|
|
|
|
WARN_ON_ONCE(!handler->present);
|
|
|
|
csr_clear(sie, SIE_SEIE);
|
|
while ((hwirq = readl(claim))) {
|
|
int irq = irq_find_mapping(plic_irqdomain, hwirq);
|
|
|
|
if (unlikely(irq <= 0))
|
|
pr_warn_ratelimited("can't find mapping for hwirq %lu\n",
|
|
hwirq);
|
|
else
|
|
generic_handle_irq(irq);
|
|
writel(hwirq, claim);
|
|
}
|
|
csr_set(sie, SIE_SEIE);
|
|
}
|
|
|
|
/*
|
|
* Walk up the DT tree until we find an active RISC-V core (HART) node and
|
|
* extract the cpuid from it.
|
|
*/
|
|
static int plic_find_hart_id(struct device_node *node)
|
|
{
|
|
for (; node; node = node->parent) {
|
|
if (of_device_is_compatible(node, "riscv"))
|
|
return riscv_of_processor_hartid(node);
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int __init plic_init(struct device_node *node,
|
|
struct device_node *parent)
|
|
{
|
|
int error = 0, nr_handlers, nr_mapped = 0, i;
|
|
u32 nr_irqs;
|
|
|
|
if (plic_regs) {
|
|
pr_warn("PLIC already present.\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
plic_regs = of_iomap(node, 0);
|
|
if (WARN_ON(!plic_regs))
|
|
return -EIO;
|
|
|
|
error = -EINVAL;
|
|
of_property_read_u32(node, "riscv,ndev", &nr_irqs);
|
|
if (WARN_ON(!nr_irqs))
|
|
goto out_iounmap;
|
|
|
|
nr_handlers = of_irq_count(node);
|
|
if (WARN_ON(!nr_handlers))
|
|
goto out_iounmap;
|
|
if (WARN_ON(nr_handlers < num_possible_cpus()))
|
|
goto out_iounmap;
|
|
|
|
error = -ENOMEM;
|
|
plic_irqdomain = irq_domain_add_linear(node, nr_irqs + 1,
|
|
&plic_irqdomain_ops, NULL);
|
|
if (WARN_ON(!plic_irqdomain))
|
|
goto out_iounmap;
|
|
|
|
for (i = 0; i < nr_handlers; i++) {
|
|
struct of_phandle_args parent;
|
|
struct plic_handler *handler;
|
|
irq_hw_number_t hwirq;
|
|
int cpu, hartid;
|
|
|
|
if (of_irq_parse_one(node, i, &parent)) {
|
|
pr_err("failed to parse parent for context %d.\n", i);
|
|
continue;
|
|
}
|
|
|
|
/* skip context holes */
|
|
if (parent.args[0] == -1)
|
|
continue;
|
|
|
|
hartid = plic_find_hart_id(parent.np);
|
|
if (hartid < 0) {
|
|
pr_warn("failed to parse hart ID for context %d.\n", i);
|
|
continue;
|
|
}
|
|
|
|
cpu = riscv_hartid_to_cpuid(hartid);
|
|
handler = per_cpu_ptr(&plic_handlers, cpu);
|
|
handler->present = true;
|
|
handler->ctxid = i;
|
|
|
|
/* priority must be > threshold to trigger an interrupt */
|
|
writel(0, plic_hart_offset(i) + CONTEXT_THRESHOLD);
|
|
for (hwirq = 1; hwirq <= nr_irqs; hwirq++)
|
|
plic_toggle(i, hwirq, 0);
|
|
nr_mapped++;
|
|
}
|
|
|
|
pr_info("mapped %d interrupts to %d (out of %d) handlers.\n",
|
|
nr_irqs, nr_mapped, nr_handlers);
|
|
set_handle_irq(plic_handle_irq);
|
|
return 0;
|
|
|
|
out_iounmap:
|
|
iounmap(plic_regs);
|
|
return error;
|
|
}
|
|
|
|
IRQCHIP_DECLARE(sifive_plic, "sifive,plic-1.0.0", plic_init);
|
|
IRQCHIP_DECLARE(riscv_plic0, "riscv,plic0", plic_init); /* for legacy systems */
|