mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-25 15:10:50 +07:00
6636487e8d
It seems that on some nVidia controllers using AltStatus register can be unreliable so default to Status register if the PCI device is in Compatibility Mode. In order to achieve this: * Add ide_pci_is_in_compatibility_mode() inline helper to <linux/ide.h>. * Add IDE_HFLAG_BROKEN_ALTSTATUS host flag and set it in amd74xx host driver for nVidia controllers in Compatibility Mode. * Teach actual_try_to_identify() and drive_is_ready() about the new flag. This fixes the regression caused by removal of CONFIG_IDEPCI_SHARE_IRQ config option in 2.6.25 and using AltStatus register unconditionally when available (kernel.org bugs #11659 and #10216). [ Moreover for CONFIG_IDEPCI_SHARE_IRQ=y (which is what most people and distributions use) it never worked correctly. ] Thanks to Remy LABENE and Lars Winterfeld for help with debugging the problem. More info at: http://bugzilla.kernel.org/show_bug.cgi?id=11659 http://bugzilla.kernel.org/show_bug.cgi?id=10216 Reported-by: Remy LABENE <remy.labene@free.fr> Tested-by: Remy LABENE <remy.labene@free.fr> Tested-by: Lars Winterfeld <lars.winterfeld@tu-ilmenau.de> Acked-by: Borislav Petkov <petkovbb@gmail.com> Signed-off-by: Bartlomiej Zolnierkiewicz <bzolnier@gmail.com>
1233 lines
32 KiB
C
1233 lines
32 KiB
C
/*
|
|
* Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
|
|
* Copyright (C) 2003 Red Hat
|
|
*
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/types.h>
|
|
#include <linux/string.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/major.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/genhd.h>
|
|
#include <linux/blkpg.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/ide.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/nmi.h>
|
|
|
|
#include <asm/byteorder.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/io.h>
|
|
|
|
/*
|
|
* Conventional PIO operations for ATA devices
|
|
*/
|
|
|
|
static u8 ide_inb (unsigned long port)
|
|
{
|
|
return (u8) inb(port);
|
|
}
|
|
|
|
static void ide_outb (u8 val, unsigned long port)
|
|
{
|
|
outb(val, port);
|
|
}
|
|
|
|
/*
|
|
* MMIO operations, typically used for SATA controllers
|
|
*/
|
|
|
|
static u8 ide_mm_inb (unsigned long port)
|
|
{
|
|
return (u8) readb((void __iomem *) port);
|
|
}
|
|
|
|
static void ide_mm_outb (u8 value, unsigned long port)
|
|
{
|
|
writeb(value, (void __iomem *) port);
|
|
}
|
|
|
|
void SELECT_DRIVE (ide_drive_t *drive)
|
|
{
|
|
ide_hwif_t *hwif = drive->hwif;
|
|
const struct ide_port_ops *port_ops = hwif->port_ops;
|
|
ide_task_t task;
|
|
|
|
if (port_ops && port_ops->selectproc)
|
|
port_ops->selectproc(drive);
|
|
|
|
memset(&task, 0, sizeof(task));
|
|
task.tf_flags = IDE_TFLAG_OUT_DEVICE;
|
|
|
|
drive->hwif->tp_ops->tf_load(drive, &task);
|
|
}
|
|
|
|
void SELECT_MASK(ide_drive_t *drive, int mask)
|
|
{
|
|
const struct ide_port_ops *port_ops = drive->hwif->port_ops;
|
|
|
|
if (port_ops && port_ops->maskproc)
|
|
port_ops->maskproc(drive, mask);
|
|
}
|
|
|
|
void ide_exec_command(ide_hwif_t *hwif, u8 cmd)
|
|
{
|
|
if (hwif->host_flags & IDE_HFLAG_MMIO)
|
|
writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
|
|
else
|
|
outb(cmd, hwif->io_ports.command_addr);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ide_exec_command);
|
|
|
|
u8 ide_read_status(ide_hwif_t *hwif)
|
|
{
|
|
if (hwif->host_flags & IDE_HFLAG_MMIO)
|
|
return readb((void __iomem *)hwif->io_ports.status_addr);
|
|
else
|
|
return inb(hwif->io_ports.status_addr);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ide_read_status);
|
|
|
|
u8 ide_read_altstatus(ide_hwif_t *hwif)
|
|
{
|
|
if (hwif->host_flags & IDE_HFLAG_MMIO)
|
|
return readb((void __iomem *)hwif->io_ports.ctl_addr);
|
|
else
|
|
return inb(hwif->io_ports.ctl_addr);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ide_read_altstatus);
|
|
|
|
u8 ide_read_sff_dma_status(ide_hwif_t *hwif)
|
|
{
|
|
if (hwif->host_flags & IDE_HFLAG_MMIO)
|
|
return readb((void __iomem *)(hwif->dma_base + ATA_DMA_STATUS));
|
|
else
|
|
return inb(hwif->dma_base + ATA_DMA_STATUS);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ide_read_sff_dma_status);
|
|
|
|
void ide_set_irq(ide_hwif_t *hwif, int on)
|
|
{
|
|
u8 ctl = ATA_DEVCTL_OBS;
|
|
|
|
if (on == 4) { /* hack for SRST */
|
|
ctl |= 4;
|
|
on &= ~4;
|
|
}
|
|
|
|
ctl |= on ? 0 : 2;
|
|
|
|
if (hwif->host_flags & IDE_HFLAG_MMIO)
|
|
writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr);
|
|
else
|
|
outb(ctl, hwif->io_ports.ctl_addr);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ide_set_irq);
|
|
|
|
void ide_tf_load(ide_drive_t *drive, ide_task_t *task)
|
|
{
|
|
ide_hwif_t *hwif = drive->hwif;
|
|
struct ide_io_ports *io_ports = &hwif->io_ports;
|
|
struct ide_taskfile *tf = &task->tf;
|
|
void (*tf_outb)(u8 addr, unsigned long port);
|
|
u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
|
|
u8 HIHI = (task->tf_flags & IDE_TFLAG_LBA48) ? 0xE0 : 0xEF;
|
|
|
|
if (mmio)
|
|
tf_outb = ide_mm_outb;
|
|
else
|
|
tf_outb = ide_outb;
|
|
|
|
if (task->tf_flags & IDE_TFLAG_FLAGGED)
|
|
HIHI = 0xFF;
|
|
|
|
if (task->tf_flags & IDE_TFLAG_OUT_DATA) {
|
|
u16 data = (tf->hob_data << 8) | tf->data;
|
|
|
|
if (mmio)
|
|
writew(data, (void __iomem *)io_ports->data_addr);
|
|
else
|
|
outw(data, io_ports->data_addr);
|
|
}
|
|
|
|
if (task->tf_flags & IDE_TFLAG_OUT_HOB_FEATURE)
|
|
tf_outb(tf->hob_feature, io_ports->feature_addr);
|
|
if (task->tf_flags & IDE_TFLAG_OUT_HOB_NSECT)
|
|
tf_outb(tf->hob_nsect, io_ports->nsect_addr);
|
|
if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAL)
|
|
tf_outb(tf->hob_lbal, io_ports->lbal_addr);
|
|
if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAM)
|
|
tf_outb(tf->hob_lbam, io_ports->lbam_addr);
|
|
if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAH)
|
|
tf_outb(tf->hob_lbah, io_ports->lbah_addr);
|
|
|
|
if (task->tf_flags & IDE_TFLAG_OUT_FEATURE)
|
|
tf_outb(tf->feature, io_ports->feature_addr);
|
|
if (task->tf_flags & IDE_TFLAG_OUT_NSECT)
|
|
tf_outb(tf->nsect, io_ports->nsect_addr);
|
|
if (task->tf_flags & IDE_TFLAG_OUT_LBAL)
|
|
tf_outb(tf->lbal, io_ports->lbal_addr);
|
|
if (task->tf_flags & IDE_TFLAG_OUT_LBAM)
|
|
tf_outb(tf->lbam, io_ports->lbam_addr);
|
|
if (task->tf_flags & IDE_TFLAG_OUT_LBAH)
|
|
tf_outb(tf->lbah, io_ports->lbah_addr);
|
|
|
|
if (task->tf_flags & IDE_TFLAG_OUT_DEVICE)
|
|
tf_outb((tf->device & HIHI) | drive->select,
|
|
io_ports->device_addr);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ide_tf_load);
|
|
|
|
void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
|
|
{
|
|
ide_hwif_t *hwif = drive->hwif;
|
|
struct ide_io_ports *io_ports = &hwif->io_ports;
|
|
struct ide_taskfile *tf = &task->tf;
|
|
void (*tf_outb)(u8 addr, unsigned long port);
|
|
u8 (*tf_inb)(unsigned long port);
|
|
u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
|
|
|
|
if (mmio) {
|
|
tf_outb = ide_mm_outb;
|
|
tf_inb = ide_mm_inb;
|
|
} else {
|
|
tf_outb = ide_outb;
|
|
tf_inb = ide_inb;
|
|
}
|
|
|
|
if (task->tf_flags & IDE_TFLAG_IN_DATA) {
|
|
u16 data;
|
|
|
|
if (mmio)
|
|
data = readw((void __iomem *)io_ports->data_addr);
|
|
else
|
|
data = inw(io_ports->data_addr);
|
|
|
|
tf->data = data & 0xff;
|
|
tf->hob_data = (data >> 8) & 0xff;
|
|
}
|
|
|
|
/* be sure we're looking at the low order bits */
|
|
tf_outb(ATA_DEVCTL_OBS & ~0x80, io_ports->ctl_addr);
|
|
|
|
if (task->tf_flags & IDE_TFLAG_IN_FEATURE)
|
|
tf->feature = tf_inb(io_ports->feature_addr);
|
|
if (task->tf_flags & IDE_TFLAG_IN_NSECT)
|
|
tf->nsect = tf_inb(io_ports->nsect_addr);
|
|
if (task->tf_flags & IDE_TFLAG_IN_LBAL)
|
|
tf->lbal = tf_inb(io_ports->lbal_addr);
|
|
if (task->tf_flags & IDE_TFLAG_IN_LBAM)
|
|
tf->lbam = tf_inb(io_ports->lbam_addr);
|
|
if (task->tf_flags & IDE_TFLAG_IN_LBAH)
|
|
tf->lbah = tf_inb(io_ports->lbah_addr);
|
|
if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
|
|
tf->device = tf_inb(io_ports->device_addr);
|
|
|
|
if (task->tf_flags & IDE_TFLAG_LBA48) {
|
|
tf_outb(ATA_DEVCTL_OBS | 0x80, io_ports->ctl_addr);
|
|
|
|
if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
|
|
tf->hob_feature = tf_inb(io_ports->feature_addr);
|
|
if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
|
|
tf->hob_nsect = tf_inb(io_ports->nsect_addr);
|
|
if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
|
|
tf->hob_lbal = tf_inb(io_ports->lbal_addr);
|
|
if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
|
|
tf->hob_lbam = tf_inb(io_ports->lbam_addr);
|
|
if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
|
|
tf->hob_lbah = tf_inb(io_ports->lbah_addr);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(ide_tf_read);
|
|
|
|
/*
|
|
* Some localbus EIDE interfaces require a special access sequence
|
|
* when using 32-bit I/O instructions to transfer data. We call this
|
|
* the "vlb_sync" sequence, which consists of three successive reads
|
|
* of the sector count register location, with interrupts disabled
|
|
* to ensure that the reads all happen together.
|
|
*/
|
|
static void ata_vlb_sync(unsigned long port)
|
|
{
|
|
(void)inb(port);
|
|
(void)inb(port);
|
|
(void)inb(port);
|
|
}
|
|
|
|
/*
|
|
* This is used for most PIO data transfers *from* the IDE interface
|
|
*
|
|
* These routines will round up any request for an odd number of bytes,
|
|
* so if an odd len is specified, be sure that there's at least one
|
|
* extra byte allocated for the buffer.
|
|
*/
|
|
void ide_input_data(ide_drive_t *drive, struct request *rq, void *buf,
|
|
unsigned int len)
|
|
{
|
|
ide_hwif_t *hwif = drive->hwif;
|
|
struct ide_io_ports *io_ports = &hwif->io_ports;
|
|
unsigned long data_addr = io_ports->data_addr;
|
|
u8 io_32bit = drive->io_32bit;
|
|
u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
|
|
|
|
len++;
|
|
|
|
if (io_32bit) {
|
|
unsigned long uninitialized_var(flags);
|
|
|
|
if ((io_32bit & 2) && !mmio) {
|
|
local_irq_save(flags);
|
|
ata_vlb_sync(io_ports->nsect_addr);
|
|
}
|
|
|
|
if (mmio)
|
|
__ide_mm_insl((void __iomem *)data_addr, buf, len / 4);
|
|
else
|
|
insl(data_addr, buf, len / 4);
|
|
|
|
if ((io_32bit & 2) && !mmio)
|
|
local_irq_restore(flags);
|
|
|
|
if ((len & 3) >= 2) {
|
|
if (mmio)
|
|
__ide_mm_insw((void __iomem *)data_addr,
|
|
(u8 *)buf + (len & ~3), 1);
|
|
else
|
|
insw(data_addr, (u8 *)buf + (len & ~3), 1);
|
|
}
|
|
} else {
|
|
if (mmio)
|
|
__ide_mm_insw((void __iomem *)data_addr, buf, len / 2);
|
|
else
|
|
insw(data_addr, buf, len / 2);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(ide_input_data);
|
|
|
|
/*
|
|
* This is used for most PIO data transfers *to* the IDE interface
|
|
*/
|
|
void ide_output_data(ide_drive_t *drive, struct request *rq, void *buf,
|
|
unsigned int len)
|
|
{
|
|
ide_hwif_t *hwif = drive->hwif;
|
|
struct ide_io_ports *io_ports = &hwif->io_ports;
|
|
unsigned long data_addr = io_ports->data_addr;
|
|
u8 io_32bit = drive->io_32bit;
|
|
u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
|
|
|
|
if (io_32bit) {
|
|
unsigned long uninitialized_var(flags);
|
|
|
|
if ((io_32bit & 2) && !mmio) {
|
|
local_irq_save(flags);
|
|
ata_vlb_sync(io_ports->nsect_addr);
|
|
}
|
|
|
|
if (mmio)
|
|
__ide_mm_outsl((void __iomem *)data_addr, buf, len / 4);
|
|
else
|
|
outsl(data_addr, buf, len / 4);
|
|
|
|
if ((io_32bit & 2) && !mmio)
|
|
local_irq_restore(flags);
|
|
|
|
if ((len & 3) >= 2) {
|
|
if (mmio)
|
|
__ide_mm_outsw((void __iomem *)data_addr,
|
|
(u8 *)buf + (len & ~3), 1);
|
|
else
|
|
outsw(data_addr, (u8 *)buf + (len & ~3), 1);
|
|
}
|
|
} else {
|
|
if (mmio)
|
|
__ide_mm_outsw((void __iomem *)data_addr, buf, len / 2);
|
|
else
|
|
outsw(data_addr, buf, len / 2);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(ide_output_data);
|
|
|
|
u8 ide_read_error(ide_drive_t *drive)
|
|
{
|
|
ide_task_t task;
|
|
|
|
memset(&task, 0, sizeof(task));
|
|
task.tf_flags = IDE_TFLAG_IN_FEATURE;
|
|
|
|
drive->hwif->tp_ops->tf_read(drive, &task);
|
|
|
|
return task.tf.error;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ide_read_error);
|
|
|
|
void ide_read_bcount_and_ireason(ide_drive_t *drive, u16 *bcount, u8 *ireason)
|
|
{
|
|
ide_task_t task;
|
|
|
|
memset(&task, 0, sizeof(task));
|
|
task.tf_flags = IDE_TFLAG_IN_LBAH | IDE_TFLAG_IN_LBAM |
|
|
IDE_TFLAG_IN_NSECT;
|
|
|
|
drive->hwif->tp_ops->tf_read(drive, &task);
|
|
|
|
*bcount = (task.tf.lbah << 8) | task.tf.lbam;
|
|
*ireason = task.tf.nsect & 3;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ide_read_bcount_and_ireason);
|
|
|
|
const struct ide_tp_ops default_tp_ops = {
|
|
.exec_command = ide_exec_command,
|
|
.read_status = ide_read_status,
|
|
.read_altstatus = ide_read_altstatus,
|
|
.read_sff_dma_status = ide_read_sff_dma_status,
|
|
|
|
.set_irq = ide_set_irq,
|
|
|
|
.tf_load = ide_tf_load,
|
|
.tf_read = ide_tf_read,
|
|
|
|
.input_data = ide_input_data,
|
|
.output_data = ide_output_data,
|
|
};
|
|
|
|
void ide_fix_driveid(u16 *id)
|
|
{
|
|
#ifndef __LITTLE_ENDIAN
|
|
# ifdef __BIG_ENDIAN
|
|
int i;
|
|
|
|
for (i = 0; i < 256; i++)
|
|
id[i] = __le16_to_cpu(id[i]);
|
|
# else
|
|
# error "Please fix <asm/byteorder.h>"
|
|
# endif
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* ide_fixstring() cleans up and (optionally) byte-swaps a text string,
|
|
* removing leading/trailing blanks and compressing internal blanks.
|
|
* It is primarily used to tidy up the model name/number fields as
|
|
* returned by the ATA_CMD_ID_ATA[PI] commands.
|
|
*/
|
|
|
|
void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
|
|
{
|
|
u8 *p, *end = &s[bytecount & ~1]; /* bytecount must be even */
|
|
|
|
if (byteswap) {
|
|
/* convert from big-endian to host byte order */
|
|
for (p = s ; p != end ; p += 2)
|
|
be16_to_cpus((u16 *) p);
|
|
}
|
|
|
|
/* strip leading blanks */
|
|
p = s;
|
|
while (s != end && *s == ' ')
|
|
++s;
|
|
/* compress internal blanks and strip trailing blanks */
|
|
while (s != end && *s) {
|
|
if (*s++ != ' ' || (s != end && *s && *s != ' '))
|
|
*p++ = *(s-1);
|
|
}
|
|
/* wipe out trailing garbage */
|
|
while (p != end)
|
|
*p++ = '\0';
|
|
}
|
|
|
|
EXPORT_SYMBOL(ide_fixstring);
|
|
|
|
/*
|
|
* Needed for PCI irq sharing
|
|
*/
|
|
int drive_is_ready (ide_drive_t *drive)
|
|
{
|
|
ide_hwif_t *hwif = HWIF(drive);
|
|
u8 stat = 0;
|
|
|
|
if (drive->waiting_for_dma)
|
|
return hwif->dma_ops->dma_test_irq(drive);
|
|
|
|
#if 0
|
|
/* need to guarantee 400ns since last command was issued */
|
|
udelay(1);
|
|
#endif
|
|
|
|
/*
|
|
* We do a passive status test under shared PCI interrupts on
|
|
* cards that truly share the ATA side interrupt, but may also share
|
|
* an interrupt with another pci card/device. We make no assumptions
|
|
* about possible isa-pnp and pci-pnp issues yet.
|
|
*/
|
|
if (hwif->io_ports.ctl_addr &&
|
|
(hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
|
|
stat = hwif->tp_ops->read_altstatus(hwif);
|
|
else
|
|
/* Note: this may clear a pending IRQ!! */
|
|
stat = hwif->tp_ops->read_status(hwif);
|
|
|
|
if (stat & ATA_BUSY)
|
|
/* drive busy: definitely not interrupting */
|
|
return 0;
|
|
|
|
/* drive ready: *might* be interrupting */
|
|
return 1;
|
|
}
|
|
|
|
EXPORT_SYMBOL(drive_is_ready);
|
|
|
|
/*
|
|
* This routine busy-waits for the drive status to be not "busy".
|
|
* It then checks the status for all of the "good" bits and none
|
|
* of the "bad" bits, and if all is okay it returns 0. All other
|
|
* cases return error -- caller may then invoke ide_error().
|
|
*
|
|
* This routine should get fixed to not hog the cpu during extra long waits..
|
|
* That could be done by busy-waiting for the first jiffy or two, and then
|
|
* setting a timer to wake up at half second intervals thereafter,
|
|
* until timeout is achieved, before timing out.
|
|
*/
|
|
static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
|
|
{
|
|
ide_hwif_t *hwif = drive->hwif;
|
|
const struct ide_tp_ops *tp_ops = hwif->tp_ops;
|
|
unsigned long flags;
|
|
int i;
|
|
u8 stat;
|
|
|
|
udelay(1); /* spec allows drive 400ns to assert "BUSY" */
|
|
stat = tp_ops->read_status(hwif);
|
|
|
|
if (stat & ATA_BUSY) {
|
|
local_irq_set(flags);
|
|
timeout += jiffies;
|
|
while ((stat = tp_ops->read_status(hwif)) & ATA_BUSY) {
|
|
if (time_after(jiffies, timeout)) {
|
|
/*
|
|
* One last read after the timeout in case
|
|
* heavy interrupt load made us not make any
|
|
* progress during the timeout..
|
|
*/
|
|
stat = tp_ops->read_status(hwif);
|
|
if ((stat & ATA_BUSY) == 0)
|
|
break;
|
|
|
|
local_irq_restore(flags);
|
|
*rstat = stat;
|
|
return -EBUSY;
|
|
}
|
|
}
|
|
local_irq_restore(flags);
|
|
}
|
|
/*
|
|
* Allow status to settle, then read it again.
|
|
* A few rare drives vastly violate the 400ns spec here,
|
|
* so we'll wait up to 10usec for a "good" status
|
|
* rather than expensively fail things immediately.
|
|
* This fix courtesy of Matthew Faupel & Niccolo Rigacci.
|
|
*/
|
|
for (i = 0; i < 10; i++) {
|
|
udelay(1);
|
|
stat = tp_ops->read_status(hwif);
|
|
|
|
if (OK_STAT(stat, good, bad)) {
|
|
*rstat = stat;
|
|
return 0;
|
|
}
|
|
}
|
|
*rstat = stat;
|
|
return -EFAULT;
|
|
}
|
|
|
|
/*
|
|
* In case of error returns error value after doing "*startstop = ide_error()".
|
|
* The caller should return the updated value of "startstop" in this case,
|
|
* "startstop" is unchanged when the function returns 0.
|
|
*/
|
|
int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
|
|
{
|
|
int err;
|
|
u8 stat;
|
|
|
|
/* bail early if we've exceeded max_failures */
|
|
if (drive->max_failures && (drive->failures > drive->max_failures)) {
|
|
*startstop = ide_stopped;
|
|
return 1;
|
|
}
|
|
|
|
err = __ide_wait_stat(drive, good, bad, timeout, &stat);
|
|
|
|
if (err) {
|
|
char *s = (err == -EBUSY) ? "status timeout" : "status error";
|
|
*startstop = ide_error(drive, s, stat);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
EXPORT_SYMBOL(ide_wait_stat);
|
|
|
|
/**
|
|
* ide_in_drive_list - look for drive in black/white list
|
|
* @id: drive identifier
|
|
* @table: list to inspect
|
|
*
|
|
* Look for a drive in the blacklist and the whitelist tables
|
|
* Returns 1 if the drive is found in the table.
|
|
*/
|
|
|
|
int ide_in_drive_list(u16 *id, const struct drive_list_entry *table)
|
|
{
|
|
for ( ; table->id_model; table++)
|
|
if ((!strcmp(table->id_model, (char *)&id[ATA_ID_PROD])) &&
|
|
(!table->id_firmware ||
|
|
strstr((char *)&id[ATA_ID_FW_REV], table->id_firmware)))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(ide_in_drive_list);
|
|
|
|
/*
|
|
* Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
|
|
* We list them here and depend on the device side cable detection for them.
|
|
*
|
|
* Some optical devices with the buggy firmwares have the same problem.
|
|
*/
|
|
static const struct drive_list_entry ivb_list[] = {
|
|
{ "QUANTUM FIREBALLlct10 05" , "A03.0900" },
|
|
{ "TSSTcorp CDDVDW SH-S202J" , "SB00" },
|
|
{ "TSSTcorp CDDVDW SH-S202J" , "SB01" },
|
|
{ "TSSTcorp CDDVDW SH-S202N" , "SB00" },
|
|
{ "TSSTcorp CDDVDW SH-S202N" , "SB01" },
|
|
{ "TSSTcorp CDDVDW SH-S202H" , "SB00" },
|
|
{ "TSSTcorp CDDVDW SH-S202H" , "SB01" },
|
|
{ NULL , NULL }
|
|
};
|
|
|
|
/*
|
|
* All hosts that use the 80c ribbon must use!
|
|
* The name is derived from upper byte of word 93 and the 80c ribbon.
|
|
*/
|
|
u8 eighty_ninty_three (ide_drive_t *drive)
|
|
{
|
|
ide_hwif_t *hwif = drive->hwif;
|
|
u16 *id = drive->id;
|
|
int ivb = ide_in_drive_list(id, ivb_list);
|
|
|
|
if (hwif->cbl == ATA_CBL_PATA40_SHORT)
|
|
return 1;
|
|
|
|
if (ivb)
|
|
printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
|
|
drive->name);
|
|
|
|
if (ata_id_is_sata(id) && !ivb)
|
|
return 1;
|
|
|
|
if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
|
|
goto no_80w;
|
|
|
|
/*
|
|
* FIXME:
|
|
* - change master/slave IDENTIFY order
|
|
* - force bit13 (80c cable present) check also for !ivb devices
|
|
* (unless the slave device is pre-ATA3)
|
|
*/
|
|
if ((id[ATA_ID_HW_CONFIG] & 0x4000) ||
|
|
(ivb && (id[ATA_ID_HW_CONFIG] & 0x2000)))
|
|
return 1;
|
|
|
|
no_80w:
|
|
if (drive->dev_flags & IDE_DFLAG_UDMA33_WARNED)
|
|
return 0;
|
|
|
|
printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
|
|
"limiting max speed to UDMA33\n",
|
|
drive->name,
|
|
hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
|
|
|
|
drive->dev_flags |= IDE_DFLAG_UDMA33_WARNED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ide_driveid_update(ide_drive_t *drive)
|
|
{
|
|
ide_hwif_t *hwif = drive->hwif;
|
|
const struct ide_tp_ops *tp_ops = hwif->tp_ops;
|
|
u16 *id;
|
|
unsigned long flags;
|
|
u8 stat;
|
|
|
|
/*
|
|
* Re-read drive->id for possible DMA mode
|
|
* change (copied from ide-probe.c)
|
|
*/
|
|
|
|
SELECT_MASK(drive, 1);
|
|
tp_ops->set_irq(hwif, 0);
|
|
msleep(50);
|
|
tp_ops->exec_command(hwif, ATA_CMD_ID_ATA);
|
|
|
|
if (ide_busy_sleep(hwif, WAIT_WORSTCASE, 1)) {
|
|
SELECT_MASK(drive, 0);
|
|
return 0;
|
|
}
|
|
|
|
msleep(50); /* wait for IRQ and ATA_DRQ */
|
|
stat = tp_ops->read_status(hwif);
|
|
|
|
if (!OK_STAT(stat, ATA_DRQ, BAD_R_STAT)) {
|
|
SELECT_MASK(drive, 0);
|
|
printk("%s: CHECK for good STATUS\n", drive->name);
|
|
return 0;
|
|
}
|
|
local_irq_save(flags);
|
|
SELECT_MASK(drive, 0);
|
|
id = kmalloc(SECTOR_SIZE, GFP_ATOMIC);
|
|
if (!id) {
|
|
local_irq_restore(flags);
|
|
return 0;
|
|
}
|
|
tp_ops->input_data(drive, NULL, id, SECTOR_SIZE);
|
|
(void)tp_ops->read_status(hwif); /* clear drive IRQ */
|
|
local_irq_enable();
|
|
local_irq_restore(flags);
|
|
ide_fix_driveid(id);
|
|
|
|
drive->id[ATA_ID_UDMA_MODES] = id[ATA_ID_UDMA_MODES];
|
|
drive->id[ATA_ID_MWDMA_MODES] = id[ATA_ID_MWDMA_MODES];
|
|
drive->id[ATA_ID_SWDMA_MODES] = id[ATA_ID_SWDMA_MODES];
|
|
/* anything more ? */
|
|
|
|
kfree(id);
|
|
|
|
if ((drive->dev_flags & IDE_DFLAG_USING_DMA) && ide_id_dma_bug(drive))
|
|
ide_dma_off(drive);
|
|
|
|
return 1;
|
|
}
|
|
|
|
int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
|
|
{
|
|
ide_hwif_t *hwif = drive->hwif;
|
|
const struct ide_tp_ops *tp_ops = hwif->tp_ops;
|
|
u16 *id = drive->id, i;
|
|
int error = 0;
|
|
u8 stat;
|
|
ide_task_t task;
|
|
|
|
#ifdef CONFIG_BLK_DEV_IDEDMA
|
|
if (hwif->dma_ops) /* check if host supports DMA */
|
|
hwif->dma_ops->dma_host_set(drive, 0);
|
|
#endif
|
|
|
|
/* Skip setting PIO flow-control modes on pre-EIDE drives */
|
|
if ((speed & 0xf8) == XFER_PIO_0 && ata_id_has_iordy(drive->id) == 0)
|
|
goto skip;
|
|
|
|
/*
|
|
* Don't use ide_wait_cmd here - it will
|
|
* attempt to set_geometry and recalibrate,
|
|
* but for some reason these don't work at
|
|
* this point (lost interrupt).
|
|
*/
|
|
/*
|
|
* Select the drive, and issue the SETFEATURES command
|
|
*/
|
|
disable_irq_nosync(hwif->irq);
|
|
|
|
/*
|
|
* FIXME: we race against the running IRQ here if
|
|
* this is called from non IRQ context. If we use
|
|
* disable_irq() we hang on the error path. Work
|
|
* is needed.
|
|
*/
|
|
|
|
udelay(1);
|
|
SELECT_DRIVE(drive);
|
|
SELECT_MASK(drive, 1);
|
|
udelay(1);
|
|
tp_ops->set_irq(hwif, 0);
|
|
|
|
memset(&task, 0, sizeof(task));
|
|
task.tf_flags = IDE_TFLAG_OUT_FEATURE | IDE_TFLAG_OUT_NSECT;
|
|
task.tf.feature = SETFEATURES_XFER;
|
|
task.tf.nsect = speed;
|
|
|
|
tp_ops->tf_load(drive, &task);
|
|
|
|
tp_ops->exec_command(hwif, ATA_CMD_SET_FEATURES);
|
|
|
|
if (drive->quirk_list == 2)
|
|
tp_ops->set_irq(hwif, 1);
|
|
|
|
error = __ide_wait_stat(drive, drive->ready_stat,
|
|
ATA_BUSY | ATA_DRQ | ATA_ERR,
|
|
WAIT_CMD, &stat);
|
|
|
|
SELECT_MASK(drive, 0);
|
|
|
|
enable_irq(hwif->irq);
|
|
|
|
if (error) {
|
|
(void) ide_dump_status(drive, "set_drive_speed_status", stat);
|
|
return error;
|
|
}
|
|
|
|
id[ATA_ID_UDMA_MODES] &= ~0xFF00;
|
|
id[ATA_ID_MWDMA_MODES] &= ~0x0F00;
|
|
id[ATA_ID_SWDMA_MODES] &= ~0x0F00;
|
|
|
|
skip:
|
|
#ifdef CONFIG_BLK_DEV_IDEDMA
|
|
if (speed >= XFER_SW_DMA_0 && (drive->dev_flags & IDE_DFLAG_USING_DMA))
|
|
hwif->dma_ops->dma_host_set(drive, 1);
|
|
else if (hwif->dma_ops) /* check if host supports DMA */
|
|
ide_dma_off_quietly(drive);
|
|
#endif
|
|
|
|
if (speed >= XFER_UDMA_0) {
|
|
i = 1 << (speed - XFER_UDMA_0);
|
|
id[ATA_ID_UDMA_MODES] |= (i << 8 | i);
|
|
} else if (speed >= XFER_MW_DMA_0) {
|
|
i = 1 << (speed - XFER_MW_DMA_0);
|
|
id[ATA_ID_MWDMA_MODES] |= (i << 8 | i);
|
|
} else if (speed >= XFER_SW_DMA_0) {
|
|
i = 1 << (speed - XFER_SW_DMA_0);
|
|
id[ATA_ID_SWDMA_MODES] |= (i << 8 | i);
|
|
}
|
|
|
|
if (!drive->init_speed)
|
|
drive->init_speed = speed;
|
|
drive->current_speed = speed;
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* This should get invoked any time we exit the driver to
|
|
* wait for an interrupt response from a drive. handler() points
|
|
* at the appropriate code to handle the next interrupt, and a
|
|
* timer is started to prevent us from waiting forever in case
|
|
* something goes wrong (see the ide_timer_expiry() handler later on).
|
|
*
|
|
* See also ide_execute_command
|
|
*/
|
|
static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
|
|
unsigned int timeout, ide_expiry_t *expiry)
|
|
{
|
|
ide_hwgroup_t *hwgroup = HWGROUP(drive);
|
|
|
|
BUG_ON(hwgroup->handler);
|
|
hwgroup->handler = handler;
|
|
hwgroup->expiry = expiry;
|
|
hwgroup->timer.expires = jiffies + timeout;
|
|
hwgroup->req_gen_timer = hwgroup->req_gen;
|
|
add_timer(&hwgroup->timer);
|
|
}
|
|
|
|
void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
|
|
unsigned int timeout, ide_expiry_t *expiry)
|
|
{
|
|
unsigned long flags;
|
|
spin_lock_irqsave(&ide_lock, flags);
|
|
__ide_set_handler(drive, handler, timeout, expiry);
|
|
spin_unlock_irqrestore(&ide_lock, flags);
|
|
}
|
|
|
|
EXPORT_SYMBOL(ide_set_handler);
|
|
|
|
/**
|
|
* ide_execute_command - execute an IDE command
|
|
* @drive: IDE drive to issue the command against
|
|
* @command: command byte to write
|
|
* @handler: handler for next phase
|
|
* @timeout: timeout for command
|
|
* @expiry: handler to run on timeout
|
|
*
|
|
* Helper function to issue an IDE command. This handles the
|
|
* atomicity requirements, command timing and ensures that the
|
|
* handler and IRQ setup do not race. All IDE command kick off
|
|
* should go via this function or do equivalent locking.
|
|
*/
|
|
|
|
void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
|
|
unsigned timeout, ide_expiry_t *expiry)
|
|
{
|
|
unsigned long flags;
|
|
ide_hwif_t *hwif = HWIF(drive);
|
|
|
|
spin_lock_irqsave(&ide_lock, flags);
|
|
__ide_set_handler(drive, handler, timeout, expiry);
|
|
hwif->tp_ops->exec_command(hwif, cmd);
|
|
/*
|
|
* Drive takes 400nS to respond, we must avoid the IRQ being
|
|
* serviced before that.
|
|
*
|
|
* FIXME: we could skip this delay with care on non shared devices
|
|
*/
|
|
ndelay(400);
|
|
spin_unlock_irqrestore(&ide_lock, flags);
|
|
}
|
|
EXPORT_SYMBOL(ide_execute_command);
|
|
|
|
void ide_execute_pkt_cmd(ide_drive_t *drive)
|
|
{
|
|
ide_hwif_t *hwif = drive->hwif;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&ide_lock, flags);
|
|
hwif->tp_ops->exec_command(hwif, ATA_CMD_PACKET);
|
|
ndelay(400);
|
|
spin_unlock_irqrestore(&ide_lock, flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd);
|
|
|
|
static inline void ide_complete_drive_reset(ide_drive_t *drive, int err)
|
|
{
|
|
struct request *rq = drive->hwif->hwgroup->rq;
|
|
|
|
if (rq && blk_special_request(rq) && rq->cmd[0] == REQ_DRIVE_RESET)
|
|
ide_end_request(drive, err ? err : 1, 0);
|
|
}
|
|
|
|
/* needed below */
|
|
static ide_startstop_t do_reset1 (ide_drive_t *, int);
|
|
|
|
/*
|
|
* atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
|
|
* during an atapi drive reset operation. If the drive has not yet responded,
|
|
* and we have not yet hit our maximum waiting time, then the timer is restarted
|
|
* for another 50ms.
|
|
*/
|
|
static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
|
|
{
|
|
ide_hwif_t *hwif = drive->hwif;
|
|
ide_hwgroup_t *hwgroup = hwif->hwgroup;
|
|
u8 stat;
|
|
|
|
SELECT_DRIVE(drive);
|
|
udelay (10);
|
|
stat = hwif->tp_ops->read_status(hwif);
|
|
|
|
if (OK_STAT(stat, 0, ATA_BUSY))
|
|
printk("%s: ATAPI reset complete\n", drive->name);
|
|
else {
|
|
if (time_before(jiffies, hwgroup->poll_timeout)) {
|
|
ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
|
|
/* continue polling */
|
|
return ide_started;
|
|
}
|
|
/* end of polling */
|
|
hwgroup->polling = 0;
|
|
printk("%s: ATAPI reset timed-out, status=0x%02x\n",
|
|
drive->name, stat);
|
|
/* do it the old fashioned way */
|
|
return do_reset1(drive, 1);
|
|
}
|
|
/* done polling */
|
|
hwgroup->polling = 0;
|
|
ide_complete_drive_reset(drive, 0);
|
|
return ide_stopped;
|
|
}
|
|
|
|
static void ide_reset_report_error(ide_hwif_t *hwif, u8 err)
|
|
{
|
|
static const char *err_master_vals[] =
|
|
{ NULL, "passed", "formatter device error",
|
|
"sector buffer error", "ECC circuitry error",
|
|
"controlling MPU error" };
|
|
|
|
u8 err_master = err & 0x7f;
|
|
|
|
printk(KERN_ERR "%s: reset: master: ", hwif->name);
|
|
if (err_master && err_master < 6)
|
|
printk(KERN_CONT "%s", err_master_vals[err_master]);
|
|
else
|
|
printk(KERN_CONT "error (0x%02x?)", err);
|
|
if (err & 0x80)
|
|
printk(KERN_CONT "; slave: failed");
|
|
printk(KERN_CONT "\n");
|
|
}
|
|
|
|
/*
|
|
* reset_pollfunc() gets invoked to poll the interface for completion every 50ms
|
|
* during an ide reset operation. If the drives have not yet responded,
|
|
* and we have not yet hit our maximum waiting time, then the timer is restarted
|
|
* for another 50ms.
|
|
*/
|
|
static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
|
|
{
|
|
ide_hwgroup_t *hwgroup = HWGROUP(drive);
|
|
ide_hwif_t *hwif = HWIF(drive);
|
|
const struct ide_port_ops *port_ops = hwif->port_ops;
|
|
u8 tmp;
|
|
int err = 0;
|
|
|
|
if (port_ops && port_ops->reset_poll) {
|
|
err = port_ops->reset_poll(drive);
|
|
if (err) {
|
|
printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
|
|
hwif->name, drive->name);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
tmp = hwif->tp_ops->read_status(hwif);
|
|
|
|
if (!OK_STAT(tmp, 0, ATA_BUSY)) {
|
|
if (time_before(jiffies, hwgroup->poll_timeout)) {
|
|
ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
|
|
/* continue polling */
|
|
return ide_started;
|
|
}
|
|
printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
|
|
drive->failures++;
|
|
err = -EIO;
|
|
} else {
|
|
tmp = ide_read_error(drive);
|
|
|
|
if (tmp == 1) {
|
|
printk(KERN_INFO "%s: reset: success\n", hwif->name);
|
|
drive->failures = 0;
|
|
} else {
|
|
ide_reset_report_error(hwif, tmp);
|
|
drive->failures++;
|
|
err = -EIO;
|
|
}
|
|
}
|
|
out:
|
|
hwgroup->polling = 0; /* done polling */
|
|
ide_complete_drive_reset(drive, err);
|
|
return ide_stopped;
|
|
}
|
|
|
|
static void ide_disk_pre_reset(ide_drive_t *drive)
|
|
{
|
|
int legacy = (drive->id[ATA_ID_CFS_ENABLE_2] & 0x0400) ? 0 : 1;
|
|
|
|
drive->special.all = 0;
|
|
drive->special.b.set_geometry = legacy;
|
|
drive->special.b.recalibrate = legacy;
|
|
|
|
drive->mult_count = 0;
|
|
drive->dev_flags &= ~IDE_DFLAG_PARKED;
|
|
|
|
if ((drive->dev_flags & IDE_DFLAG_KEEP_SETTINGS) == 0 &&
|
|
(drive->dev_flags & IDE_DFLAG_USING_DMA) == 0)
|
|
drive->mult_req = 0;
|
|
|
|
if (drive->mult_req != drive->mult_count)
|
|
drive->special.b.set_multmode = 1;
|
|
}
|
|
|
|
static void pre_reset(ide_drive_t *drive)
|
|
{
|
|
const struct ide_port_ops *port_ops = drive->hwif->port_ops;
|
|
|
|
if (drive->media == ide_disk)
|
|
ide_disk_pre_reset(drive);
|
|
else
|
|
drive->dev_flags |= IDE_DFLAG_POST_RESET;
|
|
|
|
if (drive->dev_flags & IDE_DFLAG_USING_DMA) {
|
|
if (drive->crc_count)
|
|
ide_check_dma_crc(drive);
|
|
else
|
|
ide_dma_off(drive);
|
|
}
|
|
|
|
if ((drive->dev_flags & IDE_DFLAG_KEEP_SETTINGS) == 0) {
|
|
if ((drive->dev_flags & IDE_DFLAG_USING_DMA) == 0) {
|
|
drive->dev_flags &= ~IDE_DFLAG_UNMASK;
|
|
drive->io_32bit = 0;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (port_ops && port_ops->pre_reset)
|
|
port_ops->pre_reset(drive);
|
|
|
|
if (drive->current_speed != 0xff)
|
|
drive->desired_speed = drive->current_speed;
|
|
drive->current_speed = 0xff;
|
|
}
|
|
|
|
/*
|
|
* do_reset1() attempts to recover a confused drive by resetting it.
|
|
* Unfortunately, resetting a disk drive actually resets all devices on
|
|
* the same interface, so it can really be thought of as resetting the
|
|
* interface rather than resetting the drive.
|
|
*
|
|
* ATAPI devices have their own reset mechanism which allows them to be
|
|
* individually reset without clobbering other devices on the same interface.
|
|
*
|
|
* Unfortunately, the IDE interface does not generate an interrupt to let
|
|
* us know when the reset operation has finished, so we must poll for this.
|
|
* Equally poor, though, is the fact that this may a very long time to complete,
|
|
* (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
|
|
* we set a timer to poll at 50ms intervals.
|
|
*/
|
|
static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
|
|
{
|
|
unsigned int unit;
|
|
unsigned long flags, timeout;
|
|
ide_hwif_t *hwif;
|
|
ide_hwgroup_t *hwgroup;
|
|
struct ide_io_ports *io_ports;
|
|
const struct ide_tp_ops *tp_ops;
|
|
const struct ide_port_ops *port_ops;
|
|
DEFINE_WAIT(wait);
|
|
|
|
spin_lock_irqsave(&ide_lock, flags);
|
|
hwif = HWIF(drive);
|
|
hwgroup = HWGROUP(drive);
|
|
|
|
io_ports = &hwif->io_ports;
|
|
|
|
tp_ops = hwif->tp_ops;
|
|
|
|
/* We must not reset with running handlers */
|
|
BUG_ON(hwgroup->handler != NULL);
|
|
|
|
/* For an ATAPI device, first try an ATAPI SRST. */
|
|
if (drive->media != ide_disk && !do_not_try_atapi) {
|
|
pre_reset(drive);
|
|
SELECT_DRIVE(drive);
|
|
udelay (20);
|
|
tp_ops->exec_command(hwif, ATA_CMD_DEV_RESET);
|
|
ndelay(400);
|
|
hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
|
|
hwgroup->polling = 1;
|
|
__ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
|
|
spin_unlock_irqrestore(&ide_lock, flags);
|
|
return ide_started;
|
|
}
|
|
|
|
/* We must not disturb devices in the IDE_DFLAG_PARKED state. */
|
|
do {
|
|
unsigned long now;
|
|
|
|
prepare_to_wait(&ide_park_wq, &wait, TASK_UNINTERRUPTIBLE);
|
|
timeout = jiffies;
|
|
for (unit = 0; unit < MAX_DRIVES; unit++) {
|
|
ide_drive_t *tdrive = &hwif->drives[unit];
|
|
|
|
if (tdrive->dev_flags & IDE_DFLAG_PRESENT &&
|
|
tdrive->dev_flags & IDE_DFLAG_PARKED &&
|
|
time_after(tdrive->sleep, timeout))
|
|
timeout = tdrive->sleep;
|
|
}
|
|
|
|
now = jiffies;
|
|
if (time_before_eq(timeout, now))
|
|
break;
|
|
|
|
spin_unlock_irqrestore(&ide_lock, flags);
|
|
timeout = schedule_timeout_uninterruptible(timeout - now);
|
|
spin_lock_irqsave(&ide_lock, flags);
|
|
} while (timeout);
|
|
finish_wait(&ide_park_wq, &wait);
|
|
|
|
/*
|
|
* First, reset any device state data we were maintaining
|
|
* for any of the drives on this interface.
|
|
*/
|
|
for (unit = 0; unit < MAX_DRIVES; ++unit)
|
|
pre_reset(&hwif->drives[unit]);
|
|
|
|
if (io_ports->ctl_addr == 0) {
|
|
spin_unlock_irqrestore(&ide_lock, flags);
|
|
ide_complete_drive_reset(drive, -ENXIO);
|
|
return ide_stopped;
|
|
}
|
|
|
|
/*
|
|
* Note that we also set nIEN while resetting the device,
|
|
* to mask unwanted interrupts from the interface during the reset.
|
|
* However, due to the design of PC hardware, this will cause an
|
|
* immediate interrupt due to the edge transition it produces.
|
|
* This single interrupt gives us a "fast poll" for drives that
|
|
* recover from reset very quickly, saving us the first 50ms wait time.
|
|
*
|
|
* TODO: add ->softreset method and stop abusing ->set_irq
|
|
*/
|
|
/* set SRST and nIEN */
|
|
tp_ops->set_irq(hwif, 4);
|
|
/* more than enough time */
|
|
udelay(10);
|
|
/* clear SRST, leave nIEN (unless device is on the quirk list) */
|
|
tp_ops->set_irq(hwif, drive->quirk_list == 2);
|
|
/* more than enough time */
|
|
udelay(10);
|
|
hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
|
|
hwgroup->polling = 1;
|
|
__ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
|
|
|
|
/*
|
|
* Some weird controller like resetting themselves to a strange
|
|
* state when the disks are reset this way. At least, the Winbond
|
|
* 553 documentation says that
|
|
*/
|
|
port_ops = hwif->port_ops;
|
|
if (port_ops && port_ops->resetproc)
|
|
port_ops->resetproc(drive);
|
|
|
|
spin_unlock_irqrestore(&ide_lock, flags);
|
|
return ide_started;
|
|
}
|
|
|
|
/*
|
|
* ide_do_reset() is the entry point to the drive/interface reset code.
|
|
*/
|
|
|
|
ide_startstop_t ide_do_reset (ide_drive_t *drive)
|
|
{
|
|
return do_reset1(drive, 0);
|
|
}
|
|
|
|
EXPORT_SYMBOL(ide_do_reset);
|
|
|
|
/*
|
|
* ide_wait_not_busy() waits for the currently selected device on the hwif
|
|
* to report a non-busy status, see comments in ide_probe_port().
|
|
*/
|
|
int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
|
|
{
|
|
u8 stat = 0;
|
|
|
|
while(timeout--) {
|
|
/*
|
|
* Turn this into a schedule() sleep once I'm sure
|
|
* about locking issues (2.5 work ?).
|
|
*/
|
|
mdelay(1);
|
|
stat = hwif->tp_ops->read_status(hwif);
|
|
if ((stat & ATA_BUSY) == 0)
|
|
return 0;
|
|
/*
|
|
* Assume a value of 0xff means nothing is connected to
|
|
* the interface and it doesn't implement the pull-down
|
|
* resistor on D7.
|
|
*/
|
|
if (stat == 0xff)
|
|
return -ENODEV;
|
|
touch_softlockup_watchdog();
|
|
touch_nmi_watchdog();
|
|
}
|
|
return -EBUSY;
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(ide_wait_not_busy);
|
|
|