linux_dsm_epyc7002/arch/arm/net/bpf_jit_32.c
Daniel Borkmann e8b56d55a3 net: bpf: arm: make hole-faulting more robust
Will Deacon pointed out, that the currently used opcode for filling holes,
that is 0xe7ffffff, seems not robust enough ...

  $ echo 0xffffffe7 | xxd -r > test.bin
  $ arm-linux-gnueabihf-objdump -m arm -D -b binary test.bin
  ...
  0: e7ffffff     udf    #65535  ; 0xffff

... while for Thumb, it ends up as ...

  0: ffff e7ff    vqshl.u64  q15, <illegal reg q15.5>, #63

... which is a bit fragile. The ARM specification defines some *permanently*
guaranteed undefined instruction (UDF) space, for example for ARM in ARMv7-AR,
section A5.4 and for Thumb in ARMv7-M, section A5.2.6.

Similarly, ptrace, kprobes, kgdb, bug and uprobes make use of such instruction
as well to trap. Given mentioned section from the specification, we can find
such a universe as (where 'x' denotes 'don't care'):

  ARM:    xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
  Thumb:  1101 1110 xxxx xxxx

We therefore should use a more robust opcode that fits both. Russell King
suggested that we can even reuse a single 32-bit word, that is, 0xe7fddef1
which will fault if executed in ARM *or* Thumb mode as done in f928d4f2a8
("ARM: poison the vectors page"). That will still hold our requirements:

  $ echo 0xf1defde7 | xxd -r > test.bin
  $ arm-unknown-linux-gnueabi-objdump -m arm -D -b binary test.bin
  ...
  0: e7fddef1     udf    #56801 ; 0xdde1
  $ echo 0xf1defde7f1defde7f1defde7 | xxd -r > test.bin
  $ arm-unknown-linux-gnueabi-objdump -marm -Mforce-thumb -D -b binary test.bin
  ...
  0: def1         udf    #241 ; 0xf1
  2: e7fd         b.n    0x0
  4: def1         udf    #241 ; 0xf1
  6: e7fd         b.n    0x4
  8: def1         udf    #241 ; 0xf1
  a: e7fd         b.n    0x8

So on ARM 0xe7fddef1 conforms to the above UDF pattern, and the low 16 bit
likewise correspond to UDF in Thumb case. The 0xe7fd part is an unconditional
branch back to the UDF instruction.

Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mircea Gherzan <mgherzan@gmail.com>
Cc: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-23 12:40:22 -04:00

956 lines
23 KiB
C

/*
* Just-In-Time compiler for BPF filters on 32bit ARM
*
* Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; version 2 of the License.
*/
#include <linux/bitops.h>
#include <linux/compiler.h>
#include <linux/errno.h>
#include <linux/filter.h>
#include <linux/netdevice.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/if_vlan.h>
#include <asm/cacheflush.h>
#include <asm/hwcap.h>
#include <asm/opcodes.h>
#include "bpf_jit_32.h"
/*
* ABI:
*
* r0 scratch register
* r4 BPF register A
* r5 BPF register X
* r6 pointer to the skb
* r7 skb->data
* r8 skb_headlen(skb)
*/
#define r_scratch ARM_R0
/* r1-r3 are (also) used for the unaligned loads on the non-ARMv7 slowpath */
#define r_off ARM_R1
#define r_A ARM_R4
#define r_X ARM_R5
#define r_skb ARM_R6
#define r_skb_data ARM_R7
#define r_skb_hl ARM_R8
#define SCRATCH_SP_OFFSET 0
#define SCRATCH_OFF(k) (SCRATCH_SP_OFFSET + 4 * (k))
#define SEEN_MEM ((1 << BPF_MEMWORDS) - 1)
#define SEEN_MEM_WORD(k) (1 << (k))
#define SEEN_X (1 << BPF_MEMWORDS)
#define SEEN_CALL (1 << (BPF_MEMWORDS + 1))
#define SEEN_SKB (1 << (BPF_MEMWORDS + 2))
#define SEEN_DATA (1 << (BPF_MEMWORDS + 3))
#define FLAG_NEED_X_RESET (1 << 0)
struct jit_ctx {
const struct bpf_prog *skf;
unsigned idx;
unsigned prologue_bytes;
int ret0_fp_idx;
u32 seen;
u32 flags;
u32 *offsets;
u32 *target;
#if __LINUX_ARM_ARCH__ < 7
u16 epilogue_bytes;
u16 imm_count;
u32 *imms;
#endif
};
int bpf_jit_enable __read_mostly;
static u64 jit_get_skb_b(struct sk_buff *skb, unsigned offset)
{
u8 ret;
int err;
err = skb_copy_bits(skb, offset, &ret, 1);
return (u64)err << 32 | ret;
}
static u64 jit_get_skb_h(struct sk_buff *skb, unsigned offset)
{
u16 ret;
int err;
err = skb_copy_bits(skb, offset, &ret, 2);
return (u64)err << 32 | ntohs(ret);
}
static u64 jit_get_skb_w(struct sk_buff *skb, unsigned offset)
{
u32 ret;
int err;
err = skb_copy_bits(skb, offset, &ret, 4);
return (u64)err << 32 | ntohl(ret);
}
/*
* Wrapper that handles both OABI and EABI and assures Thumb2 interworking
* (where the assembly routines like __aeabi_uidiv could cause problems).
*/
static u32 jit_udiv(u32 dividend, u32 divisor)
{
return dividend / divisor;
}
static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
{
inst |= (cond << 28);
inst = __opcode_to_mem_arm(inst);
if (ctx->target != NULL)
ctx->target[ctx->idx] = inst;
ctx->idx++;
}
/*
* Emit an instruction that will be executed unconditionally.
*/
static inline void emit(u32 inst, struct jit_ctx *ctx)
{
_emit(ARM_COND_AL, inst, ctx);
}
static u16 saved_regs(struct jit_ctx *ctx)
{
u16 ret = 0;
if ((ctx->skf->len > 1) ||
(ctx->skf->insns[0].code == (BPF_RET | BPF_A)))
ret |= 1 << r_A;
#ifdef CONFIG_FRAME_POINTER
ret |= (1 << ARM_FP) | (1 << ARM_IP) | (1 << ARM_LR) | (1 << ARM_PC);
#else
if (ctx->seen & SEEN_CALL)
ret |= 1 << ARM_LR;
#endif
if (ctx->seen & (SEEN_DATA | SEEN_SKB))
ret |= 1 << r_skb;
if (ctx->seen & SEEN_DATA)
ret |= (1 << r_skb_data) | (1 << r_skb_hl);
if (ctx->seen & SEEN_X)
ret |= 1 << r_X;
return ret;
}
static inline int mem_words_used(struct jit_ctx *ctx)
{
/* yes, we do waste some stack space IF there are "holes" in the set" */
return fls(ctx->seen & SEEN_MEM);
}
static inline bool is_load_to_a(u16 inst)
{
switch (inst) {
case BPF_LD | BPF_W | BPF_LEN:
case BPF_LD | BPF_W | BPF_ABS:
case BPF_LD | BPF_H | BPF_ABS:
case BPF_LD | BPF_B | BPF_ABS:
return true;
default:
return false;
}
}
static void jit_fill_hole(void *area, unsigned int size)
{
u32 *ptr;
/* We are guaranteed to have aligned memory. */
for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
*ptr++ = __opcode_to_mem_arm(ARM_INST_UDF);
}
static void build_prologue(struct jit_ctx *ctx)
{
u16 reg_set = saved_regs(ctx);
u16 first_inst = ctx->skf->insns[0].code;
u16 off;
#ifdef CONFIG_FRAME_POINTER
emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx);
emit(ARM_PUSH(reg_set), ctx);
emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx);
#else
if (reg_set)
emit(ARM_PUSH(reg_set), ctx);
#endif
if (ctx->seen & (SEEN_DATA | SEEN_SKB))
emit(ARM_MOV_R(r_skb, ARM_R0), ctx);
if (ctx->seen & SEEN_DATA) {
off = offsetof(struct sk_buff, data);
emit(ARM_LDR_I(r_skb_data, r_skb, off), ctx);
/* headlen = len - data_len */
off = offsetof(struct sk_buff, len);
emit(ARM_LDR_I(r_skb_hl, r_skb, off), ctx);
off = offsetof(struct sk_buff, data_len);
emit(ARM_LDR_I(r_scratch, r_skb, off), ctx);
emit(ARM_SUB_R(r_skb_hl, r_skb_hl, r_scratch), ctx);
}
if (ctx->flags & FLAG_NEED_X_RESET)
emit(ARM_MOV_I(r_X, 0), ctx);
/* do not leak kernel data to userspace */
if ((first_inst != (BPF_RET | BPF_K)) && !(is_load_to_a(first_inst)))
emit(ARM_MOV_I(r_A, 0), ctx);
/* stack space for the BPF_MEM words */
if (ctx->seen & SEEN_MEM)
emit(ARM_SUB_I(ARM_SP, ARM_SP, mem_words_used(ctx) * 4), ctx);
}
static void build_epilogue(struct jit_ctx *ctx)
{
u16 reg_set = saved_regs(ctx);
if (ctx->seen & SEEN_MEM)
emit(ARM_ADD_I(ARM_SP, ARM_SP, mem_words_used(ctx) * 4), ctx);
reg_set &= ~(1 << ARM_LR);
#ifdef CONFIG_FRAME_POINTER
/* the first instruction of the prologue was: mov ip, sp */
reg_set &= ~(1 << ARM_IP);
reg_set |= (1 << ARM_SP);
emit(ARM_LDM(ARM_SP, reg_set), ctx);
#else
if (reg_set) {
if (ctx->seen & SEEN_CALL)
reg_set |= 1 << ARM_PC;
emit(ARM_POP(reg_set), ctx);
}
if (!(ctx->seen & SEEN_CALL))
emit(ARM_BX(ARM_LR), ctx);
#endif
}
static int16_t imm8m(u32 x)
{
u32 rot;
for (rot = 0; rot < 16; rot++)
if ((x & ~ror32(0xff, 2 * rot)) == 0)
return rol32(x, 2 * rot) | (rot << 8);
return -1;
}
#if __LINUX_ARM_ARCH__ < 7
static u16 imm_offset(u32 k, struct jit_ctx *ctx)
{
unsigned i = 0, offset;
u16 imm;
/* on the "fake" run we just count them (duplicates included) */
if (ctx->target == NULL) {
ctx->imm_count++;
return 0;
}
while ((i < ctx->imm_count) && ctx->imms[i]) {
if (ctx->imms[i] == k)
break;
i++;
}
if (ctx->imms[i] == 0)
ctx->imms[i] = k;
/* constants go just after the epilogue */
offset = ctx->offsets[ctx->skf->len];
offset += ctx->prologue_bytes;
offset += ctx->epilogue_bytes;
offset += i * 4;
ctx->target[offset / 4] = k;
/* PC in ARM mode == address of the instruction + 8 */
imm = offset - (8 + ctx->idx * 4);
return imm;
}
#endif /* __LINUX_ARM_ARCH__ */
/*
* Move an immediate that's not an imm8m to a core register.
*/
static inline void emit_mov_i_no8m(int rd, u32 val, struct jit_ctx *ctx)
{
#if __LINUX_ARM_ARCH__ < 7
emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx);
#else
emit(ARM_MOVW(rd, val & 0xffff), ctx);
if (val > 0xffff)
emit(ARM_MOVT(rd, val >> 16), ctx);
#endif
}
static inline void emit_mov_i(int rd, u32 val, struct jit_ctx *ctx)
{
int imm12 = imm8m(val);
if (imm12 >= 0)
emit(ARM_MOV_I(rd, imm12), ctx);
else
emit_mov_i_no8m(rd, val, ctx);
}
#if __LINUX_ARM_ARCH__ < 6
static void emit_load_be32(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
{
_emit(cond, ARM_LDRB_I(ARM_R3, r_addr, 1), ctx);
_emit(cond, ARM_LDRB_I(ARM_R1, r_addr, 0), ctx);
_emit(cond, ARM_LDRB_I(ARM_R2, r_addr, 3), ctx);
_emit(cond, ARM_LSL_I(ARM_R3, ARM_R3, 16), ctx);
_emit(cond, ARM_LDRB_I(ARM_R0, r_addr, 2), ctx);
_emit(cond, ARM_ORR_S(ARM_R3, ARM_R3, ARM_R1, SRTYPE_LSL, 24), ctx);
_emit(cond, ARM_ORR_R(ARM_R3, ARM_R3, ARM_R2), ctx);
_emit(cond, ARM_ORR_S(r_res, ARM_R3, ARM_R0, SRTYPE_LSL, 8), ctx);
}
static void emit_load_be16(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
{
_emit(cond, ARM_LDRB_I(ARM_R1, r_addr, 0), ctx);
_emit(cond, ARM_LDRB_I(ARM_R2, r_addr, 1), ctx);
_emit(cond, ARM_ORR_S(r_res, ARM_R2, ARM_R1, SRTYPE_LSL, 8), ctx);
}
static inline void emit_swap16(u8 r_dst, u8 r_src, struct jit_ctx *ctx)
{
/* r_dst = (r_src << 8) | (r_src >> 8) */
emit(ARM_LSL_I(ARM_R1, r_src, 8), ctx);
emit(ARM_ORR_S(r_dst, ARM_R1, r_src, SRTYPE_LSR, 8), ctx);
/*
* we need to mask out the bits set in r_dst[23:16] due to
* the first shift instruction.
*
* note that 0x8ff is the encoded immediate 0x00ff0000.
*/
emit(ARM_BIC_I(r_dst, r_dst, 0x8ff), ctx);
}
#else /* ARMv6+ */
static void emit_load_be32(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
{
_emit(cond, ARM_LDR_I(r_res, r_addr, 0), ctx);
#ifdef __LITTLE_ENDIAN
_emit(cond, ARM_REV(r_res, r_res), ctx);
#endif
}
static void emit_load_be16(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
{
_emit(cond, ARM_LDRH_I(r_res, r_addr, 0), ctx);
#ifdef __LITTLE_ENDIAN
_emit(cond, ARM_REV16(r_res, r_res), ctx);
#endif
}
static inline void emit_swap16(u8 r_dst __maybe_unused,
u8 r_src __maybe_unused,
struct jit_ctx *ctx __maybe_unused)
{
#ifdef __LITTLE_ENDIAN
emit(ARM_REV16(r_dst, r_src), ctx);
#endif
}
#endif /* __LINUX_ARM_ARCH__ < 6 */
/* Compute the immediate value for a PC-relative branch. */
static inline u32 b_imm(unsigned tgt, struct jit_ctx *ctx)
{
u32 imm;
if (ctx->target == NULL)
return 0;
/*
* BPF allows only forward jumps and the offset of the target is
* still the one computed during the first pass.
*/
imm = ctx->offsets[tgt] + ctx->prologue_bytes - (ctx->idx * 4 + 8);
return imm >> 2;
}
#define OP_IMM3(op, r1, r2, imm_val, ctx) \
do { \
imm12 = imm8m(imm_val); \
if (imm12 < 0) { \
emit_mov_i_no8m(r_scratch, imm_val, ctx); \
emit(op ## _R((r1), (r2), r_scratch), ctx); \
} else { \
emit(op ## _I((r1), (r2), imm12), ctx); \
} \
} while (0)
static inline void emit_err_ret(u8 cond, struct jit_ctx *ctx)
{
if (ctx->ret0_fp_idx >= 0) {
_emit(cond, ARM_B(b_imm(ctx->ret0_fp_idx, ctx)), ctx);
/* NOP to keep the size constant between passes */
emit(ARM_MOV_R(ARM_R0, ARM_R0), ctx);
} else {
_emit(cond, ARM_MOV_I(ARM_R0, 0), ctx);
_emit(cond, ARM_B(b_imm(ctx->skf->len, ctx)), ctx);
}
}
static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx)
{
#if __LINUX_ARM_ARCH__ < 5
emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx);
if (elf_hwcap & HWCAP_THUMB)
emit(ARM_BX(tgt_reg), ctx);
else
emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx);
#else
emit(ARM_BLX_R(tgt_reg), ctx);
#endif
}
static inline void emit_udiv(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx)
{
#if __LINUX_ARM_ARCH__ == 7
if (elf_hwcap & HWCAP_IDIVA) {
emit(ARM_UDIV(rd, rm, rn), ctx);
return;
}
#endif
if (rm != ARM_R0)
emit(ARM_MOV_R(ARM_R0, rm), ctx);
if (rn != ARM_R1)
emit(ARM_MOV_R(ARM_R1, rn), ctx);
ctx->seen |= SEEN_CALL;
emit_mov_i(ARM_R3, (u32)jit_udiv, ctx);
emit_blx_r(ARM_R3, ctx);
if (rd != ARM_R0)
emit(ARM_MOV_R(rd, ARM_R0), ctx);
}
static inline void update_on_xread(struct jit_ctx *ctx)
{
if (!(ctx->seen & SEEN_X))
ctx->flags |= FLAG_NEED_X_RESET;
ctx->seen |= SEEN_X;
}
static int build_body(struct jit_ctx *ctx)
{
void *load_func[] = {jit_get_skb_b, jit_get_skb_h, jit_get_skb_w};
const struct bpf_prog *prog = ctx->skf;
const struct sock_filter *inst;
unsigned i, load_order, off, condt;
int imm12;
u32 k;
for (i = 0; i < prog->len; i++) {
u16 code;
inst = &(prog->insns[i]);
/* K as an immediate value operand */
k = inst->k;
code = bpf_anc_helper(inst);
/* compute offsets only in the fake pass */
if (ctx->target == NULL)
ctx->offsets[i] = ctx->idx * 4;
switch (code) {
case BPF_LD | BPF_IMM:
emit_mov_i(r_A, k, ctx);
break;
case BPF_LD | BPF_W | BPF_LEN:
ctx->seen |= SEEN_SKB;
BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
emit(ARM_LDR_I(r_A, r_skb,
offsetof(struct sk_buff, len)), ctx);
break;
case BPF_LD | BPF_MEM:
/* A = scratch[k] */
ctx->seen |= SEEN_MEM_WORD(k);
emit(ARM_LDR_I(r_A, ARM_SP, SCRATCH_OFF(k)), ctx);
break;
case BPF_LD | BPF_W | BPF_ABS:
load_order = 2;
goto load;
case BPF_LD | BPF_H | BPF_ABS:
load_order = 1;
goto load;
case BPF_LD | BPF_B | BPF_ABS:
load_order = 0;
load:
/* the interpreter will deal with the negative K */
if ((int)k < 0)
return -ENOTSUPP;
emit_mov_i(r_off, k, ctx);
load_common:
ctx->seen |= SEEN_DATA | SEEN_CALL;
if (load_order > 0) {
emit(ARM_SUB_I(r_scratch, r_skb_hl,
1 << load_order), ctx);
emit(ARM_CMP_R(r_scratch, r_off), ctx);
condt = ARM_COND_HS;
} else {
emit(ARM_CMP_R(r_skb_hl, r_off), ctx);
condt = ARM_COND_HI;
}
_emit(condt, ARM_ADD_R(r_scratch, r_off, r_skb_data),
ctx);
if (load_order == 0)
_emit(condt, ARM_LDRB_I(r_A, r_scratch, 0),
ctx);
else if (load_order == 1)
emit_load_be16(condt, r_A, r_scratch, ctx);
else if (load_order == 2)
emit_load_be32(condt, r_A, r_scratch, ctx);
_emit(condt, ARM_B(b_imm(i + 1, ctx)), ctx);
/* the slowpath */
emit_mov_i(ARM_R3, (u32)load_func[load_order], ctx);
emit(ARM_MOV_R(ARM_R0, r_skb), ctx);
/* the offset is already in R1 */
emit_blx_r(ARM_R3, ctx);
/* check the result of skb_copy_bits */
emit(ARM_CMP_I(ARM_R1, 0), ctx);
emit_err_ret(ARM_COND_NE, ctx);
emit(ARM_MOV_R(r_A, ARM_R0), ctx);
break;
case BPF_LD | BPF_W | BPF_IND:
load_order = 2;
goto load_ind;
case BPF_LD | BPF_H | BPF_IND:
load_order = 1;
goto load_ind;
case BPF_LD | BPF_B | BPF_IND:
load_order = 0;
load_ind:
OP_IMM3(ARM_ADD, r_off, r_X, k, ctx);
goto load_common;
case BPF_LDX | BPF_IMM:
ctx->seen |= SEEN_X;
emit_mov_i(r_X, k, ctx);
break;
case BPF_LDX | BPF_W | BPF_LEN:
ctx->seen |= SEEN_X | SEEN_SKB;
emit(ARM_LDR_I(r_X, r_skb,
offsetof(struct sk_buff, len)), ctx);
break;
case BPF_LDX | BPF_MEM:
ctx->seen |= SEEN_X | SEEN_MEM_WORD(k);
emit(ARM_LDR_I(r_X, ARM_SP, SCRATCH_OFF(k)), ctx);
break;
case BPF_LDX | BPF_B | BPF_MSH:
/* x = ((*(frame + k)) & 0xf) << 2; */
ctx->seen |= SEEN_X | SEEN_DATA | SEEN_CALL;
/* the interpreter should deal with the negative K */
if ((int)k < 0)
return -1;
/* offset in r1: we might have to take the slow path */
emit_mov_i(r_off, k, ctx);
emit(ARM_CMP_R(r_skb_hl, r_off), ctx);
/* load in r0: common with the slowpath */
_emit(ARM_COND_HI, ARM_LDRB_R(ARM_R0, r_skb_data,
ARM_R1), ctx);
/*
* emit_mov_i() might generate one or two instructions,
* the same holds for emit_blx_r()
*/
_emit(ARM_COND_HI, ARM_B(b_imm(i + 1, ctx) - 2), ctx);
emit(ARM_MOV_R(ARM_R0, r_skb), ctx);
/* r_off is r1 */
emit_mov_i(ARM_R3, (u32)jit_get_skb_b, ctx);
emit_blx_r(ARM_R3, ctx);
/* check the return value of skb_copy_bits */
emit(ARM_CMP_I(ARM_R1, 0), ctx);
emit_err_ret(ARM_COND_NE, ctx);
emit(ARM_AND_I(r_X, ARM_R0, 0x00f), ctx);
emit(ARM_LSL_I(r_X, r_X, 2), ctx);
break;
case BPF_ST:
ctx->seen |= SEEN_MEM_WORD(k);
emit(ARM_STR_I(r_A, ARM_SP, SCRATCH_OFF(k)), ctx);
break;
case BPF_STX:
update_on_xread(ctx);
ctx->seen |= SEEN_MEM_WORD(k);
emit(ARM_STR_I(r_X, ARM_SP, SCRATCH_OFF(k)), ctx);
break;
case BPF_ALU | BPF_ADD | BPF_K:
/* A += K */
OP_IMM3(ARM_ADD, r_A, r_A, k, ctx);
break;
case BPF_ALU | BPF_ADD | BPF_X:
update_on_xread(ctx);
emit(ARM_ADD_R(r_A, r_A, r_X), ctx);
break;
case BPF_ALU | BPF_SUB | BPF_K:
/* A -= K */
OP_IMM3(ARM_SUB, r_A, r_A, k, ctx);
break;
case BPF_ALU | BPF_SUB | BPF_X:
update_on_xread(ctx);
emit(ARM_SUB_R(r_A, r_A, r_X), ctx);
break;
case BPF_ALU | BPF_MUL | BPF_K:
/* A *= K */
emit_mov_i(r_scratch, k, ctx);
emit(ARM_MUL(r_A, r_A, r_scratch), ctx);
break;
case BPF_ALU | BPF_MUL | BPF_X:
update_on_xread(ctx);
emit(ARM_MUL(r_A, r_A, r_X), ctx);
break;
case BPF_ALU | BPF_DIV | BPF_K:
if (k == 1)
break;
emit_mov_i(r_scratch, k, ctx);
emit_udiv(r_A, r_A, r_scratch, ctx);
break;
case BPF_ALU | BPF_DIV | BPF_X:
update_on_xread(ctx);
emit(ARM_CMP_I(r_X, 0), ctx);
emit_err_ret(ARM_COND_EQ, ctx);
emit_udiv(r_A, r_A, r_X, ctx);
break;
case BPF_ALU | BPF_OR | BPF_K:
/* A |= K */
OP_IMM3(ARM_ORR, r_A, r_A, k, ctx);
break;
case BPF_ALU | BPF_OR | BPF_X:
update_on_xread(ctx);
emit(ARM_ORR_R(r_A, r_A, r_X), ctx);
break;
case BPF_ALU | BPF_XOR | BPF_K:
/* A ^= K; */
OP_IMM3(ARM_EOR, r_A, r_A, k, ctx);
break;
case BPF_ANC | SKF_AD_ALU_XOR_X:
case BPF_ALU | BPF_XOR | BPF_X:
/* A ^= X */
update_on_xread(ctx);
emit(ARM_EOR_R(r_A, r_A, r_X), ctx);
break;
case BPF_ALU | BPF_AND | BPF_K:
/* A &= K */
OP_IMM3(ARM_AND, r_A, r_A, k, ctx);
break;
case BPF_ALU | BPF_AND | BPF_X:
update_on_xread(ctx);
emit(ARM_AND_R(r_A, r_A, r_X), ctx);
break;
case BPF_ALU | BPF_LSH | BPF_K:
if (unlikely(k > 31))
return -1;
emit(ARM_LSL_I(r_A, r_A, k), ctx);
break;
case BPF_ALU | BPF_LSH | BPF_X:
update_on_xread(ctx);
emit(ARM_LSL_R(r_A, r_A, r_X), ctx);
break;
case BPF_ALU | BPF_RSH | BPF_K:
if (unlikely(k > 31))
return -1;
emit(ARM_LSR_I(r_A, r_A, k), ctx);
break;
case BPF_ALU | BPF_RSH | BPF_X:
update_on_xread(ctx);
emit(ARM_LSR_R(r_A, r_A, r_X), ctx);
break;
case BPF_ALU | BPF_NEG:
/* A = -A */
emit(ARM_RSB_I(r_A, r_A, 0), ctx);
break;
case BPF_JMP | BPF_JA:
/* pc += K */
emit(ARM_B(b_imm(i + k + 1, ctx)), ctx);
break;
case BPF_JMP | BPF_JEQ | BPF_K:
/* pc += (A == K) ? pc->jt : pc->jf */
condt = ARM_COND_EQ;
goto cmp_imm;
case BPF_JMP | BPF_JGT | BPF_K:
/* pc += (A > K) ? pc->jt : pc->jf */
condt = ARM_COND_HI;
goto cmp_imm;
case BPF_JMP | BPF_JGE | BPF_K:
/* pc += (A >= K) ? pc->jt : pc->jf */
condt = ARM_COND_HS;
cmp_imm:
imm12 = imm8m(k);
if (imm12 < 0) {
emit_mov_i_no8m(r_scratch, k, ctx);
emit(ARM_CMP_R(r_A, r_scratch), ctx);
} else {
emit(ARM_CMP_I(r_A, imm12), ctx);
}
cond_jump:
if (inst->jt)
_emit(condt, ARM_B(b_imm(i + inst->jt + 1,
ctx)), ctx);
if (inst->jf)
_emit(condt ^ 1, ARM_B(b_imm(i + inst->jf + 1,
ctx)), ctx);
break;
case BPF_JMP | BPF_JEQ | BPF_X:
/* pc += (A == X) ? pc->jt : pc->jf */
condt = ARM_COND_EQ;
goto cmp_x;
case BPF_JMP | BPF_JGT | BPF_X:
/* pc += (A > X) ? pc->jt : pc->jf */
condt = ARM_COND_HI;
goto cmp_x;
case BPF_JMP | BPF_JGE | BPF_X:
/* pc += (A >= X) ? pc->jt : pc->jf */
condt = ARM_COND_CS;
cmp_x:
update_on_xread(ctx);
emit(ARM_CMP_R(r_A, r_X), ctx);
goto cond_jump;
case BPF_JMP | BPF_JSET | BPF_K:
/* pc += (A & K) ? pc->jt : pc->jf */
condt = ARM_COND_NE;
/* not set iff all zeroes iff Z==1 iff EQ */
imm12 = imm8m(k);
if (imm12 < 0) {
emit_mov_i_no8m(r_scratch, k, ctx);
emit(ARM_TST_R(r_A, r_scratch), ctx);
} else {
emit(ARM_TST_I(r_A, imm12), ctx);
}
goto cond_jump;
case BPF_JMP | BPF_JSET | BPF_X:
/* pc += (A & X) ? pc->jt : pc->jf */
update_on_xread(ctx);
condt = ARM_COND_NE;
emit(ARM_TST_R(r_A, r_X), ctx);
goto cond_jump;
case BPF_RET | BPF_A:
emit(ARM_MOV_R(ARM_R0, r_A), ctx);
goto b_epilogue;
case BPF_RET | BPF_K:
if ((k == 0) && (ctx->ret0_fp_idx < 0))
ctx->ret0_fp_idx = i;
emit_mov_i(ARM_R0, k, ctx);
b_epilogue:
if (i != ctx->skf->len - 1)
emit(ARM_B(b_imm(prog->len, ctx)), ctx);
break;
case BPF_MISC | BPF_TAX:
/* X = A */
ctx->seen |= SEEN_X;
emit(ARM_MOV_R(r_X, r_A), ctx);
break;
case BPF_MISC | BPF_TXA:
/* A = X */
update_on_xread(ctx);
emit(ARM_MOV_R(r_A, r_X), ctx);
break;
case BPF_ANC | SKF_AD_PROTOCOL:
/* A = ntohs(skb->protocol) */
ctx->seen |= SEEN_SKB;
BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
protocol) != 2);
off = offsetof(struct sk_buff, protocol);
emit(ARM_LDRH_I(r_scratch, r_skb, off), ctx);
emit_swap16(r_A, r_scratch, ctx);
break;
case BPF_ANC | SKF_AD_CPU:
/* r_scratch = current_thread_info() */
OP_IMM3(ARM_BIC, r_scratch, ARM_SP, THREAD_SIZE - 1, ctx);
/* A = current_thread_info()->cpu */
BUILD_BUG_ON(FIELD_SIZEOF(struct thread_info, cpu) != 4);
off = offsetof(struct thread_info, cpu);
emit(ARM_LDR_I(r_A, r_scratch, off), ctx);
break;
case BPF_ANC | SKF_AD_IFINDEX:
/* A = skb->dev->ifindex */
ctx->seen |= SEEN_SKB;
off = offsetof(struct sk_buff, dev);
emit(ARM_LDR_I(r_scratch, r_skb, off), ctx);
emit(ARM_CMP_I(r_scratch, 0), ctx);
emit_err_ret(ARM_COND_EQ, ctx);
BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
ifindex) != 4);
off = offsetof(struct net_device, ifindex);
emit(ARM_LDR_I(r_A, r_scratch, off), ctx);
break;
case BPF_ANC | SKF_AD_MARK:
ctx->seen |= SEEN_SKB;
BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
off = offsetof(struct sk_buff, mark);
emit(ARM_LDR_I(r_A, r_skb, off), ctx);
break;
case BPF_ANC | SKF_AD_RXHASH:
ctx->seen |= SEEN_SKB;
BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
off = offsetof(struct sk_buff, hash);
emit(ARM_LDR_I(r_A, r_skb, off), ctx);
break;
case BPF_ANC | SKF_AD_VLAN_TAG:
case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
ctx->seen |= SEEN_SKB;
BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
off = offsetof(struct sk_buff, vlan_tci);
emit(ARM_LDRH_I(r_A, r_skb, off), ctx);
if (code == (BPF_ANC | SKF_AD_VLAN_TAG))
OP_IMM3(ARM_AND, r_A, r_A, VLAN_VID_MASK, ctx);
else
OP_IMM3(ARM_AND, r_A, r_A, VLAN_TAG_PRESENT, ctx);
break;
case BPF_ANC | SKF_AD_QUEUE:
ctx->seen |= SEEN_SKB;
BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
queue_mapping) != 2);
BUILD_BUG_ON(offsetof(struct sk_buff,
queue_mapping) > 0xff);
off = offsetof(struct sk_buff, queue_mapping);
emit(ARM_LDRH_I(r_A, r_skb, off), ctx);
break;
default:
return -1;
}
}
/* compute offsets only during the first pass */
if (ctx->target == NULL)
ctx->offsets[i] = ctx->idx * 4;
return 0;
}
void bpf_jit_compile(struct bpf_prog *fp)
{
struct bpf_binary_header *header;
struct jit_ctx ctx;
unsigned tmp_idx;
unsigned alloc_size;
u8 *target_ptr;
if (!bpf_jit_enable)
return;
memset(&ctx, 0, sizeof(ctx));
ctx.skf = fp;
ctx.ret0_fp_idx = -1;
ctx.offsets = kzalloc(4 * (ctx.skf->len + 1), GFP_KERNEL);
if (ctx.offsets == NULL)
return;
/* fake pass to fill in the ctx->seen */
if (unlikely(build_body(&ctx)))
goto out;
tmp_idx = ctx.idx;
build_prologue(&ctx);
ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
#if __LINUX_ARM_ARCH__ < 7
tmp_idx = ctx.idx;
build_epilogue(&ctx);
ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4;
ctx.idx += ctx.imm_count;
if (ctx.imm_count) {
ctx.imms = kzalloc(4 * ctx.imm_count, GFP_KERNEL);
if (ctx.imms == NULL)
goto out;
}
#else
/* there's nothing after the epilogue on ARMv7 */
build_epilogue(&ctx);
#endif
alloc_size = 4 * ctx.idx;
header = bpf_jit_binary_alloc(alloc_size, &target_ptr,
4, jit_fill_hole);
if (header == NULL)
goto out;
ctx.target = (u32 *) target_ptr;
ctx.idx = 0;
build_prologue(&ctx);
build_body(&ctx);
build_epilogue(&ctx);
flush_icache_range((u32)ctx.target, (u32)(ctx.target + ctx.idx));
#if __LINUX_ARM_ARCH__ < 7
if (ctx.imm_count)
kfree(ctx.imms);
#endif
if (bpf_jit_enable > 1)
/* there are 2 passes here */
bpf_jit_dump(fp->len, alloc_size, 2, ctx.target);
set_memory_ro((unsigned long)header, header->pages);
fp->bpf_func = (void *)ctx.target;
fp->jited = true;
out:
kfree(ctx.offsets);
return;
}
void bpf_jit_free(struct bpf_prog *fp)
{
unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
struct bpf_binary_header *header = (void *)addr;
if (!fp->jited)
goto free_filter;
set_memory_rw(addr, header->pages);
bpf_jit_binary_free(header);
free_filter:
bpf_prog_unlock_free(fp);
}