linux_dsm_epyc7002/fs/btrfs/disk-io.c
Chris Mason 8d875f95da btrfs: disable strict file flushes for renames and truncates
Truncates and renames are often used to replace old versions of a file
with new versions.  Applications often expect this to be an atomic
replacement, even if they haven't done anything to make sure the new
version is fully on disk.

Btrfs has strict flushing in place to make sure that renaming over an
old file with a new file will fully flush out the new file before
allowing the transaction commit with the rename to complete.

This ordering means the commit code needs to be able to lock file pages,
and there are a few paths in the filesystem where we will try to end a
transaction with the page lock held.  It's rare, but these things can
deadlock.

This patch removes the ordered flushes and switches to a best effort
filemap_flush like ext4 uses. It's not perfect, but it should fix the
deadlocks.

Signed-off-by: Chris Mason <clm@fb.com>
2014-08-15 07:43:42 -07:00

4151 lines
112 KiB
C

/*
* Copyright (C) 2007 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <linux/fs.h>
#include <linux/blkdev.h>
#include <linux/scatterlist.h>
#include <linux/swap.h>
#include <linux/radix-tree.h>
#include <linux/writeback.h>
#include <linux/buffer_head.h>
#include <linux/workqueue.h>
#include <linux/kthread.h>
#include <linux/freezer.h>
#include <linux/slab.h>
#include <linux/migrate.h>
#include <linux/ratelimit.h>
#include <linux/uuid.h>
#include <linux/semaphore.h>
#include <asm/unaligned.h>
#include "ctree.h"
#include "disk-io.h"
#include "hash.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "volumes.h"
#include "print-tree.h"
#include "async-thread.h"
#include "locking.h"
#include "tree-log.h"
#include "free-space-cache.h"
#include "inode-map.h"
#include "check-integrity.h"
#include "rcu-string.h"
#include "dev-replace.h"
#include "raid56.h"
#include "sysfs.h"
#include "qgroup.h"
#ifdef CONFIG_X86
#include <asm/cpufeature.h>
#endif
static struct extent_io_ops btree_extent_io_ops;
static void end_workqueue_fn(struct btrfs_work *work);
static void free_fs_root(struct btrfs_root *root);
static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
int read_only);
static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
struct btrfs_root *root);
static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
static int btrfs_destroy_marked_extents(struct btrfs_root *root,
struct extent_io_tree *dirty_pages,
int mark);
static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
struct extent_io_tree *pinned_extents);
static int btrfs_cleanup_transaction(struct btrfs_root *root);
static void btrfs_error_commit_super(struct btrfs_root *root);
/*
* end_io_wq structs are used to do processing in task context when an IO is
* complete. This is used during reads to verify checksums, and it is used
* by writes to insert metadata for new file extents after IO is complete.
*/
struct end_io_wq {
struct bio *bio;
bio_end_io_t *end_io;
void *private;
struct btrfs_fs_info *info;
int error;
int metadata;
struct list_head list;
struct btrfs_work work;
};
/*
* async submit bios are used to offload expensive checksumming
* onto the worker threads. They checksum file and metadata bios
* just before they are sent down the IO stack.
*/
struct async_submit_bio {
struct inode *inode;
struct bio *bio;
struct list_head list;
extent_submit_bio_hook_t *submit_bio_start;
extent_submit_bio_hook_t *submit_bio_done;
int rw;
int mirror_num;
unsigned long bio_flags;
/*
* bio_offset is optional, can be used if the pages in the bio
* can't tell us where in the file the bio should go
*/
u64 bio_offset;
struct btrfs_work work;
int error;
};
/*
* Lockdep class keys for extent_buffer->lock's in this root. For a given
* eb, the lockdep key is determined by the btrfs_root it belongs to and
* the level the eb occupies in the tree.
*
* Different roots are used for different purposes and may nest inside each
* other and they require separate keysets. As lockdep keys should be
* static, assign keysets according to the purpose of the root as indicated
* by btrfs_root->objectid. This ensures that all special purpose roots
* have separate keysets.
*
* Lock-nesting across peer nodes is always done with the immediate parent
* node locked thus preventing deadlock. As lockdep doesn't know this, use
* subclass to avoid triggering lockdep warning in such cases.
*
* The key is set by the readpage_end_io_hook after the buffer has passed
* csum validation but before the pages are unlocked. It is also set by
* btrfs_init_new_buffer on freshly allocated blocks.
*
* We also add a check to make sure the highest level of the tree is the
* same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
* needs update as well.
*/
#ifdef CONFIG_DEBUG_LOCK_ALLOC
# if BTRFS_MAX_LEVEL != 8
# error
# endif
static struct btrfs_lockdep_keyset {
u64 id; /* root objectid */
const char *name_stem; /* lock name stem */
char names[BTRFS_MAX_LEVEL + 1][20];
struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
} btrfs_lockdep_keysets[] = {
{ .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
{ .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
{ .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
{ .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
{ .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
{ .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
{ .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
{ .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
{ .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
{ .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
{ .id = 0, .name_stem = "tree" },
};
void __init btrfs_init_lockdep(void)
{
int i, j;
/* initialize lockdep class names */
for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
for (j = 0; j < ARRAY_SIZE(ks->names); j++)
snprintf(ks->names[j], sizeof(ks->names[j]),
"btrfs-%s-%02d", ks->name_stem, j);
}
}
void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
int level)
{
struct btrfs_lockdep_keyset *ks;
BUG_ON(level >= ARRAY_SIZE(ks->keys));
/* find the matching keyset, id 0 is the default entry */
for (ks = btrfs_lockdep_keysets; ks->id; ks++)
if (ks->id == objectid)
break;
lockdep_set_class_and_name(&eb->lock,
&ks->keys[level], ks->names[level]);
}
#endif
/*
* extents on the btree inode are pretty simple, there's one extent
* that covers the entire device
*/
static struct extent_map *btree_get_extent(struct inode *inode,
struct page *page, size_t pg_offset, u64 start, u64 len,
int create)
{
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
struct extent_map *em;
int ret;
read_lock(&em_tree->lock);
em = lookup_extent_mapping(em_tree, start, len);
if (em) {
em->bdev =
BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
read_unlock(&em_tree->lock);
goto out;
}
read_unlock(&em_tree->lock);
em = alloc_extent_map();
if (!em) {
em = ERR_PTR(-ENOMEM);
goto out;
}
em->start = 0;
em->len = (u64)-1;
em->block_len = (u64)-1;
em->block_start = 0;
em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
write_lock(&em_tree->lock);
ret = add_extent_mapping(em_tree, em, 0);
if (ret == -EEXIST) {
free_extent_map(em);
em = lookup_extent_mapping(em_tree, start, len);
if (!em)
em = ERR_PTR(-EIO);
} else if (ret) {
free_extent_map(em);
em = ERR_PTR(ret);
}
write_unlock(&em_tree->lock);
out:
return em;
}
u32 btrfs_csum_data(char *data, u32 seed, size_t len)
{
return btrfs_crc32c(seed, data, len);
}
void btrfs_csum_final(u32 crc, char *result)
{
put_unaligned_le32(~crc, result);
}
/*
* compute the csum for a btree block, and either verify it or write it
* into the csum field of the block.
*/
static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
int verify)
{
u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
char *result = NULL;
unsigned long len;
unsigned long cur_len;
unsigned long offset = BTRFS_CSUM_SIZE;
char *kaddr;
unsigned long map_start;
unsigned long map_len;
int err;
u32 crc = ~(u32)0;
unsigned long inline_result;
len = buf->len - offset;
while (len > 0) {
err = map_private_extent_buffer(buf, offset, 32,
&kaddr, &map_start, &map_len);
if (err)
return 1;
cur_len = min(len, map_len - (offset - map_start));
crc = btrfs_csum_data(kaddr + offset - map_start,
crc, cur_len);
len -= cur_len;
offset += cur_len;
}
if (csum_size > sizeof(inline_result)) {
result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
if (!result)
return 1;
} else {
result = (char *)&inline_result;
}
btrfs_csum_final(crc, result);
if (verify) {
if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
u32 val;
u32 found = 0;
memcpy(&found, result, csum_size);
read_extent_buffer(buf, &val, 0, csum_size);
printk_ratelimited(KERN_INFO
"BTRFS: %s checksum verify failed on %llu wanted %X found %X "
"level %d\n",
root->fs_info->sb->s_id, buf->start,
val, found, btrfs_header_level(buf));
if (result != (char *)&inline_result)
kfree(result);
return 1;
}
} else {
write_extent_buffer(buf, result, 0, csum_size);
}
if (result != (char *)&inline_result)
kfree(result);
return 0;
}
/*
* we can't consider a given block up to date unless the transid of the
* block matches the transid in the parent node's pointer. This is how we
* detect blocks that either didn't get written at all or got written
* in the wrong place.
*/
static int verify_parent_transid(struct extent_io_tree *io_tree,
struct extent_buffer *eb, u64 parent_transid,
int atomic)
{
struct extent_state *cached_state = NULL;
int ret;
bool need_lock = (current->journal_info ==
(void *)BTRFS_SEND_TRANS_STUB);
if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
return 0;
if (atomic)
return -EAGAIN;
if (need_lock) {
btrfs_tree_read_lock(eb);
btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
}
lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
0, &cached_state);
if (extent_buffer_uptodate(eb) &&
btrfs_header_generation(eb) == parent_transid) {
ret = 0;
goto out;
}
printk_ratelimited("parent transid verify failed on %llu wanted %llu "
"found %llu\n",
eb->start, parent_transid, btrfs_header_generation(eb));
ret = 1;
/*
* Things reading via commit roots that don't have normal protection,
* like send, can have a really old block in cache that may point at a
* block that has been free'd and re-allocated. So don't clear uptodate
* if we find an eb that is under IO (dirty/writeback) because we could
* end up reading in the stale data and then writing it back out and
* making everybody very sad.
*/
if (!extent_buffer_under_io(eb))
clear_extent_buffer_uptodate(eb);
out:
unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
&cached_state, GFP_NOFS);
if (need_lock)
btrfs_tree_read_unlock_blocking(eb);
return ret;
}
/*
* Return 0 if the superblock checksum type matches the checksum value of that
* algorithm. Pass the raw disk superblock data.
*/
static int btrfs_check_super_csum(char *raw_disk_sb)
{
struct btrfs_super_block *disk_sb =
(struct btrfs_super_block *)raw_disk_sb;
u16 csum_type = btrfs_super_csum_type(disk_sb);
int ret = 0;
if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
u32 crc = ~(u32)0;
const int csum_size = sizeof(crc);
char result[csum_size];
/*
* The super_block structure does not span the whole
* BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
* is filled with zeros and is included in the checkum.
*/
crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
btrfs_csum_final(crc, result);
if (memcmp(raw_disk_sb, result, csum_size))
ret = 1;
if (ret && btrfs_super_generation(disk_sb) < 10) {
printk(KERN_WARNING
"BTRFS: super block crcs don't match, older mkfs detected\n");
ret = 0;
}
}
if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
csum_type);
ret = 1;
}
return ret;
}
/*
* helper to read a given tree block, doing retries as required when
* the checksums don't match and we have alternate mirrors to try.
*/
static int btree_read_extent_buffer_pages(struct btrfs_root *root,
struct extent_buffer *eb,
u64 start, u64 parent_transid)
{
struct extent_io_tree *io_tree;
int failed = 0;
int ret;
int num_copies = 0;
int mirror_num = 0;
int failed_mirror = 0;
clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
while (1) {
ret = read_extent_buffer_pages(io_tree, eb, start,
WAIT_COMPLETE,
btree_get_extent, mirror_num);
if (!ret) {
if (!verify_parent_transid(io_tree, eb,
parent_transid, 0))
break;
else
ret = -EIO;
}
/*
* This buffer's crc is fine, but its contents are corrupted, so
* there is no reason to read the other copies, they won't be
* any less wrong.
*/
if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
break;
num_copies = btrfs_num_copies(root->fs_info,
eb->start, eb->len);
if (num_copies == 1)
break;
if (!failed_mirror) {
failed = 1;
failed_mirror = eb->read_mirror;
}
mirror_num++;
if (mirror_num == failed_mirror)
mirror_num++;
if (mirror_num > num_copies)
break;
}
if (failed && !ret && failed_mirror)
repair_eb_io_failure(root, eb, failed_mirror);
return ret;
}
/*
* checksum a dirty tree block before IO. This has extra checks to make sure
* we only fill in the checksum field in the first page of a multi-page block
*/
static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
{
u64 start = page_offset(page);
u64 found_start;
struct extent_buffer *eb;
eb = (struct extent_buffer *)page->private;
if (page != eb->pages[0])
return 0;
found_start = btrfs_header_bytenr(eb);
if (WARN_ON(found_start != start || !PageUptodate(page)))
return 0;
csum_tree_block(root, eb, 0);
return 0;
}
static int check_tree_block_fsid(struct btrfs_root *root,
struct extent_buffer *eb)
{
struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
u8 fsid[BTRFS_UUID_SIZE];
int ret = 1;
read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
while (fs_devices) {
if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
ret = 0;
break;
}
fs_devices = fs_devices->seed;
}
return ret;
}
#define CORRUPT(reason, eb, root, slot) \
btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
"root=%llu, slot=%d", reason, \
btrfs_header_bytenr(eb), root->objectid, slot)
static noinline int check_leaf(struct btrfs_root *root,
struct extent_buffer *leaf)
{
struct btrfs_key key;
struct btrfs_key leaf_key;
u32 nritems = btrfs_header_nritems(leaf);
int slot;
if (nritems == 0)
return 0;
/* Check the 0 item */
if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
BTRFS_LEAF_DATA_SIZE(root)) {
CORRUPT("invalid item offset size pair", leaf, root, 0);
return -EIO;
}
/*
* Check to make sure each items keys are in the correct order and their
* offsets make sense. We only have to loop through nritems-1 because
* we check the current slot against the next slot, which verifies the
* next slot's offset+size makes sense and that the current's slot
* offset is correct.
*/
for (slot = 0; slot < nritems - 1; slot++) {
btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
btrfs_item_key_to_cpu(leaf, &key, slot + 1);
/* Make sure the keys are in the right order */
if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
CORRUPT("bad key order", leaf, root, slot);
return -EIO;
}
/*
* Make sure the offset and ends are right, remember that the
* item data starts at the end of the leaf and grows towards the
* front.
*/
if (btrfs_item_offset_nr(leaf, slot) !=
btrfs_item_end_nr(leaf, slot + 1)) {
CORRUPT("slot offset bad", leaf, root, slot);
return -EIO;
}
/*
* Check to make sure that we don't point outside of the leaf,
* just incase all the items are consistent to eachother, but
* all point outside of the leaf.
*/
if (btrfs_item_end_nr(leaf, slot) >
BTRFS_LEAF_DATA_SIZE(root)) {
CORRUPT("slot end outside of leaf", leaf, root, slot);
return -EIO;
}
}
return 0;
}
static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
u64 phy_offset, struct page *page,
u64 start, u64 end, int mirror)
{
u64 found_start;
int found_level;
struct extent_buffer *eb;
struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
int ret = 0;
int reads_done;
if (!page->private)
goto out;
eb = (struct extent_buffer *)page->private;
/* the pending IO might have been the only thing that kept this buffer
* in memory. Make sure we have a ref for all this other checks
*/
extent_buffer_get(eb);
reads_done = atomic_dec_and_test(&eb->io_pages);
if (!reads_done)
goto err;
eb->read_mirror = mirror;
if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
ret = -EIO;
goto err;
}
found_start = btrfs_header_bytenr(eb);
if (found_start != eb->start) {
printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
"%llu %llu\n",
found_start, eb->start);
ret = -EIO;
goto err;
}
if (check_tree_block_fsid(root, eb)) {
printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
eb->start);
ret = -EIO;
goto err;
}
found_level = btrfs_header_level(eb);
if (found_level >= BTRFS_MAX_LEVEL) {
btrfs_info(root->fs_info, "bad tree block level %d",
(int)btrfs_header_level(eb));
ret = -EIO;
goto err;
}
btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
eb, found_level);
ret = csum_tree_block(root, eb, 1);
if (ret) {
ret = -EIO;
goto err;
}
/*
* If this is a leaf block and it is corrupt, set the corrupt bit so
* that we don't try and read the other copies of this block, just
* return -EIO.
*/
if (found_level == 0 && check_leaf(root, eb)) {
set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
ret = -EIO;
}
if (!ret)
set_extent_buffer_uptodate(eb);
err:
if (reads_done &&
test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
btree_readahead_hook(root, eb, eb->start, ret);
if (ret) {
/*
* our io error hook is going to dec the io pages
* again, we have to make sure it has something
* to decrement
*/
atomic_inc(&eb->io_pages);
clear_extent_buffer_uptodate(eb);
}
free_extent_buffer(eb);
out:
return ret;
}
static int btree_io_failed_hook(struct page *page, int failed_mirror)
{
struct extent_buffer *eb;
struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
eb = (struct extent_buffer *)page->private;
set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
eb->read_mirror = failed_mirror;
atomic_dec(&eb->io_pages);
if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
btree_readahead_hook(root, eb, eb->start, -EIO);
return -EIO; /* we fixed nothing */
}
static void end_workqueue_bio(struct bio *bio, int err)
{
struct end_io_wq *end_io_wq = bio->bi_private;
struct btrfs_fs_info *fs_info;
fs_info = end_io_wq->info;
end_io_wq->error = err;
btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
if (bio->bi_rw & REQ_WRITE) {
if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
btrfs_queue_work(fs_info->endio_meta_write_workers,
&end_io_wq->work);
else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
btrfs_queue_work(fs_info->endio_freespace_worker,
&end_io_wq->work);
else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
btrfs_queue_work(fs_info->endio_raid56_workers,
&end_io_wq->work);
else
btrfs_queue_work(fs_info->endio_write_workers,
&end_io_wq->work);
} else {
if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
btrfs_queue_work(fs_info->endio_raid56_workers,
&end_io_wq->work);
else if (end_io_wq->metadata)
btrfs_queue_work(fs_info->endio_meta_workers,
&end_io_wq->work);
else
btrfs_queue_work(fs_info->endio_workers,
&end_io_wq->work);
}
}
/*
* For the metadata arg you want
*
* 0 - if data
* 1 - if normal metadta
* 2 - if writing to the free space cache area
* 3 - raid parity work
*/
int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
int metadata)
{
struct end_io_wq *end_io_wq;
end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
if (!end_io_wq)
return -ENOMEM;
end_io_wq->private = bio->bi_private;
end_io_wq->end_io = bio->bi_end_io;
end_io_wq->info = info;
end_io_wq->error = 0;
end_io_wq->bio = bio;
end_io_wq->metadata = metadata;
bio->bi_private = end_io_wq;
bio->bi_end_io = end_workqueue_bio;
return 0;
}
unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
{
unsigned long limit = min_t(unsigned long,
info->thread_pool_size,
info->fs_devices->open_devices);
return 256 * limit;
}
static void run_one_async_start(struct btrfs_work *work)
{
struct async_submit_bio *async;
int ret;
async = container_of(work, struct async_submit_bio, work);
ret = async->submit_bio_start(async->inode, async->rw, async->bio,
async->mirror_num, async->bio_flags,
async->bio_offset);
if (ret)
async->error = ret;
}
static void run_one_async_done(struct btrfs_work *work)
{
struct btrfs_fs_info *fs_info;
struct async_submit_bio *async;
int limit;
async = container_of(work, struct async_submit_bio, work);
fs_info = BTRFS_I(async->inode)->root->fs_info;
limit = btrfs_async_submit_limit(fs_info);
limit = limit * 2 / 3;
if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
waitqueue_active(&fs_info->async_submit_wait))
wake_up(&fs_info->async_submit_wait);
/* If an error occured we just want to clean up the bio and move on */
if (async->error) {
bio_endio(async->bio, async->error);
return;
}
async->submit_bio_done(async->inode, async->rw, async->bio,
async->mirror_num, async->bio_flags,
async->bio_offset);
}
static void run_one_async_free(struct btrfs_work *work)
{
struct async_submit_bio *async;
async = container_of(work, struct async_submit_bio, work);
kfree(async);
}
int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
int rw, struct bio *bio, int mirror_num,
unsigned long bio_flags,
u64 bio_offset,
extent_submit_bio_hook_t *submit_bio_start,
extent_submit_bio_hook_t *submit_bio_done)
{
struct async_submit_bio *async;
async = kmalloc(sizeof(*async), GFP_NOFS);
if (!async)
return -ENOMEM;
async->inode = inode;
async->rw = rw;
async->bio = bio;
async->mirror_num = mirror_num;
async->submit_bio_start = submit_bio_start;
async->submit_bio_done = submit_bio_done;
btrfs_init_work(&async->work, run_one_async_start,
run_one_async_done, run_one_async_free);
async->bio_flags = bio_flags;
async->bio_offset = bio_offset;
async->error = 0;
atomic_inc(&fs_info->nr_async_submits);
if (rw & REQ_SYNC)
btrfs_set_work_high_priority(&async->work);
btrfs_queue_work(fs_info->workers, &async->work);
while (atomic_read(&fs_info->async_submit_draining) &&
atomic_read(&fs_info->nr_async_submits)) {
wait_event(fs_info->async_submit_wait,
(atomic_read(&fs_info->nr_async_submits) == 0));
}
return 0;
}
static int btree_csum_one_bio(struct bio *bio)
{
struct bio_vec *bvec;
struct btrfs_root *root;
int i, ret = 0;
bio_for_each_segment_all(bvec, bio, i) {
root = BTRFS_I(bvec->bv_page->mapping->host)->root;
ret = csum_dirty_buffer(root, bvec->bv_page);
if (ret)
break;
}
return ret;
}
static int __btree_submit_bio_start(struct inode *inode, int rw,
struct bio *bio, int mirror_num,
unsigned long bio_flags,
u64 bio_offset)
{
/*
* when we're called for a write, we're already in the async
* submission context. Just jump into btrfs_map_bio
*/
return btree_csum_one_bio(bio);
}
static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
int mirror_num, unsigned long bio_flags,
u64 bio_offset)
{
int ret;
/*
* when we're called for a write, we're already in the async
* submission context. Just jump into btrfs_map_bio
*/
ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
if (ret)
bio_endio(bio, ret);
return ret;
}
static int check_async_write(struct inode *inode, unsigned long bio_flags)
{
if (bio_flags & EXTENT_BIO_TREE_LOG)
return 0;
#ifdef CONFIG_X86
if (cpu_has_xmm4_2)
return 0;
#endif
return 1;
}
static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
int mirror_num, unsigned long bio_flags,
u64 bio_offset)
{
int async = check_async_write(inode, bio_flags);
int ret;
if (!(rw & REQ_WRITE)) {
/*
* called for a read, do the setup so that checksum validation
* can happen in the async kernel threads
*/
ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
bio, 1);
if (ret)
goto out_w_error;
ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
mirror_num, 0);
} else if (!async) {
ret = btree_csum_one_bio(bio);
if (ret)
goto out_w_error;
ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
mirror_num, 0);
} else {
/*
* kthread helpers are used to submit writes so that
* checksumming can happen in parallel across all CPUs
*/
ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
inode, rw, bio, mirror_num, 0,
bio_offset,
__btree_submit_bio_start,
__btree_submit_bio_done);
}
if (ret) {
out_w_error:
bio_endio(bio, ret);
}
return ret;
}
#ifdef CONFIG_MIGRATION
static int btree_migratepage(struct address_space *mapping,
struct page *newpage, struct page *page,
enum migrate_mode mode)
{
/*
* we can't safely write a btree page from here,
* we haven't done the locking hook
*/
if (PageDirty(page))
return -EAGAIN;
/*
* Buffers may be managed in a filesystem specific way.
* We must have no buffers or drop them.
*/
if (page_has_private(page) &&
!try_to_release_page(page, GFP_KERNEL))
return -EAGAIN;
return migrate_page(mapping, newpage, page, mode);
}
#endif
static int btree_writepages(struct address_space *mapping,
struct writeback_control *wbc)
{
struct btrfs_fs_info *fs_info;
int ret;
if (wbc->sync_mode == WB_SYNC_NONE) {
if (wbc->for_kupdate)
return 0;
fs_info = BTRFS_I(mapping->host)->root->fs_info;
/* this is a bit racy, but that's ok */
ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
BTRFS_DIRTY_METADATA_THRESH);
if (ret < 0)
return 0;
}
return btree_write_cache_pages(mapping, wbc);
}
static int btree_readpage(struct file *file, struct page *page)
{
struct extent_io_tree *tree;
tree = &BTRFS_I(page->mapping->host)->io_tree;
return extent_read_full_page(tree, page, btree_get_extent, 0);
}
static int btree_releasepage(struct page *page, gfp_t gfp_flags)
{
if (PageWriteback(page) || PageDirty(page))
return 0;
return try_release_extent_buffer(page);
}
static void btree_invalidatepage(struct page *page, unsigned int offset,
unsigned int length)
{
struct extent_io_tree *tree;
tree = &BTRFS_I(page->mapping->host)->io_tree;
extent_invalidatepage(tree, page, offset);
btree_releasepage(page, GFP_NOFS);
if (PagePrivate(page)) {
btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
"page private not zero on page %llu",
(unsigned long long)page_offset(page));
ClearPagePrivate(page);
set_page_private(page, 0);
page_cache_release(page);
}
}
static int btree_set_page_dirty(struct page *page)
{
#ifdef DEBUG
struct extent_buffer *eb;
BUG_ON(!PagePrivate(page));
eb = (struct extent_buffer *)page->private;
BUG_ON(!eb);
BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
BUG_ON(!atomic_read(&eb->refs));
btrfs_assert_tree_locked(eb);
#endif
return __set_page_dirty_nobuffers(page);
}
static const struct address_space_operations btree_aops = {
.readpage = btree_readpage,
.writepages = btree_writepages,
.releasepage = btree_releasepage,
.invalidatepage = btree_invalidatepage,
#ifdef CONFIG_MIGRATION
.migratepage = btree_migratepage,
#endif
.set_page_dirty = btree_set_page_dirty,
};
int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
u64 parent_transid)
{
struct extent_buffer *buf = NULL;
struct inode *btree_inode = root->fs_info->btree_inode;
int ret = 0;
buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
if (!buf)
return 0;
read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
buf, 0, WAIT_NONE, btree_get_extent, 0);
free_extent_buffer(buf);
return ret;
}
int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
int mirror_num, struct extent_buffer **eb)
{
struct extent_buffer *buf = NULL;
struct inode *btree_inode = root->fs_info->btree_inode;
struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
int ret;
buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
if (!buf)
return 0;
set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
btree_get_extent, mirror_num);
if (ret) {
free_extent_buffer(buf);
return ret;
}
if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
free_extent_buffer(buf);
return -EIO;
} else if (extent_buffer_uptodate(buf)) {
*eb = buf;
} else {
free_extent_buffer(buf);
}
return 0;
}
struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
u64 bytenr, u32 blocksize)
{
return find_extent_buffer(root->fs_info, bytenr);
}
struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
u64 bytenr, u32 blocksize)
{
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
return alloc_test_extent_buffer(root->fs_info, bytenr,
blocksize);
#endif
return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
}
int btrfs_write_tree_block(struct extent_buffer *buf)
{
return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
buf->start + buf->len - 1);
}
int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
{
return filemap_fdatawait_range(buf->pages[0]->mapping,
buf->start, buf->start + buf->len - 1);
}
struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
u32 blocksize, u64 parent_transid)
{
struct extent_buffer *buf = NULL;
int ret;
buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
if (!buf)
return NULL;
ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
if (ret) {
free_extent_buffer(buf);
return NULL;
}
return buf;
}
void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
struct extent_buffer *buf)
{
struct btrfs_fs_info *fs_info = root->fs_info;
if (btrfs_header_generation(buf) ==
fs_info->running_transaction->transid) {
btrfs_assert_tree_locked(buf);
if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
__percpu_counter_add(&fs_info->dirty_metadata_bytes,
-buf->len,
fs_info->dirty_metadata_batch);
/* ugh, clear_extent_buffer_dirty needs to lock the page */
btrfs_set_lock_blocking(buf);
clear_extent_buffer_dirty(buf);
}
}
}
static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
{
struct btrfs_subvolume_writers *writers;
int ret;
writers = kmalloc(sizeof(*writers), GFP_NOFS);
if (!writers)
return ERR_PTR(-ENOMEM);
ret = percpu_counter_init(&writers->counter, 0);
if (ret < 0) {
kfree(writers);
return ERR_PTR(ret);
}
init_waitqueue_head(&writers->wait);
return writers;
}
static void
btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
{
percpu_counter_destroy(&writers->counter);
kfree(writers);
}
static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
u32 stripesize, struct btrfs_root *root,
struct btrfs_fs_info *fs_info,
u64 objectid)
{
root->node = NULL;
root->commit_root = NULL;
root->sectorsize = sectorsize;
root->nodesize = nodesize;
root->leafsize = leafsize;
root->stripesize = stripesize;
root->state = 0;
root->orphan_cleanup_state = 0;
root->objectid = objectid;
root->last_trans = 0;
root->highest_objectid = 0;
root->nr_delalloc_inodes = 0;
root->nr_ordered_extents = 0;
root->name = NULL;
root->inode_tree = RB_ROOT;
INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
root->block_rsv = NULL;
root->orphan_block_rsv = NULL;
INIT_LIST_HEAD(&root->dirty_list);
INIT_LIST_HEAD(&root->root_list);
INIT_LIST_HEAD(&root->delalloc_inodes);
INIT_LIST_HEAD(&root->delalloc_root);
INIT_LIST_HEAD(&root->ordered_extents);
INIT_LIST_HEAD(&root->ordered_root);
INIT_LIST_HEAD(&root->logged_list[0]);
INIT_LIST_HEAD(&root->logged_list[1]);
spin_lock_init(&root->orphan_lock);
spin_lock_init(&root->inode_lock);
spin_lock_init(&root->delalloc_lock);
spin_lock_init(&root->ordered_extent_lock);
spin_lock_init(&root->accounting_lock);
spin_lock_init(&root->log_extents_lock[0]);
spin_lock_init(&root->log_extents_lock[1]);
mutex_init(&root->objectid_mutex);
mutex_init(&root->log_mutex);
mutex_init(&root->ordered_extent_mutex);
mutex_init(&root->delalloc_mutex);
init_waitqueue_head(&root->log_writer_wait);
init_waitqueue_head(&root->log_commit_wait[0]);
init_waitqueue_head(&root->log_commit_wait[1]);
INIT_LIST_HEAD(&root->log_ctxs[0]);
INIT_LIST_HEAD(&root->log_ctxs[1]);
atomic_set(&root->log_commit[0], 0);
atomic_set(&root->log_commit[1], 0);
atomic_set(&root->log_writers, 0);
atomic_set(&root->log_batch, 0);
atomic_set(&root->orphan_inodes, 0);
atomic_set(&root->refs, 1);
atomic_set(&root->will_be_snapshoted, 0);
root->log_transid = 0;
root->log_transid_committed = -1;
root->last_log_commit = 0;
if (fs_info)
extent_io_tree_init(&root->dirty_log_pages,
fs_info->btree_inode->i_mapping);
memset(&root->root_key, 0, sizeof(root->root_key));
memset(&root->root_item, 0, sizeof(root->root_item));
memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
memset(&root->root_kobj, 0, sizeof(root->root_kobj));
if (fs_info)
root->defrag_trans_start = fs_info->generation;
else
root->defrag_trans_start = 0;
init_completion(&root->kobj_unregister);
root->root_key.objectid = objectid;
root->anon_dev = 0;
spin_lock_init(&root->root_item_lock);
}
static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
{
struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
if (root)
root->fs_info = fs_info;
return root;
}
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
/* Should only be used by the testing infrastructure */
struct btrfs_root *btrfs_alloc_dummy_root(void)
{
struct btrfs_root *root;
root = btrfs_alloc_root(NULL);
if (!root)
return ERR_PTR(-ENOMEM);
__setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
root->alloc_bytenr = 0;
return root;
}
#endif
struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
struct btrfs_fs_info *fs_info,
u64 objectid)
{
struct extent_buffer *leaf;
struct btrfs_root *tree_root = fs_info->tree_root;
struct btrfs_root *root;
struct btrfs_key key;
int ret = 0;
uuid_le uuid;
root = btrfs_alloc_root(fs_info);
if (!root)
return ERR_PTR(-ENOMEM);
__setup_root(tree_root->nodesize, tree_root->leafsize,
tree_root->sectorsize, tree_root->stripesize,
root, fs_info, objectid);
root->root_key.objectid = objectid;
root->root_key.type = BTRFS_ROOT_ITEM_KEY;
root->root_key.offset = 0;
leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
0, objectid, NULL, 0, 0, 0);
if (IS_ERR(leaf)) {
ret = PTR_ERR(leaf);
leaf = NULL;
goto fail;
}
memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
btrfs_set_header_bytenr(leaf, leaf->start);
btrfs_set_header_generation(leaf, trans->transid);
btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
btrfs_set_header_owner(leaf, objectid);
root->node = leaf;
write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
BTRFS_FSID_SIZE);
write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
btrfs_header_chunk_tree_uuid(leaf),
BTRFS_UUID_SIZE);
btrfs_mark_buffer_dirty(leaf);
root->commit_root = btrfs_root_node(root);
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
root->root_item.flags = 0;
root->root_item.byte_limit = 0;
btrfs_set_root_bytenr(&root->root_item, leaf->start);
btrfs_set_root_generation(&root->root_item, trans->transid);
btrfs_set_root_level(&root->root_item, 0);
btrfs_set_root_refs(&root->root_item, 1);
btrfs_set_root_used(&root->root_item, leaf->len);
btrfs_set_root_last_snapshot(&root->root_item, 0);
btrfs_set_root_dirid(&root->root_item, 0);
uuid_le_gen(&uuid);
memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
root->root_item.drop_level = 0;
key.objectid = objectid;
key.type = BTRFS_ROOT_ITEM_KEY;
key.offset = 0;
ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
if (ret)
goto fail;
btrfs_tree_unlock(leaf);
return root;
fail:
if (leaf) {
btrfs_tree_unlock(leaf);
free_extent_buffer(root->commit_root);
free_extent_buffer(leaf);
}
kfree(root);
return ERR_PTR(ret);
}
static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
struct btrfs_fs_info *fs_info)
{
struct btrfs_root *root;
struct btrfs_root *tree_root = fs_info->tree_root;
struct extent_buffer *leaf;
root = btrfs_alloc_root(fs_info);
if (!root)
return ERR_PTR(-ENOMEM);
__setup_root(tree_root->nodesize, tree_root->leafsize,
tree_root->sectorsize, tree_root->stripesize,
root, fs_info, BTRFS_TREE_LOG_OBJECTID);
root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
root->root_key.type = BTRFS_ROOT_ITEM_KEY;
root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
/*
* DON'T set REF_COWS for log trees
*
* log trees do not get reference counted because they go away
* before a real commit is actually done. They do store pointers
* to file data extents, and those reference counts still get
* updated (along with back refs to the log tree).
*/
leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
BTRFS_TREE_LOG_OBJECTID, NULL,
0, 0, 0);
if (IS_ERR(leaf)) {
kfree(root);
return ERR_CAST(leaf);
}
memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
btrfs_set_header_bytenr(leaf, leaf->start);
btrfs_set_header_generation(leaf, trans->transid);
btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
root->node = leaf;
write_extent_buffer(root->node, root->fs_info->fsid,
btrfs_header_fsid(), BTRFS_FSID_SIZE);
btrfs_mark_buffer_dirty(root->node);
btrfs_tree_unlock(root->node);
return root;
}
int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
struct btrfs_fs_info *fs_info)
{
struct btrfs_root *log_root;
log_root = alloc_log_tree(trans, fs_info);
if (IS_ERR(log_root))
return PTR_ERR(log_root);
WARN_ON(fs_info->log_root_tree);
fs_info->log_root_tree = log_root;
return 0;
}
int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct btrfs_root *log_root;
struct btrfs_inode_item *inode_item;
log_root = alloc_log_tree(trans, root->fs_info);
if (IS_ERR(log_root))
return PTR_ERR(log_root);
log_root->last_trans = trans->transid;
log_root->root_key.offset = root->root_key.objectid;
inode_item = &log_root->root_item.inode;
btrfs_set_stack_inode_generation(inode_item, 1);
btrfs_set_stack_inode_size(inode_item, 3);
btrfs_set_stack_inode_nlink(inode_item, 1);
btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
btrfs_set_root_node(&log_root->root_item, log_root->node);
WARN_ON(root->log_root);
root->log_root = log_root;
root->log_transid = 0;
root->log_transid_committed = -1;
root->last_log_commit = 0;
return 0;
}
static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
struct btrfs_key *key)
{
struct btrfs_root *root;
struct btrfs_fs_info *fs_info = tree_root->fs_info;
struct btrfs_path *path;
u64 generation;
u32 blocksize;
int ret;
path = btrfs_alloc_path();
if (!path)
return ERR_PTR(-ENOMEM);
root = btrfs_alloc_root(fs_info);
if (!root) {
ret = -ENOMEM;
goto alloc_fail;
}
__setup_root(tree_root->nodesize, tree_root->leafsize,
tree_root->sectorsize, tree_root->stripesize,
root, fs_info, key->objectid);
ret = btrfs_find_root(tree_root, key, path,
&root->root_item, &root->root_key);
if (ret) {
if (ret > 0)
ret = -ENOENT;
goto find_fail;
}
generation = btrfs_root_generation(&root->root_item);
blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
blocksize, generation);
if (!root->node) {
ret = -ENOMEM;
goto find_fail;
} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
ret = -EIO;
goto read_fail;
}
root->commit_root = btrfs_root_node(root);
out:
btrfs_free_path(path);
return root;
read_fail:
free_extent_buffer(root->node);
find_fail:
kfree(root);
alloc_fail:
root = ERR_PTR(ret);
goto out;
}
struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
struct btrfs_key *location)
{
struct btrfs_root *root;
root = btrfs_read_tree_root(tree_root, location);
if (IS_ERR(root))
return root;
if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
set_bit(BTRFS_ROOT_REF_COWS, &root->state);
btrfs_check_and_init_root_item(&root->root_item);
}
return root;
}
int btrfs_init_fs_root(struct btrfs_root *root)
{
int ret;
struct btrfs_subvolume_writers *writers;
root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
GFP_NOFS);
if (!root->free_ino_pinned || !root->free_ino_ctl) {
ret = -ENOMEM;
goto fail;
}
writers = btrfs_alloc_subvolume_writers();
if (IS_ERR(writers)) {
ret = PTR_ERR(writers);
goto fail;
}
root->subv_writers = writers;
btrfs_init_free_ino_ctl(root);
spin_lock_init(&root->cache_lock);
init_waitqueue_head(&root->cache_wait);
ret = get_anon_bdev(&root->anon_dev);
if (ret)
goto free_writers;
return 0;
free_writers:
btrfs_free_subvolume_writers(root->subv_writers);
fail:
kfree(root->free_ino_ctl);
kfree(root->free_ino_pinned);
return ret;
}
static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
u64 root_id)
{
struct btrfs_root *root;
spin_lock(&fs_info->fs_roots_radix_lock);
root = radix_tree_lookup(&fs_info->fs_roots_radix,
(unsigned long)root_id);
spin_unlock(&fs_info->fs_roots_radix_lock);
return root;
}
int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
struct btrfs_root *root)
{
int ret;
ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
if (ret)
return ret;
spin_lock(&fs_info->fs_roots_radix_lock);
ret = radix_tree_insert(&fs_info->fs_roots_radix,
(unsigned long)root->root_key.objectid,
root);
if (ret == 0)
set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
spin_unlock(&fs_info->fs_roots_radix_lock);
radix_tree_preload_end();
return ret;
}
struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
struct btrfs_key *location,
bool check_ref)
{
struct btrfs_root *root;
int ret;
if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
return fs_info->tree_root;
if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
return fs_info->extent_root;
if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
return fs_info->chunk_root;
if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
return fs_info->dev_root;
if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
return fs_info->csum_root;
if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
return fs_info->quota_root ? fs_info->quota_root :
ERR_PTR(-ENOENT);
if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
return fs_info->uuid_root ? fs_info->uuid_root :
ERR_PTR(-ENOENT);
again:
root = btrfs_lookup_fs_root(fs_info, location->objectid);
if (root) {
if (check_ref && btrfs_root_refs(&root->root_item) == 0)
return ERR_PTR(-ENOENT);
return root;
}
root = btrfs_read_fs_root(fs_info->tree_root, location);
if (IS_ERR(root))
return root;
if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
ret = -ENOENT;
goto fail;
}
ret = btrfs_init_fs_root(root);
if (ret)
goto fail;
ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
if (ret < 0)
goto fail;
if (ret == 0)
set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
ret = btrfs_insert_fs_root(fs_info, root);
if (ret) {
if (ret == -EEXIST) {
free_fs_root(root);
goto again;
}
goto fail;
}
return root;
fail:
free_fs_root(root);
return ERR_PTR(ret);
}
static int btrfs_congested_fn(void *congested_data, int bdi_bits)
{
struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
int ret = 0;
struct btrfs_device *device;
struct backing_dev_info *bdi;
rcu_read_lock();
list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
if (!device->bdev)
continue;
bdi = blk_get_backing_dev_info(device->bdev);
if (bdi && bdi_congested(bdi, bdi_bits)) {
ret = 1;
break;
}
}
rcu_read_unlock();
return ret;
}
/*
* If this fails, caller must call bdi_destroy() to get rid of the
* bdi again.
*/
static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
{
int err;
bdi->capabilities = BDI_CAP_MAP_COPY;
err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
if (err)
return err;
bdi->ra_pages = default_backing_dev_info.ra_pages;
bdi->congested_fn = btrfs_congested_fn;
bdi->congested_data = info;
return 0;
}
/*
* called by the kthread helper functions to finally call the bio end_io
* functions. This is where read checksum verification actually happens
*/
static void end_workqueue_fn(struct btrfs_work *work)
{
struct bio *bio;
struct end_io_wq *end_io_wq;
int error;
end_io_wq = container_of(work, struct end_io_wq, work);
bio = end_io_wq->bio;
error = end_io_wq->error;
bio->bi_private = end_io_wq->private;
bio->bi_end_io = end_io_wq->end_io;
kfree(end_io_wq);
bio_endio_nodec(bio, error);
}
static int cleaner_kthread(void *arg)
{
struct btrfs_root *root = arg;
int again;
do {
again = 0;
/* Make the cleaner go to sleep early. */
if (btrfs_need_cleaner_sleep(root))
goto sleep;
if (!mutex_trylock(&root->fs_info->cleaner_mutex))
goto sleep;
/*
* Avoid the problem that we change the status of the fs
* during the above check and trylock.
*/
if (btrfs_need_cleaner_sleep(root)) {
mutex_unlock(&root->fs_info->cleaner_mutex);
goto sleep;
}
btrfs_run_delayed_iputs(root);
again = btrfs_clean_one_deleted_snapshot(root);
mutex_unlock(&root->fs_info->cleaner_mutex);
/*
* The defragger has dealt with the R/O remount and umount,
* needn't do anything special here.
*/
btrfs_run_defrag_inodes(root->fs_info);
sleep:
if (!try_to_freeze() && !again) {
set_current_state(TASK_INTERRUPTIBLE);
if (!kthread_should_stop())
schedule();
__set_current_state(TASK_RUNNING);
}
} while (!kthread_should_stop());
return 0;
}
static int transaction_kthread(void *arg)
{
struct btrfs_root *root = arg;
struct btrfs_trans_handle *trans;
struct btrfs_transaction *cur;
u64 transid;
unsigned long now;
unsigned long delay;
bool cannot_commit;
do {
cannot_commit = false;
delay = HZ * root->fs_info->commit_interval;
mutex_lock(&root->fs_info->transaction_kthread_mutex);
spin_lock(&root->fs_info->trans_lock);
cur = root->fs_info->running_transaction;
if (!cur) {
spin_unlock(&root->fs_info->trans_lock);
goto sleep;
}
now = get_seconds();
if (cur->state < TRANS_STATE_BLOCKED &&
(now < cur->start_time ||
now - cur->start_time < root->fs_info->commit_interval)) {
spin_unlock(&root->fs_info->trans_lock);
delay = HZ * 5;
goto sleep;
}
transid = cur->transid;
spin_unlock(&root->fs_info->trans_lock);
/* If the file system is aborted, this will always fail. */
trans = btrfs_attach_transaction(root);
if (IS_ERR(trans)) {
if (PTR_ERR(trans) != -ENOENT)
cannot_commit = true;
goto sleep;
}
if (transid == trans->transid) {
btrfs_commit_transaction(trans, root);
} else {
btrfs_end_transaction(trans, root);
}
sleep:
wake_up_process(root->fs_info->cleaner_kthread);
mutex_unlock(&root->fs_info->transaction_kthread_mutex);
if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
&root->fs_info->fs_state)))
btrfs_cleanup_transaction(root);
if (!try_to_freeze()) {
set_current_state(TASK_INTERRUPTIBLE);
if (!kthread_should_stop() &&
(!btrfs_transaction_blocked(root->fs_info) ||
cannot_commit))
schedule_timeout(delay);
__set_current_state(TASK_RUNNING);
}
} while (!kthread_should_stop());
return 0;
}
/*
* this will find the highest generation in the array of
* root backups. The index of the highest array is returned,
* or -1 if we can't find anything.
*
* We check to make sure the array is valid by comparing the
* generation of the latest root in the array with the generation
* in the super block. If they don't match we pitch it.
*/
static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
{
u64 cur;
int newest_index = -1;
struct btrfs_root_backup *root_backup;
int i;
for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
root_backup = info->super_copy->super_roots + i;
cur = btrfs_backup_tree_root_gen(root_backup);
if (cur == newest_gen)
newest_index = i;
}
/* check to see if we actually wrapped around */
if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
root_backup = info->super_copy->super_roots;
cur = btrfs_backup_tree_root_gen(root_backup);
if (cur == newest_gen)
newest_index = 0;
}
return newest_index;
}
/*
* find the oldest backup so we know where to store new entries
* in the backup array. This will set the backup_root_index
* field in the fs_info struct
*/
static void find_oldest_super_backup(struct btrfs_fs_info *info,
u64 newest_gen)
{
int newest_index = -1;
newest_index = find_newest_super_backup(info, newest_gen);
/* if there was garbage in there, just move along */
if (newest_index == -1) {
info->backup_root_index = 0;
} else {
info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
}
}
/*
* copy all the root pointers into the super backup array.
* this will bump the backup pointer by one when it is
* done
*/
static void backup_super_roots(struct btrfs_fs_info *info)
{
int next_backup;
struct btrfs_root_backup *root_backup;
int last_backup;
next_backup = info->backup_root_index;
last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
BTRFS_NUM_BACKUP_ROOTS;
/*
* just overwrite the last backup if we're at the same generation
* this happens only at umount
*/
root_backup = info->super_for_commit->super_roots + last_backup;
if (btrfs_backup_tree_root_gen(root_backup) ==
btrfs_header_generation(info->tree_root->node))
next_backup = last_backup;
root_backup = info->super_for_commit->super_roots + next_backup;
/*
* make sure all of our padding and empty slots get zero filled
* regardless of which ones we use today
*/
memset(root_backup, 0, sizeof(*root_backup));
info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
btrfs_set_backup_tree_root_gen(root_backup,
btrfs_header_generation(info->tree_root->node));
btrfs_set_backup_tree_root_level(root_backup,
btrfs_header_level(info->tree_root->node));
btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
btrfs_set_backup_chunk_root_gen(root_backup,
btrfs_header_generation(info->chunk_root->node));
btrfs_set_backup_chunk_root_level(root_backup,
btrfs_header_level(info->chunk_root->node));
btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
btrfs_set_backup_extent_root_gen(root_backup,
btrfs_header_generation(info->extent_root->node));
btrfs_set_backup_extent_root_level(root_backup,
btrfs_header_level(info->extent_root->node));
/*
* we might commit during log recovery, which happens before we set
* the fs_root. Make sure it is valid before we fill it in.
*/
if (info->fs_root && info->fs_root->node) {
btrfs_set_backup_fs_root(root_backup,
info->fs_root->node->start);
btrfs_set_backup_fs_root_gen(root_backup,
btrfs_header_generation(info->fs_root->node));
btrfs_set_backup_fs_root_level(root_backup,
btrfs_header_level(info->fs_root->node));
}
btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
btrfs_set_backup_dev_root_gen(root_backup,
btrfs_header_generation(info->dev_root->node));
btrfs_set_backup_dev_root_level(root_backup,
btrfs_header_level(info->dev_root->node));
btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
btrfs_set_backup_csum_root_gen(root_backup,
btrfs_header_generation(info->csum_root->node));
btrfs_set_backup_csum_root_level(root_backup,
btrfs_header_level(info->csum_root->node));
btrfs_set_backup_total_bytes(root_backup,
btrfs_super_total_bytes(info->super_copy));
btrfs_set_backup_bytes_used(root_backup,
btrfs_super_bytes_used(info->super_copy));
btrfs_set_backup_num_devices(root_backup,
btrfs_super_num_devices(info->super_copy));
/*
* if we don't copy this out to the super_copy, it won't get remembered
* for the next commit
*/
memcpy(&info->super_copy->super_roots,
&info->super_for_commit->super_roots,
sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
}
/*
* this copies info out of the root backup array and back into
* the in-memory super block. It is meant to help iterate through
* the array, so you send it the number of backups you've already
* tried and the last backup index you used.
*
* this returns -1 when it has tried all the backups
*/
static noinline int next_root_backup(struct btrfs_fs_info *info,
struct btrfs_super_block *super,
int *num_backups_tried, int *backup_index)
{
struct btrfs_root_backup *root_backup;
int newest = *backup_index;
if (*num_backups_tried == 0) {
u64 gen = btrfs_super_generation(super);
newest = find_newest_super_backup(info, gen);
if (newest == -1)
return -1;
*backup_index = newest;
*num_backups_tried = 1;
} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
/* we've tried all the backups, all done */
return -1;
} else {
/* jump to the next oldest backup */
newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
BTRFS_NUM_BACKUP_ROOTS;
*backup_index = newest;
*num_backups_tried += 1;
}
root_backup = super->super_roots + newest;
btrfs_set_super_generation(super,
btrfs_backup_tree_root_gen(root_backup));
btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
btrfs_set_super_root_level(super,
btrfs_backup_tree_root_level(root_backup));
btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
/*
* fixme: the total bytes and num_devices need to match or we should
* need a fsck
*/
btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
return 0;
}
/* helper to cleanup workers */
static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
{
btrfs_destroy_workqueue(fs_info->fixup_workers);
btrfs_destroy_workqueue(fs_info->delalloc_workers);
btrfs_destroy_workqueue(fs_info->workers);
btrfs_destroy_workqueue(fs_info->endio_workers);
btrfs_destroy_workqueue(fs_info->endio_meta_workers);
btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
btrfs_destroy_workqueue(fs_info->rmw_workers);
btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
btrfs_destroy_workqueue(fs_info->endio_write_workers);
btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
btrfs_destroy_workqueue(fs_info->submit_workers);
btrfs_destroy_workqueue(fs_info->delayed_workers);
btrfs_destroy_workqueue(fs_info->caching_workers);
btrfs_destroy_workqueue(fs_info->readahead_workers);
btrfs_destroy_workqueue(fs_info->flush_workers);
btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
btrfs_destroy_workqueue(fs_info->extent_workers);
}
static void free_root_extent_buffers(struct btrfs_root *root)
{
if (root) {
free_extent_buffer(root->node);
free_extent_buffer(root->commit_root);
root->node = NULL;
root->commit_root = NULL;
}
}
/* helper to cleanup tree roots */
static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
{
free_root_extent_buffers(info->tree_root);
free_root_extent_buffers(info->dev_root);
free_root_extent_buffers(info->extent_root);
free_root_extent_buffers(info->csum_root);
free_root_extent_buffers(info->quota_root);
free_root_extent_buffers(info->uuid_root);
if (chunk_root)
free_root_extent_buffers(info->chunk_root);
}
void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
{
int ret;
struct btrfs_root *gang[8];
int i;
while (!list_empty(&fs_info->dead_roots)) {
gang[0] = list_entry(fs_info->dead_roots.next,
struct btrfs_root, root_list);
list_del(&gang[0]->root_list);
if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
btrfs_drop_and_free_fs_root(fs_info, gang[0]);
} else {
free_extent_buffer(gang[0]->node);
free_extent_buffer(gang[0]->commit_root);
btrfs_put_fs_root(gang[0]);
}
}
while (1) {
ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
(void **)gang, 0,
ARRAY_SIZE(gang));
if (!ret)
break;
for (i = 0; i < ret; i++)
btrfs_drop_and_free_fs_root(fs_info, gang[i]);
}
if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
btrfs_free_log_root_tree(NULL, fs_info);
btrfs_destroy_pinned_extent(fs_info->tree_root,
fs_info->pinned_extents);
}
}
int open_ctree(struct super_block *sb,
struct btrfs_fs_devices *fs_devices,
char *options)
{
u32 sectorsize;
u32 nodesize;
u32 leafsize;
u32 blocksize;
u32 stripesize;
u64 generation;
u64 features;
struct btrfs_key location;
struct buffer_head *bh;
struct btrfs_super_block *disk_super;
struct btrfs_fs_info *fs_info = btrfs_sb(sb);
struct btrfs_root *tree_root;
struct btrfs_root *extent_root;
struct btrfs_root *csum_root;
struct btrfs_root *chunk_root;
struct btrfs_root *dev_root;
struct btrfs_root *quota_root;
struct btrfs_root *uuid_root;
struct btrfs_root *log_tree_root;
int ret;
int err = -EINVAL;
int num_backups_tried = 0;
int backup_index = 0;
int max_active;
int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
bool create_uuid_tree;
bool check_uuid_tree;
tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
if (!tree_root || !chunk_root) {
err = -ENOMEM;
goto fail;
}
ret = init_srcu_struct(&fs_info->subvol_srcu);
if (ret) {
err = ret;
goto fail;
}
ret = setup_bdi(fs_info, &fs_info->bdi);
if (ret) {
err = ret;
goto fail_srcu;
}
ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
if (ret) {
err = ret;
goto fail_bdi;
}
fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
(1 + ilog2(nr_cpu_ids));
ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
if (ret) {
err = ret;
goto fail_dirty_metadata_bytes;
}
ret = percpu_counter_init(&fs_info->bio_counter, 0);
if (ret) {
err = ret;
goto fail_delalloc_bytes;
}
fs_info->btree_inode = new_inode(sb);
if (!fs_info->btree_inode) {
err = -ENOMEM;
goto fail_bio_counter;
}
mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
INIT_LIST_HEAD(&fs_info->trans_list);
INIT_LIST_HEAD(&fs_info->dead_roots);
INIT_LIST_HEAD(&fs_info->delayed_iputs);
INIT_LIST_HEAD(&fs_info->delalloc_roots);
INIT_LIST_HEAD(&fs_info->caching_block_groups);
spin_lock_init(&fs_info->delalloc_root_lock);
spin_lock_init(&fs_info->trans_lock);
spin_lock_init(&fs_info->fs_roots_radix_lock);
spin_lock_init(&fs_info->delayed_iput_lock);
spin_lock_init(&fs_info->defrag_inodes_lock);
spin_lock_init(&fs_info->free_chunk_lock);
spin_lock_init(&fs_info->tree_mod_seq_lock);
spin_lock_init(&fs_info->super_lock);
spin_lock_init(&fs_info->qgroup_op_lock);
spin_lock_init(&fs_info->buffer_lock);
rwlock_init(&fs_info->tree_mod_log_lock);
mutex_init(&fs_info->reloc_mutex);
mutex_init(&fs_info->delalloc_root_mutex);
seqlock_init(&fs_info->profiles_lock);
init_completion(&fs_info->kobj_unregister);
INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
INIT_LIST_HEAD(&fs_info->space_info);
INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
btrfs_mapping_init(&fs_info->mapping_tree);
btrfs_init_block_rsv(&fs_info->global_block_rsv,
BTRFS_BLOCK_RSV_GLOBAL);
btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
BTRFS_BLOCK_RSV_DELALLOC);
btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
BTRFS_BLOCK_RSV_DELOPS);
atomic_set(&fs_info->nr_async_submits, 0);
atomic_set(&fs_info->async_delalloc_pages, 0);
atomic_set(&fs_info->async_submit_draining, 0);
atomic_set(&fs_info->nr_async_bios, 0);
atomic_set(&fs_info->defrag_running, 0);
atomic_set(&fs_info->qgroup_op_seq, 0);
atomic64_set(&fs_info->tree_mod_seq, 0);
fs_info->sb = sb;
fs_info->max_inline = 8192 * 1024;
fs_info->metadata_ratio = 0;
fs_info->defrag_inodes = RB_ROOT;
fs_info->free_chunk_space = 0;
fs_info->tree_mod_log = RB_ROOT;
fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
/* readahead state */
INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
spin_lock_init(&fs_info->reada_lock);
fs_info->thread_pool_size = min_t(unsigned long,
num_online_cpus() + 2, 8);
INIT_LIST_HEAD(&fs_info->ordered_roots);
spin_lock_init(&fs_info->ordered_root_lock);
fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
GFP_NOFS);
if (!fs_info->delayed_root) {
err = -ENOMEM;
goto fail_iput;
}
btrfs_init_delayed_root(fs_info->delayed_root);
mutex_init(&fs_info->scrub_lock);
atomic_set(&fs_info->scrubs_running, 0);
atomic_set(&fs_info->scrub_pause_req, 0);
atomic_set(&fs_info->scrubs_paused, 0);
atomic_set(&fs_info->scrub_cancel_req, 0);
init_waitqueue_head(&fs_info->replace_wait);
init_waitqueue_head(&fs_info->scrub_pause_wait);
fs_info->scrub_workers_refcnt = 0;
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
fs_info->check_integrity_print_mask = 0;
#endif
spin_lock_init(&fs_info->balance_lock);
mutex_init(&fs_info->balance_mutex);
atomic_set(&fs_info->balance_running, 0);
atomic_set(&fs_info->balance_pause_req, 0);
atomic_set(&fs_info->balance_cancel_req, 0);
fs_info->balance_ctl = NULL;
init_waitqueue_head(&fs_info->balance_wait_q);
btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
sb->s_blocksize = 4096;
sb->s_blocksize_bits = blksize_bits(4096);
sb->s_bdi = &fs_info->bdi;
fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
set_nlink(fs_info->btree_inode, 1);
/*
* we set the i_size on the btree inode to the max possible int.
* the real end of the address space is determined by all of
* the devices in the system
*/
fs_info->btree_inode->i_size = OFFSET_MAX;
fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
fs_info->btree_inode->i_mapping);
BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
BTRFS_I(fs_info->btree_inode)->root = tree_root;
memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
sizeof(struct btrfs_key));
set_bit(BTRFS_INODE_DUMMY,
&BTRFS_I(fs_info->btree_inode)->runtime_flags);
btrfs_insert_inode_hash(fs_info->btree_inode);
spin_lock_init(&fs_info->block_group_cache_lock);
fs_info->block_group_cache_tree = RB_ROOT;
fs_info->first_logical_byte = (u64)-1;
extent_io_tree_init(&fs_info->freed_extents[0],
fs_info->btree_inode->i_mapping);
extent_io_tree_init(&fs_info->freed_extents[1],
fs_info->btree_inode->i_mapping);
fs_info->pinned_extents = &fs_info->freed_extents[0];
fs_info->do_barriers = 1;
mutex_init(&fs_info->ordered_operations_mutex);
mutex_init(&fs_info->ordered_extent_flush_mutex);
mutex_init(&fs_info->tree_log_mutex);
mutex_init(&fs_info->chunk_mutex);
mutex_init(&fs_info->transaction_kthread_mutex);
mutex_init(&fs_info->cleaner_mutex);
mutex_init(&fs_info->volume_mutex);
init_rwsem(&fs_info->commit_root_sem);
init_rwsem(&fs_info->cleanup_work_sem);
init_rwsem(&fs_info->subvol_sem);
sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fs_info->dev_replace.lock_owner = 0;
atomic_set(&fs_info->dev_replace.nesting_level, 0);
mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
mutex_init(&fs_info->dev_replace.lock_management_lock);
mutex_init(&fs_info->dev_replace.lock);
spin_lock_init(&fs_info->qgroup_lock);
mutex_init(&fs_info->qgroup_ioctl_lock);
fs_info->qgroup_tree = RB_ROOT;
fs_info->qgroup_op_tree = RB_ROOT;
INIT_LIST_HEAD(&fs_info->dirty_qgroups);
fs_info->qgroup_seq = 1;
fs_info->quota_enabled = 0;
fs_info->pending_quota_state = 0;
fs_info->qgroup_ulist = NULL;
mutex_init(&fs_info->qgroup_rescan_lock);
btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
init_waitqueue_head(&fs_info->transaction_throttle);
init_waitqueue_head(&fs_info->transaction_wait);
init_waitqueue_head(&fs_info->transaction_blocked_wait);
init_waitqueue_head(&fs_info->async_submit_wait);
ret = btrfs_alloc_stripe_hash_table(fs_info);
if (ret) {
err = ret;
goto fail_alloc;
}
__setup_root(4096, 4096, 4096, 4096, tree_root,
fs_info, BTRFS_ROOT_TREE_OBJECTID);
invalidate_bdev(fs_devices->latest_bdev);
/*
* Read super block and check the signature bytes only
*/
bh = btrfs_read_dev_super(fs_devices->latest_bdev);
if (!bh) {
err = -EINVAL;
goto fail_alloc;
}
/*
* We want to check superblock checksum, the type is stored inside.
* Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
*/
if (btrfs_check_super_csum(bh->b_data)) {
printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
err = -EINVAL;
goto fail_alloc;
}
/*
* super_copy is zeroed at allocation time and we never touch the
* following bytes up to INFO_SIZE, the checksum is calculated from
* the whole block of INFO_SIZE
*/
memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
memcpy(fs_info->super_for_commit, fs_info->super_copy,
sizeof(*fs_info->super_for_commit));
brelse(bh);
memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
if (ret) {
printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
err = -EINVAL;
goto fail_alloc;
}
disk_super = fs_info->super_copy;
if (!btrfs_super_root(disk_super))
goto fail_alloc;
/* check FS state, whether FS is broken. */
if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
/*
* run through our array of backup supers and setup
* our ring pointer to the oldest one
*/
generation = btrfs_super_generation(disk_super);
find_oldest_super_backup(fs_info, generation);
/*
* In the long term, we'll store the compression type in the super
* block, and it'll be used for per file compression control.
*/
fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
ret = btrfs_parse_options(tree_root, options);
if (ret) {
err = ret;
goto fail_alloc;
}
features = btrfs_super_incompat_flags(disk_super) &
~BTRFS_FEATURE_INCOMPAT_SUPP;
if (features) {
printk(KERN_ERR "BTRFS: couldn't mount because of "
"unsupported optional features (%Lx).\n",
features);
err = -EINVAL;
goto fail_alloc;
}
if (btrfs_super_leafsize(disk_super) !=
btrfs_super_nodesize(disk_super)) {
printk(KERN_ERR "BTRFS: couldn't mount because metadata "
"blocksizes don't match. node %d leaf %d\n",
btrfs_super_nodesize(disk_super),
btrfs_super_leafsize(disk_super));
err = -EINVAL;
goto fail_alloc;
}
if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
printk(KERN_ERR "BTRFS: couldn't mount because metadata "
"blocksize (%d) was too large\n",
btrfs_super_leafsize(disk_super));
err = -EINVAL;
goto fail_alloc;
}
features = btrfs_super_incompat_flags(disk_super);
features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
printk(KERN_ERR "BTRFS: has skinny extents\n");
/*
* flag our filesystem as having big metadata blocks if
* they are bigger than the page size
*/
if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
}
nodesize = btrfs_super_nodesize(disk_super);
leafsize = btrfs_super_leafsize(disk_super);
sectorsize = btrfs_super_sectorsize(disk_super);
stripesize = btrfs_super_stripesize(disk_super);
fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
/*
* mixed block groups end up with duplicate but slightly offset
* extent buffers for the same range. It leads to corruptions
*/
if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
(sectorsize != leafsize)) {
printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
"are not allowed for mixed block groups on %s\n",
sb->s_id);
goto fail_alloc;
}
/*
* Needn't use the lock because there is no other task which will
* update the flag.
*/
btrfs_set_super_incompat_flags(disk_super, features);
features = btrfs_super_compat_ro_flags(disk_super) &
~BTRFS_FEATURE_COMPAT_RO_SUPP;
if (!(sb->s_flags & MS_RDONLY) && features) {
printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
"unsupported option features (%Lx).\n",
features);
err = -EINVAL;
goto fail_alloc;
}
max_active = fs_info->thread_pool_size;
fs_info->workers =
btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
max_active, 16);
fs_info->delalloc_workers =
btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
fs_info->flush_workers =
btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
fs_info->caching_workers =
btrfs_alloc_workqueue("cache", flags, max_active, 0);
/*
* a higher idle thresh on the submit workers makes it much more
* likely that bios will be send down in a sane order to the
* devices
*/
fs_info->submit_workers =
btrfs_alloc_workqueue("submit", flags,
min_t(u64, fs_devices->num_devices,
max_active), 64);
fs_info->fixup_workers =
btrfs_alloc_workqueue("fixup", flags, 1, 0);
/*
* endios are largely parallel and should have a very
* low idle thresh
*/
fs_info->endio_workers =
btrfs_alloc_workqueue("endio", flags, max_active, 4);
fs_info->endio_meta_workers =
btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
fs_info->endio_meta_write_workers =
btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
fs_info->endio_raid56_workers =
btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
fs_info->rmw_workers =
btrfs_alloc_workqueue("rmw", flags, max_active, 2);
fs_info->endio_write_workers =
btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
fs_info->endio_freespace_worker =
btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
fs_info->delayed_workers =
btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
fs_info->readahead_workers =
btrfs_alloc_workqueue("readahead", flags, max_active, 2);
fs_info->qgroup_rescan_workers =
btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
fs_info->extent_workers =
btrfs_alloc_workqueue("extent-refs", flags,
min_t(u64, fs_devices->num_devices,
max_active), 8);
if (!(fs_info->workers && fs_info->delalloc_workers &&
fs_info->submit_workers && fs_info->flush_workers &&
fs_info->endio_workers && fs_info->endio_meta_workers &&
fs_info->endio_meta_write_workers &&
fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
fs_info->endio_freespace_worker && fs_info->rmw_workers &&
fs_info->caching_workers && fs_info->readahead_workers &&
fs_info->fixup_workers && fs_info->delayed_workers &&
fs_info->fixup_workers && fs_info->extent_workers &&
fs_info->qgroup_rescan_workers)) {
err = -ENOMEM;
goto fail_sb_buffer;
}
fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
4 * 1024 * 1024 / PAGE_CACHE_SIZE);
tree_root->nodesize = nodesize;
tree_root->leafsize = leafsize;
tree_root->sectorsize = sectorsize;
tree_root->stripesize = stripesize;
sb->s_blocksize = sectorsize;
sb->s_blocksize_bits = blksize_bits(sectorsize);
if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
goto fail_sb_buffer;
}
if (sectorsize != PAGE_SIZE) {
printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
"found on %s\n", (unsigned long)sectorsize, sb->s_id);
goto fail_sb_buffer;
}
mutex_lock(&fs_info->chunk_mutex);
ret = btrfs_read_sys_array(tree_root);
mutex_unlock(&fs_info->chunk_mutex);
if (ret) {
printk(KERN_WARNING "BTRFS: failed to read the system "
"array on %s\n", sb->s_id);
goto fail_sb_buffer;
}
blocksize = btrfs_level_size(tree_root,
btrfs_super_chunk_root_level(disk_super));
generation = btrfs_super_chunk_root_generation(disk_super);
__setup_root(nodesize, leafsize, sectorsize, stripesize,
chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
chunk_root->node = read_tree_block(chunk_root,
btrfs_super_chunk_root(disk_super),
blocksize, generation);
if (!chunk_root->node ||
!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
sb->s_id);
goto fail_tree_roots;
}
btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
chunk_root->commit_root = btrfs_root_node(chunk_root);
read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
ret = btrfs_read_chunk_tree(chunk_root);
if (ret) {
printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
sb->s_id);
goto fail_tree_roots;
}
/*
* keep the device that is marked to be the target device for the
* dev_replace procedure
*/
btrfs_close_extra_devices(fs_info, fs_devices, 0);
if (!fs_devices->latest_bdev) {
printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
sb->s_id);
goto fail_tree_roots;
}
retry_root_backup:
blocksize = btrfs_level_size(tree_root,
btrfs_super_root_level(disk_super));
generation = btrfs_super_generation(disk_super);
tree_root->node = read_tree_block(tree_root,
btrfs_super_root(disk_super),
blocksize, generation);
if (!tree_root->node ||
!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
sb->s_id);
goto recovery_tree_root;
}
btrfs_set_root_node(&tree_root->root_item, tree_root->node);
tree_root->commit_root = btrfs_root_node(tree_root);
btrfs_set_root_refs(&tree_root->root_item, 1);
location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
location.type = BTRFS_ROOT_ITEM_KEY;
location.offset = 0;
extent_root = btrfs_read_tree_root(tree_root, &location);
if (IS_ERR(extent_root)) {
ret = PTR_ERR(extent_root);
goto recovery_tree_root;
}
set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state);
fs_info->extent_root = extent_root;
location.objectid = BTRFS_DEV_TREE_OBJECTID;
dev_root = btrfs_read_tree_root(tree_root, &location);
if (IS_ERR(dev_root)) {
ret = PTR_ERR(dev_root);
goto recovery_tree_root;
}
set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state);
fs_info->dev_root = dev_root;
btrfs_init_devices_late(fs_info);
location.objectid = BTRFS_CSUM_TREE_OBJECTID;
csum_root = btrfs_read_tree_root(tree_root, &location);
if (IS_ERR(csum_root)) {
ret = PTR_ERR(csum_root);
goto recovery_tree_root;
}
set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state);
fs_info->csum_root = csum_root;
location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
quota_root = btrfs_read_tree_root(tree_root, &location);
if (!IS_ERR(quota_root)) {
set_bit(BTRFS_ROOT_TRACK_DIRTY, &quota_root->state);
fs_info->quota_enabled = 1;
fs_info->pending_quota_state = 1;
fs_info->quota_root = quota_root;
}
location.objectid = BTRFS_UUID_TREE_OBJECTID;
uuid_root = btrfs_read_tree_root(tree_root, &location);
if (IS_ERR(uuid_root)) {
ret = PTR_ERR(uuid_root);
if (ret != -ENOENT)
goto recovery_tree_root;
create_uuid_tree = true;
check_uuid_tree = false;
} else {
set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state);
fs_info->uuid_root = uuid_root;
create_uuid_tree = false;
check_uuid_tree =
generation != btrfs_super_uuid_tree_generation(disk_super);
}
fs_info->generation = generation;
fs_info->last_trans_committed = generation;
ret = btrfs_recover_balance(fs_info);
if (ret) {
printk(KERN_WARNING "BTRFS: failed to recover balance\n");
goto fail_block_groups;
}
ret = btrfs_init_dev_stats(fs_info);
if (ret) {
printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
ret);
goto fail_block_groups;
}
ret = btrfs_init_dev_replace(fs_info);
if (ret) {
pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
goto fail_block_groups;
}
btrfs_close_extra_devices(fs_info, fs_devices, 1);
ret = btrfs_sysfs_add_one(fs_info);
if (ret) {
pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
goto fail_block_groups;
}
ret = btrfs_init_space_info(fs_info);
if (ret) {
printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
goto fail_sysfs;
}
ret = btrfs_read_block_groups(extent_root);
if (ret) {
printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
goto fail_sysfs;
}
fs_info->num_tolerated_disk_barrier_failures =
btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
if (fs_info->fs_devices->missing_devices >
fs_info->num_tolerated_disk_barrier_failures &&
!(sb->s_flags & MS_RDONLY)) {
printk(KERN_WARNING "BTRFS: "
"too many missing devices, writeable mount is not allowed\n");
goto fail_sysfs;
}
fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
"btrfs-cleaner");
if (IS_ERR(fs_info->cleaner_kthread))
goto fail_sysfs;
fs_info->transaction_kthread = kthread_run(transaction_kthread,
tree_root,
"btrfs-transaction");
if (IS_ERR(fs_info->transaction_kthread))
goto fail_cleaner;
if (!btrfs_test_opt(tree_root, SSD) &&
!btrfs_test_opt(tree_root, NOSSD) &&
!fs_info->fs_devices->rotating) {
printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
"mode\n");
btrfs_set_opt(fs_info->mount_opt, SSD);
}
/* Set the real inode map cache flag */
if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
ret = btrfsic_mount(tree_root, fs_devices,
btrfs_test_opt(tree_root,
CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
1 : 0,
fs_info->check_integrity_print_mask);
if (ret)
printk(KERN_WARNING "BTRFS: failed to initialize"
" integrity check module %s\n", sb->s_id);
}
#endif
ret = btrfs_read_qgroup_config(fs_info);
if (ret)
goto fail_trans_kthread;
/* do not make disk changes in broken FS */
if (btrfs_super_log_root(disk_super) != 0) {
u64 bytenr = btrfs_super_log_root(disk_super);
if (fs_devices->rw_devices == 0) {
printk(KERN_WARNING "BTRFS: log replay required "
"on RO media\n");
err = -EIO;
goto fail_qgroup;
}
blocksize =
btrfs_level_size(tree_root,
btrfs_super_log_root_level(disk_super));
log_tree_root = btrfs_alloc_root(fs_info);
if (!log_tree_root) {
err = -ENOMEM;
goto fail_qgroup;
}
__setup_root(nodesize, leafsize, sectorsize, stripesize,
log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
log_tree_root->node = read_tree_block(tree_root, bytenr,
blocksize,
generation + 1);
if (!log_tree_root->node ||
!extent_buffer_uptodate(log_tree_root->node)) {
printk(KERN_ERR "BTRFS: failed to read log tree\n");
free_extent_buffer(log_tree_root->node);
kfree(log_tree_root);
goto fail_qgroup;
}
/* returns with log_tree_root freed on success */
ret = btrfs_recover_log_trees(log_tree_root);
if (ret) {
btrfs_error(tree_root->fs_info, ret,
"Failed to recover log tree");
free_extent_buffer(log_tree_root->node);
kfree(log_tree_root);
goto fail_qgroup;
}
if (sb->s_flags & MS_RDONLY) {
ret = btrfs_commit_super(tree_root);
if (ret)
goto fail_qgroup;
}
}
ret = btrfs_find_orphan_roots(tree_root);
if (ret)
goto fail_qgroup;
if (!(sb->s_flags & MS_RDONLY)) {
ret = btrfs_cleanup_fs_roots(fs_info);
if (ret)
goto fail_qgroup;
mutex_lock(&fs_info->cleaner_mutex);
ret = btrfs_recover_relocation(tree_root);
mutex_unlock(&fs_info->cleaner_mutex);
if (ret < 0) {
printk(KERN_WARNING
"BTRFS: failed to recover relocation\n");
err = -EINVAL;
goto fail_qgroup;
}
}
location.objectid = BTRFS_FS_TREE_OBJECTID;
location.type = BTRFS_ROOT_ITEM_KEY;
location.offset = 0;
fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
if (IS_ERR(fs_info->fs_root)) {
err = PTR_ERR(fs_info->fs_root);
goto fail_qgroup;
}
if (sb->s_flags & MS_RDONLY)
return 0;
down_read(&fs_info->cleanup_work_sem);
if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
(ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
up_read(&fs_info->cleanup_work_sem);
close_ctree(tree_root);
return ret;
}
up_read(&fs_info->cleanup_work_sem);
ret = btrfs_resume_balance_async(fs_info);
if (ret) {
printk(KERN_WARNING "BTRFS: failed to resume balance\n");
close_ctree(tree_root);
return ret;
}
ret = btrfs_resume_dev_replace_async(fs_info);
if (ret) {
pr_warn("BTRFS: failed to resume dev_replace\n");
close_ctree(tree_root);
return ret;
}
btrfs_qgroup_rescan_resume(fs_info);
if (create_uuid_tree) {
pr_info("BTRFS: creating UUID tree\n");
ret = btrfs_create_uuid_tree(fs_info);
if (ret) {
pr_warn("BTRFS: failed to create the UUID tree %d\n",
ret);
close_ctree(tree_root);
return ret;
}
} else if (check_uuid_tree ||
btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
pr_info("BTRFS: checking UUID tree\n");
ret = btrfs_check_uuid_tree(fs_info);
if (ret) {
pr_warn("BTRFS: failed to check the UUID tree %d\n",
ret);
close_ctree(tree_root);
return ret;
}
} else {
fs_info->update_uuid_tree_gen = 1;
}
return 0;
fail_qgroup:
btrfs_free_qgroup_config(fs_info);
fail_trans_kthread:
kthread_stop(fs_info->transaction_kthread);
btrfs_cleanup_transaction(fs_info->tree_root);
btrfs_free_fs_roots(fs_info);
fail_cleaner:
kthread_stop(fs_info->cleaner_kthread);
/*
* make sure we're done with the btree inode before we stop our
* kthreads
*/
filemap_write_and_wait(fs_info->btree_inode->i_mapping);
fail_sysfs:
btrfs_sysfs_remove_one(fs_info);
fail_block_groups:
btrfs_put_block_group_cache(fs_info);
btrfs_free_block_groups(fs_info);
fail_tree_roots:
free_root_pointers(fs_info, 1);
invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
fail_sb_buffer:
btrfs_stop_all_workers(fs_info);
fail_alloc:
fail_iput:
btrfs_mapping_tree_free(&fs_info->mapping_tree);
iput(fs_info->btree_inode);
fail_bio_counter:
percpu_counter_destroy(&fs_info->bio_counter);
fail_delalloc_bytes:
percpu_counter_destroy(&fs_info->delalloc_bytes);
fail_dirty_metadata_bytes:
percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
fail_bdi:
bdi_destroy(&fs_info->bdi);
fail_srcu:
cleanup_srcu_struct(&fs_info->subvol_srcu);
fail:
btrfs_free_stripe_hash_table(fs_info);
btrfs_close_devices(fs_info->fs_devices);
return err;
recovery_tree_root:
if (!btrfs_test_opt(tree_root, RECOVERY))
goto fail_tree_roots;
free_root_pointers(fs_info, 0);
/* don't use the log in recovery mode, it won't be valid */
btrfs_set_super_log_root(disk_super, 0);
/* we can't trust the free space cache either */
btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
ret = next_root_backup(fs_info, fs_info->super_copy,
&num_backups_tried, &backup_index);
if (ret == -1)
goto fail_block_groups;
goto retry_root_backup;
}
static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
{
if (uptodate) {
set_buffer_uptodate(bh);
} else {
struct btrfs_device *device = (struct btrfs_device *)
bh->b_private;
printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
"I/O error on %s\n",
rcu_str_deref(device->name));
/* note, we dont' set_buffer_write_io_error because we have
* our own ways of dealing with the IO errors
*/
clear_buffer_uptodate(bh);
btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
}
unlock_buffer(bh);
put_bh(bh);
}
struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
{
struct buffer_head *bh;
struct buffer_head *latest = NULL;
struct btrfs_super_block *super;
int i;
u64 transid = 0;
u64 bytenr;
/* we would like to check all the supers, but that would make
* a btrfs mount succeed after a mkfs from a different FS.
* So, we need to add a special mount option to scan for
* later supers, using BTRFS_SUPER_MIRROR_MAX instead
*/
for (i = 0; i < 1; i++) {
bytenr = btrfs_sb_offset(i);
if (bytenr + BTRFS_SUPER_INFO_SIZE >=
i_size_read(bdev->bd_inode))
break;
bh = __bread(bdev, bytenr / 4096,
BTRFS_SUPER_INFO_SIZE);
if (!bh)
continue;
super = (struct btrfs_super_block *)bh->b_data;
if (btrfs_super_bytenr(super) != bytenr ||
btrfs_super_magic(super) != BTRFS_MAGIC) {
brelse(bh);
continue;
}
if (!latest || btrfs_super_generation(super) > transid) {
brelse(latest);
latest = bh;
transid = btrfs_super_generation(super);
} else {
brelse(bh);
}
}
return latest;
}
/*
* this should be called twice, once with wait == 0 and
* once with wait == 1. When wait == 0 is done, all the buffer heads
* we write are pinned.
*
* They are released when wait == 1 is done.
* max_mirrors must be the same for both runs, and it indicates how
* many supers on this one device should be written.
*
* max_mirrors == 0 means to write them all.
*/
static int write_dev_supers(struct btrfs_device *device,
struct btrfs_super_block *sb,
int do_barriers, int wait, int max_mirrors)
{
struct buffer_head *bh;
int i;
int ret;
int errors = 0;
u32 crc;
u64 bytenr;
if (max_mirrors == 0)
max_mirrors = BTRFS_SUPER_MIRROR_MAX;
for (i = 0; i < max_mirrors; i++) {
bytenr = btrfs_sb_offset(i);
if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
break;
if (wait) {
bh = __find_get_block(device->bdev, bytenr / 4096,
BTRFS_SUPER_INFO_SIZE);
if (!bh) {
errors++;
continue;
}
wait_on_buffer(bh);
if (!buffer_uptodate(bh))
errors++;
/* drop our reference */
brelse(bh);
/* drop the reference from the wait == 0 run */
brelse(bh);
continue;
} else {
btrfs_set_super_bytenr(sb, bytenr);
crc = ~(u32)0;
crc = btrfs_csum_data((char *)sb +
BTRFS_CSUM_SIZE, crc,
BTRFS_SUPER_INFO_SIZE -
BTRFS_CSUM_SIZE);
btrfs_csum_final(crc, sb->csum);
/*
* one reference for us, and we leave it for the
* caller
*/
bh = __getblk(device->bdev, bytenr / 4096,
BTRFS_SUPER_INFO_SIZE);
if (!bh) {
printk(KERN_ERR "BTRFS: couldn't get super "
"buffer head for bytenr %Lu\n", bytenr);
errors++;
continue;
}
memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
/* one reference for submit_bh */
get_bh(bh);
set_buffer_uptodate(bh);
lock_buffer(bh);
bh->b_end_io = btrfs_end_buffer_write_sync;
bh->b_private = device;
}
/*
* we fua the first super. The others we allow
* to go down lazy.
*/
if (i == 0)
ret = btrfsic_submit_bh(WRITE_FUA, bh);
else
ret = btrfsic_submit_bh(WRITE_SYNC, bh);
if (ret)
errors++;
}
return errors < i ? 0 : -1;
}
/*
* endio for the write_dev_flush, this will wake anyone waiting
* for the barrier when it is done
*/
static void btrfs_end_empty_barrier(struct bio *bio, int err)
{
if (err) {
if (err == -EOPNOTSUPP)
set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
clear_bit(BIO_UPTODATE, &bio->bi_flags);
}
if (bio->bi_private)
complete(bio->bi_private);
bio_put(bio);
}
/*
* trigger flushes for one the devices. If you pass wait == 0, the flushes are
* sent down. With wait == 1, it waits for the previous flush.
*
* any device where the flush fails with eopnotsupp are flagged as not-barrier
* capable
*/
static int write_dev_flush(struct btrfs_device *device, int wait)
{
struct bio *bio;
int ret = 0;
if (device->nobarriers)
return 0;
if (wait) {
bio = device->flush_bio;
if (!bio)
return 0;
wait_for_completion(&device->flush_wait);
if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
rcu_str_deref(device->name));
device->nobarriers = 1;
} else if (!bio_flagged(bio, BIO_UPTODATE)) {
ret = -EIO;
btrfs_dev_stat_inc_and_print(device,
BTRFS_DEV_STAT_FLUSH_ERRS);
}
/* drop the reference from the wait == 0 run */
bio_put(bio);
device->flush_bio = NULL;
return ret;
}
/*
* one reference for us, and we leave it for the
* caller
*/
device->flush_bio = NULL;
bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
if (!bio)
return -ENOMEM;
bio->bi_end_io = btrfs_end_empty_barrier;
bio->bi_bdev = device->bdev;
init_completion(&device->flush_wait);
bio->bi_private = &device->flush_wait;
device->flush_bio = bio;
bio_get(bio);
btrfsic_submit_bio(WRITE_FLUSH, bio);
return 0;
}
/*
* send an empty flush down to each device in parallel,
* then wait for them
*/
static int barrier_all_devices(struct btrfs_fs_info *info)
{
struct list_head *head;
struct btrfs_device *dev;
int errors_send = 0;
int errors_wait = 0;
int ret;
/* send down all the barriers */
head = &info->fs_devices->devices;
list_for_each_entry_rcu(dev, head, dev_list) {
if (dev->missing)
continue;
if (!dev->bdev) {
errors_send++;
continue;
}
if (!dev->in_fs_metadata || !dev->writeable)
continue;
ret = write_dev_flush(dev, 0);
if (ret)
errors_send++;
}
/* wait for all the barriers */
list_for_each_entry_rcu(dev, head, dev_list) {
if (dev->missing)
continue;
if (!dev->bdev) {
errors_wait++;
continue;
}
if (!dev->in_fs_metadata || !dev->writeable)
continue;
ret = write_dev_flush(dev, 1);
if (ret)
errors_wait++;
}
if (errors_send > info->num_tolerated_disk_barrier_failures ||
errors_wait > info->num_tolerated_disk_barrier_failures)
return -EIO;
return 0;
}
int btrfs_calc_num_tolerated_disk_barrier_failures(
struct btrfs_fs_info *fs_info)
{
struct btrfs_ioctl_space_info space;
struct btrfs_space_info *sinfo;
u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
BTRFS_BLOCK_GROUP_SYSTEM,
BTRFS_BLOCK_GROUP_METADATA,
BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
int num_types = 4;
int i;
int c;
int num_tolerated_disk_barrier_failures =
(int)fs_info->fs_devices->num_devices;
for (i = 0; i < num_types; i++) {
struct btrfs_space_info *tmp;
sinfo = NULL;
rcu_read_lock();
list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
if (tmp->flags == types[i]) {
sinfo = tmp;
break;
}
}
rcu_read_unlock();
if (!sinfo)
continue;
down_read(&sinfo->groups_sem);
for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
if (!list_empty(&sinfo->block_groups[c])) {
u64 flags;
btrfs_get_block_group_info(
&sinfo->block_groups[c], &space);
if (space.total_bytes == 0 ||
space.used_bytes == 0)
continue;
flags = space.flags;
/*
* return
* 0: if dup, single or RAID0 is configured for
* any of metadata, system or data, else
* 1: if RAID5 is configured, or if RAID1 or
* RAID10 is configured and only two mirrors
* are used, else
* 2: if RAID6 is configured, else
* num_mirrors - 1: if RAID1 or RAID10 is
* configured and more than
* 2 mirrors are used.
*/
if (num_tolerated_disk_barrier_failures > 0 &&
((flags & (BTRFS_BLOCK_GROUP_DUP |
BTRFS_BLOCK_GROUP_RAID0)) ||
((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
== 0)))
num_tolerated_disk_barrier_failures = 0;
else if (num_tolerated_disk_barrier_failures > 1) {
if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
BTRFS_BLOCK_GROUP_RAID5 |
BTRFS_BLOCK_GROUP_RAID10)) {
num_tolerated_disk_barrier_failures = 1;
} else if (flags &
BTRFS_BLOCK_GROUP_RAID6) {
num_tolerated_disk_barrier_failures = 2;
}
}
}
}
up_read(&sinfo->groups_sem);
}
return num_tolerated_disk_barrier_failures;
}
static int write_all_supers(struct btrfs_root *root, int max_mirrors)
{
struct list_head *head;
struct btrfs_device *dev;
struct btrfs_super_block *sb;
struct btrfs_dev_item *dev_item;
int ret;
int do_barriers;
int max_errors;
int total_errors = 0;
u64 flags;
do_barriers = !btrfs_test_opt(root, NOBARRIER);
backup_super_roots(root->fs_info);
sb = root->fs_info->super_for_commit;
dev_item = &sb->dev_item;
mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
head = &root->fs_info->fs_devices->devices;
max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
if (do_barriers) {
ret = barrier_all_devices(root->fs_info);
if (ret) {
mutex_unlock(
&root->fs_info->fs_devices->device_list_mutex);
btrfs_error(root->fs_info, ret,
"errors while submitting device barriers.");
return ret;
}
}
list_for_each_entry_rcu(dev, head, dev_list) {
if (!dev->bdev) {
total_errors++;
continue;
}
if (!dev->in_fs_metadata || !dev->writeable)
continue;
btrfs_set_stack_device_generation(dev_item, 0);
btrfs_set_stack_device_type(dev_item, dev->type);
btrfs_set_stack_device_id(dev_item, dev->devid);
btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
btrfs_set_stack_device_io_align(dev_item, dev->io_align);
btrfs_set_stack_device_io_width(dev_item, dev->io_width);
btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
flags = btrfs_super_flags(sb);
btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
if (ret)
total_errors++;
}
if (total_errors > max_errors) {
btrfs_err(root->fs_info, "%d errors while writing supers",
total_errors);
mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
/* FUA is masked off if unsupported and can't be the reason */
btrfs_error(root->fs_info, -EIO,
"%d errors while writing supers", total_errors);
return -EIO;
}
total_errors = 0;
list_for_each_entry_rcu(dev, head, dev_list) {
if (!dev->bdev)
continue;
if (!dev->in_fs_metadata || !dev->writeable)
continue;
ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
if (ret)
total_errors++;
}
mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
if (total_errors > max_errors) {
btrfs_error(root->fs_info, -EIO,
"%d errors while writing supers", total_errors);
return -EIO;
}
return 0;
}
int write_ctree_super(struct btrfs_trans_handle *trans,
struct btrfs_root *root, int max_mirrors)
{
return write_all_supers(root, max_mirrors);
}
/* Drop a fs root from the radix tree and free it. */
void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
struct btrfs_root *root)
{
spin_lock(&fs_info->fs_roots_radix_lock);
radix_tree_delete(&fs_info->fs_roots_radix,
(unsigned long)root->root_key.objectid);
spin_unlock(&fs_info->fs_roots_radix_lock);
if (btrfs_root_refs(&root->root_item) == 0)
synchronize_srcu(&fs_info->subvol_srcu);
if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
btrfs_free_log(NULL, root);
if (root->free_ino_pinned)
__btrfs_remove_free_space_cache(root->free_ino_pinned);
if (root->free_ino_ctl)
__btrfs_remove_free_space_cache(root->free_ino_ctl);
free_fs_root(root);
}
static void free_fs_root(struct btrfs_root *root)
{
iput(root->cache_inode);
WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
btrfs_free_block_rsv(root, root->orphan_block_rsv);
root->orphan_block_rsv = NULL;
if (root->anon_dev)
free_anon_bdev(root->anon_dev);
if (root->subv_writers)
btrfs_free_subvolume_writers(root->subv_writers);
free_extent_buffer(root->node);
free_extent_buffer(root->commit_root);
kfree(root->free_ino_ctl);
kfree(root->free_ino_pinned);
kfree(root->name);
btrfs_put_fs_root(root);
}
void btrfs_free_fs_root(struct btrfs_root *root)
{
free_fs_root(root);
}
int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
{
u64 root_objectid = 0;
struct btrfs_root *gang[8];
int i = 0;
int err = 0;
unsigned int ret = 0;
int index;
while (1) {
index = srcu_read_lock(&fs_info->subvol_srcu);
ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
(void **)gang, root_objectid,
ARRAY_SIZE(gang));
if (!ret) {
srcu_read_unlock(&fs_info->subvol_srcu, index);
break;
}
root_objectid = gang[ret - 1]->root_key.objectid + 1;
for (i = 0; i < ret; i++) {
/* Avoid to grab roots in dead_roots */
if (btrfs_root_refs(&gang[i]->root_item) == 0) {
gang[i] = NULL;
continue;
}
/* grab all the search result for later use */
gang[i] = btrfs_grab_fs_root(gang[i]);
}
srcu_read_unlock(&fs_info->subvol_srcu, index);
for (i = 0; i < ret; i++) {
if (!gang[i])
continue;
root_objectid = gang[i]->root_key.objectid;
err = btrfs_orphan_cleanup(gang[i]);
if (err)
break;
btrfs_put_fs_root(gang[i]);
}
root_objectid++;
}
/* release the uncleaned roots due to error */
for (; i < ret; i++) {
if (gang[i])
btrfs_put_fs_root(gang[i]);
}
return err;
}
int btrfs_commit_super(struct btrfs_root *root)
{
struct btrfs_trans_handle *trans;
mutex_lock(&root->fs_info->cleaner_mutex);
btrfs_run_delayed_iputs(root);
mutex_unlock(&root->fs_info->cleaner_mutex);
wake_up_process(root->fs_info->cleaner_kthread);
/* wait until ongoing cleanup work done */
down_write(&root->fs_info->cleanup_work_sem);
up_write(&root->fs_info->cleanup_work_sem);
trans = btrfs_join_transaction(root);
if (IS_ERR(trans))
return PTR_ERR(trans);
return btrfs_commit_transaction(trans, root);
}
int close_ctree(struct btrfs_root *root)
{
struct btrfs_fs_info *fs_info = root->fs_info;
int ret;
fs_info->closing = 1;
smp_mb();
/* wait for the uuid_scan task to finish */
down(&fs_info->uuid_tree_rescan_sem);
/* avoid complains from lockdep et al., set sem back to initial state */
up(&fs_info->uuid_tree_rescan_sem);
/* pause restriper - we want to resume on mount */
btrfs_pause_balance(fs_info);
btrfs_dev_replace_suspend_for_unmount(fs_info);
btrfs_scrub_cancel(fs_info);
/* wait for any defraggers to finish */
wait_event(fs_info->transaction_wait,
(atomic_read(&fs_info->defrag_running) == 0));
/* clear out the rbtree of defraggable inodes */
btrfs_cleanup_defrag_inodes(fs_info);
cancel_work_sync(&fs_info->async_reclaim_work);
if (!(fs_info->sb->s_flags & MS_RDONLY)) {
ret = btrfs_commit_super(root);
if (ret)
btrfs_err(root->fs_info, "commit super ret %d", ret);
}
if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
btrfs_error_commit_super(root);
kthread_stop(fs_info->transaction_kthread);
kthread_stop(fs_info->cleaner_kthread);
fs_info->closing = 2;
smp_mb();
btrfs_free_qgroup_config(root->fs_info);
if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
btrfs_info(root->fs_info, "at unmount delalloc count %lld",
percpu_counter_sum(&fs_info->delalloc_bytes));
}
btrfs_sysfs_remove_one(fs_info);
btrfs_free_fs_roots(fs_info);
btrfs_put_block_group_cache(fs_info);
btrfs_free_block_groups(fs_info);
/*
* we must make sure there is not any read request to
* submit after we stopping all workers.
*/
invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
btrfs_stop_all_workers(fs_info);
free_root_pointers(fs_info, 1);
iput(fs_info->btree_inode);
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
if (btrfs_test_opt(root, CHECK_INTEGRITY))
btrfsic_unmount(root, fs_info->fs_devices);
#endif
btrfs_close_devices(fs_info->fs_devices);
btrfs_mapping_tree_free(&fs_info->mapping_tree);
percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
percpu_counter_destroy(&fs_info->delalloc_bytes);
percpu_counter_destroy(&fs_info->bio_counter);
bdi_destroy(&fs_info->bdi);
cleanup_srcu_struct(&fs_info->subvol_srcu);
btrfs_free_stripe_hash_table(fs_info);
btrfs_free_block_rsv(root, root->orphan_block_rsv);
root->orphan_block_rsv = NULL;
return 0;
}
int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
int atomic)
{
int ret;
struct inode *btree_inode = buf->pages[0]->mapping->host;
ret = extent_buffer_uptodate(buf);
if (!ret)
return ret;
ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
parent_transid, atomic);
if (ret == -EAGAIN)
return ret;
return !ret;
}
int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
{
return set_extent_buffer_uptodate(buf);
}
void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
{
struct btrfs_root *root;
u64 transid = btrfs_header_generation(buf);
int was_dirty;
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
/*
* This is a fast path so only do this check if we have sanity tests
* enabled. Normal people shouldn't be marking dummy buffers as dirty
* outside of the sanity tests.
*/
if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
return;
#endif
root = BTRFS_I(buf->pages[0]->mapping->host)->root;
btrfs_assert_tree_locked(buf);
if (transid != root->fs_info->generation)
WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
"found %llu running %llu\n",
buf->start, transid, root->fs_info->generation);
was_dirty = set_extent_buffer_dirty(buf);
if (!was_dirty)
__percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
buf->len,
root->fs_info->dirty_metadata_batch);
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
btrfs_print_leaf(root, buf);
ASSERT(0);
}
#endif
}
static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
int flush_delayed)
{
/*
* looks as though older kernels can get into trouble with
* this code, they end up stuck in balance_dirty_pages forever
*/
int ret;
if (current->flags & PF_MEMALLOC)
return;
if (flush_delayed)
btrfs_balance_delayed_items(root);
ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
BTRFS_DIRTY_METADATA_THRESH);
if (ret > 0) {
balance_dirty_pages_ratelimited(
root->fs_info->btree_inode->i_mapping);
}
return;
}
void btrfs_btree_balance_dirty(struct btrfs_root *root)
{
__btrfs_btree_balance_dirty(root, 1);
}
void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
{
__btrfs_btree_balance_dirty(root, 0);
}
int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
{
struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
}
static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
int read_only)
{
/*
* Placeholder for checks
*/
return 0;
}
static void btrfs_error_commit_super(struct btrfs_root *root)
{
mutex_lock(&root->fs_info->cleaner_mutex);
btrfs_run_delayed_iputs(root);
mutex_unlock(&root->fs_info->cleaner_mutex);
down_write(&root->fs_info->cleanup_work_sem);
up_write(&root->fs_info->cleanup_work_sem);
/* cleanup FS via transaction */
btrfs_cleanup_transaction(root);
}
static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
{
struct btrfs_ordered_extent *ordered;
spin_lock(&root->ordered_extent_lock);
/*
* This will just short circuit the ordered completion stuff which will
* make sure the ordered extent gets properly cleaned up.
*/
list_for_each_entry(ordered, &root->ordered_extents,
root_extent_list)
set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
spin_unlock(&root->ordered_extent_lock);
}
static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
{
struct btrfs_root *root;
struct list_head splice;
INIT_LIST_HEAD(&splice);
spin_lock(&fs_info->ordered_root_lock);
list_splice_init(&fs_info->ordered_roots, &splice);
while (!list_empty(&splice)) {
root = list_first_entry(&splice, struct btrfs_root,
ordered_root);
list_move_tail(&root->ordered_root,
&fs_info->ordered_roots);
spin_unlock(&fs_info->ordered_root_lock);
btrfs_destroy_ordered_extents(root);
cond_resched();
spin_lock(&fs_info->ordered_root_lock);
}
spin_unlock(&fs_info->ordered_root_lock);
}
static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
struct btrfs_root *root)
{
struct rb_node *node;
struct btrfs_delayed_ref_root *delayed_refs;
struct btrfs_delayed_ref_node *ref;
int ret = 0;
delayed_refs = &trans->delayed_refs;
spin_lock(&delayed_refs->lock);
if (atomic_read(&delayed_refs->num_entries) == 0) {
spin_unlock(&delayed_refs->lock);
btrfs_info(root->fs_info, "delayed_refs has NO entry");
return ret;
}
while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
struct btrfs_delayed_ref_head *head;
bool pin_bytes = false;
head = rb_entry(node, struct btrfs_delayed_ref_head,
href_node);
if (!mutex_trylock(&head->mutex)) {
atomic_inc(&head->node.refs);
spin_unlock(&delayed_refs->lock);
mutex_lock(&head->mutex);
mutex_unlock(&head->mutex);
btrfs_put_delayed_ref(&head->node);
spin_lock(&delayed_refs->lock);
continue;
}
spin_lock(&head->lock);
while ((node = rb_first(&head->ref_root)) != NULL) {
ref = rb_entry(node, struct btrfs_delayed_ref_node,
rb_node);
ref->in_tree = 0;
rb_erase(&ref->rb_node, &head->ref_root);
atomic_dec(&delayed_refs->num_entries);
btrfs_put_delayed_ref(ref);
}
if (head->must_insert_reserved)
pin_bytes = true;
btrfs_free_delayed_extent_op(head->extent_op);
delayed_refs->num_heads--;
if (head->processing == 0)
delayed_refs->num_heads_ready--;
atomic_dec(&delayed_refs->num_entries);
head->node.in_tree = 0;
rb_erase(&head->href_node, &delayed_refs->href_root);
spin_unlock(&head->lock);
spin_unlock(&delayed_refs->lock);
mutex_unlock(&head->mutex);
if (pin_bytes)
btrfs_pin_extent(root, head->node.bytenr,
head->node.num_bytes, 1);
btrfs_put_delayed_ref(&head->node);
cond_resched();
spin_lock(&delayed_refs->lock);
}
spin_unlock(&delayed_refs->lock);
return ret;
}
static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
{
struct btrfs_inode *btrfs_inode;
struct list_head splice;
INIT_LIST_HEAD(&splice);
spin_lock(&root->delalloc_lock);
list_splice_init(&root->delalloc_inodes, &splice);
while (!list_empty(&splice)) {
btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
delalloc_inodes);
list_del_init(&btrfs_inode->delalloc_inodes);
clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
&btrfs_inode->runtime_flags);
spin_unlock(&root->delalloc_lock);
btrfs_invalidate_inodes(btrfs_inode->root);
spin_lock(&root->delalloc_lock);
}
spin_unlock(&root->delalloc_lock);
}
static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
{
struct btrfs_root *root;
struct list_head splice;
INIT_LIST_HEAD(&splice);
spin_lock(&fs_info->delalloc_root_lock);
list_splice_init(&fs_info->delalloc_roots, &splice);
while (!list_empty(&splice)) {
root = list_first_entry(&splice, struct btrfs_root,
delalloc_root);
list_del_init(&root->delalloc_root);
root = btrfs_grab_fs_root(root);
BUG_ON(!root);
spin_unlock(&fs_info->delalloc_root_lock);
btrfs_destroy_delalloc_inodes(root);
btrfs_put_fs_root(root);
spin_lock(&fs_info->delalloc_root_lock);
}
spin_unlock(&fs_info->delalloc_root_lock);
}
static int btrfs_destroy_marked_extents(struct btrfs_root *root,
struct extent_io_tree *dirty_pages,
int mark)
{
int ret;
struct extent_buffer *eb;
u64 start = 0;
u64 end;
while (1) {
ret = find_first_extent_bit(dirty_pages, start, &start, &end,
mark, NULL);
if (ret)
break;
clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
while (start <= end) {
eb = btrfs_find_tree_block(root, start,
root->leafsize);
start += root->leafsize;
if (!eb)
continue;
wait_on_extent_buffer_writeback(eb);
if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
&eb->bflags))
clear_extent_buffer_dirty(eb);
free_extent_buffer_stale(eb);
}
}
return ret;
}
static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
struct extent_io_tree *pinned_extents)
{
struct extent_io_tree *unpin;
u64 start;
u64 end;
int ret;
bool loop = true;
unpin = pinned_extents;
again:
while (1) {
ret = find_first_extent_bit(unpin, 0, &start, &end,
EXTENT_DIRTY, NULL);
if (ret)
break;
/* opt_discard */
if (btrfs_test_opt(root, DISCARD))
ret = btrfs_error_discard_extent(root, start,
end + 1 - start,
NULL);
clear_extent_dirty(unpin, start, end, GFP_NOFS);
btrfs_error_unpin_extent_range(root, start, end);
cond_resched();
}
if (loop) {
if (unpin == &root->fs_info->freed_extents[0])
unpin = &root->fs_info->freed_extents[1];
else
unpin = &root->fs_info->freed_extents[0];
loop = false;
goto again;
}
return 0;
}
void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
struct btrfs_root *root)
{
btrfs_destroy_delayed_refs(cur_trans, root);
cur_trans->state = TRANS_STATE_COMMIT_START;
wake_up(&root->fs_info->transaction_blocked_wait);
cur_trans->state = TRANS_STATE_UNBLOCKED;
wake_up(&root->fs_info->transaction_wait);
btrfs_destroy_delayed_inodes(root);
btrfs_assert_delayed_root_empty(root);
btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
EXTENT_DIRTY);
btrfs_destroy_pinned_extent(root,
root->fs_info->pinned_extents);
cur_trans->state =TRANS_STATE_COMPLETED;
wake_up(&cur_trans->commit_wait);
/*
memset(cur_trans, 0, sizeof(*cur_trans));
kmem_cache_free(btrfs_transaction_cachep, cur_trans);
*/
}
static int btrfs_cleanup_transaction(struct btrfs_root *root)
{
struct btrfs_transaction *t;
mutex_lock(&root->fs_info->transaction_kthread_mutex);
spin_lock(&root->fs_info->trans_lock);
while (!list_empty(&root->fs_info->trans_list)) {
t = list_first_entry(&root->fs_info->trans_list,
struct btrfs_transaction, list);
if (t->state >= TRANS_STATE_COMMIT_START) {
atomic_inc(&t->use_count);
spin_unlock(&root->fs_info->trans_lock);
btrfs_wait_for_commit(root, t->transid);
btrfs_put_transaction(t);
spin_lock(&root->fs_info->trans_lock);
continue;
}
if (t == root->fs_info->running_transaction) {
t->state = TRANS_STATE_COMMIT_DOING;
spin_unlock(&root->fs_info->trans_lock);
/*
* We wait for 0 num_writers since we don't hold a trans
* handle open currently for this transaction.
*/
wait_event(t->writer_wait,
atomic_read(&t->num_writers) == 0);
} else {
spin_unlock(&root->fs_info->trans_lock);
}
btrfs_cleanup_one_transaction(t, root);
spin_lock(&root->fs_info->trans_lock);
if (t == root->fs_info->running_transaction)
root->fs_info->running_transaction = NULL;
list_del_init(&t->list);
spin_unlock(&root->fs_info->trans_lock);
btrfs_put_transaction(t);
trace_btrfs_transaction_commit(root);
spin_lock(&root->fs_info->trans_lock);
}
spin_unlock(&root->fs_info->trans_lock);
btrfs_destroy_all_ordered_extents(root->fs_info);
btrfs_destroy_delayed_inodes(root);
btrfs_assert_delayed_root_empty(root);
btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
btrfs_destroy_all_delalloc_inodes(root->fs_info);
mutex_unlock(&root->fs_info->transaction_kthread_mutex);
return 0;
}
static struct extent_io_ops btree_extent_io_ops = {
.readpage_end_io_hook = btree_readpage_end_io_hook,
.readpage_io_failed_hook = btree_io_failed_hook,
.submit_bio_hook = btree_submit_bio_hook,
/* note we're sharing with inode.c for the merge bio hook */
.merge_bio_hook = btrfs_merge_bio_hook,
};