mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 04:25:09 +07:00
750afb08ca
We already need to zero out memory for dma_alloc_coherent(), as such using dma_zalloc_coherent() is superflous. Phase it out. This change was generated with the following Coccinelle SmPL patch: @ replace_dma_zalloc_coherent @ expression dev, size, data, handle, flags; @@ -dma_zalloc_coherent(dev, size, handle, flags) +dma_alloc_coherent(dev, size, handle, flags) Suggested-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Luis Chamberlain <mcgrof@kernel.org> [hch: re-ran the script on the latest tree] Signed-off-by: Christoph Hellwig <hch@lst.de>
672 lines
17 KiB
C
672 lines
17 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2015 Broadcom Corporation
|
|
*/
|
|
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irqchip/chained_irq.h>
|
|
#include <linux/irqdomain.h>
|
|
#include <linux/msi.h>
|
|
#include <linux/of_irq.h>
|
|
#include <linux/of_pci.h>
|
|
#include <linux/pci.h>
|
|
|
|
#include "pcie-iproc.h"
|
|
|
|
#define IPROC_MSI_INTR_EN_SHIFT 11
|
|
#define IPROC_MSI_INTR_EN BIT(IPROC_MSI_INTR_EN_SHIFT)
|
|
#define IPROC_MSI_INT_N_EVENT_SHIFT 1
|
|
#define IPROC_MSI_INT_N_EVENT BIT(IPROC_MSI_INT_N_EVENT_SHIFT)
|
|
#define IPROC_MSI_EQ_EN_SHIFT 0
|
|
#define IPROC_MSI_EQ_EN BIT(IPROC_MSI_EQ_EN_SHIFT)
|
|
|
|
#define IPROC_MSI_EQ_MASK 0x3f
|
|
|
|
/* Max number of GIC interrupts */
|
|
#define NR_HW_IRQS 6
|
|
|
|
/* Number of entries in each event queue */
|
|
#define EQ_LEN 64
|
|
|
|
/* Size of each event queue memory region */
|
|
#define EQ_MEM_REGION_SIZE SZ_4K
|
|
|
|
/* Size of each MSI address region */
|
|
#define MSI_MEM_REGION_SIZE SZ_4K
|
|
|
|
enum iproc_msi_reg {
|
|
IPROC_MSI_EQ_PAGE = 0,
|
|
IPROC_MSI_EQ_PAGE_UPPER,
|
|
IPROC_MSI_PAGE,
|
|
IPROC_MSI_PAGE_UPPER,
|
|
IPROC_MSI_CTRL,
|
|
IPROC_MSI_EQ_HEAD,
|
|
IPROC_MSI_EQ_TAIL,
|
|
IPROC_MSI_INTS_EN,
|
|
IPROC_MSI_REG_SIZE,
|
|
};
|
|
|
|
struct iproc_msi;
|
|
|
|
/**
|
|
* iProc MSI group
|
|
*
|
|
* One MSI group is allocated per GIC interrupt, serviced by one iProc MSI
|
|
* event queue.
|
|
*
|
|
* @msi: pointer to iProc MSI data
|
|
* @gic_irq: GIC interrupt
|
|
* @eq: Event queue number
|
|
*/
|
|
struct iproc_msi_grp {
|
|
struct iproc_msi *msi;
|
|
int gic_irq;
|
|
unsigned int eq;
|
|
};
|
|
|
|
/**
|
|
* iProc event queue based MSI
|
|
*
|
|
* Only meant to be used on platforms without MSI support integrated into the
|
|
* GIC.
|
|
*
|
|
* @pcie: pointer to iProc PCIe data
|
|
* @reg_offsets: MSI register offsets
|
|
* @grps: MSI groups
|
|
* @nr_irqs: number of total interrupts connected to GIC
|
|
* @nr_cpus: number of toal CPUs
|
|
* @has_inten_reg: indicates the MSI interrupt enable register needs to be
|
|
* set explicitly (required for some legacy platforms)
|
|
* @bitmap: MSI vector bitmap
|
|
* @bitmap_lock: lock to protect access to the MSI bitmap
|
|
* @nr_msi_vecs: total number of MSI vectors
|
|
* @inner_domain: inner IRQ domain
|
|
* @msi_domain: MSI IRQ domain
|
|
* @nr_eq_region: required number of 4K aligned memory region for MSI event
|
|
* queues
|
|
* @nr_msi_region: required number of 4K aligned address region for MSI posted
|
|
* writes
|
|
* @eq_cpu: pointer to allocated memory region for MSI event queues
|
|
* @eq_dma: DMA address of MSI event queues
|
|
* @msi_addr: MSI address
|
|
*/
|
|
struct iproc_msi {
|
|
struct iproc_pcie *pcie;
|
|
const u16 (*reg_offsets)[IPROC_MSI_REG_SIZE];
|
|
struct iproc_msi_grp *grps;
|
|
int nr_irqs;
|
|
int nr_cpus;
|
|
bool has_inten_reg;
|
|
unsigned long *bitmap;
|
|
struct mutex bitmap_lock;
|
|
unsigned int nr_msi_vecs;
|
|
struct irq_domain *inner_domain;
|
|
struct irq_domain *msi_domain;
|
|
unsigned int nr_eq_region;
|
|
unsigned int nr_msi_region;
|
|
void *eq_cpu;
|
|
dma_addr_t eq_dma;
|
|
phys_addr_t msi_addr;
|
|
};
|
|
|
|
static const u16 iproc_msi_reg_paxb[NR_HW_IRQS][IPROC_MSI_REG_SIZE] = {
|
|
{ 0x200, 0x2c0, 0x204, 0x2c4, 0x210, 0x250, 0x254, 0x208 },
|
|
{ 0x200, 0x2c0, 0x204, 0x2c4, 0x214, 0x258, 0x25c, 0x208 },
|
|
{ 0x200, 0x2c0, 0x204, 0x2c4, 0x218, 0x260, 0x264, 0x208 },
|
|
{ 0x200, 0x2c0, 0x204, 0x2c4, 0x21c, 0x268, 0x26c, 0x208 },
|
|
{ 0x200, 0x2c0, 0x204, 0x2c4, 0x220, 0x270, 0x274, 0x208 },
|
|
{ 0x200, 0x2c0, 0x204, 0x2c4, 0x224, 0x278, 0x27c, 0x208 },
|
|
};
|
|
|
|
static const u16 iproc_msi_reg_paxc[NR_HW_IRQS][IPROC_MSI_REG_SIZE] = {
|
|
{ 0xc00, 0xc04, 0xc08, 0xc0c, 0xc40, 0xc50, 0xc60 },
|
|
{ 0xc10, 0xc14, 0xc18, 0xc1c, 0xc44, 0xc54, 0xc64 },
|
|
{ 0xc20, 0xc24, 0xc28, 0xc2c, 0xc48, 0xc58, 0xc68 },
|
|
{ 0xc30, 0xc34, 0xc38, 0xc3c, 0xc4c, 0xc5c, 0xc6c },
|
|
};
|
|
|
|
static inline u32 iproc_msi_read_reg(struct iproc_msi *msi,
|
|
enum iproc_msi_reg reg,
|
|
unsigned int eq)
|
|
{
|
|
struct iproc_pcie *pcie = msi->pcie;
|
|
|
|
return readl_relaxed(pcie->base + msi->reg_offsets[eq][reg]);
|
|
}
|
|
|
|
static inline void iproc_msi_write_reg(struct iproc_msi *msi,
|
|
enum iproc_msi_reg reg,
|
|
int eq, u32 val)
|
|
{
|
|
struct iproc_pcie *pcie = msi->pcie;
|
|
|
|
writel_relaxed(val, pcie->base + msi->reg_offsets[eq][reg]);
|
|
}
|
|
|
|
static inline u32 hwirq_to_group(struct iproc_msi *msi, unsigned long hwirq)
|
|
{
|
|
return (hwirq % msi->nr_irqs);
|
|
}
|
|
|
|
static inline unsigned int iproc_msi_addr_offset(struct iproc_msi *msi,
|
|
unsigned long hwirq)
|
|
{
|
|
if (msi->nr_msi_region > 1)
|
|
return hwirq_to_group(msi, hwirq) * MSI_MEM_REGION_SIZE;
|
|
else
|
|
return hwirq_to_group(msi, hwirq) * sizeof(u32);
|
|
}
|
|
|
|
static inline unsigned int iproc_msi_eq_offset(struct iproc_msi *msi, u32 eq)
|
|
{
|
|
if (msi->nr_eq_region > 1)
|
|
return eq * EQ_MEM_REGION_SIZE;
|
|
else
|
|
return eq * EQ_LEN * sizeof(u32);
|
|
}
|
|
|
|
static struct irq_chip iproc_msi_irq_chip = {
|
|
.name = "iProc-MSI",
|
|
};
|
|
|
|
static struct msi_domain_info iproc_msi_domain_info = {
|
|
.flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
|
|
MSI_FLAG_MULTI_PCI_MSI | MSI_FLAG_PCI_MSIX,
|
|
.chip = &iproc_msi_irq_chip,
|
|
};
|
|
|
|
/*
|
|
* In iProc PCIe core, each MSI group is serviced by a GIC interrupt and a
|
|
* dedicated event queue. Each MSI group can support up to 64 MSI vectors.
|
|
*
|
|
* The number of MSI groups varies between different iProc SoCs. The total
|
|
* number of CPU cores also varies. To support MSI IRQ affinity, we
|
|
* distribute GIC interrupts across all available CPUs. MSI vector is moved
|
|
* from one GIC interrupt to another to steer to the target CPU.
|
|
*
|
|
* Assuming:
|
|
* - the number of MSI groups is M
|
|
* - the number of CPU cores is N
|
|
* - M is always a multiple of N
|
|
*
|
|
* Total number of raw MSI vectors = M * 64
|
|
* Total number of supported MSI vectors = (M * 64) / N
|
|
*/
|
|
static inline int hwirq_to_cpu(struct iproc_msi *msi, unsigned long hwirq)
|
|
{
|
|
return (hwirq % msi->nr_cpus);
|
|
}
|
|
|
|
static inline unsigned long hwirq_to_canonical_hwirq(struct iproc_msi *msi,
|
|
unsigned long hwirq)
|
|
{
|
|
return (hwirq - hwirq_to_cpu(msi, hwirq));
|
|
}
|
|
|
|
static int iproc_msi_irq_set_affinity(struct irq_data *data,
|
|
const struct cpumask *mask, bool force)
|
|
{
|
|
struct iproc_msi *msi = irq_data_get_irq_chip_data(data);
|
|
int target_cpu = cpumask_first(mask);
|
|
int curr_cpu;
|
|
|
|
curr_cpu = hwirq_to_cpu(msi, data->hwirq);
|
|
if (curr_cpu == target_cpu)
|
|
return IRQ_SET_MASK_OK_DONE;
|
|
|
|
/* steer MSI to the target CPU */
|
|
data->hwirq = hwirq_to_canonical_hwirq(msi, data->hwirq) + target_cpu;
|
|
|
|
return IRQ_SET_MASK_OK;
|
|
}
|
|
|
|
static void iproc_msi_irq_compose_msi_msg(struct irq_data *data,
|
|
struct msi_msg *msg)
|
|
{
|
|
struct iproc_msi *msi = irq_data_get_irq_chip_data(data);
|
|
dma_addr_t addr;
|
|
|
|
addr = msi->msi_addr + iproc_msi_addr_offset(msi, data->hwirq);
|
|
msg->address_lo = lower_32_bits(addr);
|
|
msg->address_hi = upper_32_bits(addr);
|
|
msg->data = data->hwirq << 5;
|
|
}
|
|
|
|
static struct irq_chip iproc_msi_bottom_irq_chip = {
|
|
.name = "MSI",
|
|
.irq_set_affinity = iproc_msi_irq_set_affinity,
|
|
.irq_compose_msi_msg = iproc_msi_irq_compose_msi_msg,
|
|
};
|
|
|
|
static int iproc_msi_irq_domain_alloc(struct irq_domain *domain,
|
|
unsigned int virq, unsigned int nr_irqs,
|
|
void *args)
|
|
{
|
|
struct iproc_msi *msi = domain->host_data;
|
|
int hwirq, i;
|
|
|
|
mutex_lock(&msi->bitmap_lock);
|
|
|
|
/* Allocate 'nr_cpus' number of MSI vectors each time */
|
|
hwirq = bitmap_find_next_zero_area(msi->bitmap, msi->nr_msi_vecs, 0,
|
|
msi->nr_cpus, 0);
|
|
if (hwirq < msi->nr_msi_vecs) {
|
|
bitmap_set(msi->bitmap, hwirq, msi->nr_cpus);
|
|
} else {
|
|
mutex_unlock(&msi->bitmap_lock);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
mutex_unlock(&msi->bitmap_lock);
|
|
|
|
for (i = 0; i < nr_irqs; i++) {
|
|
irq_domain_set_info(domain, virq + i, hwirq + i,
|
|
&iproc_msi_bottom_irq_chip,
|
|
domain->host_data, handle_simple_irq,
|
|
NULL, NULL);
|
|
}
|
|
|
|
return hwirq;
|
|
}
|
|
|
|
static void iproc_msi_irq_domain_free(struct irq_domain *domain,
|
|
unsigned int virq, unsigned int nr_irqs)
|
|
{
|
|
struct irq_data *data = irq_domain_get_irq_data(domain, virq);
|
|
struct iproc_msi *msi = irq_data_get_irq_chip_data(data);
|
|
unsigned int hwirq;
|
|
|
|
mutex_lock(&msi->bitmap_lock);
|
|
|
|
hwirq = hwirq_to_canonical_hwirq(msi, data->hwirq);
|
|
bitmap_clear(msi->bitmap, hwirq, msi->nr_cpus);
|
|
|
|
mutex_unlock(&msi->bitmap_lock);
|
|
|
|
irq_domain_free_irqs_parent(domain, virq, nr_irqs);
|
|
}
|
|
|
|
static const struct irq_domain_ops msi_domain_ops = {
|
|
.alloc = iproc_msi_irq_domain_alloc,
|
|
.free = iproc_msi_irq_domain_free,
|
|
};
|
|
|
|
static inline u32 decode_msi_hwirq(struct iproc_msi *msi, u32 eq, u32 head)
|
|
{
|
|
u32 *msg, hwirq;
|
|
unsigned int offs;
|
|
|
|
offs = iproc_msi_eq_offset(msi, eq) + head * sizeof(u32);
|
|
msg = (u32 *)(msi->eq_cpu + offs);
|
|
hwirq = readl(msg);
|
|
hwirq = (hwirq >> 5) + (hwirq & 0x1f);
|
|
|
|
/*
|
|
* Since we have multiple hwirq mapped to a single MSI vector,
|
|
* now we need to derive the hwirq at CPU0. It can then be used to
|
|
* mapped back to virq.
|
|
*/
|
|
return hwirq_to_canonical_hwirq(msi, hwirq);
|
|
}
|
|
|
|
static void iproc_msi_handler(struct irq_desc *desc)
|
|
{
|
|
struct irq_chip *chip = irq_desc_get_chip(desc);
|
|
struct iproc_msi_grp *grp;
|
|
struct iproc_msi *msi;
|
|
u32 eq, head, tail, nr_events;
|
|
unsigned long hwirq;
|
|
int virq;
|
|
|
|
chained_irq_enter(chip, desc);
|
|
|
|
grp = irq_desc_get_handler_data(desc);
|
|
msi = grp->msi;
|
|
eq = grp->eq;
|
|
|
|
/*
|
|
* iProc MSI event queue is tracked by head and tail pointers. Head
|
|
* pointer indicates the next entry (MSI data) to be consumed by SW in
|
|
* the queue and needs to be updated by SW. iProc MSI core uses the
|
|
* tail pointer as the next data insertion point.
|
|
*
|
|
* Entries between head and tail pointers contain valid MSI data. MSI
|
|
* data is guaranteed to be in the event queue memory before the tail
|
|
* pointer is updated by the iProc MSI core.
|
|
*/
|
|
head = iproc_msi_read_reg(msi, IPROC_MSI_EQ_HEAD,
|
|
eq) & IPROC_MSI_EQ_MASK;
|
|
do {
|
|
tail = iproc_msi_read_reg(msi, IPROC_MSI_EQ_TAIL,
|
|
eq) & IPROC_MSI_EQ_MASK;
|
|
|
|
/*
|
|
* Figure out total number of events (MSI data) to be
|
|
* processed.
|
|
*/
|
|
nr_events = (tail < head) ?
|
|
(EQ_LEN - (head - tail)) : (tail - head);
|
|
if (!nr_events)
|
|
break;
|
|
|
|
/* process all outstanding events */
|
|
while (nr_events--) {
|
|
hwirq = decode_msi_hwirq(msi, eq, head);
|
|
virq = irq_find_mapping(msi->inner_domain, hwirq);
|
|
generic_handle_irq(virq);
|
|
|
|
head++;
|
|
head %= EQ_LEN;
|
|
}
|
|
|
|
/*
|
|
* Now all outstanding events have been processed. Update the
|
|
* head pointer.
|
|
*/
|
|
iproc_msi_write_reg(msi, IPROC_MSI_EQ_HEAD, eq, head);
|
|
|
|
/*
|
|
* Now go read the tail pointer again to see if there are new
|
|
* oustanding events that came in during the above window.
|
|
*/
|
|
} while (true);
|
|
|
|
chained_irq_exit(chip, desc);
|
|
}
|
|
|
|
static void iproc_msi_enable(struct iproc_msi *msi)
|
|
{
|
|
int i, eq;
|
|
u32 val;
|
|
|
|
/* Program memory region for each event queue */
|
|
for (i = 0; i < msi->nr_eq_region; i++) {
|
|
dma_addr_t addr = msi->eq_dma + (i * EQ_MEM_REGION_SIZE);
|
|
|
|
iproc_msi_write_reg(msi, IPROC_MSI_EQ_PAGE, i,
|
|
lower_32_bits(addr));
|
|
iproc_msi_write_reg(msi, IPROC_MSI_EQ_PAGE_UPPER, i,
|
|
upper_32_bits(addr));
|
|
}
|
|
|
|
/* Program address region for MSI posted writes */
|
|
for (i = 0; i < msi->nr_msi_region; i++) {
|
|
phys_addr_t addr = msi->msi_addr + (i * MSI_MEM_REGION_SIZE);
|
|
|
|
iproc_msi_write_reg(msi, IPROC_MSI_PAGE, i,
|
|
lower_32_bits(addr));
|
|
iproc_msi_write_reg(msi, IPROC_MSI_PAGE_UPPER, i,
|
|
upper_32_bits(addr));
|
|
}
|
|
|
|
for (eq = 0; eq < msi->nr_irqs; eq++) {
|
|
/* Enable MSI event queue */
|
|
val = IPROC_MSI_INTR_EN | IPROC_MSI_INT_N_EVENT |
|
|
IPROC_MSI_EQ_EN;
|
|
iproc_msi_write_reg(msi, IPROC_MSI_CTRL, eq, val);
|
|
|
|
/*
|
|
* Some legacy platforms require the MSI interrupt enable
|
|
* register to be set explicitly.
|
|
*/
|
|
if (msi->has_inten_reg) {
|
|
val = iproc_msi_read_reg(msi, IPROC_MSI_INTS_EN, eq);
|
|
val |= BIT(eq);
|
|
iproc_msi_write_reg(msi, IPROC_MSI_INTS_EN, eq, val);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void iproc_msi_disable(struct iproc_msi *msi)
|
|
{
|
|
u32 eq, val;
|
|
|
|
for (eq = 0; eq < msi->nr_irqs; eq++) {
|
|
if (msi->has_inten_reg) {
|
|
val = iproc_msi_read_reg(msi, IPROC_MSI_INTS_EN, eq);
|
|
val &= ~BIT(eq);
|
|
iproc_msi_write_reg(msi, IPROC_MSI_INTS_EN, eq, val);
|
|
}
|
|
|
|
val = iproc_msi_read_reg(msi, IPROC_MSI_CTRL, eq);
|
|
val &= ~(IPROC_MSI_INTR_EN | IPROC_MSI_INT_N_EVENT |
|
|
IPROC_MSI_EQ_EN);
|
|
iproc_msi_write_reg(msi, IPROC_MSI_CTRL, eq, val);
|
|
}
|
|
}
|
|
|
|
static int iproc_msi_alloc_domains(struct device_node *node,
|
|
struct iproc_msi *msi)
|
|
{
|
|
msi->inner_domain = irq_domain_add_linear(NULL, msi->nr_msi_vecs,
|
|
&msi_domain_ops, msi);
|
|
if (!msi->inner_domain)
|
|
return -ENOMEM;
|
|
|
|
msi->msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(node),
|
|
&iproc_msi_domain_info,
|
|
msi->inner_domain);
|
|
if (!msi->msi_domain) {
|
|
irq_domain_remove(msi->inner_domain);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void iproc_msi_free_domains(struct iproc_msi *msi)
|
|
{
|
|
if (msi->msi_domain)
|
|
irq_domain_remove(msi->msi_domain);
|
|
|
|
if (msi->inner_domain)
|
|
irq_domain_remove(msi->inner_domain);
|
|
}
|
|
|
|
static void iproc_msi_irq_free(struct iproc_msi *msi, unsigned int cpu)
|
|
{
|
|
int i;
|
|
|
|
for (i = cpu; i < msi->nr_irqs; i += msi->nr_cpus) {
|
|
irq_set_chained_handler_and_data(msi->grps[i].gic_irq,
|
|
NULL, NULL);
|
|
}
|
|
}
|
|
|
|
static int iproc_msi_irq_setup(struct iproc_msi *msi, unsigned int cpu)
|
|
{
|
|
int i, ret;
|
|
cpumask_var_t mask;
|
|
struct iproc_pcie *pcie = msi->pcie;
|
|
|
|
for (i = cpu; i < msi->nr_irqs; i += msi->nr_cpus) {
|
|
irq_set_chained_handler_and_data(msi->grps[i].gic_irq,
|
|
iproc_msi_handler,
|
|
&msi->grps[i]);
|
|
/* Dedicate GIC interrupt to each CPU core */
|
|
if (alloc_cpumask_var(&mask, GFP_KERNEL)) {
|
|
cpumask_clear(mask);
|
|
cpumask_set_cpu(cpu, mask);
|
|
ret = irq_set_affinity(msi->grps[i].gic_irq, mask);
|
|
if (ret)
|
|
dev_err(pcie->dev,
|
|
"failed to set affinity for IRQ%d\n",
|
|
msi->grps[i].gic_irq);
|
|
free_cpumask_var(mask);
|
|
} else {
|
|
dev_err(pcie->dev, "failed to alloc CPU mask\n");
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
if (ret) {
|
|
/* Free all configured/unconfigured IRQs */
|
|
iproc_msi_irq_free(msi, cpu);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int iproc_msi_init(struct iproc_pcie *pcie, struct device_node *node)
|
|
{
|
|
struct iproc_msi *msi;
|
|
int i, ret;
|
|
unsigned int cpu;
|
|
|
|
if (!of_device_is_compatible(node, "brcm,iproc-msi"))
|
|
return -ENODEV;
|
|
|
|
if (!of_find_property(node, "msi-controller", NULL))
|
|
return -ENODEV;
|
|
|
|
if (pcie->msi)
|
|
return -EBUSY;
|
|
|
|
msi = devm_kzalloc(pcie->dev, sizeof(*msi), GFP_KERNEL);
|
|
if (!msi)
|
|
return -ENOMEM;
|
|
|
|
msi->pcie = pcie;
|
|
pcie->msi = msi;
|
|
msi->msi_addr = pcie->base_addr;
|
|
mutex_init(&msi->bitmap_lock);
|
|
msi->nr_cpus = num_possible_cpus();
|
|
|
|
msi->nr_irqs = of_irq_count(node);
|
|
if (!msi->nr_irqs) {
|
|
dev_err(pcie->dev, "found no MSI GIC interrupt\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (msi->nr_irqs > NR_HW_IRQS) {
|
|
dev_warn(pcie->dev, "too many MSI GIC interrupts defined %d\n",
|
|
msi->nr_irqs);
|
|
msi->nr_irqs = NR_HW_IRQS;
|
|
}
|
|
|
|
if (msi->nr_irqs < msi->nr_cpus) {
|
|
dev_err(pcie->dev,
|
|
"not enough GIC interrupts for MSI affinity\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (msi->nr_irqs % msi->nr_cpus != 0) {
|
|
msi->nr_irqs -= msi->nr_irqs % msi->nr_cpus;
|
|
dev_warn(pcie->dev, "Reducing number of interrupts to %d\n",
|
|
msi->nr_irqs);
|
|
}
|
|
|
|
switch (pcie->type) {
|
|
case IPROC_PCIE_PAXB_BCMA:
|
|
case IPROC_PCIE_PAXB:
|
|
msi->reg_offsets = iproc_msi_reg_paxb;
|
|
msi->nr_eq_region = 1;
|
|
msi->nr_msi_region = 1;
|
|
break;
|
|
case IPROC_PCIE_PAXC:
|
|
msi->reg_offsets = iproc_msi_reg_paxc;
|
|
msi->nr_eq_region = msi->nr_irqs;
|
|
msi->nr_msi_region = msi->nr_irqs;
|
|
break;
|
|
default:
|
|
dev_err(pcie->dev, "incompatible iProc PCIe interface\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (of_find_property(node, "brcm,pcie-msi-inten", NULL))
|
|
msi->has_inten_reg = true;
|
|
|
|
msi->nr_msi_vecs = msi->nr_irqs * EQ_LEN;
|
|
msi->bitmap = devm_kcalloc(pcie->dev, BITS_TO_LONGS(msi->nr_msi_vecs),
|
|
sizeof(*msi->bitmap), GFP_KERNEL);
|
|
if (!msi->bitmap)
|
|
return -ENOMEM;
|
|
|
|
msi->grps = devm_kcalloc(pcie->dev, msi->nr_irqs, sizeof(*msi->grps),
|
|
GFP_KERNEL);
|
|
if (!msi->grps)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < msi->nr_irqs; i++) {
|
|
unsigned int irq = irq_of_parse_and_map(node, i);
|
|
|
|
if (!irq) {
|
|
dev_err(pcie->dev, "unable to parse/map interrupt\n");
|
|
ret = -ENODEV;
|
|
goto free_irqs;
|
|
}
|
|
msi->grps[i].gic_irq = irq;
|
|
msi->grps[i].msi = msi;
|
|
msi->grps[i].eq = i;
|
|
}
|
|
|
|
/* Reserve memory for event queue and make sure memories are zeroed */
|
|
msi->eq_cpu = dma_alloc_coherent(pcie->dev,
|
|
msi->nr_eq_region * EQ_MEM_REGION_SIZE,
|
|
&msi->eq_dma, GFP_KERNEL);
|
|
if (!msi->eq_cpu) {
|
|
ret = -ENOMEM;
|
|
goto free_irqs;
|
|
}
|
|
|
|
ret = iproc_msi_alloc_domains(node, msi);
|
|
if (ret) {
|
|
dev_err(pcie->dev, "failed to create MSI domains\n");
|
|
goto free_eq_dma;
|
|
}
|
|
|
|
for_each_online_cpu(cpu) {
|
|
ret = iproc_msi_irq_setup(msi, cpu);
|
|
if (ret)
|
|
goto free_msi_irq;
|
|
}
|
|
|
|
iproc_msi_enable(msi);
|
|
|
|
return 0;
|
|
|
|
free_msi_irq:
|
|
for_each_online_cpu(cpu)
|
|
iproc_msi_irq_free(msi, cpu);
|
|
iproc_msi_free_domains(msi);
|
|
|
|
free_eq_dma:
|
|
dma_free_coherent(pcie->dev, msi->nr_eq_region * EQ_MEM_REGION_SIZE,
|
|
msi->eq_cpu, msi->eq_dma);
|
|
|
|
free_irqs:
|
|
for (i = 0; i < msi->nr_irqs; i++) {
|
|
if (msi->grps[i].gic_irq)
|
|
irq_dispose_mapping(msi->grps[i].gic_irq);
|
|
}
|
|
pcie->msi = NULL;
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(iproc_msi_init);
|
|
|
|
void iproc_msi_exit(struct iproc_pcie *pcie)
|
|
{
|
|
struct iproc_msi *msi = pcie->msi;
|
|
unsigned int i, cpu;
|
|
|
|
if (!msi)
|
|
return;
|
|
|
|
iproc_msi_disable(msi);
|
|
|
|
for_each_online_cpu(cpu)
|
|
iproc_msi_irq_free(msi, cpu);
|
|
|
|
iproc_msi_free_domains(msi);
|
|
|
|
dma_free_coherent(pcie->dev, msi->nr_eq_region * EQ_MEM_REGION_SIZE,
|
|
msi->eq_cpu, msi->eq_dma);
|
|
|
|
for (i = 0; i < msi->nr_irqs; i++) {
|
|
if (msi->grps[i].gic_irq)
|
|
irq_dispose_mapping(msi->grps[i].gic_irq);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(iproc_msi_exit);
|