linux_dsm_epyc7002/kernel/irq/affinity.c
Minwoo Im 0e51833042 genirq/affinity: Remove unused argument from [__]irq_build_affinity_masks()
The *affd argument is neither used in irq_build_affinity_masks() nor
__irq_build_affinity_masks(). Remove it.

Signed-off-by: Minwoo Im <minwoo.im.dev@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ming Lei <ming.lei@redhat.com>
Cc: Minwoo Im <minwoo.im@samsung.com>
Cc: linux-block@vger.kernel.org
Link: https://lkml.kernel.org/r/20190602112117.31839-1-minwoo.im.dev@gmail.com
2019-06-12 10:52:45 +02:00

346 lines
8.7 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2016 Thomas Gleixner.
* Copyright (C) 2016-2017 Christoph Hellwig.
*/
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/cpu.h>
static void irq_spread_init_one(struct cpumask *irqmsk, struct cpumask *nmsk,
unsigned int cpus_per_vec)
{
const struct cpumask *siblmsk;
int cpu, sibl;
for ( ; cpus_per_vec > 0; ) {
cpu = cpumask_first(nmsk);
/* Should not happen, but I'm too lazy to think about it */
if (cpu >= nr_cpu_ids)
return;
cpumask_clear_cpu(cpu, nmsk);
cpumask_set_cpu(cpu, irqmsk);
cpus_per_vec--;
/* If the cpu has siblings, use them first */
siblmsk = topology_sibling_cpumask(cpu);
for (sibl = -1; cpus_per_vec > 0; ) {
sibl = cpumask_next(sibl, siblmsk);
if (sibl >= nr_cpu_ids)
break;
if (!cpumask_test_and_clear_cpu(sibl, nmsk))
continue;
cpumask_set_cpu(sibl, irqmsk);
cpus_per_vec--;
}
}
}
static cpumask_var_t *alloc_node_to_cpumask(void)
{
cpumask_var_t *masks;
int node;
masks = kcalloc(nr_node_ids, sizeof(cpumask_var_t), GFP_KERNEL);
if (!masks)
return NULL;
for (node = 0; node < nr_node_ids; node++) {
if (!zalloc_cpumask_var(&masks[node], GFP_KERNEL))
goto out_unwind;
}
return masks;
out_unwind:
while (--node >= 0)
free_cpumask_var(masks[node]);
kfree(masks);
return NULL;
}
static void free_node_to_cpumask(cpumask_var_t *masks)
{
int node;
for (node = 0; node < nr_node_ids; node++)
free_cpumask_var(masks[node]);
kfree(masks);
}
static void build_node_to_cpumask(cpumask_var_t *masks)
{
int cpu;
for_each_possible_cpu(cpu)
cpumask_set_cpu(cpu, masks[cpu_to_node(cpu)]);
}
static int get_nodes_in_cpumask(cpumask_var_t *node_to_cpumask,
const struct cpumask *mask, nodemask_t *nodemsk)
{
int n, nodes = 0;
/* Calculate the number of nodes in the supplied affinity mask */
for_each_node(n) {
if (cpumask_intersects(mask, node_to_cpumask[n])) {
node_set(n, *nodemsk);
nodes++;
}
}
return nodes;
}
static int __irq_build_affinity_masks(unsigned int startvec,
unsigned int numvecs,
unsigned int firstvec,
cpumask_var_t *node_to_cpumask,
const struct cpumask *cpu_mask,
struct cpumask *nmsk,
struct irq_affinity_desc *masks)
{
unsigned int n, nodes, cpus_per_vec, extra_vecs, done = 0;
unsigned int last_affv = firstvec + numvecs;
unsigned int curvec = startvec;
nodemask_t nodemsk = NODE_MASK_NONE;
if (!cpumask_weight(cpu_mask))
return 0;
nodes = get_nodes_in_cpumask(node_to_cpumask, cpu_mask, &nodemsk);
/*
* If the number of nodes in the mask is greater than or equal the
* number of vectors we just spread the vectors across the nodes.
*/
if (numvecs <= nodes) {
for_each_node_mask(n, nodemsk) {
cpumask_or(&masks[curvec].mask, &masks[curvec].mask,
node_to_cpumask[n]);
if (++curvec == last_affv)
curvec = firstvec;
}
return numvecs;
}
for_each_node_mask(n, nodemsk) {
unsigned int ncpus, v, vecs_to_assign, vecs_per_node;
/* Spread the vectors per node */
vecs_per_node = (numvecs - (curvec - firstvec)) / nodes;
/* Get the cpus on this node which are in the mask */
cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
/* Calculate the number of cpus per vector */
ncpus = cpumask_weight(nmsk);
vecs_to_assign = min(vecs_per_node, ncpus);
/* Account for rounding errors */
extra_vecs = ncpus - vecs_to_assign * (ncpus / vecs_to_assign);
for (v = 0; curvec < last_affv && v < vecs_to_assign;
curvec++, v++) {
cpus_per_vec = ncpus / vecs_to_assign;
/* Account for extra vectors to compensate rounding errors */
if (extra_vecs) {
cpus_per_vec++;
--extra_vecs;
}
irq_spread_init_one(&masks[curvec].mask, nmsk,
cpus_per_vec);
}
done += v;
if (done >= numvecs)
break;
if (curvec >= last_affv)
curvec = firstvec;
--nodes;
}
return done;
}
/*
* build affinity in two stages:
* 1) spread present CPU on these vectors
* 2) spread other possible CPUs on these vectors
*/
static int irq_build_affinity_masks(unsigned int startvec, unsigned int numvecs,
unsigned int firstvec,
struct irq_affinity_desc *masks)
{
unsigned int curvec = startvec, nr_present, nr_others;
cpumask_var_t *node_to_cpumask;
cpumask_var_t nmsk, npresmsk;
int ret = -ENOMEM;
if (!zalloc_cpumask_var(&nmsk, GFP_KERNEL))
return ret;
if (!zalloc_cpumask_var(&npresmsk, GFP_KERNEL))
goto fail_nmsk;
node_to_cpumask = alloc_node_to_cpumask();
if (!node_to_cpumask)
goto fail_npresmsk;
ret = 0;
/* Stabilize the cpumasks */
get_online_cpus();
build_node_to_cpumask(node_to_cpumask);
/* Spread on present CPUs starting from affd->pre_vectors */
nr_present = __irq_build_affinity_masks(curvec, numvecs,
firstvec, node_to_cpumask,
cpu_present_mask, nmsk, masks);
/*
* Spread on non present CPUs starting from the next vector to be
* handled. If the spreading of present CPUs already exhausted the
* vector space, assign the non present CPUs to the already spread
* out vectors.
*/
if (nr_present >= numvecs)
curvec = firstvec;
else
curvec = firstvec + nr_present;
cpumask_andnot(npresmsk, cpu_possible_mask, cpu_present_mask);
nr_others = __irq_build_affinity_masks(curvec, numvecs,
firstvec, node_to_cpumask,
npresmsk, nmsk, masks);
put_online_cpus();
if (nr_present < numvecs)
WARN_ON(nr_present + nr_others < numvecs);
free_node_to_cpumask(node_to_cpumask);
fail_npresmsk:
free_cpumask_var(npresmsk);
fail_nmsk:
free_cpumask_var(nmsk);
return ret;
}
static void default_calc_sets(struct irq_affinity *affd, unsigned int affvecs)
{
affd->nr_sets = 1;
affd->set_size[0] = affvecs;
}
/**
* irq_create_affinity_masks - Create affinity masks for multiqueue spreading
* @nvecs: The total number of vectors
* @affd: Description of the affinity requirements
*
* Returns the irq_affinity_desc pointer or NULL if allocation failed.
*/
struct irq_affinity_desc *
irq_create_affinity_masks(unsigned int nvecs, struct irq_affinity *affd)
{
unsigned int affvecs, curvec, usedvecs, i;
struct irq_affinity_desc *masks = NULL;
/*
* Determine the number of vectors which need interrupt affinities
* assigned. If the pre/post request exhausts the available vectors
* then nothing to do here except for invoking the calc_sets()
* callback so the device driver can adjust to the situation. If there
* is only a single vector, then managing the queue is pointless as
* well.
*/
if (nvecs > 1 && nvecs > affd->pre_vectors + affd->post_vectors)
affvecs = nvecs - affd->pre_vectors - affd->post_vectors;
else
affvecs = 0;
/*
* Simple invocations do not provide a calc_sets() callback. Install
* the generic one.
*/
if (!affd->calc_sets)
affd->calc_sets = default_calc_sets;
/* Recalculate the sets */
affd->calc_sets(affd, affvecs);
if (WARN_ON_ONCE(affd->nr_sets > IRQ_AFFINITY_MAX_SETS))
return NULL;
/* Nothing to assign? */
if (!affvecs)
return NULL;
masks = kcalloc(nvecs, sizeof(*masks), GFP_KERNEL);
if (!masks)
return NULL;
/* Fill out vectors at the beginning that don't need affinity */
for (curvec = 0; curvec < affd->pre_vectors; curvec++)
cpumask_copy(&masks[curvec].mask, irq_default_affinity);
/*
* Spread on present CPUs starting from affd->pre_vectors. If we
* have multiple sets, build each sets affinity mask separately.
*/
for (i = 0, usedvecs = 0; i < affd->nr_sets; i++) {
unsigned int this_vecs = affd->set_size[i];
int ret;
ret = irq_build_affinity_masks(curvec, this_vecs,
curvec, masks);
if (ret) {
kfree(masks);
return NULL;
}
curvec += this_vecs;
usedvecs += this_vecs;
}
/* Fill out vectors at the end that don't need affinity */
if (usedvecs >= affvecs)
curvec = affd->pre_vectors + affvecs;
else
curvec = affd->pre_vectors + usedvecs;
for (; curvec < nvecs; curvec++)
cpumask_copy(&masks[curvec].mask, irq_default_affinity);
/* Mark the managed interrupts */
for (i = affd->pre_vectors; i < nvecs - affd->post_vectors; i++)
masks[i].is_managed = 1;
return masks;
}
/**
* irq_calc_affinity_vectors - Calculate the optimal number of vectors
* @minvec: The minimum number of vectors available
* @maxvec: The maximum number of vectors available
* @affd: Description of the affinity requirements
*/
unsigned int irq_calc_affinity_vectors(unsigned int minvec, unsigned int maxvec,
const struct irq_affinity *affd)
{
unsigned int resv = affd->pre_vectors + affd->post_vectors;
unsigned int set_vecs;
if (resv > minvec)
return 0;
if (affd->calc_sets) {
set_vecs = maxvec - resv;
} else {
get_online_cpus();
set_vecs = cpumask_weight(cpu_possible_mask);
put_online_cpus();
}
return resv + min(set_vecs, maxvec - resv);
}