linux_dsm_epyc7002/include/linux/pm_qos.h
Viresh Kumar 208637b378 PM / QoS: Add support for MIN/MAX frequency constraints
This patch introduces the min-frequency and max-frequency device
constraints, which will be used by the cpufreq core to begin with.

Reviewed-by: Matthias Kaehlcke <mka@chromium.org>
Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2019-07-04 10:40:54 +02:00

277 lines
9.3 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_PM_QOS_H
#define _LINUX_PM_QOS_H
/* interface for the pm_qos_power infrastructure of the linux kernel.
*
* Mark Gross <mgross@linux.intel.com>
*/
#include <linux/plist.h>
#include <linux/notifier.h>
#include <linux/device.h>
#include <linux/workqueue.h>
enum {
PM_QOS_RESERVED = 0,
PM_QOS_CPU_DMA_LATENCY,
PM_QOS_NETWORK_LATENCY,
PM_QOS_NETWORK_THROUGHPUT,
PM_QOS_MEMORY_BANDWIDTH,
/* insert new class ID */
PM_QOS_NUM_CLASSES,
};
enum pm_qos_flags_status {
PM_QOS_FLAGS_UNDEFINED = -1,
PM_QOS_FLAGS_NONE,
PM_QOS_FLAGS_SOME,
PM_QOS_FLAGS_ALL,
};
#define PM_QOS_DEFAULT_VALUE (-1)
#define PM_QOS_LATENCY_ANY S32_MAX
#define PM_QOS_LATENCY_ANY_NS ((s64)PM_QOS_LATENCY_ANY * NSEC_PER_USEC)
#define PM_QOS_CPU_DMA_LAT_DEFAULT_VALUE (2000 * USEC_PER_SEC)
#define PM_QOS_NETWORK_LAT_DEFAULT_VALUE (2000 * USEC_PER_SEC)
#define PM_QOS_NETWORK_THROUGHPUT_DEFAULT_VALUE 0
#define PM_QOS_MEMORY_BANDWIDTH_DEFAULT_VALUE 0
#define PM_QOS_RESUME_LATENCY_DEFAULT_VALUE PM_QOS_LATENCY_ANY
#define PM_QOS_RESUME_LATENCY_NO_CONSTRAINT PM_QOS_LATENCY_ANY
#define PM_QOS_RESUME_LATENCY_NO_CONSTRAINT_NS PM_QOS_LATENCY_ANY_NS
#define PM_QOS_LATENCY_TOLERANCE_DEFAULT_VALUE 0
#define PM_QOS_MIN_FREQUENCY_DEFAULT_VALUE 0
#define PM_QOS_MAX_FREQUENCY_DEFAULT_VALUE (-1)
#define PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT (-1)
#define PM_QOS_FLAG_NO_POWER_OFF (1 << 0)
struct pm_qos_request {
struct plist_node node;
int pm_qos_class;
struct delayed_work work; /* for pm_qos_update_request_timeout */
};
struct pm_qos_flags_request {
struct list_head node;
s32 flags; /* Do not change to 64 bit */
};
enum dev_pm_qos_req_type {
DEV_PM_QOS_RESUME_LATENCY = 1,
DEV_PM_QOS_LATENCY_TOLERANCE,
DEV_PM_QOS_MIN_FREQUENCY,
DEV_PM_QOS_MAX_FREQUENCY,
DEV_PM_QOS_FLAGS,
};
struct dev_pm_qos_request {
enum dev_pm_qos_req_type type;
union {
struct plist_node pnode;
struct pm_qos_flags_request flr;
} data;
struct device *dev;
};
enum pm_qos_type {
PM_QOS_UNITIALIZED,
PM_QOS_MAX, /* return the largest value */
PM_QOS_MIN, /* return the smallest value */
PM_QOS_SUM /* return the sum */
};
/*
* Note: The lockless read path depends on the CPU accessing target_value
* or effective_flags atomically. Atomic access is only guaranteed on all CPU
* types linux supports for 32 bit quantites
*/
struct pm_qos_constraints {
struct plist_head list;
s32 target_value; /* Do not change to 64 bit */
s32 default_value;
s32 no_constraint_value;
enum pm_qos_type type;
struct blocking_notifier_head *notifiers;
};
struct pm_qos_flags {
struct list_head list;
s32 effective_flags; /* Do not change to 64 bit */
};
struct dev_pm_qos {
struct pm_qos_constraints resume_latency;
struct pm_qos_constraints latency_tolerance;
struct pm_qos_constraints min_frequency;
struct pm_qos_constraints max_frequency;
struct pm_qos_flags flags;
struct dev_pm_qos_request *resume_latency_req;
struct dev_pm_qos_request *latency_tolerance_req;
struct dev_pm_qos_request *flags_req;
struct dev_pm_qos_request *min_frequency_req;
struct dev_pm_qos_request *max_frequency_req;
};
/* Action requested to pm_qos_update_target */
enum pm_qos_req_action {
PM_QOS_ADD_REQ, /* Add a new request */
PM_QOS_UPDATE_REQ, /* Update an existing request */
PM_QOS_REMOVE_REQ /* Remove an existing request */
};
static inline int dev_pm_qos_request_active(struct dev_pm_qos_request *req)
{
return req->dev != NULL;
}
int pm_qos_update_target(struct pm_qos_constraints *c, struct plist_node *node,
enum pm_qos_req_action action, int value);
bool pm_qos_update_flags(struct pm_qos_flags *pqf,
struct pm_qos_flags_request *req,
enum pm_qos_req_action action, s32 val);
void pm_qos_add_request(struct pm_qos_request *req, int pm_qos_class,
s32 value);
void pm_qos_update_request(struct pm_qos_request *req,
s32 new_value);
void pm_qos_update_request_timeout(struct pm_qos_request *req,
s32 new_value, unsigned long timeout_us);
void pm_qos_remove_request(struct pm_qos_request *req);
int pm_qos_request(int pm_qos_class);
int pm_qos_add_notifier(int pm_qos_class, struct notifier_block *notifier);
int pm_qos_remove_notifier(int pm_qos_class, struct notifier_block *notifier);
int pm_qos_request_active(struct pm_qos_request *req);
s32 pm_qos_read_value(struct pm_qos_constraints *c);
#ifdef CONFIG_PM
enum pm_qos_flags_status __dev_pm_qos_flags(struct device *dev, s32 mask);
enum pm_qos_flags_status dev_pm_qos_flags(struct device *dev, s32 mask);
s32 __dev_pm_qos_resume_latency(struct device *dev);
s32 dev_pm_qos_read_value(struct device *dev, enum dev_pm_qos_req_type type);
int dev_pm_qos_add_request(struct device *dev, struct dev_pm_qos_request *req,
enum dev_pm_qos_req_type type, s32 value);
int dev_pm_qos_update_request(struct dev_pm_qos_request *req, s32 new_value);
int dev_pm_qos_remove_request(struct dev_pm_qos_request *req);
int dev_pm_qos_add_notifier(struct device *dev,
struct notifier_block *notifier,
enum dev_pm_qos_req_type type);
int dev_pm_qos_remove_notifier(struct device *dev,
struct notifier_block *notifier,
enum dev_pm_qos_req_type type);
void dev_pm_qos_constraints_init(struct device *dev);
void dev_pm_qos_constraints_destroy(struct device *dev);
int dev_pm_qos_add_ancestor_request(struct device *dev,
struct dev_pm_qos_request *req,
enum dev_pm_qos_req_type type, s32 value);
int dev_pm_qos_expose_latency_limit(struct device *dev, s32 value);
void dev_pm_qos_hide_latency_limit(struct device *dev);
int dev_pm_qos_expose_flags(struct device *dev, s32 value);
void dev_pm_qos_hide_flags(struct device *dev);
int dev_pm_qos_update_flags(struct device *dev, s32 mask, bool set);
s32 dev_pm_qos_get_user_latency_tolerance(struct device *dev);
int dev_pm_qos_update_user_latency_tolerance(struct device *dev, s32 val);
int dev_pm_qos_expose_latency_tolerance(struct device *dev);
void dev_pm_qos_hide_latency_tolerance(struct device *dev);
static inline s32 dev_pm_qos_requested_resume_latency(struct device *dev)
{
return dev->power.qos->resume_latency_req->data.pnode.prio;
}
static inline s32 dev_pm_qos_requested_flags(struct device *dev)
{
return dev->power.qos->flags_req->data.flr.flags;
}
static inline s32 dev_pm_qos_raw_resume_latency(struct device *dev)
{
return IS_ERR_OR_NULL(dev->power.qos) ?
PM_QOS_RESUME_LATENCY_NO_CONSTRAINT :
pm_qos_read_value(&dev->power.qos->resume_latency);
}
#else
static inline enum pm_qos_flags_status __dev_pm_qos_flags(struct device *dev,
s32 mask)
{ return PM_QOS_FLAGS_UNDEFINED; }
static inline enum pm_qos_flags_status dev_pm_qos_flags(struct device *dev,
s32 mask)
{ return PM_QOS_FLAGS_UNDEFINED; }
static inline s32 __dev_pm_qos_resume_latency(struct device *dev)
{ return PM_QOS_RESUME_LATENCY_NO_CONSTRAINT; }
static inline s32 dev_pm_qos_read_value(struct device *dev,
enum dev_pm_qos_req_type type)
{
switch (type) {
case DEV_PM_QOS_RESUME_LATENCY:
return PM_QOS_RESUME_LATENCY_NO_CONSTRAINT;
case DEV_PM_QOS_MIN_FREQUENCY:
return PM_QOS_MIN_FREQUENCY_DEFAULT_VALUE;
case DEV_PM_QOS_MAX_FREQUENCY:
return PM_QOS_MAX_FREQUENCY_DEFAULT_VALUE;
default:
WARN_ON(1);
return 0;
}
}
static inline int dev_pm_qos_add_request(struct device *dev,
struct dev_pm_qos_request *req,
enum dev_pm_qos_req_type type,
s32 value)
{ return 0; }
static inline int dev_pm_qos_update_request(struct dev_pm_qos_request *req,
s32 new_value)
{ return 0; }
static inline int dev_pm_qos_remove_request(struct dev_pm_qos_request *req)
{ return 0; }
static inline int dev_pm_qos_add_notifier(struct device *dev,
struct notifier_block *notifier,
enum dev_pm_qos_req_type type)
{ return 0; }
static inline int dev_pm_qos_remove_notifier(struct device *dev,
struct notifier_block *notifier,
enum dev_pm_qos_req_type type)
{ return 0; }
static inline void dev_pm_qos_constraints_init(struct device *dev)
{
dev->power.power_state = PMSG_ON;
}
static inline void dev_pm_qos_constraints_destroy(struct device *dev)
{
dev->power.power_state = PMSG_INVALID;
}
static inline int dev_pm_qos_add_ancestor_request(struct device *dev,
struct dev_pm_qos_request *req,
enum dev_pm_qos_req_type type,
s32 value)
{ return 0; }
static inline int dev_pm_qos_expose_latency_limit(struct device *dev, s32 value)
{ return 0; }
static inline void dev_pm_qos_hide_latency_limit(struct device *dev) {}
static inline int dev_pm_qos_expose_flags(struct device *dev, s32 value)
{ return 0; }
static inline void dev_pm_qos_hide_flags(struct device *dev) {}
static inline int dev_pm_qos_update_flags(struct device *dev, s32 m, bool set)
{ return 0; }
static inline s32 dev_pm_qos_get_user_latency_tolerance(struct device *dev)
{ return PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT; }
static inline int dev_pm_qos_update_user_latency_tolerance(struct device *dev, s32 val)
{ return 0; }
static inline int dev_pm_qos_expose_latency_tolerance(struct device *dev)
{ return 0; }
static inline void dev_pm_qos_hide_latency_tolerance(struct device *dev) {}
static inline s32 dev_pm_qos_requested_resume_latency(struct device *dev)
{
return PM_QOS_RESUME_LATENCY_NO_CONSTRAINT;
}
static inline s32 dev_pm_qos_requested_flags(struct device *dev) { return 0; }
static inline s32 dev_pm_qos_raw_resume_latency(struct device *dev)
{
return PM_QOS_RESUME_LATENCY_NO_CONSTRAINT;
}
#endif
#endif