linux_dsm_epyc7002/drivers/infiniband/hw/cxgb4/cm.c
Hariprasad S 64bec74a9b RDMA/iw_cxgb4: Add arp failure handlers to send_mpa_reply/reject()
These handlers when called print error message to the kernel log,
but the actual handling is done by _c4iw_free_ep() and process_timeout().

Signed-off-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Hariprasad Shenai <hariprasad@chelsio.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
2016-05-13 19:38:11 -04:00

4298 lines
116 KiB
C

/*
* Copyright (c) 2009-2014 Chelsio, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/module.h>
#include <linux/list.h>
#include <linux/workqueue.h>
#include <linux/skbuff.h>
#include <linux/timer.h>
#include <linux/notifier.h>
#include <linux/inetdevice.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/if_vlan.h>
#include <net/neighbour.h>
#include <net/netevent.h>
#include <net/route.h>
#include <net/tcp.h>
#include <net/ip6_route.h>
#include <net/addrconf.h>
#include <rdma/ib_addr.h>
#include "iw_cxgb4.h"
#include "clip_tbl.h"
static char *states[] = {
"idle",
"listen",
"connecting",
"mpa_wait_req",
"mpa_req_sent",
"mpa_req_rcvd",
"mpa_rep_sent",
"fpdu_mode",
"aborting",
"closing",
"moribund",
"dead",
NULL,
};
static int nocong;
module_param(nocong, int, 0644);
MODULE_PARM_DESC(nocong, "Turn of congestion control (default=0)");
static int enable_ecn;
module_param(enable_ecn, int, 0644);
MODULE_PARM_DESC(enable_ecn, "Enable ECN (default=0/disabled)");
static int dack_mode = 1;
module_param(dack_mode, int, 0644);
MODULE_PARM_DESC(dack_mode, "Delayed ack mode (default=1)");
uint c4iw_max_read_depth = 32;
module_param(c4iw_max_read_depth, int, 0644);
MODULE_PARM_DESC(c4iw_max_read_depth,
"Per-connection max ORD/IRD (default=32)");
static int enable_tcp_timestamps;
module_param(enable_tcp_timestamps, int, 0644);
MODULE_PARM_DESC(enable_tcp_timestamps, "Enable tcp timestamps (default=0)");
static int enable_tcp_sack;
module_param(enable_tcp_sack, int, 0644);
MODULE_PARM_DESC(enable_tcp_sack, "Enable tcp SACK (default=0)");
static int enable_tcp_window_scaling = 1;
module_param(enable_tcp_window_scaling, int, 0644);
MODULE_PARM_DESC(enable_tcp_window_scaling,
"Enable tcp window scaling (default=1)");
int c4iw_debug;
module_param(c4iw_debug, int, 0644);
MODULE_PARM_DESC(c4iw_debug, "Enable debug logging (default=0)");
static int peer2peer = 1;
module_param(peer2peer, int, 0644);
MODULE_PARM_DESC(peer2peer, "Support peer2peer ULPs (default=1)");
static int p2p_type = FW_RI_INIT_P2PTYPE_READ_REQ;
module_param(p2p_type, int, 0644);
MODULE_PARM_DESC(p2p_type, "RDMAP opcode to use for the RTR message: "
"1=RDMA_READ 0=RDMA_WRITE (default 1)");
static int ep_timeout_secs = 60;
module_param(ep_timeout_secs, int, 0644);
MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout "
"in seconds (default=60)");
static int mpa_rev = 2;
module_param(mpa_rev, int, 0644);
MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, "
"1 is RFC5044 spec compliant, 2 is IETF MPA Peer Connect Draft"
" compliant (default=2)");
static int markers_enabled;
module_param(markers_enabled, int, 0644);
MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)");
static int crc_enabled = 1;
module_param(crc_enabled, int, 0644);
MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)");
static int rcv_win = 256 * 1024;
module_param(rcv_win, int, 0644);
MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256KB)");
static int snd_win = 128 * 1024;
module_param(snd_win, int, 0644);
MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=128KB)");
static struct workqueue_struct *workq;
static struct sk_buff_head rxq;
static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp);
static void ep_timeout(unsigned long arg);
static void connect_reply_upcall(struct c4iw_ep *ep, int status);
static int sched(struct c4iw_dev *dev, struct sk_buff *skb);
static LIST_HEAD(timeout_list);
static spinlock_t timeout_lock;
static void deref_cm_id(struct c4iw_ep_common *epc)
{
epc->cm_id->rem_ref(epc->cm_id);
epc->cm_id = NULL;
set_bit(CM_ID_DEREFED, &epc->history);
}
static void ref_cm_id(struct c4iw_ep_common *epc)
{
set_bit(CM_ID_REFED, &epc->history);
epc->cm_id->add_ref(epc->cm_id);
}
static void deref_qp(struct c4iw_ep *ep)
{
c4iw_qp_rem_ref(&ep->com.qp->ibqp);
clear_bit(QP_REFERENCED, &ep->com.flags);
set_bit(QP_DEREFED, &ep->com.history);
}
static void ref_qp(struct c4iw_ep *ep)
{
set_bit(QP_REFERENCED, &ep->com.flags);
set_bit(QP_REFED, &ep->com.history);
c4iw_qp_add_ref(&ep->com.qp->ibqp);
}
static void start_ep_timer(struct c4iw_ep *ep)
{
PDBG("%s ep %p\n", __func__, ep);
if (timer_pending(&ep->timer)) {
pr_err("%s timer already started! ep %p\n",
__func__, ep);
return;
}
clear_bit(TIMEOUT, &ep->com.flags);
c4iw_get_ep(&ep->com);
ep->timer.expires = jiffies + ep_timeout_secs * HZ;
ep->timer.data = (unsigned long)ep;
ep->timer.function = ep_timeout;
add_timer(&ep->timer);
}
static int stop_ep_timer(struct c4iw_ep *ep)
{
PDBG("%s ep %p stopping\n", __func__, ep);
del_timer_sync(&ep->timer);
if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) {
c4iw_put_ep(&ep->com);
return 0;
}
return 1;
}
static int c4iw_l2t_send(struct c4iw_rdev *rdev, struct sk_buff *skb,
struct l2t_entry *l2e)
{
int error = 0;
if (c4iw_fatal_error(rdev)) {
kfree_skb(skb);
PDBG("%s - device in error state - dropping\n", __func__);
return -EIO;
}
error = cxgb4_l2t_send(rdev->lldi.ports[0], skb, l2e);
if (error < 0)
kfree_skb(skb);
else if (error == NET_XMIT_DROP)
return -ENOMEM;
return error < 0 ? error : 0;
}
int c4iw_ofld_send(struct c4iw_rdev *rdev, struct sk_buff *skb)
{
int error = 0;
if (c4iw_fatal_error(rdev)) {
kfree_skb(skb);
PDBG("%s - device in error state - dropping\n", __func__);
return -EIO;
}
error = cxgb4_ofld_send(rdev->lldi.ports[0], skb);
if (error < 0)
kfree_skb(skb);
return error < 0 ? error : 0;
}
static void release_tid(struct c4iw_rdev *rdev, u32 hwtid, struct sk_buff *skb)
{
struct cpl_tid_release *req;
skb = get_skb(skb, sizeof *req, GFP_KERNEL);
if (!skb)
return;
req = (struct cpl_tid_release *) skb_put(skb, sizeof(*req));
INIT_TP_WR(req, hwtid);
OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_TID_RELEASE, hwtid));
set_wr_txq(skb, CPL_PRIORITY_SETUP, 0);
c4iw_ofld_send(rdev, skb);
return;
}
static void set_emss(struct c4iw_ep *ep, u16 opt)
{
ep->emss = ep->com.dev->rdev.lldi.mtus[TCPOPT_MSS_G(opt)] -
((AF_INET == ep->com.remote_addr.ss_family) ?
sizeof(struct iphdr) : sizeof(struct ipv6hdr)) -
sizeof(struct tcphdr);
ep->mss = ep->emss;
if (TCPOPT_TSTAMP_G(opt))
ep->emss -= round_up(TCPOLEN_TIMESTAMP, 4);
if (ep->emss < 128)
ep->emss = 128;
if (ep->emss & 7)
PDBG("Warning: misaligned mtu idx %u mss %u emss=%u\n",
TCPOPT_MSS_G(opt), ep->mss, ep->emss);
PDBG("%s mss_idx %u mss %u emss=%u\n", __func__, TCPOPT_MSS_G(opt),
ep->mss, ep->emss);
}
static enum c4iw_ep_state state_read(struct c4iw_ep_common *epc)
{
enum c4iw_ep_state state;
mutex_lock(&epc->mutex);
state = epc->state;
mutex_unlock(&epc->mutex);
return state;
}
static void __state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new)
{
epc->state = new;
}
static void state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new)
{
mutex_lock(&epc->mutex);
PDBG("%s - %s -> %s\n", __func__, states[epc->state], states[new]);
__state_set(epc, new);
mutex_unlock(&epc->mutex);
return;
}
static void *alloc_ep(int size, gfp_t gfp)
{
struct c4iw_ep_common *epc;
epc = kzalloc(size, gfp);
if (epc) {
kref_init(&epc->kref);
mutex_init(&epc->mutex);
c4iw_init_wr_wait(&epc->wr_wait);
}
PDBG("%s alloc ep %p\n", __func__, epc);
return epc;
}
static void remove_ep_tid(struct c4iw_ep *ep)
{
unsigned long flags;
spin_lock_irqsave(&ep->com.dev->lock, flags);
_remove_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep->hwtid, 0);
spin_unlock_irqrestore(&ep->com.dev->lock, flags);
}
static void insert_ep_tid(struct c4iw_ep *ep)
{
unsigned long flags;
spin_lock_irqsave(&ep->com.dev->lock, flags);
_insert_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep, ep->hwtid, 0);
spin_unlock_irqrestore(&ep->com.dev->lock, flags);
}
/*
* Atomically lookup the ep ptr given the tid and grab a reference on the ep.
*/
static struct c4iw_ep *get_ep_from_tid(struct c4iw_dev *dev, unsigned int tid)
{
struct c4iw_ep *ep;
unsigned long flags;
spin_lock_irqsave(&dev->lock, flags);
ep = idr_find(&dev->hwtid_idr, tid);
if (ep)
c4iw_get_ep(&ep->com);
spin_unlock_irqrestore(&dev->lock, flags);
return ep;
}
/*
* Atomically lookup the ep ptr given the stid and grab a reference on the ep.
*/
static struct c4iw_listen_ep *get_ep_from_stid(struct c4iw_dev *dev,
unsigned int stid)
{
struct c4iw_listen_ep *ep;
unsigned long flags;
spin_lock_irqsave(&dev->lock, flags);
ep = idr_find(&dev->stid_idr, stid);
if (ep)
c4iw_get_ep(&ep->com);
spin_unlock_irqrestore(&dev->lock, flags);
return ep;
}
void _c4iw_free_ep(struct kref *kref)
{
struct c4iw_ep *ep;
ep = container_of(kref, struct c4iw_ep, com.kref);
PDBG("%s ep %p state %s\n", __func__, ep, states[ep->com.state]);
if (test_bit(QP_REFERENCED, &ep->com.flags))
deref_qp(ep);
if (test_bit(RELEASE_RESOURCES, &ep->com.flags)) {
if (ep->com.remote_addr.ss_family == AF_INET6) {
struct sockaddr_in6 *sin6 =
(struct sockaddr_in6 *)
&ep->com.local_addr;
cxgb4_clip_release(
ep->com.dev->rdev.lldi.ports[0],
(const u32 *)&sin6->sin6_addr.s6_addr,
1);
}
cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid);
dst_release(ep->dst);
cxgb4_l2t_release(ep->l2t);
if (ep->mpa_skb)
kfree_skb(ep->mpa_skb);
}
kfree(ep);
}
static void release_ep_resources(struct c4iw_ep *ep)
{
set_bit(RELEASE_RESOURCES, &ep->com.flags);
/*
* If we have a hwtid, then remove it from the idr table
* so lookups will no longer find this endpoint. Otherwise
* we have a race where one thread finds the ep ptr just
* before the other thread is freeing the ep memory.
*/
if (ep->hwtid != -1)
remove_ep_tid(ep);
c4iw_put_ep(&ep->com);
}
static int status2errno(int status)
{
switch (status) {
case CPL_ERR_NONE:
return 0;
case CPL_ERR_CONN_RESET:
return -ECONNRESET;
case CPL_ERR_ARP_MISS:
return -EHOSTUNREACH;
case CPL_ERR_CONN_TIMEDOUT:
return -ETIMEDOUT;
case CPL_ERR_TCAM_FULL:
return -ENOMEM;
case CPL_ERR_CONN_EXIST:
return -EADDRINUSE;
default:
return -EIO;
}
}
/*
* Try and reuse skbs already allocated...
*/
static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp)
{
if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) {
skb_trim(skb, 0);
skb_get(skb);
skb_reset_transport_header(skb);
} else {
skb = alloc_skb(len, gfp);
}
t4_set_arp_err_handler(skb, NULL, NULL);
return skb;
}
static struct net_device *get_real_dev(struct net_device *egress_dev)
{
return rdma_vlan_dev_real_dev(egress_dev) ? : egress_dev;
}
static int our_interface(struct c4iw_dev *dev, struct net_device *egress_dev)
{
int i;
egress_dev = get_real_dev(egress_dev);
for (i = 0; i < dev->rdev.lldi.nports; i++)
if (dev->rdev.lldi.ports[i] == egress_dev)
return 1;
return 0;
}
static struct dst_entry *find_route6(struct c4iw_dev *dev, __u8 *local_ip,
__u8 *peer_ip, __be16 local_port,
__be16 peer_port, u8 tos,
__u32 sin6_scope_id)
{
struct dst_entry *dst = NULL;
if (IS_ENABLED(CONFIG_IPV6)) {
struct flowi6 fl6;
memset(&fl6, 0, sizeof(fl6));
memcpy(&fl6.daddr, peer_ip, 16);
memcpy(&fl6.saddr, local_ip, 16);
if (ipv6_addr_type(&fl6.daddr) & IPV6_ADDR_LINKLOCAL)
fl6.flowi6_oif = sin6_scope_id;
dst = ip6_route_output(&init_net, NULL, &fl6);
if (!dst)
goto out;
if (!our_interface(dev, ip6_dst_idev(dst)->dev) &&
!(ip6_dst_idev(dst)->dev->flags & IFF_LOOPBACK)) {
dst_release(dst);
dst = NULL;
}
}
out:
return dst;
}
static struct dst_entry *find_route(struct c4iw_dev *dev, __be32 local_ip,
__be32 peer_ip, __be16 local_port,
__be16 peer_port, u8 tos)
{
struct rtable *rt;
struct flowi4 fl4;
struct neighbour *n;
rt = ip_route_output_ports(&init_net, &fl4, NULL, peer_ip, local_ip,
peer_port, local_port, IPPROTO_TCP,
tos, 0);
if (IS_ERR(rt))
return NULL;
n = dst_neigh_lookup(&rt->dst, &peer_ip);
if (!n)
return NULL;
if (!our_interface(dev, n->dev) &&
!(n->dev->flags & IFF_LOOPBACK)) {
neigh_release(n);
dst_release(&rt->dst);
return NULL;
}
neigh_release(n);
return &rt->dst;
}
static void arp_failure_discard(void *handle, struct sk_buff *skb)
{
pr_err(MOD "ARP failure\n");
kfree_skb(skb);
}
static void mpa_start_arp_failure(void *handle, struct sk_buff *skb)
{
pr_err("ARP failure during MPA Negotiation - Closing Connection\n");
}
enum {
NUM_FAKE_CPLS = 2,
FAKE_CPL_PUT_EP_SAFE = NUM_CPL_CMDS + 0,
FAKE_CPL_PASS_PUT_EP_SAFE = NUM_CPL_CMDS + 1,
};
static int _put_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb)
{
struct c4iw_ep *ep;
ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *)));
release_ep_resources(ep);
return 0;
}
static int _put_pass_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb)
{
struct c4iw_ep *ep;
ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *)));
c4iw_put_ep(&ep->parent_ep->com);
release_ep_resources(ep);
return 0;
}
/*
* Fake up a special CPL opcode and call sched() so process_work() will call
* _put_ep_safe() in a safe context to free the ep resources. This is needed
* because ARP error handlers are called in an ATOMIC context, and
* _c4iw_free_ep() needs to block.
*/
static void queue_arp_failure_cpl(struct c4iw_ep *ep, struct sk_buff *skb,
int cpl)
{
struct cpl_act_establish *rpl = cplhdr(skb);
/* Set our special ARP_FAILURE opcode */
rpl->ot.opcode = cpl;
/*
* Save ep in the skb->cb area, after where sched() will save the dev
* ptr.
*/
*((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))) = ep;
sched(ep->com.dev, skb);
}
/* Handle an ARP failure for an accept */
static void pass_accept_rpl_arp_failure(void *handle, struct sk_buff *skb)
{
struct c4iw_ep *ep = handle;
pr_err(MOD "ARP failure during accept - tid %u -dropping connection\n",
ep->hwtid);
__state_set(&ep->com, DEAD);
queue_arp_failure_cpl(ep, skb, FAKE_CPL_PASS_PUT_EP_SAFE);
}
/*
* Handle an ARP failure for an active open.
*/
static void act_open_req_arp_failure(void *handle, struct sk_buff *skb)
{
struct c4iw_ep *ep = handle;
printk(KERN_ERR MOD "ARP failure during connect\n");
connect_reply_upcall(ep, -EHOSTUNREACH);
__state_set(&ep->com, DEAD);
if (ep->com.remote_addr.ss_family == AF_INET6) {
struct sockaddr_in6 *sin6 =
(struct sockaddr_in6 *)&ep->com.local_addr;
cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
(const u32 *)&sin6->sin6_addr.s6_addr, 1);
}
remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid);
cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE);
}
/*
* Handle an ARP failure for a CPL_ABORT_REQ. Change it into a no RST variant
* and send it along.
*/
static void abort_arp_failure(void *handle, struct sk_buff *skb)
{
int ret;
struct c4iw_ep *ep = handle;
struct c4iw_rdev *rdev = &ep->com.dev->rdev;
struct cpl_abort_req *req = cplhdr(skb);
PDBG("%s rdev %p\n", __func__, rdev);
req->cmd = CPL_ABORT_NO_RST;
ret = c4iw_ofld_send(rdev, skb);
if (ret) {
__state_set(&ep->com, DEAD);
queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE);
}
}
static int send_flowc(struct c4iw_ep *ep, struct sk_buff *skb)
{
unsigned int flowclen = 80;
struct fw_flowc_wr *flowc;
int i;
u16 vlan = ep->l2t->vlan;
int nparams;
if (vlan == CPL_L2T_VLAN_NONE)
nparams = 8;
else
nparams = 9;
skb = get_skb(skb, flowclen, GFP_KERNEL);
flowc = (struct fw_flowc_wr *)__skb_put(skb, flowclen);
flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) |
FW_FLOWC_WR_NPARAMS_V(nparams));
flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(DIV_ROUND_UP(flowclen,
16)) | FW_WR_FLOWID_V(ep->hwtid));
flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V
(ep->com.dev->rdev.lldi.pf));
flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
flowc->mnemval[1].val = cpu_to_be32(ep->tx_chan);
flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
flowc->mnemval[2].val = cpu_to_be32(ep->tx_chan);
flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
flowc->mnemval[3].val = cpu_to_be32(ep->rss_qid);
flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SNDNXT;
flowc->mnemval[4].val = cpu_to_be32(ep->snd_seq);
flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_RCVNXT;
flowc->mnemval[5].val = cpu_to_be32(ep->rcv_seq);
flowc->mnemval[6].mnemonic = FW_FLOWC_MNEM_SNDBUF;
flowc->mnemval[6].val = cpu_to_be32(ep->snd_win);
flowc->mnemval[7].mnemonic = FW_FLOWC_MNEM_MSS;
flowc->mnemval[7].val = cpu_to_be32(ep->emss);
if (nparams == 9) {
u16 pri;
pri = (vlan & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
flowc->mnemval[8].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
flowc->mnemval[8].val = cpu_to_be32(pri);
} else {
/* Pad WR to 16 byte boundary */
flowc->mnemval[8].mnemonic = 0;
flowc->mnemval[8].val = 0;
}
for (i = 0; i < 9; i++) {
flowc->mnemval[i].r4[0] = 0;
flowc->mnemval[i].r4[1] = 0;
flowc->mnemval[i].r4[2] = 0;
}
set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
return c4iw_ofld_send(&ep->com.dev->rdev, skb);
}
static int send_halfclose(struct c4iw_ep *ep, gfp_t gfp)
{
struct cpl_close_con_req *req;
struct sk_buff *skb;
int wrlen = roundup(sizeof *req, 16);
PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
skb = get_skb(NULL, wrlen, gfp);
if (!skb) {
printk(KERN_ERR MOD "%s - failed to alloc skb\n", __func__);
return -ENOMEM;
}
set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
t4_set_arp_err_handler(skb, NULL, arp_failure_discard);
req = (struct cpl_close_con_req *) skb_put(skb, wrlen);
memset(req, 0, wrlen);
INIT_TP_WR(req, ep->hwtid);
OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_CLOSE_CON_REQ,
ep->hwtid));
return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
}
static int send_abort(struct c4iw_ep *ep, struct sk_buff *skb, gfp_t gfp)
{
struct cpl_abort_req *req;
int wrlen = roundup(sizeof *req, 16);
PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
skb = get_skb(skb, wrlen, gfp);
if (!skb) {
printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
__func__);
return -ENOMEM;
}
set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
t4_set_arp_err_handler(skb, ep, abort_arp_failure);
req = (struct cpl_abort_req *) skb_put(skb, wrlen);
memset(req, 0, wrlen);
INIT_TP_WR(req, ep->hwtid);
OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_ABORT_REQ, ep->hwtid));
req->cmd = CPL_ABORT_SEND_RST;
return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
}
static void best_mtu(const unsigned short *mtus, unsigned short mtu,
unsigned int *idx, int use_ts, int ipv6)
{
unsigned short hdr_size = (ipv6 ?
sizeof(struct ipv6hdr) :
sizeof(struct iphdr)) +
sizeof(struct tcphdr) +
(use_ts ?
round_up(TCPOLEN_TIMESTAMP, 4) : 0);
unsigned short data_size = mtu - hdr_size;
cxgb4_best_aligned_mtu(mtus, hdr_size, data_size, 8, idx);
}
static int send_connect(struct c4iw_ep *ep)
{
struct cpl_act_open_req *req = NULL;
struct cpl_t5_act_open_req *t5req = NULL;
struct cpl_t6_act_open_req *t6req = NULL;
struct cpl_act_open_req6 *req6 = NULL;
struct cpl_t5_act_open_req6 *t5req6 = NULL;
struct cpl_t6_act_open_req6 *t6req6 = NULL;
struct sk_buff *skb;
u64 opt0;
u32 opt2;
unsigned int mtu_idx;
int wscale;
int win, sizev4, sizev6, wrlen;
struct sockaddr_in *la = (struct sockaddr_in *)
&ep->com.local_addr;
struct sockaddr_in *ra = (struct sockaddr_in *)
&ep->com.remote_addr;
struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)
&ep->com.local_addr;
struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)
&ep->com.remote_addr;
int ret;
enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type;
u32 isn = (prandom_u32() & ~7UL) - 1;
switch (CHELSIO_CHIP_VERSION(adapter_type)) {
case CHELSIO_T4:
sizev4 = sizeof(struct cpl_act_open_req);
sizev6 = sizeof(struct cpl_act_open_req6);
break;
case CHELSIO_T5:
sizev4 = sizeof(struct cpl_t5_act_open_req);
sizev6 = sizeof(struct cpl_t5_act_open_req6);
break;
case CHELSIO_T6:
sizev4 = sizeof(struct cpl_t6_act_open_req);
sizev6 = sizeof(struct cpl_t6_act_open_req6);
break;
default:
pr_err("T%d Chip is not supported\n",
CHELSIO_CHIP_VERSION(adapter_type));
return -EINVAL;
}
wrlen = (ep->com.remote_addr.ss_family == AF_INET) ?
roundup(sizev4, 16) :
roundup(sizev6, 16);
PDBG("%s ep %p atid %u\n", __func__, ep, ep->atid);
skb = get_skb(NULL, wrlen, GFP_KERNEL);
if (!skb) {
printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
__func__);
return -ENOMEM;
}
set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx);
best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
enable_tcp_timestamps,
(AF_INET == ep->com.remote_addr.ss_family) ? 0 : 1);
wscale = compute_wscale(rcv_win);
/*
* Specify the largest window that will fit in opt0. The
* remainder will be specified in the rx_data_ack.
*/
win = ep->rcv_win >> 10;
if (win > RCV_BUFSIZ_M)
win = RCV_BUFSIZ_M;
opt0 = (nocong ? NO_CONG_F : 0) |
KEEP_ALIVE_F |
DELACK_F |
WND_SCALE_V(wscale) |
MSS_IDX_V(mtu_idx) |
L2T_IDX_V(ep->l2t->idx) |
TX_CHAN_V(ep->tx_chan) |
SMAC_SEL_V(ep->smac_idx) |
DSCP_V(ep->tos >> 2) |
ULP_MODE_V(ULP_MODE_TCPDDP) |
RCV_BUFSIZ_V(win);
opt2 = RX_CHANNEL_V(0) |
CCTRL_ECN_V(enable_ecn) |
RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid);
if (enable_tcp_timestamps)
opt2 |= TSTAMPS_EN_F;
if (enable_tcp_sack)
opt2 |= SACK_EN_F;
if (wscale && enable_tcp_window_scaling)
opt2 |= WND_SCALE_EN_F;
if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) {
if (peer2peer)
isn += 4;
opt2 |= T5_OPT_2_VALID_F;
opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE);
opt2 |= T5_ISS_F;
}
if (ep->com.remote_addr.ss_family == AF_INET6)
cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0],
(const u32 *)&la6->sin6_addr.s6_addr, 1);
t4_set_arp_err_handler(skb, ep, act_open_req_arp_failure);
if (ep->com.remote_addr.ss_family == AF_INET) {
switch (CHELSIO_CHIP_VERSION(adapter_type)) {
case CHELSIO_T4:
req = (struct cpl_act_open_req *)skb_put(skb, wrlen);
INIT_TP_WR(req, 0);
break;
case CHELSIO_T5:
t5req = (struct cpl_t5_act_open_req *)skb_put(skb,
wrlen);
INIT_TP_WR(t5req, 0);
req = (struct cpl_act_open_req *)t5req;
break;
case CHELSIO_T6:
t6req = (struct cpl_t6_act_open_req *)skb_put(skb,
wrlen);
INIT_TP_WR(t6req, 0);
req = (struct cpl_act_open_req *)t6req;
t5req = (struct cpl_t5_act_open_req *)t6req;
break;
default:
pr_err("T%d Chip is not supported\n",
CHELSIO_CHIP_VERSION(adapter_type));
ret = -EINVAL;
goto clip_release;
}
OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ,
((ep->rss_qid<<14) | ep->atid)));
req->local_port = la->sin_port;
req->peer_port = ra->sin_port;
req->local_ip = la->sin_addr.s_addr;
req->peer_ip = ra->sin_addr.s_addr;
req->opt0 = cpu_to_be64(opt0);
if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) {
req->params = cpu_to_be32(cxgb4_select_ntuple(
ep->com.dev->rdev.lldi.ports[0],
ep->l2t));
req->opt2 = cpu_to_be32(opt2);
} else {
t5req->params = cpu_to_be64(FILTER_TUPLE_V(
cxgb4_select_ntuple(
ep->com.dev->rdev.lldi.ports[0],
ep->l2t)));
t5req->rsvd = cpu_to_be32(isn);
PDBG("%s snd_isn %u\n", __func__, t5req->rsvd);
t5req->opt2 = cpu_to_be32(opt2);
}
} else {
switch (CHELSIO_CHIP_VERSION(adapter_type)) {
case CHELSIO_T4:
req6 = (struct cpl_act_open_req6 *)skb_put(skb, wrlen);
INIT_TP_WR(req6, 0);
break;
case CHELSIO_T5:
t5req6 = (struct cpl_t5_act_open_req6 *)skb_put(skb,
wrlen);
INIT_TP_WR(t5req6, 0);
req6 = (struct cpl_act_open_req6 *)t5req6;
break;
case CHELSIO_T6:
t6req6 = (struct cpl_t6_act_open_req6 *)skb_put(skb,
wrlen);
INIT_TP_WR(t6req6, 0);
req6 = (struct cpl_act_open_req6 *)t6req6;
t5req6 = (struct cpl_t5_act_open_req6 *)t6req6;
break;
default:
pr_err("T%d Chip is not supported\n",
CHELSIO_CHIP_VERSION(adapter_type));
ret = -EINVAL;
goto clip_release;
}
OPCODE_TID(req6) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ6,
((ep->rss_qid<<14)|ep->atid)));
req6->local_port = la6->sin6_port;
req6->peer_port = ra6->sin6_port;
req6->local_ip_hi = *((__be64 *)(la6->sin6_addr.s6_addr));
req6->local_ip_lo = *((__be64 *)(la6->sin6_addr.s6_addr + 8));
req6->peer_ip_hi = *((__be64 *)(ra6->sin6_addr.s6_addr));
req6->peer_ip_lo = *((__be64 *)(ra6->sin6_addr.s6_addr + 8));
req6->opt0 = cpu_to_be64(opt0);
if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) {
req6->params = cpu_to_be32(cxgb4_select_ntuple(
ep->com.dev->rdev.lldi.ports[0],
ep->l2t));
req6->opt2 = cpu_to_be32(opt2);
} else {
t5req6->params = cpu_to_be64(FILTER_TUPLE_V(
cxgb4_select_ntuple(
ep->com.dev->rdev.lldi.ports[0],
ep->l2t)));
t5req6->rsvd = cpu_to_be32(isn);
PDBG("%s snd_isn %u\n", __func__, t5req6->rsvd);
t5req6->opt2 = cpu_to_be32(opt2);
}
}
set_bit(ACT_OPEN_REQ, &ep->com.history);
ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
clip_release:
if (ret && ep->com.remote_addr.ss_family == AF_INET6)
cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
(const u32 *)&la6->sin6_addr.s6_addr, 1);
return ret;
}
static int send_mpa_req(struct c4iw_ep *ep, struct sk_buff *skb,
u8 mpa_rev_to_use)
{
int mpalen, wrlen, ret;
struct fw_ofld_tx_data_wr *req;
struct mpa_message *mpa;
struct mpa_v2_conn_params mpa_v2_params;
PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen);
BUG_ON(skb_cloned(skb));
mpalen = sizeof(*mpa) + ep->plen;
if (mpa_rev_to_use == 2)
mpalen += sizeof(struct mpa_v2_conn_params);
wrlen = roundup(mpalen + sizeof *req, 16);
skb = get_skb(skb, wrlen, GFP_KERNEL);
if (!skb) {
connect_reply_upcall(ep, -ENOMEM);
return -ENOMEM;
}
set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
req = (struct fw_ofld_tx_data_wr *)skb_put(skb, wrlen);
memset(req, 0, wrlen);
req->op_to_immdlen = cpu_to_be32(
FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
FW_WR_COMPL_F |
FW_WR_IMMDLEN_V(mpalen));
req->flowid_len16 = cpu_to_be32(
FW_WR_FLOWID_V(ep->hwtid) |
FW_WR_LEN16_V(wrlen >> 4));
req->plen = cpu_to_be32(mpalen);
req->tunnel_to_proxy = cpu_to_be32(
FW_OFLD_TX_DATA_WR_FLUSH_F |
FW_OFLD_TX_DATA_WR_SHOVE_F);
mpa = (struct mpa_message *)(req + 1);
memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key));
mpa->flags = (crc_enabled ? MPA_CRC : 0) |
(markers_enabled ? MPA_MARKERS : 0) |
(mpa_rev_to_use == 2 ? MPA_ENHANCED_RDMA_CONN : 0);
mpa->private_data_size = htons(ep->plen);
mpa->revision = mpa_rev_to_use;
if (mpa_rev_to_use == 1) {
ep->tried_with_mpa_v1 = 1;
ep->retry_with_mpa_v1 = 0;
}
if (mpa_rev_to_use == 2) {
mpa->private_data_size = htons(ntohs(mpa->private_data_size) +
sizeof (struct mpa_v2_conn_params));
PDBG("%s initiator ird %u ord %u\n", __func__, ep->ird,
ep->ord);
mpa_v2_params.ird = htons((u16)ep->ird);
mpa_v2_params.ord = htons((u16)ep->ord);
if (peer2peer) {
mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL);
if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE)
mpa_v2_params.ord |=
htons(MPA_V2_RDMA_WRITE_RTR);
else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ)
mpa_v2_params.ord |=
htons(MPA_V2_RDMA_READ_RTR);
}
memcpy(mpa->private_data, &mpa_v2_params,
sizeof(struct mpa_v2_conn_params));
if (ep->plen)
memcpy(mpa->private_data +
sizeof(struct mpa_v2_conn_params),
ep->mpa_pkt + sizeof(*mpa), ep->plen);
} else
if (ep->plen)
memcpy(mpa->private_data,
ep->mpa_pkt + sizeof(*mpa), ep->plen);
/*
* Reference the mpa skb. This ensures the data area
* will remain in memory until the hw acks the tx.
* Function fw4_ack() will deref it.
*/
skb_get(skb);
t4_set_arp_err_handler(skb, NULL, arp_failure_discard);
BUG_ON(ep->mpa_skb);
ep->mpa_skb = skb;
ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
if (ret)
return ret;
start_ep_timer(ep);
__state_set(&ep->com, MPA_REQ_SENT);
ep->mpa_attr.initiator = 1;
ep->snd_seq += mpalen;
return ret;
}
static int send_mpa_reject(struct c4iw_ep *ep, const void *pdata, u8 plen)
{
int mpalen, wrlen;
struct fw_ofld_tx_data_wr *req;
struct mpa_message *mpa;
struct sk_buff *skb;
struct mpa_v2_conn_params mpa_v2_params;
PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen);
mpalen = sizeof(*mpa) + plen;
if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn)
mpalen += sizeof(struct mpa_v2_conn_params);
wrlen = roundup(mpalen + sizeof *req, 16);
skb = get_skb(NULL, wrlen, GFP_KERNEL);
if (!skb) {
printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
return -ENOMEM;
}
set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
req = (struct fw_ofld_tx_data_wr *)skb_put(skb, wrlen);
memset(req, 0, wrlen);
req->op_to_immdlen = cpu_to_be32(
FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
FW_WR_COMPL_F |
FW_WR_IMMDLEN_V(mpalen));
req->flowid_len16 = cpu_to_be32(
FW_WR_FLOWID_V(ep->hwtid) |
FW_WR_LEN16_V(wrlen >> 4));
req->plen = cpu_to_be32(mpalen);
req->tunnel_to_proxy = cpu_to_be32(
FW_OFLD_TX_DATA_WR_FLUSH_F |
FW_OFLD_TX_DATA_WR_SHOVE_F);
mpa = (struct mpa_message *)(req + 1);
memset(mpa, 0, sizeof(*mpa));
memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
mpa->flags = MPA_REJECT;
mpa->revision = ep->mpa_attr.version;
mpa->private_data_size = htons(plen);
if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
mpa->flags |= MPA_ENHANCED_RDMA_CONN;
mpa->private_data_size = htons(ntohs(mpa->private_data_size) +
sizeof (struct mpa_v2_conn_params));
mpa_v2_params.ird = htons(((u16)ep->ird) |
(peer2peer ? MPA_V2_PEER2PEER_MODEL :
0));
mpa_v2_params.ord = htons(((u16)ep->ord) | (peer2peer ?
(p2p_type ==
FW_RI_INIT_P2PTYPE_RDMA_WRITE ?
MPA_V2_RDMA_WRITE_RTR : p2p_type ==
FW_RI_INIT_P2PTYPE_READ_REQ ?
MPA_V2_RDMA_READ_RTR : 0) : 0));
memcpy(mpa->private_data, &mpa_v2_params,
sizeof(struct mpa_v2_conn_params));
if (ep->plen)
memcpy(mpa->private_data +
sizeof(struct mpa_v2_conn_params), pdata, plen);
} else
if (plen)
memcpy(mpa->private_data, pdata, plen);
/*
* Reference the mpa skb again. This ensures the data area
* will remain in memory until the hw acks the tx.
* Function fw4_ack() will deref it.
*/
skb_get(skb);
set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure);
BUG_ON(ep->mpa_skb);
ep->mpa_skb = skb;
ep->snd_seq += mpalen;
return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
}
static int send_mpa_reply(struct c4iw_ep *ep, const void *pdata, u8 plen)
{
int mpalen, wrlen;
struct fw_ofld_tx_data_wr *req;
struct mpa_message *mpa;
struct sk_buff *skb;
struct mpa_v2_conn_params mpa_v2_params;
PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen);
mpalen = sizeof(*mpa) + plen;
if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn)
mpalen += sizeof(struct mpa_v2_conn_params);
wrlen = roundup(mpalen + sizeof *req, 16);
skb = get_skb(NULL, wrlen, GFP_KERNEL);
if (!skb) {
printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
return -ENOMEM;
}
set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
req = (struct fw_ofld_tx_data_wr *) skb_put(skb, wrlen);
memset(req, 0, wrlen);
req->op_to_immdlen = cpu_to_be32(
FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
FW_WR_COMPL_F |
FW_WR_IMMDLEN_V(mpalen));
req->flowid_len16 = cpu_to_be32(
FW_WR_FLOWID_V(ep->hwtid) |
FW_WR_LEN16_V(wrlen >> 4));
req->plen = cpu_to_be32(mpalen);
req->tunnel_to_proxy = cpu_to_be32(
FW_OFLD_TX_DATA_WR_FLUSH_F |
FW_OFLD_TX_DATA_WR_SHOVE_F);
mpa = (struct mpa_message *)(req + 1);
memset(mpa, 0, sizeof(*mpa));
memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
mpa->flags = (ep->mpa_attr.crc_enabled ? MPA_CRC : 0) |
(markers_enabled ? MPA_MARKERS : 0);
mpa->revision = ep->mpa_attr.version;
mpa->private_data_size = htons(plen);
if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
mpa->flags |= MPA_ENHANCED_RDMA_CONN;
mpa->private_data_size = htons(ntohs(mpa->private_data_size) +
sizeof (struct mpa_v2_conn_params));
mpa_v2_params.ird = htons((u16)ep->ird);
mpa_v2_params.ord = htons((u16)ep->ord);
if (peer2peer && (ep->mpa_attr.p2p_type !=
FW_RI_INIT_P2PTYPE_DISABLED)) {
mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL);
if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE)
mpa_v2_params.ord |=
htons(MPA_V2_RDMA_WRITE_RTR);
else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ)
mpa_v2_params.ord |=
htons(MPA_V2_RDMA_READ_RTR);
}
memcpy(mpa->private_data, &mpa_v2_params,
sizeof(struct mpa_v2_conn_params));
if (ep->plen)
memcpy(mpa->private_data +
sizeof(struct mpa_v2_conn_params), pdata, plen);
} else
if (plen)
memcpy(mpa->private_data, pdata, plen);
/*
* Reference the mpa skb. This ensures the data area
* will remain in memory until the hw acks the tx.
* Function fw4_ack() will deref it.
*/
skb_get(skb);
t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure);
ep->mpa_skb = skb;
__state_set(&ep->com, MPA_REP_SENT);
ep->snd_seq += mpalen;
return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
}
static int act_establish(struct c4iw_dev *dev, struct sk_buff *skb)
{
struct c4iw_ep *ep;
struct cpl_act_establish *req = cplhdr(skb);
unsigned int tid = GET_TID(req);
unsigned int atid = TID_TID_G(ntohl(req->tos_atid));
struct tid_info *t = dev->rdev.lldi.tids;
int ret;
ep = lookup_atid(t, atid);
PDBG("%s ep %p tid %u snd_isn %u rcv_isn %u\n", __func__, ep, tid,
be32_to_cpu(req->snd_isn), be32_to_cpu(req->rcv_isn));
mutex_lock(&ep->com.mutex);
dst_confirm(ep->dst);
/* setup the hwtid for this connection */
ep->hwtid = tid;
cxgb4_insert_tid(t, ep, tid);
insert_ep_tid(ep);
ep->snd_seq = be32_to_cpu(req->snd_isn);
ep->rcv_seq = be32_to_cpu(req->rcv_isn);
set_emss(ep, ntohs(req->tcp_opt));
/* dealloc the atid */
remove_handle(ep->com.dev, &ep->com.dev->atid_idr, atid);
cxgb4_free_atid(t, atid);
set_bit(ACT_ESTAB, &ep->com.history);
/* start MPA negotiation */
ret = send_flowc(ep, NULL);
if (ret)
goto err;
if (ep->retry_with_mpa_v1)
ret = send_mpa_req(ep, skb, 1);
else
ret = send_mpa_req(ep, skb, mpa_rev);
if (ret)
goto err;
mutex_unlock(&ep->com.mutex);
return 0;
err:
mutex_unlock(&ep->com.mutex);
connect_reply_upcall(ep, -ENOMEM);
c4iw_ep_disconnect(ep, 0, GFP_KERNEL);
return 0;
}
static void close_complete_upcall(struct c4iw_ep *ep, int status)
{
struct iw_cm_event event;
PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
memset(&event, 0, sizeof(event));
event.event = IW_CM_EVENT_CLOSE;
event.status = status;
if (ep->com.cm_id) {
PDBG("close complete delivered ep %p cm_id %p tid %u\n",
ep, ep->com.cm_id, ep->hwtid);
ep->com.cm_id->event_handler(ep->com.cm_id, &event);
deref_cm_id(&ep->com);
set_bit(CLOSE_UPCALL, &ep->com.history);
}
}
static void peer_close_upcall(struct c4iw_ep *ep)
{
struct iw_cm_event event;
PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
memset(&event, 0, sizeof(event));
event.event = IW_CM_EVENT_DISCONNECT;
if (ep->com.cm_id) {
PDBG("peer close delivered ep %p cm_id %p tid %u\n",
ep, ep->com.cm_id, ep->hwtid);
ep->com.cm_id->event_handler(ep->com.cm_id, &event);
set_bit(DISCONN_UPCALL, &ep->com.history);
}
}
static void peer_abort_upcall(struct c4iw_ep *ep)
{
struct iw_cm_event event;
PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
memset(&event, 0, sizeof(event));
event.event = IW_CM_EVENT_CLOSE;
event.status = -ECONNRESET;
if (ep->com.cm_id) {
PDBG("abort delivered ep %p cm_id %p tid %u\n", ep,
ep->com.cm_id, ep->hwtid);
ep->com.cm_id->event_handler(ep->com.cm_id, &event);
deref_cm_id(&ep->com);
set_bit(ABORT_UPCALL, &ep->com.history);
}
}
static void connect_reply_upcall(struct c4iw_ep *ep, int status)
{
struct iw_cm_event event;
PDBG("%s ep %p tid %u status %d\n", __func__, ep, ep->hwtid, status);
memset(&event, 0, sizeof(event));
event.event = IW_CM_EVENT_CONNECT_REPLY;
event.status = status;
memcpy(&event.local_addr, &ep->com.local_addr,
sizeof(ep->com.local_addr));
memcpy(&event.remote_addr, &ep->com.remote_addr,
sizeof(ep->com.remote_addr));
if ((status == 0) || (status == -ECONNREFUSED)) {
if (!ep->tried_with_mpa_v1) {
/* this means MPA_v2 is used */
event.ord = ep->ird;
event.ird = ep->ord;
event.private_data_len = ep->plen -
sizeof(struct mpa_v2_conn_params);
event.private_data = ep->mpa_pkt +
sizeof(struct mpa_message) +
sizeof(struct mpa_v2_conn_params);
} else {
/* this means MPA_v1 is used */
event.ord = cur_max_read_depth(ep->com.dev);
event.ird = cur_max_read_depth(ep->com.dev);
event.private_data_len = ep->plen;
event.private_data = ep->mpa_pkt +
sizeof(struct mpa_message);
}
}
PDBG("%s ep %p tid %u status %d\n", __func__, ep,
ep->hwtid, status);
set_bit(CONN_RPL_UPCALL, &ep->com.history);
ep->com.cm_id->event_handler(ep->com.cm_id, &event);
if (status < 0)
deref_cm_id(&ep->com);
}
static int connect_request_upcall(struct c4iw_ep *ep)
{
struct iw_cm_event event;
int ret;
PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
memset(&event, 0, sizeof(event));
event.event = IW_CM_EVENT_CONNECT_REQUEST;
memcpy(&event.local_addr, &ep->com.local_addr,
sizeof(ep->com.local_addr));
memcpy(&event.remote_addr, &ep->com.remote_addr,
sizeof(ep->com.remote_addr));
event.provider_data = ep;
if (!ep->tried_with_mpa_v1) {
/* this means MPA_v2 is used */
event.ord = ep->ord;
event.ird = ep->ird;
event.private_data_len = ep->plen -
sizeof(struct mpa_v2_conn_params);
event.private_data = ep->mpa_pkt + sizeof(struct mpa_message) +
sizeof(struct mpa_v2_conn_params);
} else {
/* this means MPA_v1 is used. Send max supported */
event.ord = cur_max_read_depth(ep->com.dev);
event.ird = cur_max_read_depth(ep->com.dev);
event.private_data_len = ep->plen;
event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
}
c4iw_get_ep(&ep->com);
ret = ep->parent_ep->com.cm_id->event_handler(ep->parent_ep->com.cm_id,
&event);
if (ret)
c4iw_put_ep(&ep->com);
set_bit(CONNREQ_UPCALL, &ep->com.history);
c4iw_put_ep(&ep->parent_ep->com);
return ret;
}
static void established_upcall(struct c4iw_ep *ep)
{
struct iw_cm_event event;
PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
memset(&event, 0, sizeof(event));
event.event = IW_CM_EVENT_ESTABLISHED;
event.ird = ep->ord;
event.ord = ep->ird;
if (ep->com.cm_id) {
PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
ep->com.cm_id->event_handler(ep->com.cm_id, &event);
set_bit(ESTAB_UPCALL, &ep->com.history);
}
}
static int update_rx_credits(struct c4iw_ep *ep, u32 credits)
{
struct cpl_rx_data_ack *req;
struct sk_buff *skb;
int wrlen = roundup(sizeof *req, 16);
PDBG("%s ep %p tid %u credits %u\n", __func__, ep, ep->hwtid, credits);
skb = get_skb(NULL, wrlen, GFP_KERNEL);
if (!skb) {
printk(KERN_ERR MOD "update_rx_credits - cannot alloc skb!\n");
return 0;
}
/*
* If we couldn't specify the entire rcv window at connection setup
* due to the limit in the number of bits in the RCV_BUFSIZ field,
* then add the overage in to the credits returned.
*/
if (ep->rcv_win > RCV_BUFSIZ_M * 1024)
credits += ep->rcv_win - RCV_BUFSIZ_M * 1024;
req = (struct cpl_rx_data_ack *) skb_put(skb, wrlen);
memset(req, 0, wrlen);
INIT_TP_WR(req, ep->hwtid);
OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_RX_DATA_ACK,
ep->hwtid));
req->credit_dack = cpu_to_be32(credits | RX_FORCE_ACK_F |
RX_DACK_CHANGE_F |
RX_DACK_MODE_V(dack_mode));
set_wr_txq(skb, CPL_PRIORITY_ACK, ep->ctrlq_idx);
c4iw_ofld_send(&ep->com.dev->rdev, skb);
return credits;
}
#define RELAXED_IRD_NEGOTIATION 1
/*
* process_mpa_reply - process streaming mode MPA reply
*
* Returns:
*
* 0 upon success indicating a connect request was delivered to the ULP
* or the mpa request is incomplete but valid so far.
*
* 1 if a failure requires the caller to close the connection.
*
* 2 if a failure requires the caller to abort the connection.
*/
static int process_mpa_reply(struct c4iw_ep *ep, struct sk_buff *skb)
{
struct mpa_message *mpa;
struct mpa_v2_conn_params *mpa_v2_params;
u16 plen;
u16 resp_ird, resp_ord;
u8 rtr_mismatch = 0, insuff_ird = 0;
struct c4iw_qp_attributes attrs;
enum c4iw_qp_attr_mask mask;
int err;
int disconnect = 0;
PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
/*
* If we get more than the supported amount of private data
* then we must fail this connection.
*/
if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
err = -EINVAL;
goto err_stop_timer;
}
/*
* copy the new data into our accumulation buffer.
*/
skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
skb->len);
ep->mpa_pkt_len += skb->len;
/*
* if we don't even have the mpa message, then bail.
*/
if (ep->mpa_pkt_len < sizeof(*mpa))
return 0;
mpa = (struct mpa_message *) ep->mpa_pkt;
/* Validate MPA header. */
if (mpa->revision > mpa_rev) {
printk(KERN_ERR MOD "%s MPA version mismatch. Local = %d,"
" Received = %d\n", __func__, mpa_rev, mpa->revision);
err = -EPROTO;
goto err_stop_timer;
}
if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) {
err = -EPROTO;
goto err_stop_timer;
}
plen = ntohs(mpa->private_data_size);
/*
* Fail if there's too much private data.
*/
if (plen > MPA_MAX_PRIVATE_DATA) {
err = -EPROTO;
goto err_stop_timer;
}
/*
* If plen does not account for pkt size
*/
if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
err = -EPROTO;
goto err_stop_timer;
}
ep->plen = (u8) plen;
/*
* If we don't have all the pdata yet, then bail.
* We'll continue process when more data arrives.
*/
if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
return 0;
if (mpa->flags & MPA_REJECT) {
err = -ECONNREFUSED;
goto err_stop_timer;
}
/*
* Stop mpa timer. If it expired, then
* we ignore the MPA reply. process_timeout()
* will abort the connection.
*/
if (stop_ep_timer(ep))
return 0;
/*
* If we get here we have accumulated the entire mpa
* start reply message including private data. And
* the MPA header is valid.
*/
__state_set(&ep->com, FPDU_MODE);
ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
ep->mpa_attr.recv_marker_enabled = markers_enabled;
ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
ep->mpa_attr.version = mpa->revision;
ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
if (mpa->revision == 2) {
ep->mpa_attr.enhanced_rdma_conn =
mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0;
if (ep->mpa_attr.enhanced_rdma_conn) {
mpa_v2_params = (struct mpa_v2_conn_params *)
(ep->mpa_pkt + sizeof(*mpa));
resp_ird = ntohs(mpa_v2_params->ird) &
MPA_V2_IRD_ORD_MASK;
resp_ord = ntohs(mpa_v2_params->ord) &
MPA_V2_IRD_ORD_MASK;
PDBG("%s responder ird %u ord %u ep ird %u ord %u\n",
__func__, resp_ird, resp_ord, ep->ird, ep->ord);
/*
* This is a double-check. Ideally, below checks are
* not required since ird/ord stuff has been taken
* care of in c4iw_accept_cr
*/
if (ep->ird < resp_ord) {
if (RELAXED_IRD_NEGOTIATION && resp_ord <=
ep->com.dev->rdev.lldi.max_ordird_qp)
ep->ird = resp_ord;
else
insuff_ird = 1;
} else if (ep->ird > resp_ord) {
ep->ird = resp_ord;
}
if (ep->ord > resp_ird) {
if (RELAXED_IRD_NEGOTIATION)
ep->ord = resp_ird;
else
insuff_ird = 1;
}
if (insuff_ird) {
err = -ENOMEM;
ep->ird = resp_ord;
ep->ord = resp_ird;
}
if (ntohs(mpa_v2_params->ird) &
MPA_V2_PEER2PEER_MODEL) {
if (ntohs(mpa_v2_params->ord) &
MPA_V2_RDMA_WRITE_RTR)
ep->mpa_attr.p2p_type =
FW_RI_INIT_P2PTYPE_RDMA_WRITE;
else if (ntohs(mpa_v2_params->ord) &
MPA_V2_RDMA_READ_RTR)
ep->mpa_attr.p2p_type =
FW_RI_INIT_P2PTYPE_READ_REQ;
}
}
} else if (mpa->revision == 1)
if (peer2peer)
ep->mpa_attr.p2p_type = p2p_type;
PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
"xmit_marker_enabled=%d, version=%d p2p_type=%d local-p2p_type = "
"%d\n", __func__, ep->mpa_attr.crc_enabled,
ep->mpa_attr.recv_marker_enabled,
ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version,
ep->mpa_attr.p2p_type, p2p_type);
/*
* If responder's RTR does not match with that of initiator, assign
* FW_RI_INIT_P2PTYPE_DISABLED in mpa attributes so that RTR is not
* generated when moving QP to RTS state.
* A TERM message will be sent after QP has moved to RTS state
*/
if ((ep->mpa_attr.version == 2) && peer2peer &&
(ep->mpa_attr.p2p_type != p2p_type)) {
ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
rtr_mismatch = 1;
}
attrs.mpa_attr = ep->mpa_attr;
attrs.max_ird = ep->ird;
attrs.max_ord = ep->ord;
attrs.llp_stream_handle = ep;
attrs.next_state = C4IW_QP_STATE_RTS;
mask = C4IW_QP_ATTR_NEXT_STATE |
C4IW_QP_ATTR_LLP_STREAM_HANDLE | C4IW_QP_ATTR_MPA_ATTR |
C4IW_QP_ATTR_MAX_IRD | C4IW_QP_ATTR_MAX_ORD;
/* bind QP and TID with INIT_WR */
err = c4iw_modify_qp(ep->com.qp->rhp,
ep->com.qp, mask, &attrs, 1);
if (err)
goto err;
/*
* If responder's RTR requirement did not match with what initiator
* supports, generate TERM message
*/
if (rtr_mismatch) {
printk(KERN_ERR "%s: RTR mismatch, sending TERM\n", __func__);
attrs.layer_etype = LAYER_MPA | DDP_LLP;
attrs.ecode = MPA_NOMATCH_RTR;
attrs.next_state = C4IW_QP_STATE_TERMINATE;
attrs.send_term = 1;
err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
err = -ENOMEM;
disconnect = 1;
goto out;
}
/*
* Generate TERM if initiator IRD is not sufficient for responder
* provided ORD. Currently, we do the same behaviour even when
* responder provided IRD is also not sufficient as regards to
* initiator ORD.
*/
if (insuff_ird) {
printk(KERN_ERR "%s: Insufficient IRD, sending TERM\n",
__func__);
attrs.layer_etype = LAYER_MPA | DDP_LLP;
attrs.ecode = MPA_INSUFF_IRD;
attrs.next_state = C4IW_QP_STATE_TERMINATE;
attrs.send_term = 1;
err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
err = -ENOMEM;
disconnect = 1;
goto out;
}
goto out;
err_stop_timer:
stop_ep_timer(ep);
err:
disconnect = 2;
out:
connect_reply_upcall(ep, err);
return disconnect;
}
/*
* process_mpa_request - process streaming mode MPA request
*
* Returns:
*
* 0 upon success indicating a connect request was delivered to the ULP
* or the mpa request is incomplete but valid so far.
*
* 1 if a failure requires the caller to close the connection.
*
* 2 if a failure requires the caller to abort the connection.
*/
static int process_mpa_request(struct c4iw_ep *ep, struct sk_buff *skb)
{
struct mpa_message *mpa;
struct mpa_v2_conn_params *mpa_v2_params;
u16 plen;
PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
/*
* If we get more than the supported amount of private data
* then we must fail this connection.
*/
if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt))
goto err_stop_timer;
PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
/*
* Copy the new data into our accumulation buffer.
*/
skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
skb->len);
ep->mpa_pkt_len += skb->len;
/*
* If we don't even have the mpa message, then bail.
* We'll continue process when more data arrives.
*/
if (ep->mpa_pkt_len < sizeof(*mpa))
return 0;
PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
mpa = (struct mpa_message *) ep->mpa_pkt;
/*
* Validate MPA Header.
*/
if (mpa->revision > mpa_rev) {
printk(KERN_ERR MOD "%s MPA version mismatch. Local = %d,"
" Received = %d\n", __func__, mpa_rev, mpa->revision);
goto err_stop_timer;
}
if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key)))
goto err_stop_timer;
plen = ntohs(mpa->private_data_size);
/*
* Fail if there's too much private data.
*/
if (plen > MPA_MAX_PRIVATE_DATA)
goto err_stop_timer;
/*
* If plen does not account for pkt size
*/
if (ep->mpa_pkt_len > (sizeof(*mpa) + plen))
goto err_stop_timer;
ep->plen = (u8) plen;
/*
* If we don't have all the pdata yet, then bail.
*/
if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
return 0;
/*
* If we get here we have accumulated the entire mpa
* start reply message including private data.
*/
ep->mpa_attr.initiator = 0;
ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
ep->mpa_attr.recv_marker_enabled = markers_enabled;
ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
ep->mpa_attr.version = mpa->revision;
if (mpa->revision == 1)
ep->tried_with_mpa_v1 = 1;
ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
if (mpa->revision == 2) {
ep->mpa_attr.enhanced_rdma_conn =
mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0;
if (ep->mpa_attr.enhanced_rdma_conn) {
mpa_v2_params = (struct mpa_v2_conn_params *)
(ep->mpa_pkt + sizeof(*mpa));
ep->ird = ntohs(mpa_v2_params->ird) &
MPA_V2_IRD_ORD_MASK;
ep->ord = ntohs(mpa_v2_params->ord) &
MPA_V2_IRD_ORD_MASK;
PDBG("%s initiator ird %u ord %u\n", __func__, ep->ird,
ep->ord);
if (ntohs(mpa_v2_params->ird) & MPA_V2_PEER2PEER_MODEL)
if (peer2peer) {
if (ntohs(mpa_v2_params->ord) &
MPA_V2_RDMA_WRITE_RTR)
ep->mpa_attr.p2p_type =
FW_RI_INIT_P2PTYPE_RDMA_WRITE;
else if (ntohs(mpa_v2_params->ord) &
MPA_V2_RDMA_READ_RTR)
ep->mpa_attr.p2p_type =
FW_RI_INIT_P2PTYPE_READ_REQ;
}
}
} else if (mpa->revision == 1)
if (peer2peer)
ep->mpa_attr.p2p_type = p2p_type;
PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
"xmit_marker_enabled=%d, version=%d p2p_type=%d\n", __func__,
ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version,
ep->mpa_attr.p2p_type);
__state_set(&ep->com, MPA_REQ_RCVD);
/* drive upcall */
mutex_lock_nested(&ep->parent_ep->com.mutex, SINGLE_DEPTH_NESTING);
if (ep->parent_ep->com.state != DEAD) {
if (connect_request_upcall(ep))
goto err_unlock_parent;
} else {
goto err_unlock_parent;
}
mutex_unlock(&ep->parent_ep->com.mutex);
return 0;
err_unlock_parent:
mutex_unlock(&ep->parent_ep->com.mutex);
goto err_out;
err_stop_timer:
(void)stop_ep_timer(ep);
err_out:
return 2;
}
static int rx_data(struct c4iw_dev *dev, struct sk_buff *skb)
{
struct c4iw_ep *ep;
struct cpl_rx_data *hdr = cplhdr(skb);
unsigned int dlen = ntohs(hdr->len);
unsigned int tid = GET_TID(hdr);
__u8 status = hdr->status;
int disconnect = 0;
ep = get_ep_from_tid(dev, tid);
if (!ep)
return 0;
PDBG("%s ep %p tid %u dlen %u\n", __func__, ep, ep->hwtid, dlen);
skb_pull(skb, sizeof(*hdr));
skb_trim(skb, dlen);
mutex_lock(&ep->com.mutex);
/* update RX credits */
update_rx_credits(ep, dlen);
switch (ep->com.state) {
case MPA_REQ_SENT:
ep->rcv_seq += dlen;
disconnect = process_mpa_reply(ep, skb);
break;
case MPA_REQ_WAIT:
ep->rcv_seq += dlen;
disconnect = process_mpa_request(ep, skb);
break;
case FPDU_MODE: {
struct c4iw_qp_attributes attrs;
BUG_ON(!ep->com.qp);
if (status)
pr_err("%s Unexpected streaming data." \
" qpid %u ep %p state %d tid %u status %d\n",
__func__, ep->com.qp->wq.sq.qid, ep,
ep->com.state, ep->hwtid, status);
attrs.next_state = C4IW_QP_STATE_TERMINATE;
c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
disconnect = 1;
break;
}
default:
break;
}
mutex_unlock(&ep->com.mutex);
if (disconnect)
c4iw_ep_disconnect(ep, disconnect == 2, GFP_KERNEL);
c4iw_put_ep(&ep->com);
return 0;
}
static int abort_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
{
struct c4iw_ep *ep;
struct cpl_abort_rpl_rss *rpl = cplhdr(skb);
int release = 0;
unsigned int tid = GET_TID(rpl);
ep = get_ep_from_tid(dev, tid);
if (!ep) {
printk(KERN_WARNING MOD "Abort rpl to freed endpoint\n");
return 0;
}
PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
mutex_lock(&ep->com.mutex);
switch (ep->com.state) {
case ABORTING:
c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
__state_set(&ep->com, DEAD);
release = 1;
break;
default:
printk(KERN_ERR "%s ep %p state %d\n",
__func__, ep, ep->com.state);
break;
}
mutex_unlock(&ep->com.mutex);
if (release)
release_ep_resources(ep);
c4iw_put_ep(&ep->com);
return 0;
}
static int send_fw_act_open_req(struct c4iw_ep *ep, unsigned int atid)
{
struct sk_buff *skb;
struct fw_ofld_connection_wr *req;
unsigned int mtu_idx;
int wscale;
struct sockaddr_in *sin;
int win;
skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
req = (struct fw_ofld_connection_wr *)__skb_put(skb, sizeof(*req));
memset(req, 0, sizeof(*req));
req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR));
req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16)));
req->le.filter = cpu_to_be32(cxgb4_select_ntuple(
ep->com.dev->rdev.lldi.ports[0],
ep->l2t));
sin = (struct sockaddr_in *)&ep->com.local_addr;
req->le.lport = sin->sin_port;
req->le.u.ipv4.lip = sin->sin_addr.s_addr;
sin = (struct sockaddr_in *)&ep->com.remote_addr;
req->le.pport = sin->sin_port;
req->le.u.ipv4.pip = sin->sin_addr.s_addr;
req->tcb.t_state_to_astid =
htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_SENT) |
FW_OFLD_CONNECTION_WR_ASTID_V(atid));
req->tcb.cplrxdataack_cplpassacceptrpl =
htons(FW_OFLD_CONNECTION_WR_CPLRXDATAACK_F);
req->tcb.tx_max = (__force __be32) jiffies;
req->tcb.rcv_adv = htons(1);
best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
enable_tcp_timestamps,
(AF_INET == ep->com.remote_addr.ss_family) ? 0 : 1);
wscale = compute_wscale(rcv_win);
/*
* Specify the largest window that will fit in opt0. The
* remainder will be specified in the rx_data_ack.
*/
win = ep->rcv_win >> 10;
if (win > RCV_BUFSIZ_M)
win = RCV_BUFSIZ_M;
req->tcb.opt0 = (__force __be64) (TCAM_BYPASS_F |
(nocong ? NO_CONG_F : 0) |
KEEP_ALIVE_F |
DELACK_F |
WND_SCALE_V(wscale) |
MSS_IDX_V(mtu_idx) |
L2T_IDX_V(ep->l2t->idx) |
TX_CHAN_V(ep->tx_chan) |
SMAC_SEL_V(ep->smac_idx) |
DSCP_V(ep->tos >> 2) |
ULP_MODE_V(ULP_MODE_TCPDDP) |
RCV_BUFSIZ_V(win));
req->tcb.opt2 = (__force __be32) (PACE_V(1) |
TX_QUEUE_V(ep->com.dev->rdev.lldi.tx_modq[ep->tx_chan]) |
RX_CHANNEL_V(0) |
CCTRL_ECN_V(enable_ecn) |
RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid));
if (enable_tcp_timestamps)
req->tcb.opt2 |= (__force __be32)TSTAMPS_EN_F;
if (enable_tcp_sack)
req->tcb.opt2 |= (__force __be32)SACK_EN_F;
if (wscale && enable_tcp_window_scaling)
req->tcb.opt2 |= (__force __be32)WND_SCALE_EN_F;
req->tcb.opt0 = cpu_to_be64((__force u64)req->tcb.opt0);
req->tcb.opt2 = cpu_to_be32((__force u32)req->tcb.opt2);
set_wr_txq(skb, CPL_PRIORITY_CONTROL, ep->ctrlq_idx);
set_bit(ACT_OFLD_CONN, &ep->com.history);
return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
}
/*
* Return whether a failed active open has allocated a TID
*/
static inline int act_open_has_tid(int status)
{
return status != CPL_ERR_TCAM_FULL && status != CPL_ERR_CONN_EXIST &&
status != CPL_ERR_ARP_MISS;
}
/* Returns whether a CPL status conveys negative advice.
*/
static int is_neg_adv(unsigned int status)
{
return status == CPL_ERR_RTX_NEG_ADVICE ||
status == CPL_ERR_PERSIST_NEG_ADVICE ||
status == CPL_ERR_KEEPALV_NEG_ADVICE;
}
static char *neg_adv_str(unsigned int status)
{
switch (status) {
case CPL_ERR_RTX_NEG_ADVICE:
return "Retransmit timeout";
case CPL_ERR_PERSIST_NEG_ADVICE:
return "Persist timeout";
case CPL_ERR_KEEPALV_NEG_ADVICE:
return "Keepalive timeout";
default:
return "Unknown";
}
}
static void set_tcp_window(struct c4iw_ep *ep, struct port_info *pi)
{
ep->snd_win = snd_win;
ep->rcv_win = rcv_win;
PDBG("%s snd_win %d rcv_win %d\n", __func__, ep->snd_win, ep->rcv_win);
}
#define ACT_OPEN_RETRY_COUNT 2
static int import_ep(struct c4iw_ep *ep, int iptype, __u8 *peer_ip,
struct dst_entry *dst, struct c4iw_dev *cdev,
bool clear_mpa_v1, enum chip_type adapter_type, u8 tos)
{
struct neighbour *n;
int err, step;
struct net_device *pdev;
n = dst_neigh_lookup(dst, peer_ip);
if (!n)
return -ENODEV;
rcu_read_lock();
err = -ENOMEM;
if (n->dev->flags & IFF_LOOPBACK) {
if (iptype == 4)
pdev = ip_dev_find(&init_net, *(__be32 *)peer_ip);
else if (IS_ENABLED(CONFIG_IPV6))
for_each_netdev(&init_net, pdev) {
if (ipv6_chk_addr(&init_net,
(struct in6_addr *)peer_ip,
pdev, 1))
break;
}
else
pdev = NULL;
if (!pdev) {
err = -ENODEV;
goto out;
}
ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t,
n, pdev, rt_tos2priority(tos));
if (!ep->l2t)
goto out;
ep->mtu = pdev->mtu;
ep->tx_chan = cxgb4_port_chan(pdev);
ep->smac_idx = cxgb4_tp_smt_idx(adapter_type,
cxgb4_port_viid(pdev));
step = cdev->rdev.lldi.ntxq /
cdev->rdev.lldi.nchan;
ep->txq_idx = cxgb4_port_idx(pdev) * step;
step = cdev->rdev.lldi.nrxq /
cdev->rdev.lldi.nchan;
ep->ctrlq_idx = cxgb4_port_idx(pdev);
ep->rss_qid = cdev->rdev.lldi.rxq_ids[
cxgb4_port_idx(pdev) * step];
set_tcp_window(ep, (struct port_info *)netdev_priv(pdev));
dev_put(pdev);
} else {
pdev = get_real_dev(n->dev);
ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t,
n, pdev, 0);
if (!ep->l2t)
goto out;
ep->mtu = dst_mtu(dst);
ep->tx_chan = cxgb4_port_chan(pdev);
ep->smac_idx = cxgb4_tp_smt_idx(adapter_type,
cxgb4_port_viid(pdev));
step = cdev->rdev.lldi.ntxq /
cdev->rdev.lldi.nchan;
ep->txq_idx = cxgb4_port_idx(pdev) * step;
ep->ctrlq_idx = cxgb4_port_idx(pdev);
step = cdev->rdev.lldi.nrxq /
cdev->rdev.lldi.nchan;
ep->rss_qid = cdev->rdev.lldi.rxq_ids[
cxgb4_port_idx(pdev) * step];
set_tcp_window(ep, (struct port_info *)netdev_priv(pdev));
if (clear_mpa_v1) {
ep->retry_with_mpa_v1 = 0;
ep->tried_with_mpa_v1 = 0;
}
}
err = 0;
out:
rcu_read_unlock();
neigh_release(n);
return err;
}
static int c4iw_reconnect(struct c4iw_ep *ep)
{
int err = 0;
struct sockaddr_in *laddr = (struct sockaddr_in *)
&ep->com.cm_id->m_local_addr;
struct sockaddr_in *raddr = (struct sockaddr_in *)
&ep->com.cm_id->m_remote_addr;
struct sockaddr_in6 *laddr6 = (struct sockaddr_in6 *)
&ep->com.cm_id->m_local_addr;
struct sockaddr_in6 *raddr6 = (struct sockaddr_in6 *)
&ep->com.cm_id->m_remote_addr;
int iptype;
__u8 *ra;
PDBG("%s qp %p cm_id %p\n", __func__, ep->com.qp, ep->com.cm_id);
init_timer(&ep->timer);
c4iw_init_wr_wait(&ep->com.wr_wait);
/*
* Allocate an active TID to initiate a TCP connection.
*/
ep->atid = cxgb4_alloc_atid(ep->com.dev->rdev.lldi.tids, ep);
if (ep->atid == -1) {
pr_err("%s - cannot alloc atid.\n", __func__);
err = -ENOMEM;
goto fail2;
}
insert_handle(ep->com.dev, &ep->com.dev->atid_idr, ep, ep->atid);
/* find a route */
if (ep->com.cm_id->m_local_addr.ss_family == AF_INET) {
ep->dst = find_route(ep->com.dev, laddr->sin_addr.s_addr,
raddr->sin_addr.s_addr, laddr->sin_port,
raddr->sin_port, ep->com.cm_id->tos);
iptype = 4;
ra = (__u8 *)&raddr->sin_addr;
} else {
ep->dst = find_route6(ep->com.dev, laddr6->sin6_addr.s6_addr,
raddr6->sin6_addr.s6_addr,
laddr6->sin6_port, raddr6->sin6_port, 0,
raddr6->sin6_scope_id);
iptype = 6;
ra = (__u8 *)&raddr6->sin6_addr;
}
if (!ep->dst) {
pr_err("%s - cannot find route.\n", __func__);
err = -EHOSTUNREACH;
goto fail3;
}
err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, false,
ep->com.dev->rdev.lldi.adapter_type,
ep->com.cm_id->tos);
if (err) {
pr_err("%s - cannot alloc l2e.\n", __func__);
goto fail4;
}
PDBG("%s txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
__func__, ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid,
ep->l2t->idx);
state_set(&ep->com, CONNECTING);
ep->tos = ep->com.cm_id->tos;
/* send connect request to rnic */
err = send_connect(ep);
if (!err)
goto out;
cxgb4_l2t_release(ep->l2t);
fail4:
dst_release(ep->dst);
fail3:
remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid);
cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
fail2:
/*
* remember to send notification to upper layer.
* We are in here so the upper layer is not aware that this is
* re-connect attempt and so, upper layer is still waiting for
* response of 1st connect request.
*/
connect_reply_upcall(ep, -ECONNRESET);
c4iw_put_ep(&ep->com);
out:
return err;
}
static int act_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
{
struct c4iw_ep *ep;
struct cpl_act_open_rpl *rpl = cplhdr(skb);
unsigned int atid = TID_TID_G(AOPEN_ATID_G(
ntohl(rpl->atid_status)));
struct tid_info *t = dev->rdev.lldi.tids;
int status = AOPEN_STATUS_G(ntohl(rpl->atid_status));
struct sockaddr_in *la;
struct sockaddr_in *ra;
struct sockaddr_in6 *la6;
struct sockaddr_in6 *ra6;
int ret = 0;
ep = lookup_atid(t, atid);
la = (struct sockaddr_in *)&ep->com.local_addr;
ra = (struct sockaddr_in *)&ep->com.remote_addr;
la6 = (struct sockaddr_in6 *)&ep->com.local_addr;
ra6 = (struct sockaddr_in6 *)&ep->com.remote_addr;
PDBG("%s ep %p atid %u status %u errno %d\n", __func__, ep, atid,
status, status2errno(status));
if (is_neg_adv(status)) {
PDBG("%s Connection problems for atid %u status %u (%s)\n",
__func__, atid, status, neg_adv_str(status));
ep->stats.connect_neg_adv++;
mutex_lock(&dev->rdev.stats.lock);
dev->rdev.stats.neg_adv++;
mutex_unlock(&dev->rdev.stats.lock);
return 0;
}
set_bit(ACT_OPEN_RPL, &ep->com.history);
/*
* Log interesting failures.
*/
switch (status) {
case CPL_ERR_CONN_RESET:
case CPL_ERR_CONN_TIMEDOUT:
break;
case CPL_ERR_TCAM_FULL:
mutex_lock(&dev->rdev.stats.lock);
dev->rdev.stats.tcam_full++;
mutex_unlock(&dev->rdev.stats.lock);
if (ep->com.local_addr.ss_family == AF_INET &&
dev->rdev.lldi.enable_fw_ofld_conn) {
ret = send_fw_act_open_req(ep, TID_TID_G(AOPEN_ATID_G(
ntohl(rpl->atid_status))));
if (ret)
goto fail;
return 0;
}
break;
case CPL_ERR_CONN_EXIST:
if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
set_bit(ACT_RETRY_INUSE, &ep->com.history);
if (ep->com.remote_addr.ss_family == AF_INET6) {
struct sockaddr_in6 *sin6 =
(struct sockaddr_in6 *)
&ep->com.local_addr;
cxgb4_clip_release(
ep->com.dev->rdev.lldi.ports[0],
(const u32 *)
&sin6->sin6_addr.s6_addr, 1);
}
remove_handle(ep->com.dev, &ep->com.dev->atid_idr,
atid);
cxgb4_free_atid(t, atid);
dst_release(ep->dst);
cxgb4_l2t_release(ep->l2t);
c4iw_reconnect(ep);
return 0;
}
break;
default:
if (ep->com.local_addr.ss_family == AF_INET) {
pr_info("Active open failure - atid %u status %u errno %d %pI4:%u->%pI4:%u\n",
atid, status, status2errno(status),
&la->sin_addr.s_addr, ntohs(la->sin_port),
&ra->sin_addr.s_addr, ntohs(ra->sin_port));
} else {
pr_info("Active open failure - atid %u status %u errno %d %pI6:%u->%pI6:%u\n",
atid, status, status2errno(status),
la6->sin6_addr.s6_addr, ntohs(la6->sin6_port),
ra6->sin6_addr.s6_addr, ntohs(ra6->sin6_port));
}
break;
}
fail:
connect_reply_upcall(ep, status2errno(status));
state_set(&ep->com, DEAD);
if (ep->com.remote_addr.ss_family == AF_INET6) {
struct sockaddr_in6 *sin6 =
(struct sockaddr_in6 *)&ep->com.local_addr;
cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
(const u32 *)&sin6->sin6_addr.s6_addr, 1);
}
if (status && act_open_has_tid(status))
cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, GET_TID(rpl));
remove_handle(ep->com.dev, &ep->com.dev->atid_idr, atid);
cxgb4_free_atid(t, atid);
dst_release(ep->dst);
cxgb4_l2t_release(ep->l2t);
c4iw_put_ep(&ep->com);
return 0;
}
static int pass_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
{
struct cpl_pass_open_rpl *rpl = cplhdr(skb);
unsigned int stid = GET_TID(rpl);
struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid);
if (!ep) {
PDBG("%s stid %d lookup failure!\n", __func__, stid);
goto out;
}
PDBG("%s ep %p status %d error %d\n", __func__, ep,
rpl->status, status2errno(rpl->status));
c4iw_wake_up(&ep->com.wr_wait, status2errno(rpl->status));
c4iw_put_ep(&ep->com);
out:
return 0;
}
static int close_listsrv_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
{
struct cpl_close_listsvr_rpl *rpl = cplhdr(skb);
unsigned int stid = GET_TID(rpl);
struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid);
PDBG("%s ep %p\n", __func__, ep);
c4iw_wake_up(&ep->com.wr_wait, status2errno(rpl->status));
c4iw_put_ep(&ep->com);
return 0;
}
static int accept_cr(struct c4iw_ep *ep, struct sk_buff *skb,
struct cpl_pass_accept_req *req)
{
struct cpl_pass_accept_rpl *rpl;
unsigned int mtu_idx;
u64 opt0;
u32 opt2;
int wscale;
struct cpl_t5_pass_accept_rpl *rpl5 = NULL;
int win;
enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type;
PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
BUG_ON(skb_cloned(skb));
skb_get(skb);
rpl = cplhdr(skb);
if (!is_t4(adapter_type)) {
skb_trim(skb, roundup(sizeof(*rpl5), 16));
rpl5 = (void *)rpl;
INIT_TP_WR(rpl5, ep->hwtid);
} else {
skb_trim(skb, sizeof(*rpl));
INIT_TP_WR(rpl, ep->hwtid);
}
OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL,
ep->hwtid));
best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
enable_tcp_timestamps && req->tcpopt.tstamp,
(AF_INET == ep->com.remote_addr.ss_family) ? 0 : 1);
wscale = compute_wscale(rcv_win);
/*
* Specify the largest window that will fit in opt0. The
* remainder will be specified in the rx_data_ack.
*/
win = ep->rcv_win >> 10;
if (win > RCV_BUFSIZ_M)
win = RCV_BUFSIZ_M;
opt0 = (nocong ? NO_CONG_F : 0) |
KEEP_ALIVE_F |
DELACK_F |
WND_SCALE_V(wscale) |
MSS_IDX_V(mtu_idx) |
L2T_IDX_V(ep->l2t->idx) |
TX_CHAN_V(ep->tx_chan) |
SMAC_SEL_V(ep->smac_idx) |
DSCP_V(ep->tos >> 2) |
ULP_MODE_V(ULP_MODE_TCPDDP) |
RCV_BUFSIZ_V(win);
opt2 = RX_CHANNEL_V(0) |
RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid);
if (enable_tcp_timestamps && req->tcpopt.tstamp)
opt2 |= TSTAMPS_EN_F;
if (enable_tcp_sack && req->tcpopt.sack)
opt2 |= SACK_EN_F;
if (wscale && enable_tcp_window_scaling)
opt2 |= WND_SCALE_EN_F;
if (enable_ecn) {
const struct tcphdr *tcph;
u32 hlen = ntohl(req->hdr_len);
if (CHELSIO_CHIP_VERSION(adapter_type) <= CHELSIO_T5)
tcph = (const void *)(req + 1) + ETH_HDR_LEN_G(hlen) +
IP_HDR_LEN_G(hlen);
else
tcph = (const void *)(req + 1) +
T6_ETH_HDR_LEN_G(hlen) + T6_IP_HDR_LEN_G(hlen);
if (tcph->ece && tcph->cwr)
opt2 |= CCTRL_ECN_V(1);
}
if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) {
u32 isn = (prandom_u32() & ~7UL) - 1;
opt2 |= T5_OPT_2_VALID_F;
opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE);
opt2 |= T5_ISS_F;
rpl5 = (void *)rpl;
memset(&rpl5->iss, 0, roundup(sizeof(*rpl5)-sizeof(*rpl), 16));
if (peer2peer)
isn += 4;
rpl5->iss = cpu_to_be32(isn);
PDBG("%s iss %u\n", __func__, be32_to_cpu(rpl5->iss));
}
rpl->opt0 = cpu_to_be64(opt0);
rpl->opt2 = cpu_to_be32(opt2);
set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx);
t4_set_arp_err_handler(skb, ep, pass_accept_rpl_arp_failure);
return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
}
static void reject_cr(struct c4iw_dev *dev, u32 hwtid, struct sk_buff *skb)
{
PDBG("%s c4iw_dev %p tid %u\n", __func__, dev, hwtid);
BUG_ON(skb_cloned(skb));
skb_trim(skb, sizeof(struct cpl_tid_release));
release_tid(&dev->rdev, hwtid, skb);
return;
}
static void get_4tuple(struct cpl_pass_accept_req *req, enum chip_type type,
int *iptype, __u8 *local_ip, __u8 *peer_ip,
__be16 *local_port, __be16 *peer_port)
{
int eth_len = (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) ?
ETH_HDR_LEN_G(be32_to_cpu(req->hdr_len)) :
T6_ETH_HDR_LEN_G(be32_to_cpu(req->hdr_len));
int ip_len = (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) ?
IP_HDR_LEN_G(be32_to_cpu(req->hdr_len)) :
T6_IP_HDR_LEN_G(be32_to_cpu(req->hdr_len));
struct iphdr *ip = (struct iphdr *)((u8 *)(req + 1) + eth_len);
struct ipv6hdr *ip6 = (struct ipv6hdr *)((u8 *)(req + 1) + eth_len);
struct tcphdr *tcp = (struct tcphdr *)
((u8 *)(req + 1) + eth_len + ip_len);
if (ip->version == 4) {
PDBG("%s saddr 0x%x daddr 0x%x sport %u dport %u\n", __func__,
ntohl(ip->saddr), ntohl(ip->daddr), ntohs(tcp->source),
ntohs(tcp->dest));
*iptype = 4;
memcpy(peer_ip, &ip->saddr, 4);
memcpy(local_ip, &ip->daddr, 4);
} else {
PDBG("%s saddr %pI6 daddr %pI6 sport %u dport %u\n", __func__,
ip6->saddr.s6_addr, ip6->daddr.s6_addr, ntohs(tcp->source),
ntohs(tcp->dest));
*iptype = 6;
memcpy(peer_ip, ip6->saddr.s6_addr, 16);
memcpy(local_ip, ip6->daddr.s6_addr, 16);
}
*peer_port = tcp->source;
*local_port = tcp->dest;
return;
}
static int pass_accept_req(struct c4iw_dev *dev, struct sk_buff *skb)
{
struct c4iw_ep *child_ep = NULL, *parent_ep;
struct cpl_pass_accept_req *req = cplhdr(skb);
unsigned int stid = PASS_OPEN_TID_G(ntohl(req->tos_stid));
struct tid_info *t = dev->rdev.lldi.tids;
unsigned int hwtid = GET_TID(req);
struct dst_entry *dst;
__u8 local_ip[16], peer_ip[16];
__be16 local_port, peer_port;
struct sockaddr_in6 *sin6;
int err;
u16 peer_mss = ntohs(req->tcpopt.mss);
int iptype;
unsigned short hdrs;
u8 tos = PASS_OPEN_TOS_G(ntohl(req->tos_stid));
parent_ep = (struct c4iw_ep *)get_ep_from_stid(dev, stid);
if (!parent_ep) {
PDBG("%s connect request on invalid stid %d\n", __func__, stid);
goto reject;
}
if (state_read(&parent_ep->com) != LISTEN) {
PDBG("%s - listening ep not in LISTEN\n", __func__);
goto reject;
}
get_4tuple(req, parent_ep->com.dev->rdev.lldi.adapter_type, &iptype,
local_ip, peer_ip, &local_port, &peer_port);
/* Find output route */
if (iptype == 4) {
PDBG("%s parent ep %p hwtid %u laddr %pI4 raddr %pI4 lport %d rport %d peer_mss %d\n"
, __func__, parent_ep, hwtid,
local_ip, peer_ip, ntohs(local_port),
ntohs(peer_port), peer_mss);
dst = find_route(dev, *(__be32 *)local_ip, *(__be32 *)peer_ip,
local_port, peer_port,
tos);
} else {
PDBG("%s parent ep %p hwtid %u laddr %pI6 raddr %pI6 lport %d rport %d peer_mss %d\n"
, __func__, parent_ep, hwtid,
local_ip, peer_ip, ntohs(local_port),
ntohs(peer_port), peer_mss);
dst = find_route6(dev, local_ip, peer_ip, local_port, peer_port,
PASS_OPEN_TOS_G(ntohl(req->tos_stid)),
((struct sockaddr_in6 *)
&parent_ep->com.local_addr)->sin6_scope_id);
}
if (!dst) {
printk(KERN_ERR MOD "%s - failed to find dst entry!\n",
__func__);
goto reject;
}
child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL);
if (!child_ep) {
printk(KERN_ERR MOD "%s - failed to allocate ep entry!\n",
__func__);
dst_release(dst);
goto reject;
}
err = import_ep(child_ep, iptype, peer_ip, dst, dev, false,
parent_ep->com.dev->rdev.lldi.adapter_type, tos);
if (err) {
printk(KERN_ERR MOD "%s - failed to allocate l2t entry!\n",
__func__);
dst_release(dst);
kfree(child_ep);
goto reject;
}
hdrs = sizeof(struct iphdr) + sizeof(struct tcphdr) +
((enable_tcp_timestamps && req->tcpopt.tstamp) ? 12 : 0);
if (peer_mss && child_ep->mtu > (peer_mss + hdrs))
child_ep->mtu = peer_mss + hdrs;
state_set(&child_ep->com, CONNECTING);
child_ep->com.dev = dev;
child_ep->com.cm_id = NULL;
if (iptype == 4) {
struct sockaddr_in *sin = (struct sockaddr_in *)
&child_ep->com.local_addr;
sin->sin_family = PF_INET;
sin->sin_port = local_port;
sin->sin_addr.s_addr = *(__be32 *)local_ip;
sin = (struct sockaddr_in *)&child_ep->com.local_addr;
sin->sin_family = PF_INET;
sin->sin_port = ((struct sockaddr_in *)
&parent_ep->com.local_addr)->sin_port;
sin->sin_addr.s_addr = *(__be32 *)local_ip;
sin = (struct sockaddr_in *)&child_ep->com.remote_addr;
sin->sin_family = PF_INET;
sin->sin_port = peer_port;
sin->sin_addr.s_addr = *(__be32 *)peer_ip;
} else {
sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
sin6->sin6_family = PF_INET6;
sin6->sin6_port = local_port;
memcpy(sin6->sin6_addr.s6_addr, local_ip, 16);
sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
sin6->sin6_family = PF_INET6;
sin6->sin6_port = ((struct sockaddr_in6 *)
&parent_ep->com.local_addr)->sin6_port;
memcpy(sin6->sin6_addr.s6_addr, local_ip, 16);
sin6 = (struct sockaddr_in6 *)&child_ep->com.remote_addr;
sin6->sin6_family = PF_INET6;
sin6->sin6_port = peer_port;
memcpy(sin6->sin6_addr.s6_addr, peer_ip, 16);
}
c4iw_get_ep(&parent_ep->com);
child_ep->parent_ep = parent_ep;
child_ep->tos = tos;
child_ep->dst = dst;
child_ep->hwtid = hwtid;
PDBG("%s tx_chan %u smac_idx %u rss_qid %u\n", __func__,
child_ep->tx_chan, child_ep->smac_idx, child_ep->rss_qid);
init_timer(&child_ep->timer);
cxgb4_insert_tid(t, child_ep, hwtid);
insert_ep_tid(child_ep);
if (accept_cr(child_ep, skb, req)) {
c4iw_put_ep(&parent_ep->com);
release_ep_resources(child_ep);
} else {
set_bit(PASS_ACCEPT_REQ, &child_ep->com.history);
}
if (iptype == 6) {
sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
cxgb4_clip_get(child_ep->com.dev->rdev.lldi.ports[0],
(const u32 *)&sin6->sin6_addr.s6_addr, 1);
}
goto out;
reject:
reject_cr(dev, hwtid, skb);
if (parent_ep)
c4iw_put_ep(&parent_ep->com);
out:
return 0;
}
static int pass_establish(struct c4iw_dev *dev, struct sk_buff *skb)
{
struct c4iw_ep *ep;
struct cpl_pass_establish *req = cplhdr(skb);
unsigned int tid = GET_TID(req);
int ret;
ep = get_ep_from_tid(dev, tid);
PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
ep->snd_seq = be32_to_cpu(req->snd_isn);
ep->rcv_seq = be32_to_cpu(req->rcv_isn);
PDBG("%s ep %p hwtid %u tcp_opt 0x%02x\n", __func__, ep, tid,
ntohs(req->tcp_opt));
set_emss(ep, ntohs(req->tcp_opt));
dst_confirm(ep->dst);
mutex_lock(&ep->com.mutex);
ep->com.state = MPA_REQ_WAIT;
start_ep_timer(ep);
set_bit(PASS_ESTAB, &ep->com.history);
ret = send_flowc(ep, skb);
mutex_unlock(&ep->com.mutex);
if (ret)
c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
c4iw_put_ep(&ep->com);
return 0;
}
static int peer_close(struct c4iw_dev *dev, struct sk_buff *skb)
{
struct cpl_peer_close *hdr = cplhdr(skb);
struct c4iw_ep *ep;
struct c4iw_qp_attributes attrs;
int disconnect = 1;
int release = 0;
unsigned int tid = GET_TID(hdr);
int ret;
ep = get_ep_from_tid(dev, tid);
if (!ep)
return 0;
PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
dst_confirm(ep->dst);
set_bit(PEER_CLOSE, &ep->com.history);
mutex_lock(&ep->com.mutex);
switch (ep->com.state) {
case MPA_REQ_WAIT:
__state_set(&ep->com, CLOSING);
break;
case MPA_REQ_SENT:
__state_set(&ep->com, CLOSING);
connect_reply_upcall(ep, -ECONNRESET);
break;
case MPA_REQ_RCVD:
/*
* We're gonna mark this puppy DEAD, but keep
* the reference on it until the ULP accepts or
* rejects the CR. Also wake up anyone waiting
* in rdma connection migration (see c4iw_accept_cr()).
*/
__state_set(&ep->com, CLOSING);
PDBG("waking up ep %p tid %u\n", ep, ep->hwtid);
c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
break;
case MPA_REP_SENT:
__state_set(&ep->com, CLOSING);
PDBG("waking up ep %p tid %u\n", ep, ep->hwtid);
c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
break;
case FPDU_MODE:
start_ep_timer(ep);
__state_set(&ep->com, CLOSING);
attrs.next_state = C4IW_QP_STATE_CLOSING;
ret = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
if (ret != -ECONNRESET) {
peer_close_upcall(ep);
disconnect = 1;
}
break;
case ABORTING:
disconnect = 0;
break;
case CLOSING:
__state_set(&ep->com, MORIBUND);
disconnect = 0;
break;
case MORIBUND:
(void)stop_ep_timer(ep);
if (ep->com.cm_id && ep->com.qp) {
attrs.next_state = C4IW_QP_STATE_IDLE;
c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
}
close_complete_upcall(ep, 0);
__state_set(&ep->com, DEAD);
release = 1;
disconnect = 0;
break;
case DEAD:
disconnect = 0;
break;
default:
BUG_ON(1);
}
mutex_unlock(&ep->com.mutex);
if (disconnect)
c4iw_ep_disconnect(ep, 0, GFP_KERNEL);
if (release)
release_ep_resources(ep);
c4iw_put_ep(&ep->com);
return 0;
}
static int peer_abort(struct c4iw_dev *dev, struct sk_buff *skb)
{
struct cpl_abort_req_rss *req = cplhdr(skb);
struct c4iw_ep *ep;
struct cpl_abort_rpl *rpl;
struct sk_buff *rpl_skb;
struct c4iw_qp_attributes attrs;
int ret;
int release = 0;
unsigned int tid = GET_TID(req);
ep = get_ep_from_tid(dev, tid);
if (!ep)
return 0;
if (is_neg_adv(req->status)) {
PDBG("%s Negative advice on abort- tid %u status %d (%s)\n",
__func__, ep->hwtid, req->status,
neg_adv_str(req->status));
ep->stats.abort_neg_adv++;
mutex_lock(&dev->rdev.stats.lock);
dev->rdev.stats.neg_adv++;
mutex_unlock(&dev->rdev.stats.lock);
goto deref_ep;
}
PDBG("%s ep %p tid %u state %u\n", __func__, ep, ep->hwtid,
ep->com.state);
set_bit(PEER_ABORT, &ep->com.history);
/*
* Wake up any threads in rdma_init() or rdma_fini().
* However, this is not needed if com state is just
* MPA_REQ_SENT
*/
if (ep->com.state != MPA_REQ_SENT)
c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
mutex_lock(&ep->com.mutex);
switch (ep->com.state) {
case CONNECTING:
c4iw_put_ep(&ep->parent_ep->com);
break;
case MPA_REQ_WAIT:
(void)stop_ep_timer(ep);
break;
case MPA_REQ_SENT:
(void)stop_ep_timer(ep);
if (mpa_rev == 1 || (mpa_rev == 2 && ep->tried_with_mpa_v1))
connect_reply_upcall(ep, -ECONNRESET);
else {
/*
* we just don't send notification upwards because we
* want to retry with mpa_v1 without upper layers even
* knowing it.
*
* do some housekeeping so as to re-initiate the
* connection
*/
PDBG("%s: mpa_rev=%d. Retrying with mpav1\n", __func__,
mpa_rev);
ep->retry_with_mpa_v1 = 1;
}
break;
case MPA_REP_SENT:
break;
case MPA_REQ_RCVD:
break;
case MORIBUND:
case CLOSING:
stop_ep_timer(ep);
/*FALLTHROUGH*/
case FPDU_MODE:
if (ep->com.cm_id && ep->com.qp) {
attrs.next_state = C4IW_QP_STATE_ERROR;
ret = c4iw_modify_qp(ep->com.qp->rhp,
ep->com.qp, C4IW_QP_ATTR_NEXT_STATE,
&attrs, 1);
if (ret)
printk(KERN_ERR MOD
"%s - qp <- error failed!\n",
__func__);
}
peer_abort_upcall(ep);
break;
case ABORTING:
break;
case DEAD:
PDBG("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__);
mutex_unlock(&ep->com.mutex);
goto deref_ep;
default:
BUG_ON(1);
break;
}
dst_confirm(ep->dst);
if (ep->com.state != ABORTING) {
__state_set(&ep->com, DEAD);
/* we don't release if we want to retry with mpa_v1 */
if (!ep->retry_with_mpa_v1)
release = 1;
}
mutex_unlock(&ep->com.mutex);
rpl_skb = get_skb(skb, sizeof(*rpl), GFP_KERNEL);
if (!rpl_skb) {
printk(KERN_ERR MOD "%s - cannot allocate skb!\n",
__func__);
release = 1;
goto out;
}
set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
rpl = (struct cpl_abort_rpl *) skb_put(rpl_skb, sizeof(*rpl));
INIT_TP_WR(rpl, ep->hwtid);
OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_ABORT_RPL, ep->hwtid));
rpl->cmd = CPL_ABORT_NO_RST;
c4iw_ofld_send(&ep->com.dev->rdev, rpl_skb);
out:
if (release)
release_ep_resources(ep);
else if (ep->retry_with_mpa_v1) {
if (ep->com.remote_addr.ss_family == AF_INET6) {
struct sockaddr_in6 *sin6 =
(struct sockaddr_in6 *)
&ep->com.local_addr;
cxgb4_clip_release(
ep->com.dev->rdev.lldi.ports[0],
(const u32 *)&sin6->sin6_addr.s6_addr,
1);
}
remove_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep->hwtid);
cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid);
dst_release(ep->dst);
cxgb4_l2t_release(ep->l2t);
c4iw_reconnect(ep);
}
deref_ep:
c4iw_put_ep(&ep->com);
/* Dereferencing ep, referenced in peer_abort_intr() */
c4iw_put_ep(&ep->com);
return 0;
}
static int close_con_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
{
struct c4iw_ep *ep;
struct c4iw_qp_attributes attrs;
struct cpl_close_con_rpl *rpl = cplhdr(skb);
int release = 0;
unsigned int tid = GET_TID(rpl);
ep = get_ep_from_tid(dev, tid);
if (!ep)
return 0;
PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
BUG_ON(!ep);
/* The cm_id may be null if we failed to connect */
mutex_lock(&ep->com.mutex);
set_bit(CLOSE_CON_RPL, &ep->com.history);
switch (ep->com.state) {
case CLOSING:
__state_set(&ep->com, MORIBUND);
break;
case MORIBUND:
(void)stop_ep_timer(ep);
if ((ep->com.cm_id) && (ep->com.qp)) {
attrs.next_state = C4IW_QP_STATE_IDLE;
c4iw_modify_qp(ep->com.qp->rhp,
ep->com.qp,
C4IW_QP_ATTR_NEXT_STATE,
&attrs, 1);
}
close_complete_upcall(ep, 0);
__state_set(&ep->com, DEAD);
release = 1;
break;
case ABORTING:
case DEAD:
break;
default:
BUG_ON(1);
break;
}
mutex_unlock(&ep->com.mutex);
if (release)
release_ep_resources(ep);
c4iw_put_ep(&ep->com);
return 0;
}
static int terminate(struct c4iw_dev *dev, struct sk_buff *skb)
{
struct cpl_rdma_terminate *rpl = cplhdr(skb);
unsigned int tid = GET_TID(rpl);
struct c4iw_ep *ep;
struct c4iw_qp_attributes attrs;
ep = get_ep_from_tid(dev, tid);
BUG_ON(!ep);
if (ep && ep->com.qp) {
printk(KERN_WARNING MOD "TERM received tid %u qpid %u\n", tid,
ep->com.qp->wq.sq.qid);
attrs.next_state = C4IW_QP_STATE_TERMINATE;
c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
} else
printk(KERN_WARNING MOD "TERM received tid %u no ep/qp\n", tid);
c4iw_put_ep(&ep->com);
return 0;
}
/*
* Upcall from the adapter indicating data has been transmitted.
* For us its just the single MPA request or reply. We can now free
* the skb holding the mpa message.
*/
static int fw4_ack(struct c4iw_dev *dev, struct sk_buff *skb)
{
struct c4iw_ep *ep;
struct cpl_fw4_ack *hdr = cplhdr(skb);
u8 credits = hdr->credits;
unsigned int tid = GET_TID(hdr);
ep = get_ep_from_tid(dev, tid);
if (!ep)
return 0;
PDBG("%s ep %p tid %u credits %u\n", __func__, ep, ep->hwtid, credits);
if (credits == 0) {
PDBG("%s 0 credit ack ep %p tid %u state %u\n",
__func__, ep, ep->hwtid, state_read(&ep->com));
goto out;
}
dst_confirm(ep->dst);
if (ep->mpa_skb) {
PDBG("%s last streaming msg ack ep %p tid %u state %u "
"initiator %u freeing skb\n", __func__, ep, ep->hwtid,
state_read(&ep->com), ep->mpa_attr.initiator ? 1 : 0);
kfree_skb(ep->mpa_skb);
ep->mpa_skb = NULL;
mutex_lock(&ep->com.mutex);
if (test_bit(STOP_MPA_TIMER, &ep->com.flags))
stop_ep_timer(ep);
mutex_unlock(&ep->com.mutex);
}
out:
c4iw_put_ep(&ep->com);
return 0;
}
int c4iw_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len)
{
int err = 0;
int disconnect = 0;
struct c4iw_ep *ep = to_ep(cm_id);
PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
mutex_lock(&ep->com.mutex);
if (ep->com.state != MPA_REQ_RCVD) {
mutex_unlock(&ep->com.mutex);
c4iw_put_ep(&ep->com);
return -ECONNRESET;
}
set_bit(ULP_REJECT, &ep->com.history);
if (mpa_rev == 0)
disconnect = 2;
else {
err = send_mpa_reject(ep, pdata, pdata_len);
disconnect = 1;
}
mutex_unlock(&ep->com.mutex);
if (disconnect) {
stop_ep_timer(ep);
err = c4iw_ep_disconnect(ep, disconnect == 2, GFP_KERNEL);
}
c4iw_put_ep(&ep->com);
return 0;
}
int c4iw_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
{
int err;
struct c4iw_qp_attributes attrs;
enum c4iw_qp_attr_mask mask;
struct c4iw_ep *ep = to_ep(cm_id);
struct c4iw_dev *h = to_c4iw_dev(cm_id->device);
struct c4iw_qp *qp = get_qhp(h, conn_param->qpn);
int abort = 0;
PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
mutex_lock(&ep->com.mutex);
if (ep->com.state != MPA_REQ_RCVD) {
err = -ECONNRESET;
goto err_out;
}
BUG_ON(!qp);
set_bit(ULP_ACCEPT, &ep->com.history);
if ((conn_param->ord > cur_max_read_depth(ep->com.dev)) ||
(conn_param->ird > cur_max_read_depth(ep->com.dev))) {
err = -EINVAL;
goto err_abort;
}
if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
if (conn_param->ord > ep->ird) {
if (RELAXED_IRD_NEGOTIATION) {
ep->ord = ep->ird;
} else {
ep->ird = conn_param->ird;
ep->ord = conn_param->ord;
send_mpa_reject(ep, conn_param->private_data,
conn_param->private_data_len);
err = -ENOMEM;
goto err_abort;
}
}
if (conn_param->ird < ep->ord) {
if (RELAXED_IRD_NEGOTIATION &&
ep->ord <= h->rdev.lldi.max_ordird_qp) {
conn_param->ird = ep->ord;
} else {
err = -ENOMEM;
goto err_abort;
}
}
}
ep->ird = conn_param->ird;
ep->ord = conn_param->ord;
if (ep->mpa_attr.version == 1) {
if (peer2peer && ep->ird == 0)
ep->ird = 1;
} else {
if (peer2peer &&
(ep->mpa_attr.p2p_type != FW_RI_INIT_P2PTYPE_DISABLED) &&
(p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) && ep->ird == 0)
ep->ird = 1;
}
PDBG("%s %d ird %d ord %d\n", __func__, __LINE__, ep->ird, ep->ord);
ep->com.cm_id = cm_id;
ref_cm_id(&ep->com);
ep->com.qp = qp;
ref_qp(ep);
/* bind QP to EP and move to RTS */
attrs.mpa_attr = ep->mpa_attr;
attrs.max_ird = ep->ird;
attrs.max_ord = ep->ord;
attrs.llp_stream_handle = ep;
attrs.next_state = C4IW_QP_STATE_RTS;
/* bind QP and TID with INIT_WR */
mask = C4IW_QP_ATTR_NEXT_STATE |
C4IW_QP_ATTR_LLP_STREAM_HANDLE |
C4IW_QP_ATTR_MPA_ATTR |
C4IW_QP_ATTR_MAX_IRD |
C4IW_QP_ATTR_MAX_ORD;
err = c4iw_modify_qp(ep->com.qp->rhp,
ep->com.qp, mask, &attrs, 1);
if (err)
goto err_deref_cm_id;
set_bit(STOP_MPA_TIMER, &ep->com.flags);
err = send_mpa_reply(ep, conn_param->private_data,
conn_param->private_data_len);
if (err)
goto err_deref_cm_id;
__state_set(&ep->com, FPDU_MODE);
established_upcall(ep);
mutex_unlock(&ep->com.mutex);
c4iw_put_ep(&ep->com);
return 0;
err_deref_cm_id:
deref_cm_id(&ep->com);
err_abort:
abort = 1;
err_out:
mutex_unlock(&ep->com.mutex);
if (abort)
c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
c4iw_put_ep(&ep->com);
return err;
}
static int pick_local_ipaddrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id)
{
struct in_device *ind;
int found = 0;
struct sockaddr_in *laddr = (struct sockaddr_in *)&cm_id->m_local_addr;
struct sockaddr_in *raddr = (struct sockaddr_in *)&cm_id->m_remote_addr;
ind = in_dev_get(dev->rdev.lldi.ports[0]);
if (!ind)
return -EADDRNOTAVAIL;
for_primary_ifa(ind) {
laddr->sin_addr.s_addr = ifa->ifa_address;
raddr->sin_addr.s_addr = ifa->ifa_address;
found = 1;
break;
}
endfor_ifa(ind);
in_dev_put(ind);
return found ? 0 : -EADDRNOTAVAIL;
}
static int get_lladdr(struct net_device *dev, struct in6_addr *addr,
unsigned char banned_flags)
{
struct inet6_dev *idev;
int err = -EADDRNOTAVAIL;
rcu_read_lock();
idev = __in6_dev_get(dev);
if (idev != NULL) {
struct inet6_ifaddr *ifp;
read_lock_bh(&idev->lock);
list_for_each_entry(ifp, &idev->addr_list, if_list) {
if (ifp->scope == IFA_LINK &&
!(ifp->flags & banned_flags)) {
memcpy(addr, &ifp->addr, 16);
err = 0;
break;
}
}
read_unlock_bh(&idev->lock);
}
rcu_read_unlock();
return err;
}
static int pick_local_ip6addrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id)
{
struct in6_addr uninitialized_var(addr);
struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)&cm_id->m_local_addr;
struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)&cm_id->m_remote_addr;
if (!get_lladdr(dev->rdev.lldi.ports[0], &addr, IFA_F_TENTATIVE)) {
memcpy(la6->sin6_addr.s6_addr, &addr, 16);
memcpy(ra6->sin6_addr.s6_addr, &addr, 16);
return 0;
}
return -EADDRNOTAVAIL;
}
int c4iw_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
{
struct c4iw_dev *dev = to_c4iw_dev(cm_id->device);
struct c4iw_ep *ep;
int err = 0;
struct sockaddr_in *laddr;
struct sockaddr_in *raddr;
struct sockaddr_in6 *laddr6;
struct sockaddr_in6 *raddr6;
__u8 *ra;
int iptype;
if ((conn_param->ord > cur_max_read_depth(dev)) ||
(conn_param->ird > cur_max_read_depth(dev))) {
err = -EINVAL;
goto out;
}
ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
if (!ep) {
printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
err = -ENOMEM;
goto out;
}
init_timer(&ep->timer);
ep->plen = conn_param->private_data_len;
if (ep->plen)
memcpy(ep->mpa_pkt + sizeof(struct mpa_message),
conn_param->private_data, ep->plen);
ep->ird = conn_param->ird;
ep->ord = conn_param->ord;
if (peer2peer && ep->ord == 0)
ep->ord = 1;
ep->com.cm_id = cm_id;
ref_cm_id(&ep->com);
ep->com.dev = dev;
ep->com.qp = get_qhp(dev, conn_param->qpn);
if (!ep->com.qp) {
PDBG("%s qpn 0x%x not found!\n", __func__, conn_param->qpn);
err = -EINVAL;
goto fail1;
}
ref_qp(ep);
PDBG("%s qpn 0x%x qp %p cm_id %p\n", __func__, conn_param->qpn,
ep->com.qp, cm_id);
/*
* Allocate an active TID to initiate a TCP connection.
*/
ep->atid = cxgb4_alloc_atid(dev->rdev.lldi.tids, ep);
if (ep->atid == -1) {
printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __func__);
err = -ENOMEM;
goto fail1;
}
insert_handle(dev, &dev->atid_idr, ep, ep->atid);
memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
sizeof(ep->com.local_addr));
memcpy(&ep->com.remote_addr, &cm_id->m_remote_addr,
sizeof(ep->com.remote_addr));
laddr = (struct sockaddr_in *)&ep->com.local_addr;
raddr = (struct sockaddr_in *)&ep->com.remote_addr;
laddr6 = (struct sockaddr_in6 *)&ep->com.local_addr;
raddr6 = (struct sockaddr_in6 *) &ep->com.remote_addr;
if (cm_id->m_remote_addr.ss_family == AF_INET) {
iptype = 4;
ra = (__u8 *)&raddr->sin_addr;
/*
* Handle loopback requests to INADDR_ANY.
*/
if ((__force int)raddr->sin_addr.s_addr == INADDR_ANY) {
err = pick_local_ipaddrs(dev, cm_id);
if (err)
goto fail1;
}
/* find a route */
PDBG("%s saddr %pI4 sport 0x%x raddr %pI4 rport 0x%x\n",
__func__, &laddr->sin_addr, ntohs(laddr->sin_port),
ra, ntohs(raddr->sin_port));
ep->dst = find_route(dev, laddr->sin_addr.s_addr,
raddr->sin_addr.s_addr, laddr->sin_port,
raddr->sin_port, cm_id->tos);
} else {
iptype = 6;
ra = (__u8 *)&raddr6->sin6_addr;
/*
* Handle loopback requests to INADDR_ANY.
*/
if (ipv6_addr_type(&raddr6->sin6_addr) == IPV6_ADDR_ANY) {
err = pick_local_ip6addrs(dev, cm_id);
if (err)
goto fail1;
}
/* find a route */
PDBG("%s saddr %pI6 sport 0x%x raddr %pI6 rport 0x%x\n",
__func__, laddr6->sin6_addr.s6_addr,
ntohs(laddr6->sin6_port),
raddr6->sin6_addr.s6_addr, ntohs(raddr6->sin6_port));
ep->dst = find_route6(dev, laddr6->sin6_addr.s6_addr,
raddr6->sin6_addr.s6_addr,
laddr6->sin6_port, raddr6->sin6_port, 0,
raddr6->sin6_scope_id);
}
if (!ep->dst) {
printk(KERN_ERR MOD "%s - cannot find route.\n", __func__);
err = -EHOSTUNREACH;
goto fail2;
}
err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, true,
ep->com.dev->rdev.lldi.adapter_type, cm_id->tos);
if (err) {
printk(KERN_ERR MOD "%s - cannot alloc l2e.\n", __func__);
goto fail3;
}
PDBG("%s txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
__func__, ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid,
ep->l2t->idx);
state_set(&ep->com, CONNECTING);
ep->tos = cm_id->tos;
/* send connect request to rnic */
err = send_connect(ep);
if (!err)
goto out;
cxgb4_l2t_release(ep->l2t);
fail3:
dst_release(ep->dst);
fail2:
remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid);
cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
fail1:
deref_cm_id(&ep->com);
c4iw_put_ep(&ep->com);
out:
return err;
}
static int create_server6(struct c4iw_dev *dev, struct c4iw_listen_ep *ep)
{
int err;
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)
&ep->com.local_addr;
if (ipv6_addr_type(&sin6->sin6_addr) != IPV6_ADDR_ANY) {
err = cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0],
(const u32 *)&sin6->sin6_addr.s6_addr, 1);
if (err)
return err;
}
c4iw_init_wr_wait(&ep->com.wr_wait);
err = cxgb4_create_server6(ep->com.dev->rdev.lldi.ports[0],
ep->stid, &sin6->sin6_addr,
sin6->sin6_port,
ep->com.dev->rdev.lldi.rxq_ids[0]);
if (!err)
err = c4iw_wait_for_reply(&ep->com.dev->rdev,
&ep->com.wr_wait,
0, 0, __func__);
else if (err > 0)
err = net_xmit_errno(err);
if (err) {
cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
(const u32 *)&sin6->sin6_addr.s6_addr, 1);
pr_err("cxgb4_create_server6/filter failed err %d stid %d laddr %pI6 lport %d\n",
err, ep->stid,
sin6->sin6_addr.s6_addr, ntohs(sin6->sin6_port));
}
return err;
}
static int create_server4(struct c4iw_dev *dev, struct c4iw_listen_ep *ep)
{
int err;
struct sockaddr_in *sin = (struct sockaddr_in *)
&ep->com.local_addr;
if (dev->rdev.lldi.enable_fw_ofld_conn) {
do {
err = cxgb4_create_server_filter(
ep->com.dev->rdev.lldi.ports[0], ep->stid,
sin->sin_addr.s_addr, sin->sin_port, 0,
ep->com.dev->rdev.lldi.rxq_ids[0], 0, 0);
if (err == -EBUSY) {
if (c4iw_fatal_error(&ep->com.dev->rdev)) {
err = -EIO;
break;
}
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(usecs_to_jiffies(100));
}
} while (err == -EBUSY);
} else {
c4iw_init_wr_wait(&ep->com.wr_wait);
err = cxgb4_create_server(ep->com.dev->rdev.lldi.ports[0],
ep->stid, sin->sin_addr.s_addr, sin->sin_port,
0, ep->com.dev->rdev.lldi.rxq_ids[0]);
if (!err)
err = c4iw_wait_for_reply(&ep->com.dev->rdev,
&ep->com.wr_wait,
0, 0, __func__);
else if (err > 0)
err = net_xmit_errno(err);
}
if (err)
pr_err("cxgb4_create_server/filter failed err %d stid %d laddr %pI4 lport %d\n"
, err, ep->stid,
&sin->sin_addr, ntohs(sin->sin_port));
return err;
}
int c4iw_create_listen(struct iw_cm_id *cm_id, int backlog)
{
int err = 0;
struct c4iw_dev *dev = to_c4iw_dev(cm_id->device);
struct c4iw_listen_ep *ep;
might_sleep();
ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
if (!ep) {
printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
err = -ENOMEM;
goto fail1;
}
PDBG("%s ep %p\n", __func__, ep);
ep->com.cm_id = cm_id;
ref_cm_id(&ep->com);
ep->com.dev = dev;
ep->backlog = backlog;
memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
sizeof(ep->com.local_addr));
/*
* Allocate a server TID.
*/
if (dev->rdev.lldi.enable_fw_ofld_conn &&
ep->com.local_addr.ss_family == AF_INET)
ep->stid = cxgb4_alloc_sftid(dev->rdev.lldi.tids,
cm_id->m_local_addr.ss_family, ep);
else
ep->stid = cxgb4_alloc_stid(dev->rdev.lldi.tids,
cm_id->m_local_addr.ss_family, ep);
if (ep->stid == -1) {
printk(KERN_ERR MOD "%s - cannot alloc stid.\n", __func__);
err = -ENOMEM;
goto fail2;
}
insert_handle(dev, &dev->stid_idr, ep, ep->stid);
memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
sizeof(ep->com.local_addr));
state_set(&ep->com, LISTEN);
if (ep->com.local_addr.ss_family == AF_INET)
err = create_server4(dev, ep);
else
err = create_server6(dev, ep);
if (!err) {
cm_id->provider_data = ep;
goto out;
}
cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid,
ep->com.local_addr.ss_family);
fail2:
deref_cm_id(&ep->com);
c4iw_put_ep(&ep->com);
fail1:
out:
return err;
}
int c4iw_destroy_listen(struct iw_cm_id *cm_id)
{
int err;
struct c4iw_listen_ep *ep = to_listen_ep(cm_id);
PDBG("%s ep %p\n", __func__, ep);
might_sleep();
state_set(&ep->com, DEAD);
if (ep->com.dev->rdev.lldi.enable_fw_ofld_conn &&
ep->com.local_addr.ss_family == AF_INET) {
err = cxgb4_remove_server_filter(
ep->com.dev->rdev.lldi.ports[0], ep->stid,
ep->com.dev->rdev.lldi.rxq_ids[0], 0);
} else {
struct sockaddr_in6 *sin6;
c4iw_init_wr_wait(&ep->com.wr_wait);
err = cxgb4_remove_server(
ep->com.dev->rdev.lldi.ports[0], ep->stid,
ep->com.dev->rdev.lldi.rxq_ids[0], 0);
if (err)
goto done;
err = c4iw_wait_for_reply(&ep->com.dev->rdev, &ep->com.wr_wait,
0, 0, __func__);
sin6 = (struct sockaddr_in6 *)&ep->com.local_addr;
cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
(const u32 *)&sin6->sin6_addr.s6_addr, 1);
}
remove_handle(ep->com.dev, &ep->com.dev->stid_idr, ep->stid);
cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid,
ep->com.local_addr.ss_family);
done:
deref_cm_id(&ep->com);
c4iw_put_ep(&ep->com);
return err;
}
int c4iw_ep_disconnect(struct c4iw_ep *ep, int abrupt, gfp_t gfp)
{
int ret = 0;
int close = 0;
int fatal = 0;
struct c4iw_rdev *rdev;
mutex_lock(&ep->com.mutex);
PDBG("%s ep %p state %s, abrupt %d\n", __func__, ep,
states[ep->com.state], abrupt);
/*
* Ref the ep here in case we have fatal errors causing the
* ep to be released and freed.
*/
c4iw_get_ep(&ep->com);
rdev = &ep->com.dev->rdev;
if (c4iw_fatal_error(rdev)) {
fatal = 1;
close_complete_upcall(ep, -EIO);
ep->com.state = DEAD;
}
switch (ep->com.state) {
case MPA_REQ_WAIT:
case MPA_REQ_SENT:
case MPA_REQ_RCVD:
case MPA_REP_SENT:
case FPDU_MODE:
close = 1;
if (abrupt)
ep->com.state = ABORTING;
else {
ep->com.state = CLOSING;
start_ep_timer(ep);
}
set_bit(CLOSE_SENT, &ep->com.flags);
break;
case CLOSING:
if (!test_and_set_bit(CLOSE_SENT, &ep->com.flags)) {
close = 1;
if (abrupt) {
(void)stop_ep_timer(ep);
ep->com.state = ABORTING;
} else
ep->com.state = MORIBUND;
}
break;
case MORIBUND:
case ABORTING:
case DEAD:
PDBG("%s ignoring disconnect ep %p state %u\n",
__func__, ep, ep->com.state);
break;
default:
BUG();
break;
}
if (close) {
if (abrupt) {
set_bit(EP_DISC_ABORT, &ep->com.history);
close_complete_upcall(ep, -ECONNRESET);
ret = send_abort(ep, NULL, gfp);
} else {
set_bit(EP_DISC_CLOSE, &ep->com.history);
ret = send_halfclose(ep, gfp);
}
if (ret) {
set_bit(EP_DISC_FAIL, &ep->com.history);
if (!abrupt) {
stop_ep_timer(ep);
close_complete_upcall(ep, -EIO);
}
if (ep->com.qp) {
struct c4iw_qp_attributes attrs;
attrs.next_state = C4IW_QP_STATE_ERROR;
ret = c4iw_modify_qp(ep->com.qp->rhp,
ep->com.qp,
C4IW_QP_ATTR_NEXT_STATE,
&attrs, 1);
if (ret)
pr_err(MOD
"%s - qp <- error failed!\n",
__func__);
}
fatal = 1;
}
}
mutex_unlock(&ep->com.mutex);
c4iw_put_ep(&ep->com);
if (fatal)
release_ep_resources(ep);
return ret;
}
static void active_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb,
struct cpl_fw6_msg_ofld_connection_wr_rpl *req)
{
struct c4iw_ep *ep;
int atid = be32_to_cpu(req->tid);
ep = (struct c4iw_ep *)lookup_atid(dev->rdev.lldi.tids,
(__force u32) req->tid);
if (!ep)
return;
switch (req->retval) {
case FW_ENOMEM:
set_bit(ACT_RETRY_NOMEM, &ep->com.history);
if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
send_fw_act_open_req(ep, atid);
return;
}
case FW_EADDRINUSE:
set_bit(ACT_RETRY_INUSE, &ep->com.history);
if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
send_fw_act_open_req(ep, atid);
return;
}
break;
default:
pr_info("%s unexpected ofld conn wr retval %d\n",
__func__, req->retval);
break;
}
pr_err("active ofld_connect_wr failure %d atid %d\n",
req->retval, atid);
mutex_lock(&dev->rdev.stats.lock);
dev->rdev.stats.act_ofld_conn_fails++;
mutex_unlock(&dev->rdev.stats.lock);
connect_reply_upcall(ep, status2errno(req->retval));
state_set(&ep->com, DEAD);
if (ep->com.remote_addr.ss_family == AF_INET6) {
struct sockaddr_in6 *sin6 =
(struct sockaddr_in6 *)&ep->com.local_addr;
cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
(const u32 *)&sin6->sin6_addr.s6_addr, 1);
}
remove_handle(dev, &dev->atid_idr, atid);
cxgb4_free_atid(dev->rdev.lldi.tids, atid);
dst_release(ep->dst);
cxgb4_l2t_release(ep->l2t);
c4iw_put_ep(&ep->com);
}
static void passive_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb,
struct cpl_fw6_msg_ofld_connection_wr_rpl *req)
{
struct sk_buff *rpl_skb;
struct cpl_pass_accept_req *cpl;
int ret;
rpl_skb = (struct sk_buff *)(unsigned long)req->cookie;
BUG_ON(!rpl_skb);
if (req->retval) {
PDBG("%s passive open failure %d\n", __func__, req->retval);
mutex_lock(&dev->rdev.stats.lock);
dev->rdev.stats.pas_ofld_conn_fails++;
mutex_unlock(&dev->rdev.stats.lock);
kfree_skb(rpl_skb);
} else {
cpl = (struct cpl_pass_accept_req *)cplhdr(rpl_skb);
OPCODE_TID(cpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ,
(__force u32) htonl(
(__force u32) req->tid)));
ret = pass_accept_req(dev, rpl_skb);
if (!ret)
kfree_skb(rpl_skb);
}
return;
}
static int deferred_fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb)
{
struct cpl_fw6_msg *rpl = cplhdr(skb);
struct cpl_fw6_msg_ofld_connection_wr_rpl *req;
switch (rpl->type) {
case FW6_TYPE_CQE:
c4iw_ev_dispatch(dev, (struct t4_cqe *)&rpl->data[0]);
break;
case FW6_TYPE_OFLD_CONNECTION_WR_RPL:
req = (struct cpl_fw6_msg_ofld_connection_wr_rpl *)rpl->data;
switch (req->t_state) {
case TCP_SYN_SENT:
active_ofld_conn_reply(dev, skb, req);
break;
case TCP_SYN_RECV:
passive_ofld_conn_reply(dev, skb, req);
break;
default:
pr_err("%s unexpected ofld conn wr state %d\n",
__func__, req->t_state);
break;
}
break;
}
return 0;
}
static void build_cpl_pass_accept_req(struct sk_buff *skb, int stid , u8 tos)
{
__be32 l2info;
__be16 hdr_len, vlantag, len;
u16 eth_hdr_len;
int tcp_hdr_len, ip_hdr_len;
u8 intf;
struct cpl_rx_pkt *cpl = cplhdr(skb);
struct cpl_pass_accept_req *req;
struct tcp_options_received tmp_opt;
struct c4iw_dev *dev;
enum chip_type type;
dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *)));
/* Store values from cpl_rx_pkt in temporary location. */
vlantag = cpl->vlan;
len = cpl->len;
l2info = cpl->l2info;
hdr_len = cpl->hdr_len;
intf = cpl->iff;
__skb_pull(skb, sizeof(*req) + sizeof(struct rss_header));
/*
* We need to parse the TCP options from SYN packet.
* to generate cpl_pass_accept_req.
*/
memset(&tmp_opt, 0, sizeof(tmp_opt));
tcp_clear_options(&tmp_opt);
tcp_parse_options(skb, &tmp_opt, 0, NULL);
req = (struct cpl_pass_accept_req *)__skb_push(skb, sizeof(*req));
memset(req, 0, sizeof(*req));
req->l2info = cpu_to_be16(SYN_INTF_V(intf) |
SYN_MAC_IDX_V(RX_MACIDX_G(
be32_to_cpu(l2info))) |
SYN_XACT_MATCH_F);
type = dev->rdev.lldi.adapter_type;
tcp_hdr_len = RX_TCPHDR_LEN_G(be16_to_cpu(hdr_len));
ip_hdr_len = RX_IPHDR_LEN_G(be16_to_cpu(hdr_len));
req->hdr_len =
cpu_to_be32(SYN_RX_CHAN_V(RX_CHAN_G(be32_to_cpu(l2info))));
if (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) {
eth_hdr_len = is_t4(type) ?
RX_ETHHDR_LEN_G(be32_to_cpu(l2info)) :
RX_T5_ETHHDR_LEN_G(be32_to_cpu(l2info));
req->hdr_len |= cpu_to_be32(TCP_HDR_LEN_V(tcp_hdr_len) |
IP_HDR_LEN_V(ip_hdr_len) |
ETH_HDR_LEN_V(eth_hdr_len));
} else { /* T6 and later */
eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(l2info));
req->hdr_len |= cpu_to_be32(T6_TCP_HDR_LEN_V(tcp_hdr_len) |
T6_IP_HDR_LEN_V(ip_hdr_len) |
T6_ETH_HDR_LEN_V(eth_hdr_len));
}
req->vlan = vlantag;
req->len = len;
req->tos_stid = cpu_to_be32(PASS_OPEN_TID_V(stid) |
PASS_OPEN_TOS_V(tos));
req->tcpopt.mss = htons(tmp_opt.mss_clamp);
if (tmp_opt.wscale_ok)
req->tcpopt.wsf = tmp_opt.snd_wscale;
req->tcpopt.tstamp = tmp_opt.saw_tstamp;
if (tmp_opt.sack_ok)
req->tcpopt.sack = 1;
OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ, 0));
return;
}
static void send_fw_pass_open_req(struct c4iw_dev *dev, struct sk_buff *skb,
__be32 laddr, __be16 lport,
__be32 raddr, __be16 rport,
u32 rcv_isn, u32 filter, u16 window,
u32 rss_qid, u8 port_id)
{
struct sk_buff *req_skb;
struct fw_ofld_connection_wr *req;
struct cpl_pass_accept_req *cpl = cplhdr(skb);
int ret;
req_skb = alloc_skb(sizeof(struct fw_ofld_connection_wr), GFP_KERNEL);
req = (struct fw_ofld_connection_wr *)__skb_put(req_skb, sizeof(*req));
memset(req, 0, sizeof(*req));
req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR) | FW_WR_COMPL_F);
req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16)));
req->le.version_cpl = htonl(FW_OFLD_CONNECTION_WR_CPL_F);
req->le.filter = (__force __be32) filter;
req->le.lport = lport;
req->le.pport = rport;
req->le.u.ipv4.lip = laddr;
req->le.u.ipv4.pip = raddr;
req->tcb.rcv_nxt = htonl(rcv_isn + 1);
req->tcb.rcv_adv = htons(window);
req->tcb.t_state_to_astid =
htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_RECV) |
FW_OFLD_CONNECTION_WR_RCV_SCALE_V(cpl->tcpopt.wsf) |
FW_OFLD_CONNECTION_WR_ASTID_V(
PASS_OPEN_TID_G(ntohl(cpl->tos_stid))));
/*
* We store the qid in opt2 which will be used by the firmware
* to send us the wr response.
*/
req->tcb.opt2 = htonl(RSS_QUEUE_V(rss_qid));
/*
* We initialize the MSS index in TCB to 0xF.
* So that when driver sends cpl_pass_accept_rpl
* TCB picks up the correct value. If this was 0
* TP will ignore any value > 0 for MSS index.
*/
req->tcb.opt0 = cpu_to_be64(MSS_IDX_V(0xF));
req->cookie = (uintptr_t)skb;
set_wr_txq(req_skb, CPL_PRIORITY_CONTROL, port_id);
ret = cxgb4_ofld_send(dev->rdev.lldi.ports[0], req_skb);
if (ret < 0) {
pr_err("%s - cxgb4_ofld_send error %d - dropping\n", __func__,
ret);
kfree_skb(skb);
kfree_skb(req_skb);
}
}
/*
* Handler for CPL_RX_PKT message. Need to handle cpl_rx_pkt
* messages when a filter is being used instead of server to
* redirect a syn packet. When packets hit filter they are redirected
* to the offload queue and driver tries to establish the connection
* using firmware work request.
*/
static int rx_pkt(struct c4iw_dev *dev, struct sk_buff *skb)
{
int stid;
unsigned int filter;
struct ethhdr *eh = NULL;
struct vlan_ethhdr *vlan_eh = NULL;
struct iphdr *iph;
struct tcphdr *tcph;
struct rss_header *rss = (void *)skb->data;
struct cpl_rx_pkt *cpl = (void *)skb->data;
struct cpl_pass_accept_req *req = (void *)(rss + 1);
struct l2t_entry *e;
struct dst_entry *dst;
struct c4iw_ep *lep = NULL;
u16 window;
struct port_info *pi;
struct net_device *pdev;
u16 rss_qid, eth_hdr_len;
int step;
u32 tx_chan;
struct neighbour *neigh;
/* Drop all non-SYN packets */
if (!(cpl->l2info & cpu_to_be32(RXF_SYN_F)))
goto reject;
/*
* Drop all packets which did not hit the filter.
* Unlikely to happen.
*/
if (!(rss->filter_hit && rss->filter_tid))
goto reject;
/*
* Calculate the server tid from filter hit index from cpl_rx_pkt.
*/
stid = (__force int) cpu_to_be32((__force u32) rss->hash_val);
lep = (struct c4iw_ep *)get_ep_from_stid(dev, stid);
if (!lep) {
PDBG("%s connect request on invalid stid %d\n", __func__, stid);
goto reject;
}
switch (CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type)) {
case CHELSIO_T4:
eth_hdr_len = RX_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
break;
case CHELSIO_T5:
eth_hdr_len = RX_T5_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
break;
case CHELSIO_T6:
eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
break;
default:
pr_err("T%d Chip is not supported\n",
CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type));
goto reject;
}
if (eth_hdr_len == ETH_HLEN) {
eh = (struct ethhdr *)(req + 1);
iph = (struct iphdr *)(eh + 1);
} else {
vlan_eh = (struct vlan_ethhdr *)(req + 1);
iph = (struct iphdr *)(vlan_eh + 1);
skb->vlan_tci = ntohs(cpl->vlan);
}
if (iph->version != 0x4)
goto reject;
tcph = (struct tcphdr *)(iph + 1);
skb_set_network_header(skb, (void *)iph - (void *)rss);
skb_set_transport_header(skb, (void *)tcph - (void *)rss);
skb_get(skb);
PDBG("%s lip 0x%x lport %u pip 0x%x pport %u tos %d\n", __func__,
ntohl(iph->daddr), ntohs(tcph->dest), ntohl(iph->saddr),
ntohs(tcph->source), iph->tos);
dst = find_route(dev, iph->daddr, iph->saddr, tcph->dest, tcph->source,
iph->tos);
if (!dst) {
pr_err("%s - failed to find dst entry!\n",
__func__);
goto reject;
}
neigh = dst_neigh_lookup_skb(dst, skb);
if (!neigh) {
pr_err("%s - failed to allocate neigh!\n",
__func__);
goto free_dst;
}
if (neigh->dev->flags & IFF_LOOPBACK) {
pdev = ip_dev_find(&init_net, iph->daddr);
e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh,
pdev, 0);
pi = (struct port_info *)netdev_priv(pdev);
tx_chan = cxgb4_port_chan(pdev);
dev_put(pdev);
} else {
pdev = get_real_dev(neigh->dev);
e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh,
pdev, 0);
pi = (struct port_info *)netdev_priv(pdev);
tx_chan = cxgb4_port_chan(pdev);
}
neigh_release(neigh);
if (!e) {
pr_err("%s - failed to allocate l2t entry!\n",
__func__);
goto free_dst;
}
step = dev->rdev.lldi.nrxq / dev->rdev.lldi.nchan;
rss_qid = dev->rdev.lldi.rxq_ids[pi->port_id * step];
window = (__force u16) htons((__force u16)tcph->window);
/* Calcuate filter portion for LE region. */
filter = (__force unsigned int) cpu_to_be32(cxgb4_select_ntuple(
dev->rdev.lldi.ports[0],
e));
/*
* Synthesize the cpl_pass_accept_req. We have everything except the
* TID. Once firmware sends a reply with TID we update the TID field
* in cpl and pass it through the regular cpl_pass_accept_req path.
*/
build_cpl_pass_accept_req(skb, stid, iph->tos);
send_fw_pass_open_req(dev, skb, iph->daddr, tcph->dest, iph->saddr,
tcph->source, ntohl(tcph->seq), filter, window,
rss_qid, pi->port_id);
cxgb4_l2t_release(e);
free_dst:
dst_release(dst);
reject:
if (lep)
c4iw_put_ep(&lep->com);
return 0;
}
/*
* These are the real handlers that are called from a
* work queue.
*/
static c4iw_handler_func work_handlers[NUM_CPL_CMDS + NUM_FAKE_CPLS] = {
[CPL_ACT_ESTABLISH] = act_establish,
[CPL_ACT_OPEN_RPL] = act_open_rpl,
[CPL_RX_DATA] = rx_data,
[CPL_ABORT_RPL_RSS] = abort_rpl,
[CPL_ABORT_RPL] = abort_rpl,
[CPL_PASS_OPEN_RPL] = pass_open_rpl,
[CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl,
[CPL_PASS_ACCEPT_REQ] = pass_accept_req,
[CPL_PASS_ESTABLISH] = pass_establish,
[CPL_PEER_CLOSE] = peer_close,
[CPL_ABORT_REQ_RSS] = peer_abort,
[CPL_CLOSE_CON_RPL] = close_con_rpl,
[CPL_RDMA_TERMINATE] = terminate,
[CPL_FW4_ACK] = fw4_ack,
[CPL_FW6_MSG] = deferred_fw6_msg,
[CPL_RX_PKT] = rx_pkt,
[FAKE_CPL_PUT_EP_SAFE] = _put_ep_safe,
[FAKE_CPL_PASS_PUT_EP_SAFE] = _put_pass_ep_safe
};
static void process_timeout(struct c4iw_ep *ep)
{
struct c4iw_qp_attributes attrs;
int abort = 1;
mutex_lock(&ep->com.mutex);
PDBG("%s ep %p tid %u state %d\n", __func__, ep, ep->hwtid,
ep->com.state);
set_bit(TIMEDOUT, &ep->com.history);
switch (ep->com.state) {
case MPA_REQ_SENT:
connect_reply_upcall(ep, -ETIMEDOUT);
break;
case MPA_REQ_WAIT:
case MPA_REQ_RCVD:
case MPA_REP_SENT:
case FPDU_MODE:
break;
case CLOSING:
case MORIBUND:
if (ep->com.cm_id && ep->com.qp) {
attrs.next_state = C4IW_QP_STATE_ERROR;
c4iw_modify_qp(ep->com.qp->rhp,
ep->com.qp, C4IW_QP_ATTR_NEXT_STATE,
&attrs, 1);
}
close_complete_upcall(ep, -ETIMEDOUT);
break;
case ABORTING:
case DEAD:
/*
* These states are expected if the ep timed out at the same
* time as another thread was calling stop_ep_timer().
* So we silently do nothing for these states.
*/
abort = 0;
break;
default:
WARN(1, "%s unexpected state ep %p tid %u state %u\n",
__func__, ep, ep->hwtid, ep->com.state);
abort = 0;
}
mutex_unlock(&ep->com.mutex);
if (abort)
c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
c4iw_put_ep(&ep->com);
}
static void process_timedout_eps(void)
{
struct c4iw_ep *ep;
spin_lock_irq(&timeout_lock);
while (!list_empty(&timeout_list)) {
struct list_head *tmp;
tmp = timeout_list.next;
list_del(tmp);
tmp->next = NULL;
tmp->prev = NULL;
spin_unlock_irq(&timeout_lock);
ep = list_entry(tmp, struct c4iw_ep, entry);
process_timeout(ep);
spin_lock_irq(&timeout_lock);
}
spin_unlock_irq(&timeout_lock);
}
static void process_work(struct work_struct *work)
{
struct sk_buff *skb = NULL;
struct c4iw_dev *dev;
struct cpl_act_establish *rpl;
unsigned int opcode;
int ret;
process_timedout_eps();
while ((skb = skb_dequeue(&rxq))) {
rpl = cplhdr(skb);
dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *)));
opcode = rpl->ot.opcode;
BUG_ON(!work_handlers[opcode]);
ret = work_handlers[opcode](dev, skb);
if (!ret)
kfree_skb(skb);
process_timedout_eps();
}
}
static DECLARE_WORK(skb_work, process_work);
static void ep_timeout(unsigned long arg)
{
struct c4iw_ep *ep = (struct c4iw_ep *)arg;
int kickit = 0;
spin_lock(&timeout_lock);
if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) {
/*
* Only insert if it is not already on the list.
*/
if (!ep->entry.next) {
list_add_tail(&ep->entry, &timeout_list);
kickit = 1;
}
}
spin_unlock(&timeout_lock);
if (kickit)
queue_work(workq, &skb_work);
}
/*
* All the CM events are handled on a work queue to have a safe context.
*/
static int sched(struct c4iw_dev *dev, struct sk_buff *skb)
{
/*
* Save dev in the skb->cb area.
*/
*((struct c4iw_dev **) (skb->cb + sizeof(void *))) = dev;
/*
* Queue the skb and schedule the worker thread.
*/
skb_queue_tail(&rxq, skb);
queue_work(workq, &skb_work);
return 0;
}
static int set_tcb_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
{
struct cpl_set_tcb_rpl *rpl = cplhdr(skb);
if (rpl->status != CPL_ERR_NONE) {
printk(KERN_ERR MOD "Unexpected SET_TCB_RPL status %u "
"for tid %u\n", rpl->status, GET_TID(rpl));
}
kfree_skb(skb);
return 0;
}
static int fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb)
{
struct cpl_fw6_msg *rpl = cplhdr(skb);
struct c4iw_wr_wait *wr_waitp;
int ret;
PDBG("%s type %u\n", __func__, rpl->type);
switch (rpl->type) {
case FW6_TYPE_WR_RPL:
ret = (int)((be64_to_cpu(rpl->data[0]) >> 8) & 0xff);
wr_waitp = (struct c4iw_wr_wait *)(__force unsigned long) rpl->data[1];
PDBG("%s wr_waitp %p ret %u\n", __func__, wr_waitp, ret);
if (wr_waitp)
c4iw_wake_up(wr_waitp, ret ? -ret : 0);
kfree_skb(skb);
break;
case FW6_TYPE_CQE:
case FW6_TYPE_OFLD_CONNECTION_WR_RPL:
sched(dev, skb);
break;
default:
printk(KERN_ERR MOD "%s unexpected fw6 msg type %u\n", __func__,
rpl->type);
kfree_skb(skb);
break;
}
return 0;
}
static int peer_abort_intr(struct c4iw_dev *dev, struct sk_buff *skb)
{
struct cpl_abort_req_rss *req = cplhdr(skb);
struct c4iw_ep *ep;
unsigned int tid = GET_TID(req);
ep = get_ep_from_tid(dev, tid);
/* This EP will be dereferenced in peer_abort() */
if (!ep) {
printk(KERN_WARNING MOD
"Abort on non-existent endpoint, tid %d\n", tid);
kfree_skb(skb);
return 0;
}
if (is_neg_adv(req->status)) {
PDBG("%s Negative advice on abort- tid %u status %d (%s)\n",
__func__, ep->hwtid, req->status,
neg_adv_str(req->status));
goto out;
}
PDBG("%s ep %p tid %u state %u\n", __func__, ep, ep->hwtid,
ep->com.state);
c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
out:
sched(dev, skb);
return 0;
}
/*
* Most upcalls from the T4 Core go to sched() to
* schedule the processing on a work queue.
*/
c4iw_handler_func c4iw_handlers[NUM_CPL_CMDS] = {
[CPL_ACT_ESTABLISH] = sched,
[CPL_ACT_OPEN_RPL] = sched,
[CPL_RX_DATA] = sched,
[CPL_ABORT_RPL_RSS] = sched,
[CPL_ABORT_RPL] = sched,
[CPL_PASS_OPEN_RPL] = sched,
[CPL_CLOSE_LISTSRV_RPL] = sched,
[CPL_PASS_ACCEPT_REQ] = sched,
[CPL_PASS_ESTABLISH] = sched,
[CPL_PEER_CLOSE] = sched,
[CPL_CLOSE_CON_RPL] = sched,
[CPL_ABORT_REQ_RSS] = peer_abort_intr,
[CPL_RDMA_TERMINATE] = sched,
[CPL_FW4_ACK] = sched,
[CPL_SET_TCB_RPL] = set_tcb_rpl,
[CPL_FW6_MSG] = fw6_msg,
[CPL_RX_PKT] = sched
};
int __init c4iw_cm_init(void)
{
spin_lock_init(&timeout_lock);
skb_queue_head_init(&rxq);
workq = create_singlethread_workqueue("iw_cxgb4");
if (!workq)
return -ENOMEM;
return 0;
}
void c4iw_cm_term(void)
{
WARN_ON(!list_empty(&timeout_list));
flush_workqueue(workq);
destroy_workqueue(workq);
}