linux_dsm_epyc7002/drivers/spi/spi-zynqmp-gqspi.c
Thommy Jakobsson 5dd8304981
spi/zynqmp: remove entry that causes a cs glitch
In the public interface for chipselect, there is always an entry
commented as "Dummy generic FIFO entry" pushed down to the fifo right
after the activate/deactivate command. The dummy entry is 0x0,
irregardless if the intention was to activate or deactive the cs. This
causes the cs line to glitch rather than beeing activated in the case
when there was an activate command.

This has been observed on oscilloscope, and have caused problems for at
least one specific flash device type connected to the qspi port. After
the change the glitch is gone and cs goes active when intended.

The reason why this worked before (except for the glitch) was because
when sending the actual data, the CS bits are once again set. Since
most flashes uses mode 0, there is always a half clk period anyway for
cs to clk active setup time. If someone would rely on timing from a
chip_select call to a transfer_one, it would fail though.

It is unknown why the dummy entry was there in the first place, git log
seems to be of no help in this case. The reference manual gives no
indication of the necessity of this. In fact the lower 8 bits are a
setup (or hold in case of deactivate) time expressed in cycles. So this
should not be needed to fulfill any setup/hold timings.

Signed-off-by: Thommy Jakobsson <thommyj@gmail.com>
Reviewed-by: Naga Sureshkumar Relli <naga.sureshkumar.relli@xilinx.com>
Link: https://lore.kernel.org/r/20200224162643.29102-1-thommyj@gmail.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2020-02-27 12:48:56 +00:00

1167 lines
34 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Xilinx Zynq UltraScale+ MPSoC Quad-SPI (QSPI) controller driver
* (master mode only)
*
* Copyright (C) 2009 - 2015 Xilinx, Inc.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/firmware/xlnx-zynqmp.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/spi/spi.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
/* Generic QSPI register offsets */
#define GQSPI_CONFIG_OFST 0x00000100
#define GQSPI_ISR_OFST 0x00000104
#define GQSPI_IDR_OFST 0x0000010C
#define GQSPI_IER_OFST 0x00000108
#define GQSPI_IMASK_OFST 0x00000110
#define GQSPI_EN_OFST 0x00000114
#define GQSPI_TXD_OFST 0x0000011C
#define GQSPI_RXD_OFST 0x00000120
#define GQSPI_TX_THRESHOLD_OFST 0x00000128
#define GQSPI_RX_THRESHOLD_OFST 0x0000012C
#define GQSPI_LPBK_DLY_ADJ_OFST 0x00000138
#define GQSPI_GEN_FIFO_OFST 0x00000140
#define GQSPI_SEL_OFST 0x00000144
#define GQSPI_GF_THRESHOLD_OFST 0x00000150
#define GQSPI_FIFO_CTRL_OFST 0x0000014C
#define GQSPI_QSPIDMA_DST_CTRL_OFST 0x0000080C
#define GQSPI_QSPIDMA_DST_SIZE_OFST 0x00000804
#define GQSPI_QSPIDMA_DST_STS_OFST 0x00000808
#define GQSPI_QSPIDMA_DST_I_STS_OFST 0x00000814
#define GQSPI_QSPIDMA_DST_I_EN_OFST 0x00000818
#define GQSPI_QSPIDMA_DST_I_DIS_OFST 0x0000081C
#define GQSPI_QSPIDMA_DST_I_MASK_OFST 0x00000820
#define GQSPI_QSPIDMA_DST_ADDR_OFST 0x00000800
#define GQSPI_QSPIDMA_DST_ADDR_MSB_OFST 0x00000828
/* GQSPI register bit masks */
#define GQSPI_SEL_MASK 0x00000001
#define GQSPI_EN_MASK 0x00000001
#define GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK 0x00000020
#define GQSPI_ISR_WR_TO_CLR_MASK 0x00000002
#define GQSPI_IDR_ALL_MASK 0x00000FBE
#define GQSPI_CFG_MODE_EN_MASK 0xC0000000
#define GQSPI_CFG_GEN_FIFO_START_MODE_MASK 0x20000000
#define GQSPI_CFG_ENDIAN_MASK 0x04000000
#define GQSPI_CFG_EN_POLL_TO_MASK 0x00100000
#define GQSPI_CFG_WP_HOLD_MASK 0x00080000
#define GQSPI_CFG_BAUD_RATE_DIV_MASK 0x00000038
#define GQSPI_CFG_CLK_PHA_MASK 0x00000004
#define GQSPI_CFG_CLK_POL_MASK 0x00000002
#define GQSPI_CFG_START_GEN_FIFO_MASK 0x10000000
#define GQSPI_GENFIFO_IMM_DATA_MASK 0x000000FF
#define GQSPI_GENFIFO_DATA_XFER 0x00000100
#define GQSPI_GENFIFO_EXP 0x00000200
#define GQSPI_GENFIFO_MODE_SPI 0x00000400
#define GQSPI_GENFIFO_MODE_DUALSPI 0x00000800
#define GQSPI_GENFIFO_MODE_QUADSPI 0x00000C00
#define GQSPI_GENFIFO_MODE_MASK 0x00000C00
#define GQSPI_GENFIFO_CS_LOWER 0x00001000
#define GQSPI_GENFIFO_CS_UPPER 0x00002000
#define GQSPI_GENFIFO_BUS_LOWER 0x00004000
#define GQSPI_GENFIFO_BUS_UPPER 0x00008000
#define GQSPI_GENFIFO_BUS_BOTH 0x0000C000
#define GQSPI_GENFIFO_BUS_MASK 0x0000C000
#define GQSPI_GENFIFO_TX 0x00010000
#define GQSPI_GENFIFO_RX 0x00020000
#define GQSPI_GENFIFO_STRIPE 0x00040000
#define GQSPI_GENFIFO_POLL 0x00080000
#define GQSPI_GENFIFO_EXP_START 0x00000100
#define GQSPI_FIFO_CTRL_RST_RX_FIFO_MASK 0x00000004
#define GQSPI_FIFO_CTRL_RST_TX_FIFO_MASK 0x00000002
#define GQSPI_FIFO_CTRL_RST_GEN_FIFO_MASK 0x00000001
#define GQSPI_ISR_RXEMPTY_MASK 0x00000800
#define GQSPI_ISR_GENFIFOFULL_MASK 0x00000400
#define GQSPI_ISR_GENFIFONOT_FULL_MASK 0x00000200
#define GQSPI_ISR_TXEMPTY_MASK 0x00000100
#define GQSPI_ISR_GENFIFOEMPTY_MASK 0x00000080
#define GQSPI_ISR_RXFULL_MASK 0x00000020
#define GQSPI_ISR_RXNEMPTY_MASK 0x00000010
#define GQSPI_ISR_TXFULL_MASK 0x00000008
#define GQSPI_ISR_TXNOT_FULL_MASK 0x00000004
#define GQSPI_ISR_POLL_TIME_EXPIRE_MASK 0x00000002
#define GQSPI_IER_TXNOT_FULL_MASK 0x00000004
#define GQSPI_IER_RXEMPTY_MASK 0x00000800
#define GQSPI_IER_POLL_TIME_EXPIRE_MASK 0x00000002
#define GQSPI_IER_RXNEMPTY_MASK 0x00000010
#define GQSPI_IER_GENFIFOEMPTY_MASK 0x00000080
#define GQSPI_IER_TXEMPTY_MASK 0x00000100
#define GQSPI_QSPIDMA_DST_INTR_ALL_MASK 0x000000FE
#define GQSPI_QSPIDMA_DST_STS_WTC 0x0000E000
#define GQSPI_CFG_MODE_EN_DMA_MASK 0x80000000
#define GQSPI_ISR_IDR_MASK 0x00000994
#define GQSPI_QSPIDMA_DST_I_EN_DONE_MASK 0x00000002
#define GQSPI_QSPIDMA_DST_I_STS_DONE_MASK 0x00000002
#define GQSPI_IRQ_MASK 0x00000980
#define GQSPI_CFG_BAUD_RATE_DIV_SHIFT 3
#define GQSPI_GENFIFO_CS_SETUP 0x4
#define GQSPI_GENFIFO_CS_HOLD 0x3
#define GQSPI_TXD_DEPTH 64
#define GQSPI_RX_FIFO_THRESHOLD 32
#define GQSPI_RX_FIFO_FILL (GQSPI_RX_FIFO_THRESHOLD * 4)
#define GQSPI_TX_FIFO_THRESHOLD_RESET_VAL 32
#define GQSPI_TX_FIFO_FILL (GQSPI_TXD_DEPTH -\
GQSPI_TX_FIFO_THRESHOLD_RESET_VAL)
#define GQSPI_GEN_FIFO_THRESHOLD_RESET_VAL 0X10
#define GQSPI_QSPIDMA_DST_CTRL_RESET_VAL 0x803FFA00
#define GQSPI_SELECT_FLASH_CS_LOWER 0x1
#define GQSPI_SELECT_FLASH_CS_UPPER 0x2
#define GQSPI_SELECT_FLASH_CS_BOTH 0x3
#define GQSPI_SELECT_FLASH_BUS_LOWER 0x1
#define GQSPI_SELECT_FLASH_BUS_UPPER 0x2
#define GQSPI_SELECT_FLASH_BUS_BOTH 0x3
#define GQSPI_BAUD_DIV_MAX 7 /* Baud rate divisor maximum */
#define GQSPI_BAUD_DIV_SHIFT 2 /* Baud rate divisor shift */
#define GQSPI_SELECT_MODE_SPI 0x1
#define GQSPI_SELECT_MODE_DUALSPI 0x2
#define GQSPI_SELECT_MODE_QUADSPI 0x4
#define GQSPI_DMA_UNALIGN 0x3
#define GQSPI_DEFAULT_NUM_CS 1 /* Default number of chip selects */
#define SPI_AUTOSUSPEND_TIMEOUT 3000
enum mode_type {GQSPI_MODE_IO, GQSPI_MODE_DMA};
static const struct zynqmp_eemi_ops *eemi_ops;
/**
* struct zynqmp_qspi - Defines qspi driver instance
* @regs: Virtual address of the QSPI controller registers
* @refclk: Pointer to the peripheral clock
* @pclk: Pointer to the APB clock
* @irq: IRQ number
* @dev: Pointer to struct device
* @txbuf: Pointer to the TX buffer
* @rxbuf: Pointer to the RX buffer
* @bytes_to_transfer: Number of bytes left to transfer
* @bytes_to_receive: Number of bytes left to receive
* @genfifocs: Used for chip select
* @genfifobus: Used to select the upper or lower bus
* @dma_rx_bytes: Remaining bytes to receive by DMA mode
* @dma_addr: DMA address after mapping the kernel buffer
* @genfifoentry: Used for storing the genfifoentry instruction.
* @mode: Defines the mode in which QSPI is operating
*/
struct zynqmp_qspi {
void __iomem *regs;
struct clk *refclk;
struct clk *pclk;
int irq;
struct device *dev;
const void *txbuf;
void *rxbuf;
int bytes_to_transfer;
int bytes_to_receive;
u32 genfifocs;
u32 genfifobus;
u32 dma_rx_bytes;
dma_addr_t dma_addr;
u32 genfifoentry;
enum mode_type mode;
};
/**
* zynqmp_gqspi_read: For GQSPI controller read operation
* @xqspi: Pointer to the zynqmp_qspi structure
* @offset: Offset from where to read
*/
static u32 zynqmp_gqspi_read(struct zynqmp_qspi *xqspi, u32 offset)
{
return readl_relaxed(xqspi->regs + offset);
}
/**
* zynqmp_gqspi_write: For GQSPI controller write operation
* @xqspi: Pointer to the zynqmp_qspi structure
* @offset: Offset where to write
* @val: Value to be written
*/
static inline void zynqmp_gqspi_write(struct zynqmp_qspi *xqspi, u32 offset,
u32 val)
{
writel_relaxed(val, (xqspi->regs + offset));
}
/**
* zynqmp_gqspi_selectslave: For selection of slave device
* @instanceptr: Pointer to the zynqmp_qspi structure
* @flashcs: For chip select
* @flashbus: To check which bus is selected- upper or lower
*/
static void zynqmp_gqspi_selectslave(struct zynqmp_qspi *instanceptr,
u8 slavecs, u8 slavebus)
{
/*
* Bus and CS lines selected here will be updated in the instance and
* used for subsequent GENFIFO entries during transfer.
*/
/* Choose slave select line */
switch (slavecs) {
case GQSPI_SELECT_FLASH_CS_BOTH:
instanceptr->genfifocs = GQSPI_GENFIFO_CS_LOWER |
GQSPI_GENFIFO_CS_UPPER;
break;
case GQSPI_SELECT_FLASH_CS_UPPER:
instanceptr->genfifocs = GQSPI_GENFIFO_CS_UPPER;
break;
case GQSPI_SELECT_FLASH_CS_LOWER:
instanceptr->genfifocs = GQSPI_GENFIFO_CS_LOWER;
break;
default:
dev_warn(instanceptr->dev, "Invalid slave select\n");
}
/* Choose the bus */
switch (slavebus) {
case GQSPI_SELECT_FLASH_BUS_BOTH:
instanceptr->genfifobus = GQSPI_GENFIFO_BUS_LOWER |
GQSPI_GENFIFO_BUS_UPPER;
break;
case GQSPI_SELECT_FLASH_BUS_UPPER:
instanceptr->genfifobus = GQSPI_GENFIFO_BUS_UPPER;
break;
case GQSPI_SELECT_FLASH_BUS_LOWER:
instanceptr->genfifobus = GQSPI_GENFIFO_BUS_LOWER;
break;
default:
dev_warn(instanceptr->dev, "Invalid slave bus\n");
}
}
/**
* zynqmp_qspi_init_hw: Initialize the hardware
* @xqspi: Pointer to the zynqmp_qspi structure
*
* The default settings of the QSPI controller's configurable parameters on
* reset are
* - Master mode
* - TX threshold set to 1
* - RX threshold set to 1
* - Flash memory interface mode enabled
* This function performs the following actions
* - Disable and clear all the interrupts
* - Enable manual slave select
* - Enable manual start
* - Deselect all the chip select lines
* - Set the little endian mode of TX FIFO and
* - Enable the QSPI controller
*/
static void zynqmp_qspi_init_hw(struct zynqmp_qspi *xqspi)
{
u32 config_reg;
/* Select the GQSPI mode */
zynqmp_gqspi_write(xqspi, GQSPI_SEL_OFST, GQSPI_SEL_MASK);
/* Clear and disable interrupts */
zynqmp_gqspi_write(xqspi, GQSPI_ISR_OFST,
zynqmp_gqspi_read(xqspi, GQSPI_ISR_OFST) |
GQSPI_ISR_WR_TO_CLR_MASK);
/* Clear the DMA STS */
zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST,
zynqmp_gqspi_read(xqspi,
GQSPI_QSPIDMA_DST_I_STS_OFST));
zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_STS_OFST,
zynqmp_gqspi_read(xqspi,
GQSPI_QSPIDMA_DST_STS_OFST) |
GQSPI_QSPIDMA_DST_STS_WTC);
zynqmp_gqspi_write(xqspi, GQSPI_IDR_OFST, GQSPI_IDR_ALL_MASK);
zynqmp_gqspi_write(xqspi,
GQSPI_QSPIDMA_DST_I_DIS_OFST,
GQSPI_QSPIDMA_DST_INTR_ALL_MASK);
/* Disable the GQSPI */
zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, 0x0);
config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
/* Manual start */
config_reg |= GQSPI_CFG_GEN_FIFO_START_MODE_MASK;
/* Little endian by default */
config_reg &= ~GQSPI_CFG_ENDIAN_MASK;
/* Disable poll time out */
config_reg &= ~GQSPI_CFG_EN_POLL_TO_MASK;
/* Set hold bit */
config_reg |= GQSPI_CFG_WP_HOLD_MASK;
/* Clear pre-scalar by default */
config_reg &= ~GQSPI_CFG_BAUD_RATE_DIV_MASK;
/* CPHA 0 */
config_reg &= ~GQSPI_CFG_CLK_PHA_MASK;
/* CPOL 0 */
config_reg &= ~GQSPI_CFG_CLK_POL_MASK;
zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
/* Clear the TX and RX FIFO */
zynqmp_gqspi_write(xqspi, GQSPI_FIFO_CTRL_OFST,
GQSPI_FIFO_CTRL_RST_RX_FIFO_MASK |
GQSPI_FIFO_CTRL_RST_TX_FIFO_MASK |
GQSPI_FIFO_CTRL_RST_GEN_FIFO_MASK);
/* Set by default to allow for high frequencies */
zynqmp_gqspi_write(xqspi, GQSPI_LPBK_DLY_ADJ_OFST,
zynqmp_gqspi_read(xqspi, GQSPI_LPBK_DLY_ADJ_OFST) |
GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK);
/* Reset thresholds */
zynqmp_gqspi_write(xqspi, GQSPI_TX_THRESHOLD_OFST,
GQSPI_TX_FIFO_THRESHOLD_RESET_VAL);
zynqmp_gqspi_write(xqspi, GQSPI_RX_THRESHOLD_OFST,
GQSPI_RX_FIFO_THRESHOLD);
zynqmp_gqspi_write(xqspi, GQSPI_GF_THRESHOLD_OFST,
GQSPI_GEN_FIFO_THRESHOLD_RESET_VAL);
zynqmp_gqspi_selectslave(xqspi,
GQSPI_SELECT_FLASH_CS_LOWER,
GQSPI_SELECT_FLASH_BUS_LOWER);
/* Initialize DMA */
zynqmp_gqspi_write(xqspi,
GQSPI_QSPIDMA_DST_CTRL_OFST,
GQSPI_QSPIDMA_DST_CTRL_RESET_VAL);
/* Enable the GQSPI */
zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, GQSPI_EN_MASK);
}
/**
* zynqmp_qspi_copy_read_data: Copy data to RX buffer
* @xqspi: Pointer to the zynqmp_qspi structure
* @data: The variable where data is stored
* @size: Number of bytes to be copied from data to RX buffer
*/
static void zynqmp_qspi_copy_read_data(struct zynqmp_qspi *xqspi,
ulong data, u8 size)
{
memcpy(xqspi->rxbuf, &data, size);
xqspi->rxbuf += size;
xqspi->bytes_to_receive -= size;
}
/**
* zynqmp_prepare_transfer_hardware: Prepares hardware for transfer.
* @master: Pointer to the spi_master structure which provides
* information about the controller.
*
* This function enables SPI master controller.
*
* Return: 0 on success; error value otherwise
*/
static int zynqmp_prepare_transfer_hardware(struct spi_master *master)
{
struct zynqmp_qspi *xqspi = spi_master_get_devdata(master);
zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, GQSPI_EN_MASK);
return 0;
}
/**
* zynqmp_unprepare_transfer_hardware: Relaxes hardware after transfer
* @master: Pointer to the spi_master structure which provides
* information about the controller.
*
* This function disables the SPI master controller.
*
* Return: Always 0
*/
static int zynqmp_unprepare_transfer_hardware(struct spi_master *master)
{
struct zynqmp_qspi *xqspi = spi_master_get_devdata(master);
zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, 0x0);
return 0;
}
/**
* zynqmp_qspi_chipselect: Select or deselect the chip select line
* @qspi: Pointer to the spi_device structure
* @is_high: Select(0) or deselect (1) the chip select line
*/
static void zynqmp_qspi_chipselect(struct spi_device *qspi, bool is_high)
{
struct zynqmp_qspi *xqspi = spi_master_get_devdata(qspi->master);
ulong timeout;
u32 genfifoentry = 0x0, statusreg;
genfifoentry |= GQSPI_GENFIFO_MODE_SPI;
genfifoentry |= xqspi->genfifobus;
if (!is_high) {
genfifoentry |= xqspi->genfifocs;
genfifoentry |= GQSPI_GENFIFO_CS_SETUP;
} else {
genfifoentry |= GQSPI_GENFIFO_CS_HOLD;
}
zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry);
/* Manually start the generic FIFO command */
zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) |
GQSPI_CFG_START_GEN_FIFO_MASK);
timeout = jiffies + msecs_to_jiffies(1000);
/* Wait until the generic FIFO command is empty */
do {
statusreg = zynqmp_gqspi_read(xqspi, GQSPI_ISR_OFST);
if ((statusreg & GQSPI_ISR_GENFIFOEMPTY_MASK) &&
(statusreg & GQSPI_ISR_TXEMPTY_MASK))
break;
else
cpu_relax();
} while (!time_after_eq(jiffies, timeout));
if (time_after_eq(jiffies, timeout))
dev_err(xqspi->dev, "Chip select timed out\n");
}
/**
* zynqmp_qspi_setup_transfer: Configure QSPI controller for specified
* transfer
* @qspi: Pointer to the spi_device structure
* @transfer: Pointer to the spi_transfer structure which provides
* information about next transfer setup parameters
*
* Sets the operational mode of QSPI controller for the next QSPI transfer and
* sets the requested clock frequency.
*
* Return: Always 0
*
* Note:
* If the requested frequency is not an exact match with what can be
* obtained using the pre-scalar value, the driver sets the clock
* frequency which is lower than the requested frequency (maximum lower)
* for the transfer.
*
* If the requested frequency is higher or lower than that is supported
* by the QSPI controller the driver will set the highest or lowest
* frequency supported by controller.
*/
static int zynqmp_qspi_setup_transfer(struct spi_device *qspi,
struct spi_transfer *transfer)
{
struct zynqmp_qspi *xqspi = spi_master_get_devdata(qspi->master);
ulong clk_rate;
u32 config_reg, req_hz, baud_rate_val = 0;
if (transfer)
req_hz = transfer->speed_hz;
else
req_hz = qspi->max_speed_hz;
/* Set the clock frequency */
/* If req_hz == 0, default to lowest speed */
clk_rate = clk_get_rate(xqspi->refclk);
while ((baud_rate_val < GQSPI_BAUD_DIV_MAX) &&
(clk_rate /
(GQSPI_BAUD_DIV_SHIFT << baud_rate_val)) > req_hz)
baud_rate_val++;
config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
/* Set the QSPI clock phase and clock polarity */
config_reg &= (~GQSPI_CFG_CLK_PHA_MASK) & (~GQSPI_CFG_CLK_POL_MASK);
if (qspi->mode & SPI_CPHA)
config_reg |= GQSPI_CFG_CLK_PHA_MASK;
if (qspi->mode & SPI_CPOL)
config_reg |= GQSPI_CFG_CLK_POL_MASK;
config_reg &= ~GQSPI_CFG_BAUD_RATE_DIV_MASK;
config_reg |= (baud_rate_val << GQSPI_CFG_BAUD_RATE_DIV_SHIFT);
zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
return 0;
}
/**
* zynqmp_qspi_setup: Configure the QSPI controller
* @qspi: Pointer to the spi_device structure
*
* Sets the operational mode of QSPI controller for the next QSPI transfer,
* baud rate and divisor value to setup the requested qspi clock.
*
* Return: 0 on success; error value otherwise.
*/
static int zynqmp_qspi_setup(struct spi_device *qspi)
{
if (qspi->master->busy)
return -EBUSY;
return 0;
}
/**
* zynqmp_qspi_filltxfifo: Fills the TX FIFO as long as there is room in
* the FIFO or the bytes required to be
* transmitted.
* @xqspi: Pointer to the zynqmp_qspi structure
* @size: Number of bytes to be copied from TX buffer to TX FIFO
*/
static void zynqmp_qspi_filltxfifo(struct zynqmp_qspi *xqspi, int size)
{
u32 count = 0, intermediate;
while ((xqspi->bytes_to_transfer > 0) && (count < size)) {
memcpy(&intermediate, xqspi->txbuf, 4);
zynqmp_gqspi_write(xqspi, GQSPI_TXD_OFST, intermediate);
if (xqspi->bytes_to_transfer >= 4) {
xqspi->txbuf += 4;
xqspi->bytes_to_transfer -= 4;
} else {
xqspi->txbuf += xqspi->bytes_to_transfer;
xqspi->bytes_to_transfer = 0;
}
count++;
}
}
/**
* zynqmp_qspi_readrxfifo: Fills the RX FIFO as long as there is room in
* the FIFO.
* @xqspi: Pointer to the zynqmp_qspi structure
* @size: Number of bytes to be copied from RX buffer to RX FIFO
*/
static void zynqmp_qspi_readrxfifo(struct zynqmp_qspi *xqspi, u32 size)
{
ulong data;
int count = 0;
while ((count < size) && (xqspi->bytes_to_receive > 0)) {
if (xqspi->bytes_to_receive >= 4) {
(*(u32 *) xqspi->rxbuf) =
zynqmp_gqspi_read(xqspi, GQSPI_RXD_OFST);
xqspi->rxbuf += 4;
xqspi->bytes_to_receive -= 4;
count += 4;
} else {
data = zynqmp_gqspi_read(xqspi, GQSPI_RXD_OFST);
count += xqspi->bytes_to_receive;
zynqmp_qspi_copy_read_data(xqspi, data,
xqspi->bytes_to_receive);
xqspi->bytes_to_receive = 0;
}
}
}
/**
* zynqmp_process_dma_irq: Handler for DMA done interrupt of QSPI
* controller
* @xqspi: zynqmp_qspi instance pointer
*
* This function handles DMA interrupt only.
*/
static void zynqmp_process_dma_irq(struct zynqmp_qspi *xqspi)
{
u32 config_reg, genfifoentry;
dma_unmap_single(xqspi->dev, xqspi->dma_addr,
xqspi->dma_rx_bytes, DMA_FROM_DEVICE);
xqspi->rxbuf += xqspi->dma_rx_bytes;
xqspi->bytes_to_receive -= xqspi->dma_rx_bytes;
xqspi->dma_rx_bytes = 0;
/* Disabling the DMA interrupts */
zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_DIS_OFST,
GQSPI_QSPIDMA_DST_I_EN_DONE_MASK);
if (xqspi->bytes_to_receive > 0) {
/* Switch to IO mode,for remaining bytes to receive */
config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
/* Initiate the transfer of remaining bytes */
genfifoentry = xqspi->genfifoentry;
genfifoentry |= xqspi->bytes_to_receive;
zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry);
/* Dummy generic FIFO entry */
zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, 0x0);
/* Manual start */
zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
(zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) |
GQSPI_CFG_START_GEN_FIFO_MASK));
/* Enable the RX interrupts for IO mode */
zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
GQSPI_IER_GENFIFOEMPTY_MASK |
GQSPI_IER_RXNEMPTY_MASK |
GQSPI_IER_RXEMPTY_MASK);
}
}
/**
* zynqmp_qspi_irq: Interrupt service routine of the QSPI controller
* @irq: IRQ number
* @dev_id: Pointer to the xqspi structure
*
* This function handles TX empty only.
* On TX empty interrupt this function reads the received data from RX FIFO
* and fills the TX FIFO if there is any data remaining to be transferred.
*
* Return: IRQ_HANDLED when interrupt is handled
* IRQ_NONE otherwise.
*/
static irqreturn_t zynqmp_qspi_irq(int irq, void *dev_id)
{
struct spi_master *master = dev_id;
struct zynqmp_qspi *xqspi = spi_master_get_devdata(master);
int ret = IRQ_NONE;
u32 status, mask, dma_status = 0;
status = zynqmp_gqspi_read(xqspi, GQSPI_ISR_OFST);
zynqmp_gqspi_write(xqspi, GQSPI_ISR_OFST, status);
mask = (status & ~(zynqmp_gqspi_read(xqspi, GQSPI_IMASK_OFST)));
/* Read and clear DMA status */
if (xqspi->mode == GQSPI_MODE_DMA) {
dma_status =
zynqmp_gqspi_read(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST);
zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST,
dma_status);
}
if (mask & GQSPI_ISR_TXNOT_FULL_MASK) {
zynqmp_qspi_filltxfifo(xqspi, GQSPI_TX_FIFO_FILL);
ret = IRQ_HANDLED;
}
if (dma_status & GQSPI_QSPIDMA_DST_I_STS_DONE_MASK) {
zynqmp_process_dma_irq(xqspi);
ret = IRQ_HANDLED;
} else if (!(mask & GQSPI_IER_RXEMPTY_MASK) &&
(mask & GQSPI_IER_GENFIFOEMPTY_MASK)) {
zynqmp_qspi_readrxfifo(xqspi, GQSPI_RX_FIFO_FILL);
ret = IRQ_HANDLED;
}
if ((xqspi->bytes_to_receive == 0) && (xqspi->bytes_to_transfer == 0)
&& ((status & GQSPI_IRQ_MASK) == GQSPI_IRQ_MASK)) {
zynqmp_gqspi_write(xqspi, GQSPI_IDR_OFST, GQSPI_ISR_IDR_MASK);
spi_finalize_current_transfer(master);
ret = IRQ_HANDLED;
}
return ret;
}
/**
* zynqmp_qspi_selectspimode: Selects SPI mode - x1 or x2 or x4.
* @xqspi: xqspi is a pointer to the GQSPI instance
* @spimode: spimode - SPI or DUAL or QUAD.
* Return: Mask to set desired SPI mode in GENFIFO entry.
*/
static inline u32 zynqmp_qspi_selectspimode(struct zynqmp_qspi *xqspi,
u8 spimode)
{
u32 mask = 0;
switch (spimode) {
case GQSPI_SELECT_MODE_DUALSPI:
mask = GQSPI_GENFIFO_MODE_DUALSPI;
break;
case GQSPI_SELECT_MODE_QUADSPI:
mask = GQSPI_GENFIFO_MODE_QUADSPI;
break;
case GQSPI_SELECT_MODE_SPI:
mask = GQSPI_GENFIFO_MODE_SPI;
break;
default:
dev_warn(xqspi->dev, "Invalid SPI mode\n");
}
return mask;
}
/**
* zynq_qspi_setuprxdma: This function sets up the RX DMA operation
* @xqspi: xqspi is a pointer to the GQSPI instance.
*/
static void zynq_qspi_setuprxdma(struct zynqmp_qspi *xqspi)
{
u32 rx_bytes, rx_rem, config_reg;
dma_addr_t addr;
u64 dma_align = (u64)(uintptr_t)xqspi->rxbuf;
if ((xqspi->bytes_to_receive < 8) ||
((dma_align & GQSPI_DMA_UNALIGN) != 0x0)) {
/* Setting to IO mode */
config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
xqspi->mode = GQSPI_MODE_IO;
xqspi->dma_rx_bytes = 0;
return;
}
rx_rem = xqspi->bytes_to_receive % 4;
rx_bytes = (xqspi->bytes_to_receive - rx_rem);
addr = dma_map_single(xqspi->dev, (void *)xqspi->rxbuf,
rx_bytes, DMA_FROM_DEVICE);
if (dma_mapping_error(xqspi->dev, addr))
dev_err(xqspi->dev, "ERR:rxdma:memory not mapped\n");
xqspi->dma_rx_bytes = rx_bytes;
xqspi->dma_addr = addr;
zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_ADDR_OFST,
(u32)(addr & 0xffffffff));
addr = ((addr >> 16) >> 16);
zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_ADDR_MSB_OFST,
((u32)addr) & 0xfff);
/* Enabling the DMA mode */
config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
config_reg |= GQSPI_CFG_MODE_EN_DMA_MASK;
zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
/* Switch to DMA mode */
xqspi->mode = GQSPI_MODE_DMA;
/* Write the number of bytes to transfer */
zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_SIZE_OFST, rx_bytes);
}
/**
* zynqmp_qspi_txrxsetup: This function checks the TX/RX buffers in
* the transfer and sets up the GENFIFO entries,
* TX FIFO as required.
* @xqspi: xqspi is a pointer to the GQSPI instance.
* @transfer: It is a pointer to the structure containing transfer data.
* @genfifoentry: genfifoentry is pointer to the variable in which
* GENFIFO mask is returned to calling function
*/
static void zynqmp_qspi_txrxsetup(struct zynqmp_qspi *xqspi,
struct spi_transfer *transfer,
u32 *genfifoentry)
{
u32 config_reg;
/* Transmit */
if ((xqspi->txbuf != NULL) && (xqspi->rxbuf == NULL)) {
/* Setup data to be TXed */
*genfifoentry &= ~GQSPI_GENFIFO_RX;
*genfifoentry |= GQSPI_GENFIFO_DATA_XFER;
*genfifoentry |= GQSPI_GENFIFO_TX;
*genfifoentry |=
zynqmp_qspi_selectspimode(xqspi, transfer->tx_nbits);
xqspi->bytes_to_transfer = transfer->len;
if (xqspi->mode == GQSPI_MODE_DMA) {
config_reg = zynqmp_gqspi_read(xqspi,
GQSPI_CONFIG_OFST);
config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
config_reg);
xqspi->mode = GQSPI_MODE_IO;
}
zynqmp_qspi_filltxfifo(xqspi, GQSPI_TXD_DEPTH);
/* Discard RX data */
xqspi->bytes_to_receive = 0;
} else if ((xqspi->txbuf == NULL) && (xqspi->rxbuf != NULL)) {
/* Receive */
/* TX auto fill */
*genfifoentry &= ~GQSPI_GENFIFO_TX;
/* Setup RX */
*genfifoentry |= GQSPI_GENFIFO_DATA_XFER;
*genfifoentry |= GQSPI_GENFIFO_RX;
*genfifoentry |=
zynqmp_qspi_selectspimode(xqspi, transfer->rx_nbits);
xqspi->bytes_to_transfer = 0;
xqspi->bytes_to_receive = transfer->len;
zynq_qspi_setuprxdma(xqspi);
}
}
/**
* zynqmp_qspi_start_transfer: Initiates the QSPI transfer
* @master: Pointer to the spi_master structure which provides
* information about the controller.
* @qspi: Pointer to the spi_device structure
* @transfer: Pointer to the spi_transfer structure which provide information
* about next transfer parameters
*
* This function fills the TX FIFO, starts the QSPI transfer, and waits for the
* transfer to be completed.
*
* Return: Number of bytes transferred in the last transfer
*/
static int zynqmp_qspi_start_transfer(struct spi_master *master,
struct spi_device *qspi,
struct spi_transfer *transfer)
{
struct zynqmp_qspi *xqspi = spi_master_get_devdata(master);
u32 genfifoentry = 0x0, transfer_len;
xqspi->txbuf = transfer->tx_buf;
xqspi->rxbuf = transfer->rx_buf;
zynqmp_qspi_setup_transfer(qspi, transfer);
genfifoentry |= xqspi->genfifocs;
genfifoentry |= xqspi->genfifobus;
zynqmp_qspi_txrxsetup(xqspi, transfer, &genfifoentry);
if (xqspi->mode == GQSPI_MODE_DMA)
transfer_len = xqspi->dma_rx_bytes;
else
transfer_len = transfer->len;
xqspi->genfifoentry = genfifoentry;
if ((transfer_len) < GQSPI_GENFIFO_IMM_DATA_MASK) {
genfifoentry &= ~GQSPI_GENFIFO_IMM_DATA_MASK;
genfifoentry |= transfer_len;
zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry);
} else {
int tempcount = transfer_len;
u32 exponent = 8; /* 2^8 = 256 */
u8 imm_data = tempcount & 0xFF;
tempcount &= ~(tempcount & 0xFF);
/* Immediate entry */
if (tempcount != 0) {
/* Exponent entries */
genfifoentry |= GQSPI_GENFIFO_EXP;
while (tempcount != 0) {
if (tempcount & GQSPI_GENFIFO_EXP_START) {
genfifoentry &=
~GQSPI_GENFIFO_IMM_DATA_MASK;
genfifoentry |= exponent;
zynqmp_gqspi_write(xqspi,
GQSPI_GEN_FIFO_OFST,
genfifoentry);
}
tempcount = tempcount >> 1;
exponent++;
}
}
if (imm_data != 0) {
genfifoentry &= ~GQSPI_GENFIFO_EXP;
genfifoentry &= ~GQSPI_GENFIFO_IMM_DATA_MASK;
genfifoentry |= (u8) (imm_data & 0xFF);
zynqmp_gqspi_write(xqspi,
GQSPI_GEN_FIFO_OFST, genfifoentry);
}
}
if ((xqspi->mode == GQSPI_MODE_IO) &&
(xqspi->rxbuf != NULL)) {
/* Dummy generic FIFO entry */
zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, 0x0);
}
/* Since we are using manual mode */
zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) |
GQSPI_CFG_START_GEN_FIFO_MASK);
if (xqspi->txbuf != NULL)
/* Enable interrupts for TX */
zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
GQSPI_IER_TXEMPTY_MASK |
GQSPI_IER_GENFIFOEMPTY_MASK |
GQSPI_IER_TXNOT_FULL_MASK);
if (xqspi->rxbuf != NULL) {
/* Enable interrupts for RX */
if (xqspi->mode == GQSPI_MODE_DMA) {
/* Enable DMA interrupts */
zynqmp_gqspi_write(xqspi,
GQSPI_QSPIDMA_DST_I_EN_OFST,
GQSPI_QSPIDMA_DST_I_EN_DONE_MASK);
} else {
zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
GQSPI_IER_GENFIFOEMPTY_MASK |
GQSPI_IER_RXNEMPTY_MASK |
GQSPI_IER_RXEMPTY_MASK);
}
}
return transfer->len;
}
/**
* zynqmp_qspi_suspend: Suspend method for the QSPI driver
* @_dev: Address of the platform_device structure
*
* This function stops the QSPI driver queue and disables the QSPI controller
*
* Return: Always 0
*/
static int __maybe_unused zynqmp_qspi_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
spi_master_suspend(master);
zynqmp_unprepare_transfer_hardware(master);
return 0;
}
/**
* zynqmp_qspi_resume: Resume method for the QSPI driver
* @dev: Address of the platform_device structure
*
* The function starts the QSPI driver queue and initializes the QSPI
* controller
*
* Return: 0 on success; error value otherwise
*/
static int __maybe_unused zynqmp_qspi_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct zynqmp_qspi *xqspi = spi_master_get_devdata(master);
int ret = 0;
ret = clk_enable(xqspi->pclk);
if (ret) {
dev_err(dev, "Cannot enable APB clock.\n");
return ret;
}
ret = clk_enable(xqspi->refclk);
if (ret) {
dev_err(dev, "Cannot enable device clock.\n");
clk_disable(xqspi->pclk);
return ret;
}
spi_master_resume(master);
clk_disable(xqspi->refclk);
clk_disable(xqspi->pclk);
return 0;
}
/**
* zynqmp_runtime_suspend - Runtime suspend method for the SPI driver
* @dev: Address of the platform_device structure
*
* This function disables the clocks
*
* Return: Always 0
*/
static int __maybe_unused zynqmp_runtime_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct zynqmp_qspi *xqspi = spi_master_get_devdata(master);
clk_disable(xqspi->refclk);
clk_disable(xqspi->pclk);
return 0;
}
/**
* zynqmp_runtime_resume - Runtime resume method for the SPI driver
* @dev: Address of the platform_device structure
*
* This function enables the clocks
*
* Return: 0 on success and error value on error
*/
static int __maybe_unused zynqmp_runtime_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct zynqmp_qspi *xqspi = spi_master_get_devdata(master);
int ret;
ret = clk_enable(xqspi->pclk);
if (ret) {
dev_err(dev, "Cannot enable APB clock.\n");
return ret;
}
ret = clk_enable(xqspi->refclk);
if (ret) {
dev_err(dev, "Cannot enable device clock.\n");
clk_disable(xqspi->pclk);
return ret;
}
return 0;
}
static const struct dev_pm_ops zynqmp_qspi_dev_pm_ops = {
SET_RUNTIME_PM_OPS(zynqmp_runtime_suspend,
zynqmp_runtime_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(zynqmp_qspi_suspend, zynqmp_qspi_resume)
};
/**
* zynqmp_qspi_probe: Probe method for the QSPI driver
* @pdev: Pointer to the platform_device structure
*
* This function initializes the driver data structures and the hardware.
*
* Return: 0 on success; error value otherwise
*/
static int zynqmp_qspi_probe(struct platform_device *pdev)
{
int ret = 0;
struct spi_master *master;
struct zynqmp_qspi *xqspi;
struct device *dev = &pdev->dev;
eemi_ops = zynqmp_pm_get_eemi_ops();
if (IS_ERR(eemi_ops))
return PTR_ERR(eemi_ops);
master = spi_alloc_master(&pdev->dev, sizeof(*xqspi));
if (!master)
return -ENOMEM;
xqspi = spi_master_get_devdata(master);
master->dev.of_node = pdev->dev.of_node;
platform_set_drvdata(pdev, master);
xqspi->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(xqspi->regs)) {
ret = PTR_ERR(xqspi->regs);
goto remove_master;
}
xqspi->dev = dev;
xqspi->pclk = devm_clk_get(&pdev->dev, "pclk");
if (IS_ERR(xqspi->pclk)) {
dev_err(dev, "pclk clock not found.\n");
ret = PTR_ERR(xqspi->pclk);
goto remove_master;
}
ret = clk_prepare_enable(xqspi->pclk);
if (ret) {
dev_err(dev, "Unable to enable APB clock.\n");
goto remove_master;
}
xqspi->refclk = devm_clk_get(&pdev->dev, "ref_clk");
if (IS_ERR(xqspi->refclk)) {
dev_err(dev, "ref_clk clock not found.\n");
ret = PTR_ERR(xqspi->refclk);
goto clk_dis_pclk;
}
ret = clk_prepare_enable(xqspi->refclk);
if (ret) {
dev_err(dev, "Unable to enable device clock.\n");
goto clk_dis_pclk;
}
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
/* QSPI controller initializations */
zynqmp_qspi_init_hw(xqspi);
pm_runtime_mark_last_busy(&pdev->dev);
pm_runtime_put_autosuspend(&pdev->dev);
xqspi->irq = platform_get_irq(pdev, 0);
if (xqspi->irq <= 0) {
ret = -ENXIO;
goto clk_dis_all;
}
ret = devm_request_irq(&pdev->dev, xqspi->irq, zynqmp_qspi_irq,
0, pdev->name, master);
if (ret != 0) {
ret = -ENXIO;
dev_err(dev, "request_irq failed\n");
goto clk_dis_all;
}
master->num_chipselect = GQSPI_DEFAULT_NUM_CS;
master->setup = zynqmp_qspi_setup;
master->set_cs = zynqmp_qspi_chipselect;
master->transfer_one = zynqmp_qspi_start_transfer;
master->prepare_transfer_hardware = zynqmp_prepare_transfer_hardware;
master->unprepare_transfer_hardware =
zynqmp_unprepare_transfer_hardware;
master->max_speed_hz = clk_get_rate(xqspi->refclk) / 2;
master->bits_per_word_mask = SPI_BPW_MASK(8);
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_RX_DUAL | SPI_RX_QUAD |
SPI_TX_DUAL | SPI_TX_QUAD;
if (master->dev.parent == NULL)
master->dev.parent = &master->dev;
ret = spi_register_master(master);
if (ret)
goto clk_dis_all;
return 0;
clk_dis_all:
pm_runtime_set_suspended(&pdev->dev);
pm_runtime_disable(&pdev->dev);
clk_disable_unprepare(xqspi->refclk);
clk_dis_pclk:
clk_disable_unprepare(xqspi->pclk);
remove_master:
spi_master_put(master);
return ret;
}
/**
* zynqmp_qspi_remove: Remove method for the QSPI driver
* @pdev: Pointer to the platform_device structure
*
* This function is called if a device is physically removed from the system or
* if the driver module is being unloaded. It frees all resources allocated to
* the device.
*
* Return: 0 Always
*/
static int zynqmp_qspi_remove(struct platform_device *pdev)
{
struct spi_master *master = platform_get_drvdata(pdev);
struct zynqmp_qspi *xqspi = spi_master_get_devdata(master);
zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, 0x0);
clk_disable_unprepare(xqspi->refclk);
clk_disable_unprepare(xqspi->pclk);
pm_runtime_set_suspended(&pdev->dev);
pm_runtime_disable(&pdev->dev);
spi_unregister_master(master);
return 0;
}
static const struct of_device_id zynqmp_qspi_of_match[] = {
{ .compatible = "xlnx,zynqmp-qspi-1.0", },
{ /* End of table */ }
};
MODULE_DEVICE_TABLE(of, zynqmp_qspi_of_match);
static struct platform_driver zynqmp_qspi_driver = {
.probe = zynqmp_qspi_probe,
.remove = zynqmp_qspi_remove,
.driver = {
.name = "zynqmp-qspi",
.of_match_table = zynqmp_qspi_of_match,
.pm = &zynqmp_qspi_dev_pm_ops,
},
};
module_platform_driver(zynqmp_qspi_driver);
MODULE_AUTHOR("Xilinx, Inc.");
MODULE_DESCRIPTION("Xilinx Zynqmp QSPI driver");
MODULE_LICENSE("GPL");