linux_dsm_epyc7002/drivers/gpu/drm/i915/intel_ddi.c
Imre Deak 3a52fb7e79 drm/i915: Get power refs in encoder->get_power_domains()
Push getting the reference for the encoders' power domains into the
encoder get_power_domains() hook instead of doing this from the caller.
This way the encoder can store away the corresponding wakerefs.

This fixes the DSI encoder disabling, which didn't release these
power references it acquired during HW state readout.

Note that longtime ownership for the corresponding wakerefs can be thus
acquired / released in two ways. Nevertheless there is always only one
owner for them:

After HW readout (booting/system resume):
- encoder->get_power_domains() acquires
- encoder->disable*() releases

After a modeset (calling intel_atomic_commit()):
- encoder->enable*() acquires
- encoder->disable*() releases

* can be any of the encoder enable/disable hooks.

v2:
- Check that the DSI io_wakerefs are unset both during encoder HW
  readout and enabling. (Chris)

Fixes: 0e6e0be4c9 ("drm/i915: Markup paired operations on display power domains")
Cc: Vandita Kulkarni <vandita.kulkarni@intel.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Imre Deak <imre.deak@intel.com>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20190407124655.31536-1-imre.deak@intel.com
2019-04-08 15:15:08 +03:00

4287 lines
128 KiB
C

/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eugeni Dodonov <eugeni.dodonov@intel.com>
*
*/
#include <drm/drm_scdc_helper.h>
#include "i915_drv.h"
#include "intel_audio.h"
#include "intel_connector.h"
#include "intel_ddi.h"
#include "intel_dp.h"
#include "intel_drv.h"
#include "intel_dsi.h"
#include "intel_hdcp.h"
#include "intel_hdmi.h"
#include "intel_lspcon.h"
#include "intel_panel.h"
#include "intel_psr.h"
struct ddi_buf_trans {
u32 trans1; /* balance leg enable, de-emph level */
u32 trans2; /* vref sel, vswing */
u8 i_boost; /* SKL: I_boost; valid: 0x0, 0x1, 0x3, 0x7 */
};
static const u8 index_to_dp_signal_levels[] = {
[0] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0,
[1] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1,
[2] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2,
[3] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3,
[4] = DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0,
[5] = DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1,
[6] = DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2,
[7] = DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0,
[8] = DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1,
[9] = DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0,
};
/* HDMI/DVI modes ignore everything but the last 2 items. So we share
* them for both DP and FDI transports, allowing those ports to
* automatically adapt to HDMI connections as well
*/
static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
{ 0x00FFFFFF, 0x0006000E, 0x0 },
{ 0x00D75FFF, 0x0005000A, 0x0 },
{ 0x00C30FFF, 0x00040006, 0x0 },
{ 0x80AAAFFF, 0x000B0000, 0x0 },
{ 0x00FFFFFF, 0x0005000A, 0x0 },
{ 0x00D75FFF, 0x000C0004, 0x0 },
{ 0x80C30FFF, 0x000B0000, 0x0 },
{ 0x00FFFFFF, 0x00040006, 0x0 },
{ 0x80D75FFF, 0x000B0000, 0x0 },
};
static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
{ 0x00FFFFFF, 0x0007000E, 0x0 },
{ 0x00D75FFF, 0x000F000A, 0x0 },
{ 0x00C30FFF, 0x00060006, 0x0 },
{ 0x00AAAFFF, 0x001E0000, 0x0 },
{ 0x00FFFFFF, 0x000F000A, 0x0 },
{ 0x00D75FFF, 0x00160004, 0x0 },
{ 0x00C30FFF, 0x001E0000, 0x0 },
{ 0x00FFFFFF, 0x00060006, 0x0 },
{ 0x00D75FFF, 0x001E0000, 0x0 },
};
static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
/* Idx NT mV d T mV d db */
{ 0x00FFFFFF, 0x0006000E, 0x0 },/* 0: 400 400 0 */
{ 0x00E79FFF, 0x000E000C, 0x0 },/* 1: 400 500 2 */
{ 0x00D75FFF, 0x0005000A, 0x0 },/* 2: 400 600 3.5 */
{ 0x00FFFFFF, 0x0005000A, 0x0 },/* 3: 600 600 0 */
{ 0x00E79FFF, 0x001D0007, 0x0 },/* 4: 600 750 2 */
{ 0x00D75FFF, 0x000C0004, 0x0 },/* 5: 600 900 3.5 */
{ 0x00FFFFFF, 0x00040006, 0x0 },/* 6: 800 800 0 */
{ 0x80E79FFF, 0x00030002, 0x0 },/* 7: 800 1000 2 */
{ 0x00FFFFFF, 0x00140005, 0x0 },/* 8: 850 850 0 */
{ 0x00FFFFFF, 0x000C0004, 0x0 },/* 9: 900 900 0 */
{ 0x00FFFFFF, 0x001C0003, 0x0 },/* 10: 950 950 0 */
{ 0x80FFFFFF, 0x00030002, 0x0 },/* 11: 1000 1000 0 */
};
static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
{ 0x00FFFFFF, 0x00000012, 0x0 },
{ 0x00EBAFFF, 0x00020011, 0x0 },
{ 0x00C71FFF, 0x0006000F, 0x0 },
{ 0x00AAAFFF, 0x000E000A, 0x0 },
{ 0x00FFFFFF, 0x00020011, 0x0 },
{ 0x00DB6FFF, 0x0005000F, 0x0 },
{ 0x00BEEFFF, 0x000A000C, 0x0 },
{ 0x00FFFFFF, 0x0005000F, 0x0 },
{ 0x00DB6FFF, 0x000A000C, 0x0 },
};
static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
{ 0x00FFFFFF, 0x0007000E, 0x0 },
{ 0x00D75FFF, 0x000E000A, 0x0 },
{ 0x00BEFFFF, 0x00140006, 0x0 },
{ 0x80B2CFFF, 0x001B0002, 0x0 },
{ 0x00FFFFFF, 0x000E000A, 0x0 },
{ 0x00DB6FFF, 0x00160005, 0x0 },
{ 0x80C71FFF, 0x001A0002, 0x0 },
{ 0x00F7DFFF, 0x00180004, 0x0 },
{ 0x80D75FFF, 0x001B0002, 0x0 },
};
static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
{ 0x00FFFFFF, 0x0001000E, 0x0 },
{ 0x00D75FFF, 0x0004000A, 0x0 },
{ 0x00C30FFF, 0x00070006, 0x0 },
{ 0x00AAAFFF, 0x000C0000, 0x0 },
{ 0x00FFFFFF, 0x0004000A, 0x0 },
{ 0x00D75FFF, 0x00090004, 0x0 },
{ 0x00C30FFF, 0x000C0000, 0x0 },
{ 0x00FFFFFF, 0x00070006, 0x0 },
{ 0x00D75FFF, 0x000C0000, 0x0 },
};
static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
/* Idx NT mV d T mV df db */
{ 0x00FFFFFF, 0x0007000E, 0x0 },/* 0: 400 400 0 */
{ 0x00D75FFF, 0x000E000A, 0x0 },/* 1: 400 600 3.5 */
{ 0x00BEFFFF, 0x00140006, 0x0 },/* 2: 400 800 6 */
{ 0x00FFFFFF, 0x0009000D, 0x0 },/* 3: 450 450 0 */
{ 0x00FFFFFF, 0x000E000A, 0x0 },/* 4: 600 600 0 */
{ 0x00D7FFFF, 0x00140006, 0x0 },/* 5: 600 800 2.5 */
{ 0x80CB2FFF, 0x001B0002, 0x0 },/* 6: 600 1000 4.5 */
{ 0x00FFFFFF, 0x00140006, 0x0 },/* 7: 800 800 0 */
{ 0x80E79FFF, 0x001B0002, 0x0 },/* 8: 800 1000 2 */
{ 0x80FFFFFF, 0x001B0002, 0x0 },/* 9: 1000 1000 0 */
};
/* Skylake H and S */
static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
{ 0x00002016, 0x000000A0, 0x0 },
{ 0x00005012, 0x0000009B, 0x0 },
{ 0x00007011, 0x00000088, 0x0 },
{ 0x80009010, 0x000000C0, 0x1 },
{ 0x00002016, 0x0000009B, 0x0 },
{ 0x00005012, 0x00000088, 0x0 },
{ 0x80007011, 0x000000C0, 0x1 },
{ 0x00002016, 0x000000DF, 0x0 },
{ 0x80005012, 0x000000C0, 0x1 },
};
/* Skylake U */
static const struct ddi_buf_trans skl_u_ddi_translations_dp[] = {
{ 0x0000201B, 0x000000A2, 0x0 },
{ 0x00005012, 0x00000088, 0x0 },
{ 0x80007011, 0x000000CD, 0x1 },
{ 0x80009010, 0x000000C0, 0x1 },
{ 0x0000201B, 0x0000009D, 0x0 },
{ 0x80005012, 0x000000C0, 0x1 },
{ 0x80007011, 0x000000C0, 0x1 },
{ 0x00002016, 0x00000088, 0x0 },
{ 0x80005012, 0x000000C0, 0x1 },
};
/* Skylake Y */
static const struct ddi_buf_trans skl_y_ddi_translations_dp[] = {
{ 0x00000018, 0x000000A2, 0x0 },
{ 0x00005012, 0x00000088, 0x0 },
{ 0x80007011, 0x000000CD, 0x3 },
{ 0x80009010, 0x000000C0, 0x3 },
{ 0x00000018, 0x0000009D, 0x0 },
{ 0x80005012, 0x000000C0, 0x3 },
{ 0x80007011, 0x000000C0, 0x3 },
{ 0x00000018, 0x00000088, 0x0 },
{ 0x80005012, 0x000000C0, 0x3 },
};
/* Kabylake H and S */
static const struct ddi_buf_trans kbl_ddi_translations_dp[] = {
{ 0x00002016, 0x000000A0, 0x0 },
{ 0x00005012, 0x0000009B, 0x0 },
{ 0x00007011, 0x00000088, 0x0 },
{ 0x80009010, 0x000000C0, 0x1 },
{ 0x00002016, 0x0000009B, 0x0 },
{ 0x00005012, 0x00000088, 0x0 },
{ 0x80007011, 0x000000C0, 0x1 },
{ 0x00002016, 0x00000097, 0x0 },
{ 0x80005012, 0x000000C0, 0x1 },
};
/* Kabylake U */
static const struct ddi_buf_trans kbl_u_ddi_translations_dp[] = {
{ 0x0000201B, 0x000000A1, 0x0 },
{ 0x00005012, 0x00000088, 0x0 },
{ 0x80007011, 0x000000CD, 0x3 },
{ 0x80009010, 0x000000C0, 0x3 },
{ 0x0000201B, 0x0000009D, 0x0 },
{ 0x80005012, 0x000000C0, 0x3 },
{ 0x80007011, 0x000000C0, 0x3 },
{ 0x00002016, 0x0000004F, 0x0 },
{ 0x80005012, 0x000000C0, 0x3 },
};
/* Kabylake Y */
static const struct ddi_buf_trans kbl_y_ddi_translations_dp[] = {
{ 0x00001017, 0x000000A1, 0x0 },
{ 0x00005012, 0x00000088, 0x0 },
{ 0x80007011, 0x000000CD, 0x3 },
{ 0x8000800F, 0x000000C0, 0x3 },
{ 0x00001017, 0x0000009D, 0x0 },
{ 0x80005012, 0x000000C0, 0x3 },
{ 0x80007011, 0x000000C0, 0x3 },
{ 0x00001017, 0x0000004C, 0x0 },
{ 0x80005012, 0x000000C0, 0x3 },
};
/*
* Skylake/Kabylake H and S
* eDP 1.4 low vswing translation parameters
*/
static const struct ddi_buf_trans skl_ddi_translations_edp[] = {
{ 0x00000018, 0x000000A8, 0x0 },
{ 0x00004013, 0x000000A9, 0x0 },
{ 0x00007011, 0x000000A2, 0x0 },
{ 0x00009010, 0x0000009C, 0x0 },
{ 0x00000018, 0x000000A9, 0x0 },
{ 0x00006013, 0x000000A2, 0x0 },
{ 0x00007011, 0x000000A6, 0x0 },
{ 0x00000018, 0x000000AB, 0x0 },
{ 0x00007013, 0x0000009F, 0x0 },
{ 0x00000018, 0x000000DF, 0x0 },
};
/*
* Skylake/Kabylake U
* eDP 1.4 low vswing translation parameters
*/
static const struct ddi_buf_trans skl_u_ddi_translations_edp[] = {
{ 0x00000018, 0x000000A8, 0x0 },
{ 0x00004013, 0x000000A9, 0x0 },
{ 0x00007011, 0x000000A2, 0x0 },
{ 0x00009010, 0x0000009C, 0x0 },
{ 0x00000018, 0x000000A9, 0x0 },
{ 0x00006013, 0x000000A2, 0x0 },
{ 0x00007011, 0x000000A6, 0x0 },
{ 0x00002016, 0x000000AB, 0x0 },
{ 0x00005013, 0x0000009F, 0x0 },
{ 0x00000018, 0x000000DF, 0x0 },
};
/*
* Skylake/Kabylake Y
* eDP 1.4 low vswing translation parameters
*/
static const struct ddi_buf_trans skl_y_ddi_translations_edp[] = {
{ 0x00000018, 0x000000A8, 0x0 },
{ 0x00004013, 0x000000AB, 0x0 },
{ 0x00007011, 0x000000A4, 0x0 },
{ 0x00009010, 0x000000DF, 0x0 },
{ 0x00000018, 0x000000AA, 0x0 },
{ 0x00006013, 0x000000A4, 0x0 },
{ 0x00007011, 0x0000009D, 0x0 },
{ 0x00000018, 0x000000A0, 0x0 },
{ 0x00006012, 0x000000DF, 0x0 },
{ 0x00000018, 0x0000008A, 0x0 },
};
/* Skylake/Kabylake U, H and S */
static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
{ 0x00000018, 0x000000AC, 0x0 },
{ 0x00005012, 0x0000009D, 0x0 },
{ 0x00007011, 0x00000088, 0x0 },
{ 0x00000018, 0x000000A1, 0x0 },
{ 0x00000018, 0x00000098, 0x0 },
{ 0x00004013, 0x00000088, 0x0 },
{ 0x80006012, 0x000000CD, 0x1 },
{ 0x00000018, 0x000000DF, 0x0 },
{ 0x80003015, 0x000000CD, 0x1 }, /* Default */
{ 0x80003015, 0x000000C0, 0x1 },
{ 0x80000018, 0x000000C0, 0x1 },
};
/* Skylake/Kabylake Y */
static const struct ddi_buf_trans skl_y_ddi_translations_hdmi[] = {
{ 0x00000018, 0x000000A1, 0x0 },
{ 0x00005012, 0x000000DF, 0x0 },
{ 0x80007011, 0x000000CB, 0x3 },
{ 0x00000018, 0x000000A4, 0x0 },
{ 0x00000018, 0x0000009D, 0x0 },
{ 0x00004013, 0x00000080, 0x0 },
{ 0x80006013, 0x000000C0, 0x3 },
{ 0x00000018, 0x0000008A, 0x0 },
{ 0x80003015, 0x000000C0, 0x3 }, /* Default */
{ 0x80003015, 0x000000C0, 0x3 },
{ 0x80000018, 0x000000C0, 0x3 },
};
struct bxt_ddi_buf_trans {
u8 margin; /* swing value */
u8 scale; /* scale value */
u8 enable; /* scale enable */
u8 deemphasis;
};
static const struct bxt_ddi_buf_trans bxt_ddi_translations_dp[] = {
/* Idx NT mV diff db */
{ 52, 0x9A, 0, 128, }, /* 0: 400 0 */
{ 78, 0x9A, 0, 85, }, /* 1: 400 3.5 */
{ 104, 0x9A, 0, 64, }, /* 2: 400 6 */
{ 154, 0x9A, 0, 43, }, /* 3: 400 9.5 */
{ 77, 0x9A, 0, 128, }, /* 4: 600 0 */
{ 116, 0x9A, 0, 85, }, /* 5: 600 3.5 */
{ 154, 0x9A, 0, 64, }, /* 6: 600 6 */
{ 102, 0x9A, 0, 128, }, /* 7: 800 0 */
{ 154, 0x9A, 0, 85, }, /* 8: 800 3.5 */
{ 154, 0x9A, 1, 128, }, /* 9: 1200 0 */
};
static const struct bxt_ddi_buf_trans bxt_ddi_translations_edp[] = {
/* Idx NT mV diff db */
{ 26, 0, 0, 128, }, /* 0: 200 0 */
{ 38, 0, 0, 112, }, /* 1: 200 1.5 */
{ 48, 0, 0, 96, }, /* 2: 200 4 */
{ 54, 0, 0, 69, }, /* 3: 200 6 */
{ 32, 0, 0, 128, }, /* 4: 250 0 */
{ 48, 0, 0, 104, }, /* 5: 250 1.5 */
{ 54, 0, 0, 85, }, /* 6: 250 4 */
{ 43, 0, 0, 128, }, /* 7: 300 0 */
{ 54, 0, 0, 101, }, /* 8: 300 1.5 */
{ 48, 0, 0, 128, }, /* 9: 300 0 */
};
/* BSpec has 2 recommended values - entries 0 and 8.
* Using the entry with higher vswing.
*/
static const struct bxt_ddi_buf_trans bxt_ddi_translations_hdmi[] = {
/* Idx NT mV diff db */
{ 52, 0x9A, 0, 128, }, /* 0: 400 0 */
{ 52, 0x9A, 0, 85, }, /* 1: 400 3.5 */
{ 52, 0x9A, 0, 64, }, /* 2: 400 6 */
{ 42, 0x9A, 0, 43, }, /* 3: 400 9.5 */
{ 77, 0x9A, 0, 128, }, /* 4: 600 0 */
{ 77, 0x9A, 0, 85, }, /* 5: 600 3.5 */
{ 77, 0x9A, 0, 64, }, /* 6: 600 6 */
{ 102, 0x9A, 0, 128, }, /* 7: 800 0 */
{ 102, 0x9A, 0, 85, }, /* 8: 800 3.5 */
{ 154, 0x9A, 1, 128, }, /* 9: 1200 0 */
};
struct cnl_ddi_buf_trans {
u8 dw2_swing_sel;
u8 dw7_n_scalar;
u8 dw4_cursor_coeff;
u8 dw4_post_cursor_2;
u8 dw4_post_cursor_1;
};
/* Voltage Swing Programming for VccIO 0.85V for DP */
static const struct cnl_ddi_buf_trans cnl_ddi_translations_dp_0_85V[] = {
/* NT mV Trans mV db */
{ 0xA, 0x5D, 0x3F, 0x00, 0x00 }, /* 350 350 0.0 */
{ 0xA, 0x6A, 0x38, 0x00, 0x07 }, /* 350 500 3.1 */
{ 0xB, 0x7A, 0x32, 0x00, 0x0D }, /* 350 700 6.0 */
{ 0x6, 0x7C, 0x2D, 0x00, 0x12 }, /* 350 900 8.2 */
{ 0xA, 0x69, 0x3F, 0x00, 0x00 }, /* 500 500 0.0 */
{ 0xB, 0x7A, 0x36, 0x00, 0x09 }, /* 500 700 2.9 */
{ 0x6, 0x7C, 0x30, 0x00, 0x0F }, /* 500 900 5.1 */
{ 0xB, 0x7D, 0x3C, 0x00, 0x03 }, /* 650 725 0.9 */
{ 0x6, 0x7C, 0x34, 0x00, 0x0B }, /* 600 900 3.5 */
{ 0x6, 0x7B, 0x3F, 0x00, 0x00 }, /* 900 900 0.0 */
};
/* Voltage Swing Programming for VccIO 0.85V for HDMI */
static const struct cnl_ddi_buf_trans cnl_ddi_translations_hdmi_0_85V[] = {
/* NT mV Trans mV db */
{ 0xA, 0x60, 0x3F, 0x00, 0x00 }, /* 450 450 0.0 */
{ 0xB, 0x73, 0x36, 0x00, 0x09 }, /* 450 650 3.2 */
{ 0x6, 0x7F, 0x31, 0x00, 0x0E }, /* 450 850 5.5 */
{ 0xB, 0x73, 0x3F, 0x00, 0x00 }, /* 650 650 0.0 */
{ 0x6, 0x7F, 0x37, 0x00, 0x08 }, /* 650 850 2.3 */
{ 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 850 850 0.0 */
{ 0x6, 0x7F, 0x35, 0x00, 0x0A }, /* 600 850 3.0 */
};
/* Voltage Swing Programming for VccIO 0.85V for eDP */
static const struct cnl_ddi_buf_trans cnl_ddi_translations_edp_0_85V[] = {
/* NT mV Trans mV db */
{ 0xA, 0x66, 0x3A, 0x00, 0x05 }, /* 384 500 2.3 */
{ 0x0, 0x7F, 0x38, 0x00, 0x07 }, /* 153 200 2.3 */
{ 0x8, 0x7F, 0x38, 0x00, 0x07 }, /* 192 250 2.3 */
{ 0x1, 0x7F, 0x38, 0x00, 0x07 }, /* 230 300 2.3 */
{ 0x9, 0x7F, 0x38, 0x00, 0x07 }, /* 269 350 2.3 */
{ 0xA, 0x66, 0x3C, 0x00, 0x03 }, /* 446 500 1.0 */
{ 0xB, 0x70, 0x3C, 0x00, 0x03 }, /* 460 600 2.3 */
{ 0xC, 0x75, 0x3C, 0x00, 0x03 }, /* 537 700 2.3 */
{ 0x2, 0x7F, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */
};
/* Voltage Swing Programming for VccIO 0.95V for DP */
static const struct cnl_ddi_buf_trans cnl_ddi_translations_dp_0_95V[] = {
/* NT mV Trans mV db */
{ 0xA, 0x5D, 0x3F, 0x00, 0x00 }, /* 350 350 0.0 */
{ 0xA, 0x6A, 0x38, 0x00, 0x07 }, /* 350 500 3.1 */
{ 0xB, 0x7A, 0x32, 0x00, 0x0D }, /* 350 700 6.0 */
{ 0x6, 0x7C, 0x2D, 0x00, 0x12 }, /* 350 900 8.2 */
{ 0xA, 0x69, 0x3F, 0x00, 0x00 }, /* 500 500 0.0 */
{ 0xB, 0x7A, 0x36, 0x00, 0x09 }, /* 500 700 2.9 */
{ 0x6, 0x7C, 0x30, 0x00, 0x0F }, /* 500 900 5.1 */
{ 0xB, 0x7D, 0x3C, 0x00, 0x03 }, /* 650 725 0.9 */
{ 0x6, 0x7C, 0x34, 0x00, 0x0B }, /* 600 900 3.5 */
{ 0x6, 0x7B, 0x3F, 0x00, 0x00 }, /* 900 900 0.0 */
};
/* Voltage Swing Programming for VccIO 0.95V for HDMI */
static const struct cnl_ddi_buf_trans cnl_ddi_translations_hdmi_0_95V[] = {
/* NT mV Trans mV db */
{ 0xA, 0x5C, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */
{ 0xB, 0x69, 0x37, 0x00, 0x08 }, /* 400 600 3.5 */
{ 0x5, 0x76, 0x31, 0x00, 0x0E }, /* 400 800 6.0 */
{ 0xA, 0x5E, 0x3F, 0x00, 0x00 }, /* 450 450 0.0 */
{ 0xB, 0x69, 0x3F, 0x00, 0x00 }, /* 600 600 0.0 */
{ 0xB, 0x79, 0x35, 0x00, 0x0A }, /* 600 850 3.0 */
{ 0x6, 0x7D, 0x32, 0x00, 0x0D }, /* 600 1000 4.4 */
{ 0x5, 0x76, 0x3F, 0x00, 0x00 }, /* 800 800 0.0 */
{ 0x6, 0x7D, 0x39, 0x00, 0x06 }, /* 800 1000 1.9 */
{ 0x6, 0x7F, 0x39, 0x00, 0x06 }, /* 850 1050 1.8 */
{ 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 1050 1050 0.0 */
};
/* Voltage Swing Programming for VccIO 0.95V for eDP */
static const struct cnl_ddi_buf_trans cnl_ddi_translations_edp_0_95V[] = {
/* NT mV Trans mV db */
{ 0xA, 0x61, 0x3A, 0x00, 0x05 }, /* 384 500 2.3 */
{ 0x0, 0x7F, 0x38, 0x00, 0x07 }, /* 153 200 2.3 */
{ 0x8, 0x7F, 0x38, 0x00, 0x07 }, /* 192 250 2.3 */
{ 0x1, 0x7F, 0x38, 0x00, 0x07 }, /* 230 300 2.3 */
{ 0x9, 0x7F, 0x38, 0x00, 0x07 }, /* 269 350 2.3 */
{ 0xA, 0x61, 0x3C, 0x00, 0x03 }, /* 446 500 1.0 */
{ 0xB, 0x68, 0x39, 0x00, 0x06 }, /* 460 600 2.3 */
{ 0xC, 0x6E, 0x39, 0x00, 0x06 }, /* 537 700 2.3 */
{ 0x4, 0x7F, 0x3A, 0x00, 0x05 }, /* 460 600 2.3 */
{ 0x2, 0x7F, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */
};
/* Voltage Swing Programming for VccIO 1.05V for DP */
static const struct cnl_ddi_buf_trans cnl_ddi_translations_dp_1_05V[] = {
/* NT mV Trans mV db */
{ 0xA, 0x58, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */
{ 0xB, 0x64, 0x37, 0x00, 0x08 }, /* 400 600 3.5 */
{ 0x5, 0x70, 0x31, 0x00, 0x0E }, /* 400 800 6.0 */
{ 0x6, 0x7F, 0x2C, 0x00, 0x13 }, /* 400 1050 8.4 */
{ 0xB, 0x64, 0x3F, 0x00, 0x00 }, /* 600 600 0.0 */
{ 0x5, 0x73, 0x35, 0x00, 0x0A }, /* 600 850 3.0 */
{ 0x6, 0x7F, 0x30, 0x00, 0x0F }, /* 550 1050 5.6 */
{ 0x5, 0x76, 0x3E, 0x00, 0x01 }, /* 850 900 0.5 */
{ 0x6, 0x7F, 0x36, 0x00, 0x09 }, /* 750 1050 2.9 */
{ 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 1050 1050 0.0 */
};
/* Voltage Swing Programming for VccIO 1.05V for HDMI */
static const struct cnl_ddi_buf_trans cnl_ddi_translations_hdmi_1_05V[] = {
/* NT mV Trans mV db */
{ 0xA, 0x58, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */
{ 0xB, 0x64, 0x37, 0x00, 0x08 }, /* 400 600 3.5 */
{ 0x5, 0x70, 0x31, 0x00, 0x0E }, /* 400 800 6.0 */
{ 0xA, 0x5B, 0x3F, 0x00, 0x00 }, /* 450 450 0.0 */
{ 0xB, 0x64, 0x3F, 0x00, 0x00 }, /* 600 600 0.0 */
{ 0x5, 0x73, 0x35, 0x00, 0x0A }, /* 600 850 3.0 */
{ 0x6, 0x7C, 0x32, 0x00, 0x0D }, /* 600 1000 4.4 */
{ 0x5, 0x70, 0x3F, 0x00, 0x00 }, /* 800 800 0.0 */
{ 0x6, 0x7C, 0x39, 0x00, 0x06 }, /* 800 1000 1.9 */
{ 0x6, 0x7F, 0x39, 0x00, 0x06 }, /* 850 1050 1.8 */
{ 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 1050 1050 0.0 */
};
/* Voltage Swing Programming for VccIO 1.05V for eDP */
static const struct cnl_ddi_buf_trans cnl_ddi_translations_edp_1_05V[] = {
/* NT mV Trans mV db */
{ 0xA, 0x5E, 0x3A, 0x00, 0x05 }, /* 384 500 2.3 */
{ 0x0, 0x7F, 0x38, 0x00, 0x07 }, /* 153 200 2.3 */
{ 0x8, 0x7F, 0x38, 0x00, 0x07 }, /* 192 250 2.3 */
{ 0x1, 0x7F, 0x38, 0x00, 0x07 }, /* 230 300 2.3 */
{ 0x9, 0x7F, 0x38, 0x00, 0x07 }, /* 269 350 2.3 */
{ 0xA, 0x5E, 0x3C, 0x00, 0x03 }, /* 446 500 1.0 */
{ 0xB, 0x64, 0x39, 0x00, 0x06 }, /* 460 600 2.3 */
{ 0xE, 0x6A, 0x39, 0x00, 0x06 }, /* 537 700 2.3 */
{ 0x2, 0x7F, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */
};
/* icl_combo_phy_ddi_translations */
static const struct cnl_ddi_buf_trans icl_combo_phy_ddi_translations_dp_hbr2[] = {
/* NT mV Trans mV db */
{ 0xA, 0x35, 0x3F, 0x00, 0x00 }, /* 350 350 0.0 */
{ 0xA, 0x4F, 0x37, 0x00, 0x08 }, /* 350 500 3.1 */
{ 0xC, 0x71, 0x2F, 0x00, 0x10 }, /* 350 700 6.0 */
{ 0x6, 0x7F, 0x2B, 0x00, 0x14 }, /* 350 900 8.2 */
{ 0xA, 0x4C, 0x3F, 0x00, 0x00 }, /* 500 500 0.0 */
{ 0xC, 0x73, 0x34, 0x00, 0x0B }, /* 500 700 2.9 */
{ 0x6, 0x7F, 0x2F, 0x00, 0x10 }, /* 500 900 5.1 */
{ 0xC, 0x6C, 0x3C, 0x00, 0x03 }, /* 650 700 0.6 */
{ 0x6, 0x7F, 0x35, 0x00, 0x0A }, /* 600 900 3.5 */
{ 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 900 900 0.0 */
};
static const struct cnl_ddi_buf_trans icl_combo_phy_ddi_translations_edp_hbr2[] = {
/* NT mV Trans mV db */
{ 0x0, 0x7F, 0x3F, 0x00, 0x00 }, /* 200 200 0.0 */
{ 0x8, 0x7F, 0x38, 0x00, 0x07 }, /* 200 250 1.9 */
{ 0x1, 0x7F, 0x33, 0x00, 0x0C }, /* 200 300 3.5 */
{ 0x9, 0x7F, 0x31, 0x00, 0x0E }, /* 200 350 4.9 */
{ 0x8, 0x7F, 0x3F, 0x00, 0x00 }, /* 250 250 0.0 */
{ 0x1, 0x7F, 0x38, 0x00, 0x07 }, /* 250 300 1.6 */
{ 0x9, 0x7F, 0x35, 0x00, 0x0A }, /* 250 350 2.9 */
{ 0x1, 0x7F, 0x3F, 0x00, 0x00 }, /* 300 300 0.0 */
{ 0x9, 0x7F, 0x38, 0x00, 0x07 }, /* 300 350 1.3 */
{ 0x9, 0x7F, 0x3F, 0x00, 0x00 }, /* 350 350 0.0 */
};
static const struct cnl_ddi_buf_trans icl_combo_phy_ddi_translations_edp_hbr3[] = {
/* NT mV Trans mV db */
{ 0xA, 0x35, 0x3F, 0x00, 0x00 }, /* 350 350 0.0 */
{ 0xA, 0x4F, 0x37, 0x00, 0x08 }, /* 350 500 3.1 */
{ 0xC, 0x71, 0x2F, 0x00, 0x10 }, /* 350 700 6.0 */
{ 0x6, 0x7F, 0x2B, 0x00, 0x14 }, /* 350 900 8.2 */
{ 0xA, 0x4C, 0x3F, 0x00, 0x00 }, /* 500 500 0.0 */
{ 0xC, 0x73, 0x34, 0x00, 0x0B }, /* 500 700 2.9 */
{ 0x6, 0x7F, 0x2F, 0x00, 0x10 }, /* 500 900 5.1 */
{ 0xC, 0x6C, 0x3C, 0x00, 0x03 }, /* 650 700 0.6 */
{ 0x6, 0x7F, 0x35, 0x00, 0x0A }, /* 600 900 3.5 */
{ 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 900 900 0.0 */
};
static const struct cnl_ddi_buf_trans icl_combo_phy_ddi_translations_hdmi[] = {
/* NT mV Trans mV db */
{ 0xA, 0x60, 0x3F, 0x00, 0x00 }, /* 450 450 0.0 */
{ 0xB, 0x73, 0x36, 0x00, 0x09 }, /* 450 650 3.2 */
{ 0x6, 0x7F, 0x31, 0x00, 0x0E }, /* 450 850 5.5 */
{ 0xB, 0x73, 0x3F, 0x00, 0x00 }, /* 650 650 0.0 ALS */
{ 0x6, 0x7F, 0x37, 0x00, 0x08 }, /* 650 850 2.3 */
{ 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 850 850 0.0 */
{ 0x6, 0x7F, 0x35, 0x00, 0x0A }, /* 600 850 3.0 */
};
struct icl_mg_phy_ddi_buf_trans {
u32 cri_txdeemph_override_5_0;
u32 cri_txdeemph_override_11_6;
u32 cri_txdeemph_override_17_12;
};
static const struct icl_mg_phy_ddi_buf_trans icl_mg_phy_ddi_translations[] = {
/* Voltage swing pre-emphasis */
{ 0x0, 0x1B, 0x00 }, /* 0 0 */
{ 0x0, 0x23, 0x08 }, /* 0 1 */
{ 0x0, 0x2D, 0x12 }, /* 0 2 */
{ 0x0, 0x00, 0x00 }, /* 0 3 */
{ 0x0, 0x23, 0x00 }, /* 1 0 */
{ 0x0, 0x2B, 0x09 }, /* 1 1 */
{ 0x0, 0x2E, 0x11 }, /* 1 2 */
{ 0x0, 0x2F, 0x00 }, /* 2 0 */
{ 0x0, 0x33, 0x0C }, /* 2 1 */
{ 0x0, 0x00, 0x00 }, /* 3 0 */
};
static const struct ddi_buf_trans *
bdw_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries)
{
if (dev_priv->vbt.edp.low_vswing) {
*n_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
return bdw_ddi_translations_edp;
} else {
*n_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
return bdw_ddi_translations_dp;
}
}
static const struct ddi_buf_trans *
skl_get_buf_trans_dp(struct drm_i915_private *dev_priv, int *n_entries)
{
if (IS_SKL_ULX(dev_priv)) {
*n_entries = ARRAY_SIZE(skl_y_ddi_translations_dp);
return skl_y_ddi_translations_dp;
} else if (IS_SKL_ULT(dev_priv)) {
*n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp);
return skl_u_ddi_translations_dp;
} else {
*n_entries = ARRAY_SIZE(skl_ddi_translations_dp);
return skl_ddi_translations_dp;
}
}
static const struct ddi_buf_trans *
kbl_get_buf_trans_dp(struct drm_i915_private *dev_priv, int *n_entries)
{
if (IS_KBL_ULX(dev_priv) || IS_AML_ULX(dev_priv)) {
*n_entries = ARRAY_SIZE(kbl_y_ddi_translations_dp);
return kbl_y_ddi_translations_dp;
} else if (IS_KBL_ULT(dev_priv) || IS_CFL_ULT(dev_priv)) {
*n_entries = ARRAY_SIZE(kbl_u_ddi_translations_dp);
return kbl_u_ddi_translations_dp;
} else {
*n_entries = ARRAY_SIZE(kbl_ddi_translations_dp);
return kbl_ddi_translations_dp;
}
}
static const struct ddi_buf_trans *
skl_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries)
{
if (dev_priv->vbt.edp.low_vswing) {
if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv) || IS_AML_ULX(dev_priv)) {
*n_entries = ARRAY_SIZE(skl_y_ddi_translations_edp);
return skl_y_ddi_translations_edp;
} else if (IS_SKL_ULT(dev_priv) || IS_KBL_ULT(dev_priv) ||
IS_CFL_ULT(dev_priv)) {
*n_entries = ARRAY_SIZE(skl_u_ddi_translations_edp);
return skl_u_ddi_translations_edp;
} else {
*n_entries = ARRAY_SIZE(skl_ddi_translations_edp);
return skl_ddi_translations_edp;
}
}
if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
return kbl_get_buf_trans_dp(dev_priv, n_entries);
else
return skl_get_buf_trans_dp(dev_priv, n_entries);
}
static const struct ddi_buf_trans *
skl_get_buf_trans_hdmi(struct drm_i915_private *dev_priv, int *n_entries)
{
if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv) || IS_AML_ULX(dev_priv)) {
*n_entries = ARRAY_SIZE(skl_y_ddi_translations_hdmi);
return skl_y_ddi_translations_hdmi;
} else {
*n_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
return skl_ddi_translations_hdmi;
}
}
static int skl_buf_trans_num_entries(enum port port, int n_entries)
{
/* Only DDIA and DDIE can select the 10th register with DP */
if (port == PORT_A || port == PORT_E)
return min(n_entries, 10);
else
return min(n_entries, 9);
}
static const struct ddi_buf_trans *
intel_ddi_get_buf_trans_dp(struct drm_i915_private *dev_priv,
enum port port, int *n_entries)
{
if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) {
const struct ddi_buf_trans *ddi_translations =
kbl_get_buf_trans_dp(dev_priv, n_entries);
*n_entries = skl_buf_trans_num_entries(port, *n_entries);
return ddi_translations;
} else if (IS_SKYLAKE(dev_priv)) {
const struct ddi_buf_trans *ddi_translations =
skl_get_buf_trans_dp(dev_priv, n_entries);
*n_entries = skl_buf_trans_num_entries(port, *n_entries);
return ddi_translations;
} else if (IS_BROADWELL(dev_priv)) {
*n_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
return bdw_ddi_translations_dp;
} else if (IS_HASWELL(dev_priv)) {
*n_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
return hsw_ddi_translations_dp;
}
*n_entries = 0;
return NULL;
}
static const struct ddi_buf_trans *
intel_ddi_get_buf_trans_edp(struct drm_i915_private *dev_priv,
enum port port, int *n_entries)
{
if (IS_GEN9_BC(dev_priv)) {
const struct ddi_buf_trans *ddi_translations =
skl_get_buf_trans_edp(dev_priv, n_entries);
*n_entries = skl_buf_trans_num_entries(port, *n_entries);
return ddi_translations;
} else if (IS_BROADWELL(dev_priv)) {
return bdw_get_buf_trans_edp(dev_priv, n_entries);
} else if (IS_HASWELL(dev_priv)) {
*n_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
return hsw_ddi_translations_dp;
}
*n_entries = 0;
return NULL;
}
static const struct ddi_buf_trans *
intel_ddi_get_buf_trans_fdi(struct drm_i915_private *dev_priv,
int *n_entries)
{
if (IS_BROADWELL(dev_priv)) {
*n_entries = ARRAY_SIZE(bdw_ddi_translations_fdi);
return bdw_ddi_translations_fdi;
} else if (IS_HASWELL(dev_priv)) {
*n_entries = ARRAY_SIZE(hsw_ddi_translations_fdi);
return hsw_ddi_translations_fdi;
}
*n_entries = 0;
return NULL;
}
static const struct ddi_buf_trans *
intel_ddi_get_buf_trans_hdmi(struct drm_i915_private *dev_priv,
int *n_entries)
{
if (IS_GEN9_BC(dev_priv)) {
return skl_get_buf_trans_hdmi(dev_priv, n_entries);
} else if (IS_BROADWELL(dev_priv)) {
*n_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
return bdw_ddi_translations_hdmi;
} else if (IS_HASWELL(dev_priv)) {
*n_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
return hsw_ddi_translations_hdmi;
}
*n_entries = 0;
return NULL;
}
static const struct bxt_ddi_buf_trans *
bxt_get_buf_trans_dp(struct drm_i915_private *dev_priv, int *n_entries)
{
*n_entries = ARRAY_SIZE(bxt_ddi_translations_dp);
return bxt_ddi_translations_dp;
}
static const struct bxt_ddi_buf_trans *
bxt_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries)
{
if (dev_priv->vbt.edp.low_vswing) {
*n_entries = ARRAY_SIZE(bxt_ddi_translations_edp);
return bxt_ddi_translations_edp;
}
return bxt_get_buf_trans_dp(dev_priv, n_entries);
}
static const struct bxt_ddi_buf_trans *
bxt_get_buf_trans_hdmi(struct drm_i915_private *dev_priv, int *n_entries)
{
*n_entries = ARRAY_SIZE(bxt_ddi_translations_hdmi);
return bxt_ddi_translations_hdmi;
}
static const struct cnl_ddi_buf_trans *
cnl_get_buf_trans_hdmi(struct drm_i915_private *dev_priv, int *n_entries)
{
u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
if (voltage == VOLTAGE_INFO_0_85V) {
*n_entries = ARRAY_SIZE(cnl_ddi_translations_hdmi_0_85V);
return cnl_ddi_translations_hdmi_0_85V;
} else if (voltage == VOLTAGE_INFO_0_95V) {
*n_entries = ARRAY_SIZE(cnl_ddi_translations_hdmi_0_95V);
return cnl_ddi_translations_hdmi_0_95V;
} else if (voltage == VOLTAGE_INFO_1_05V) {
*n_entries = ARRAY_SIZE(cnl_ddi_translations_hdmi_1_05V);
return cnl_ddi_translations_hdmi_1_05V;
} else {
*n_entries = 1; /* shut up gcc */
MISSING_CASE(voltage);
}
return NULL;
}
static const struct cnl_ddi_buf_trans *
cnl_get_buf_trans_dp(struct drm_i915_private *dev_priv, int *n_entries)
{
u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
if (voltage == VOLTAGE_INFO_0_85V) {
*n_entries = ARRAY_SIZE(cnl_ddi_translations_dp_0_85V);
return cnl_ddi_translations_dp_0_85V;
} else if (voltage == VOLTAGE_INFO_0_95V) {
*n_entries = ARRAY_SIZE(cnl_ddi_translations_dp_0_95V);
return cnl_ddi_translations_dp_0_95V;
} else if (voltage == VOLTAGE_INFO_1_05V) {
*n_entries = ARRAY_SIZE(cnl_ddi_translations_dp_1_05V);
return cnl_ddi_translations_dp_1_05V;
} else {
*n_entries = 1; /* shut up gcc */
MISSING_CASE(voltage);
}
return NULL;
}
static const struct cnl_ddi_buf_trans *
cnl_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries)
{
u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
if (dev_priv->vbt.edp.low_vswing) {
if (voltage == VOLTAGE_INFO_0_85V) {
*n_entries = ARRAY_SIZE(cnl_ddi_translations_edp_0_85V);
return cnl_ddi_translations_edp_0_85V;
} else if (voltage == VOLTAGE_INFO_0_95V) {
*n_entries = ARRAY_SIZE(cnl_ddi_translations_edp_0_95V);
return cnl_ddi_translations_edp_0_95V;
} else if (voltage == VOLTAGE_INFO_1_05V) {
*n_entries = ARRAY_SIZE(cnl_ddi_translations_edp_1_05V);
return cnl_ddi_translations_edp_1_05V;
} else {
*n_entries = 1; /* shut up gcc */
MISSING_CASE(voltage);
}
return NULL;
} else {
return cnl_get_buf_trans_dp(dev_priv, n_entries);
}
}
static const struct cnl_ddi_buf_trans *
icl_get_combo_buf_trans(struct drm_i915_private *dev_priv, enum port port,
int type, int rate, int *n_entries)
{
if (type == INTEL_OUTPUT_HDMI) {
*n_entries = ARRAY_SIZE(icl_combo_phy_ddi_translations_hdmi);
return icl_combo_phy_ddi_translations_hdmi;
} else if (rate > 540000 && type == INTEL_OUTPUT_EDP) {
*n_entries = ARRAY_SIZE(icl_combo_phy_ddi_translations_edp_hbr3);
return icl_combo_phy_ddi_translations_edp_hbr3;
} else if (type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp.low_vswing) {
*n_entries = ARRAY_SIZE(icl_combo_phy_ddi_translations_edp_hbr2);
return icl_combo_phy_ddi_translations_edp_hbr2;
}
*n_entries = ARRAY_SIZE(icl_combo_phy_ddi_translations_dp_hbr2);
return icl_combo_phy_ddi_translations_dp_hbr2;
}
static int intel_ddi_hdmi_level(struct drm_i915_private *dev_priv, enum port port)
{
int n_entries, level, default_entry;
level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
if (INTEL_GEN(dev_priv) >= 11) {
if (intel_port_is_combophy(dev_priv, port))
icl_get_combo_buf_trans(dev_priv, port, INTEL_OUTPUT_HDMI,
0, &n_entries);
else
n_entries = ARRAY_SIZE(icl_mg_phy_ddi_translations);
default_entry = n_entries - 1;
} else if (IS_CANNONLAKE(dev_priv)) {
cnl_get_buf_trans_hdmi(dev_priv, &n_entries);
default_entry = n_entries - 1;
} else if (IS_GEN9_LP(dev_priv)) {
bxt_get_buf_trans_hdmi(dev_priv, &n_entries);
default_entry = n_entries - 1;
} else if (IS_GEN9_BC(dev_priv)) {
intel_ddi_get_buf_trans_hdmi(dev_priv, &n_entries);
default_entry = 8;
} else if (IS_BROADWELL(dev_priv)) {
intel_ddi_get_buf_trans_hdmi(dev_priv, &n_entries);
default_entry = 7;
} else if (IS_HASWELL(dev_priv)) {
intel_ddi_get_buf_trans_hdmi(dev_priv, &n_entries);
default_entry = 6;
} else {
WARN(1, "ddi translation table missing\n");
return 0;
}
/* Choose a good default if VBT is badly populated */
if (level == HDMI_LEVEL_SHIFT_UNKNOWN || level >= n_entries)
level = default_entry;
if (WARN_ON_ONCE(n_entries == 0))
return 0;
if (WARN_ON_ONCE(level >= n_entries))
level = n_entries - 1;
return level;
}
/*
* Starting with Haswell, DDI port buffers must be programmed with correct
* values in advance. This function programs the correct values for
* DP/eDP/FDI use cases.
*/
static void intel_prepare_dp_ddi_buffers(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
u32 iboost_bit = 0;
int i, n_entries;
enum port port = encoder->port;
const struct ddi_buf_trans *ddi_translations;
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
ddi_translations = intel_ddi_get_buf_trans_fdi(dev_priv,
&n_entries);
else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP))
ddi_translations = intel_ddi_get_buf_trans_edp(dev_priv, port,
&n_entries);
else
ddi_translations = intel_ddi_get_buf_trans_dp(dev_priv, port,
&n_entries);
/* If we're boosting the current, set bit 31 of trans1 */
if (IS_GEN9_BC(dev_priv) &&
dev_priv->vbt.ddi_port_info[port].dp_boost_level)
iboost_bit = DDI_BUF_BALANCE_LEG_ENABLE;
for (i = 0; i < n_entries; i++) {
I915_WRITE(DDI_BUF_TRANS_LO(port, i),
ddi_translations[i].trans1 | iboost_bit);
I915_WRITE(DDI_BUF_TRANS_HI(port, i),
ddi_translations[i].trans2);
}
}
/*
* Starting with Haswell, DDI port buffers must be programmed with correct
* values in advance. This function programs the correct values for
* HDMI/DVI use cases.
*/
static void intel_prepare_hdmi_ddi_buffers(struct intel_encoder *encoder,
int level)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
u32 iboost_bit = 0;
int n_entries;
enum port port = encoder->port;
const struct ddi_buf_trans *ddi_translations;
ddi_translations = intel_ddi_get_buf_trans_hdmi(dev_priv, &n_entries);
if (WARN_ON_ONCE(!ddi_translations))
return;
if (WARN_ON_ONCE(level >= n_entries))
level = n_entries - 1;
/* If we're boosting the current, set bit 31 of trans1 */
if (IS_GEN9_BC(dev_priv) &&
dev_priv->vbt.ddi_port_info[port].hdmi_boost_level)
iboost_bit = DDI_BUF_BALANCE_LEG_ENABLE;
/* Entry 9 is for HDMI: */
I915_WRITE(DDI_BUF_TRANS_LO(port, 9),
ddi_translations[level].trans1 | iboost_bit);
I915_WRITE(DDI_BUF_TRANS_HI(port, 9),
ddi_translations[level].trans2);
}
static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
enum port port)
{
i915_reg_t reg = DDI_BUF_CTL(port);
int i;
for (i = 0; i < 16; i++) {
udelay(1);
if (I915_READ(reg) & DDI_BUF_IS_IDLE)
return;
}
DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
}
static u32 hsw_pll_to_ddi_pll_sel(const struct intel_shared_dpll *pll)
{
switch (pll->info->id) {
case DPLL_ID_WRPLL1:
return PORT_CLK_SEL_WRPLL1;
case DPLL_ID_WRPLL2:
return PORT_CLK_SEL_WRPLL2;
case DPLL_ID_SPLL:
return PORT_CLK_SEL_SPLL;
case DPLL_ID_LCPLL_810:
return PORT_CLK_SEL_LCPLL_810;
case DPLL_ID_LCPLL_1350:
return PORT_CLK_SEL_LCPLL_1350;
case DPLL_ID_LCPLL_2700:
return PORT_CLK_SEL_LCPLL_2700;
default:
MISSING_CASE(pll->info->id);
return PORT_CLK_SEL_NONE;
}
}
static u32 icl_pll_to_ddi_clk_sel(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
const struct intel_shared_dpll *pll = crtc_state->shared_dpll;
int clock = crtc_state->port_clock;
const enum intel_dpll_id id = pll->info->id;
switch (id) {
default:
/*
* DPLL_ID_ICL_DPLL0 and DPLL_ID_ICL_DPLL1 should not be used
* here, so do warn if this get passed in
*/
MISSING_CASE(id);
return DDI_CLK_SEL_NONE;
case DPLL_ID_ICL_TBTPLL:
switch (clock) {
case 162000:
return DDI_CLK_SEL_TBT_162;
case 270000:
return DDI_CLK_SEL_TBT_270;
case 540000:
return DDI_CLK_SEL_TBT_540;
case 810000:
return DDI_CLK_SEL_TBT_810;
default:
MISSING_CASE(clock);
return DDI_CLK_SEL_NONE;
}
case DPLL_ID_ICL_MGPLL1:
case DPLL_ID_ICL_MGPLL2:
case DPLL_ID_ICL_MGPLL3:
case DPLL_ID_ICL_MGPLL4:
return DDI_CLK_SEL_MG;
}
}
/* Starting with Haswell, different DDI ports can work in FDI mode for
* connection to the PCH-located connectors. For this, it is necessary to train
* both the DDI port and PCH receiver for the desired DDI buffer settings.
*
* The recommended port to work in FDI mode is DDI E, which we use here. Also,
* please note that when FDI mode is active on DDI E, it shares 2 lines with
* DDI A (which is used for eDP)
*/
void hsw_fdi_link_train(struct intel_crtc *crtc,
const struct intel_crtc_state *crtc_state)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_encoder *encoder;
u32 temp, i, rx_ctl_val, ddi_pll_sel;
for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
WARN_ON(encoder->type != INTEL_OUTPUT_ANALOG);
intel_prepare_dp_ddi_buffers(encoder, crtc_state);
}
/* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
* mode set "sequence for CRT port" document:
* - TP1 to TP2 time with the default value
* - FDI delay to 90h
*
* WaFDIAutoLinkSetTimingOverrride:hsw
*/
I915_WRITE(FDI_RX_MISC(PIPE_A), FDI_RX_PWRDN_LANE1_VAL(2) |
FDI_RX_PWRDN_LANE0_VAL(2) |
FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
/* Enable the PCH Receiver FDI PLL */
rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
FDI_RX_PLL_ENABLE |
FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
POSTING_READ(FDI_RX_CTL(PIPE_A));
udelay(220);
/* Switch from Rawclk to PCDclk */
rx_ctl_val |= FDI_PCDCLK;
I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
/* Configure Port Clock Select */
ddi_pll_sel = hsw_pll_to_ddi_pll_sel(crtc_state->shared_dpll);
I915_WRITE(PORT_CLK_SEL(PORT_E), ddi_pll_sel);
WARN_ON(ddi_pll_sel != PORT_CLK_SEL_SPLL);
/* Start the training iterating through available voltages and emphasis,
* testing each value twice. */
for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
/* Configure DP_TP_CTL with auto-training */
I915_WRITE(DP_TP_CTL(PORT_E),
DP_TP_CTL_FDI_AUTOTRAIN |
DP_TP_CTL_ENHANCED_FRAME_ENABLE |
DP_TP_CTL_LINK_TRAIN_PAT1 |
DP_TP_CTL_ENABLE);
/* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
* DDI E does not support port reversal, the functionality is
* achieved on the PCH side in FDI_RX_CTL, so no need to set the
* port reversal bit */
I915_WRITE(DDI_BUF_CTL(PORT_E),
DDI_BUF_CTL_ENABLE |
((crtc_state->fdi_lanes - 1) << 1) |
DDI_BUF_TRANS_SELECT(i / 2));
POSTING_READ(DDI_BUF_CTL(PORT_E));
udelay(600);
/* Program PCH FDI Receiver TU */
I915_WRITE(FDI_RX_TUSIZE1(PIPE_A), TU_SIZE(64));
/* Enable PCH FDI Receiver with auto-training */
rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
POSTING_READ(FDI_RX_CTL(PIPE_A));
/* Wait for FDI receiver lane calibration */
udelay(30);
/* Unset FDI_RX_MISC pwrdn lanes */
temp = I915_READ(FDI_RX_MISC(PIPE_A));
temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
POSTING_READ(FDI_RX_MISC(PIPE_A));
/* Wait for FDI auto training time */
udelay(5);
temp = I915_READ(DP_TP_STATUS(PORT_E));
if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
break;
}
/*
* Leave things enabled even if we failed to train FDI.
* Results in less fireworks from the state checker.
*/
if (i == ARRAY_SIZE(hsw_ddi_translations_fdi) * 2 - 1) {
DRM_ERROR("FDI link training failed!\n");
break;
}
rx_ctl_val &= ~FDI_RX_ENABLE;
I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
POSTING_READ(FDI_RX_CTL(PIPE_A));
temp = I915_READ(DDI_BUF_CTL(PORT_E));
temp &= ~DDI_BUF_CTL_ENABLE;
I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
POSTING_READ(DDI_BUF_CTL(PORT_E));
/* Disable DP_TP_CTL and FDI_RX_CTL and retry */
temp = I915_READ(DP_TP_CTL(PORT_E));
temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
I915_WRITE(DP_TP_CTL(PORT_E), temp);
POSTING_READ(DP_TP_CTL(PORT_E));
intel_wait_ddi_buf_idle(dev_priv, PORT_E);
/* Reset FDI_RX_MISC pwrdn lanes */
temp = I915_READ(FDI_RX_MISC(PIPE_A));
temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
POSTING_READ(FDI_RX_MISC(PIPE_A));
}
/* Enable normal pixel sending for FDI */
I915_WRITE(DP_TP_CTL(PORT_E),
DP_TP_CTL_FDI_AUTOTRAIN |
DP_TP_CTL_LINK_TRAIN_NORMAL |
DP_TP_CTL_ENHANCED_FRAME_ENABLE |
DP_TP_CTL_ENABLE);
}
static void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
struct intel_digital_port *intel_dig_port =
enc_to_dig_port(&encoder->base);
intel_dp->DP = intel_dig_port->saved_port_bits |
DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
}
static struct intel_encoder *
intel_ddi_get_crtc_encoder(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct intel_encoder *encoder, *ret = NULL;
int num_encoders = 0;
for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
ret = encoder;
num_encoders++;
}
if (num_encoders != 1)
WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
pipe_name(crtc->pipe));
BUG_ON(ret == NULL);
return ret;
}
#define LC_FREQ 2700
static int hsw_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv,
i915_reg_t reg)
{
int refclk = LC_FREQ;
int n, p, r;
u32 wrpll;
wrpll = I915_READ(reg);
switch (wrpll & WRPLL_PLL_REF_MASK) {
case WRPLL_PLL_SSC:
case WRPLL_PLL_NON_SSC:
/*
* We could calculate spread here, but our checking
* code only cares about 5% accuracy, and spread is a max of
* 0.5% downspread.
*/
refclk = 135;
break;
case WRPLL_PLL_LCPLL:
refclk = LC_FREQ;
break;
default:
WARN(1, "bad wrpll refclk\n");
return 0;
}
r = wrpll & WRPLL_DIVIDER_REF_MASK;
p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
/* Convert to KHz, p & r have a fixed point portion */
return (refclk * n * 100) / (p * r);
}
static int skl_calc_wrpll_link(const struct intel_dpll_hw_state *pll_state)
{
u32 p0, p1, p2, dco_freq;
p0 = pll_state->cfgcr2 & DPLL_CFGCR2_PDIV_MASK;
p2 = pll_state->cfgcr2 & DPLL_CFGCR2_KDIV_MASK;
if (pll_state->cfgcr2 & DPLL_CFGCR2_QDIV_MODE(1))
p1 = (pll_state->cfgcr2 & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
else
p1 = 1;
switch (p0) {
case DPLL_CFGCR2_PDIV_1:
p0 = 1;
break;
case DPLL_CFGCR2_PDIV_2:
p0 = 2;
break;
case DPLL_CFGCR2_PDIV_3:
p0 = 3;
break;
case DPLL_CFGCR2_PDIV_7:
p0 = 7;
break;
}
switch (p2) {
case DPLL_CFGCR2_KDIV_5:
p2 = 5;
break;
case DPLL_CFGCR2_KDIV_2:
p2 = 2;
break;
case DPLL_CFGCR2_KDIV_3:
p2 = 3;
break;
case DPLL_CFGCR2_KDIV_1:
p2 = 1;
break;
}
dco_freq = (pll_state->cfgcr1 & DPLL_CFGCR1_DCO_INTEGER_MASK)
* 24 * 1000;
dco_freq += (((pll_state->cfgcr1 & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9)
* 24 * 1000) / 0x8000;
if (WARN_ON(p0 == 0 || p1 == 0 || p2 == 0))
return 0;
return dco_freq / (p0 * p1 * p2 * 5);
}
int cnl_calc_wrpll_link(struct drm_i915_private *dev_priv,
struct intel_dpll_hw_state *pll_state)
{
u32 p0, p1, p2, dco_freq, ref_clock;
p0 = pll_state->cfgcr1 & DPLL_CFGCR1_PDIV_MASK;
p2 = pll_state->cfgcr1 & DPLL_CFGCR1_KDIV_MASK;
if (pll_state->cfgcr1 & DPLL_CFGCR1_QDIV_MODE(1))
p1 = (pll_state->cfgcr1 & DPLL_CFGCR1_QDIV_RATIO_MASK) >>
DPLL_CFGCR1_QDIV_RATIO_SHIFT;
else
p1 = 1;
switch (p0) {
case DPLL_CFGCR1_PDIV_2:
p0 = 2;
break;
case DPLL_CFGCR1_PDIV_3:
p0 = 3;
break;
case DPLL_CFGCR1_PDIV_5:
p0 = 5;
break;
case DPLL_CFGCR1_PDIV_7:
p0 = 7;
break;
}
switch (p2) {
case DPLL_CFGCR1_KDIV_1:
p2 = 1;
break;
case DPLL_CFGCR1_KDIV_2:
p2 = 2;
break;
case DPLL_CFGCR1_KDIV_3:
p2 = 3;
break;
}
ref_clock = cnl_hdmi_pll_ref_clock(dev_priv);
dco_freq = (pll_state->cfgcr0 & DPLL_CFGCR0_DCO_INTEGER_MASK)
* ref_clock;
dco_freq += (((pll_state->cfgcr0 & DPLL_CFGCR0_DCO_FRACTION_MASK) >>
DPLL_CFGCR0_DCO_FRACTION_SHIFT) * ref_clock) / 0x8000;
if (WARN_ON(p0 == 0 || p1 == 0 || p2 == 0))
return 0;
return dco_freq / (p0 * p1 * p2 * 5);
}
static int icl_calc_tbt_pll_link(struct drm_i915_private *dev_priv,
enum port port)
{
u32 val = I915_READ(DDI_CLK_SEL(port)) & DDI_CLK_SEL_MASK;
switch (val) {
case DDI_CLK_SEL_NONE:
return 0;
case DDI_CLK_SEL_TBT_162:
return 162000;
case DDI_CLK_SEL_TBT_270:
return 270000;
case DDI_CLK_SEL_TBT_540:
return 540000;
case DDI_CLK_SEL_TBT_810:
return 810000;
default:
MISSING_CASE(val);
return 0;
}
}
static int icl_calc_mg_pll_link(struct drm_i915_private *dev_priv,
const struct intel_dpll_hw_state *pll_state)
{
u32 m1, m2_int, m2_frac, div1, div2, ref_clock;
u64 tmp;
ref_clock = dev_priv->cdclk.hw.ref;
m1 = pll_state->mg_pll_div1 & MG_PLL_DIV1_FBPREDIV_MASK;
m2_int = pll_state->mg_pll_div0 & MG_PLL_DIV0_FBDIV_INT_MASK;
m2_frac = (pll_state->mg_pll_div0 & MG_PLL_DIV0_FRACNEN_H) ?
(pll_state->mg_pll_div0 & MG_PLL_DIV0_FBDIV_FRAC_MASK) >>
MG_PLL_DIV0_FBDIV_FRAC_SHIFT : 0;
switch (pll_state->mg_clktop2_hsclkctl &
MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_MASK) {
case MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_2:
div1 = 2;
break;
case MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_3:
div1 = 3;
break;
case MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_5:
div1 = 5;
break;
case MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_7:
div1 = 7;
break;
default:
MISSING_CASE(pll_state->mg_clktop2_hsclkctl);
return 0;
}
div2 = (pll_state->mg_clktop2_hsclkctl &
MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO_MASK) >>
MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO_SHIFT;
/* div2 value of 0 is same as 1 means no div */
if (div2 == 0)
div2 = 1;
/*
* Adjust the original formula to delay the division by 2^22 in order to
* minimize possible rounding errors.
*/
tmp = (u64)m1 * m2_int * ref_clock +
(((u64)m1 * m2_frac * ref_clock) >> 22);
tmp = div_u64(tmp, 5 * div1 * div2);
return tmp;
}
static void ddi_dotclock_get(struct intel_crtc_state *pipe_config)
{
int dotclock;
if (pipe_config->has_pch_encoder)
dotclock = intel_dotclock_calculate(pipe_config->port_clock,
&pipe_config->fdi_m_n);
else if (intel_crtc_has_dp_encoder(pipe_config))
dotclock = intel_dotclock_calculate(pipe_config->port_clock,
&pipe_config->dp_m_n);
else if (pipe_config->has_hdmi_sink && pipe_config->pipe_bpp == 36)
dotclock = pipe_config->port_clock * 2 / 3;
else
dotclock = pipe_config->port_clock;
if (pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
dotclock *= 2;
if (pipe_config->pixel_multiplier)
dotclock /= pipe_config->pixel_multiplier;
pipe_config->base.adjusted_mode.crtc_clock = dotclock;
}
static void icl_ddi_clock_get(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dpll_hw_state *pll_state = &pipe_config->dpll_hw_state;
enum port port = encoder->port;
int link_clock;
if (intel_port_is_combophy(dev_priv, port)) {
link_clock = cnl_calc_wrpll_link(dev_priv, pll_state);
} else {
enum intel_dpll_id pll_id = intel_get_shared_dpll_id(dev_priv,
pipe_config->shared_dpll);
if (pll_id == DPLL_ID_ICL_TBTPLL)
link_clock = icl_calc_tbt_pll_link(dev_priv, port);
else
link_clock = icl_calc_mg_pll_link(dev_priv, pll_state);
}
pipe_config->port_clock = link_clock;
ddi_dotclock_get(pipe_config);
}
static void cnl_ddi_clock_get(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dpll_hw_state *pll_state = &pipe_config->dpll_hw_state;
int link_clock;
if (pll_state->cfgcr0 & DPLL_CFGCR0_HDMI_MODE) {
link_clock = cnl_calc_wrpll_link(dev_priv, pll_state);
} else {
link_clock = pll_state->cfgcr0 & DPLL_CFGCR0_LINK_RATE_MASK;
switch (link_clock) {
case DPLL_CFGCR0_LINK_RATE_810:
link_clock = 81000;
break;
case DPLL_CFGCR0_LINK_RATE_1080:
link_clock = 108000;
break;
case DPLL_CFGCR0_LINK_RATE_1350:
link_clock = 135000;
break;
case DPLL_CFGCR0_LINK_RATE_1620:
link_clock = 162000;
break;
case DPLL_CFGCR0_LINK_RATE_2160:
link_clock = 216000;
break;
case DPLL_CFGCR0_LINK_RATE_2700:
link_clock = 270000;
break;
case DPLL_CFGCR0_LINK_RATE_3240:
link_clock = 324000;
break;
case DPLL_CFGCR0_LINK_RATE_4050:
link_clock = 405000;
break;
default:
WARN(1, "Unsupported link rate\n");
break;
}
link_clock *= 2;
}
pipe_config->port_clock = link_clock;
ddi_dotclock_get(pipe_config);
}
static void skl_ddi_clock_get(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct intel_dpll_hw_state *pll_state = &pipe_config->dpll_hw_state;
int link_clock;
/*
* ctrl1 register is already shifted for each pll, just use 0 to get
* the internal shift for each field
*/
if (pll_state->ctrl1 & DPLL_CTRL1_HDMI_MODE(0)) {
link_clock = skl_calc_wrpll_link(pll_state);
} else {
link_clock = pll_state->ctrl1 & DPLL_CTRL1_LINK_RATE_MASK(0);
link_clock >>= DPLL_CTRL1_LINK_RATE_SHIFT(0);
switch (link_clock) {
case DPLL_CTRL1_LINK_RATE_810:
link_clock = 81000;
break;
case DPLL_CTRL1_LINK_RATE_1080:
link_clock = 108000;
break;
case DPLL_CTRL1_LINK_RATE_1350:
link_clock = 135000;
break;
case DPLL_CTRL1_LINK_RATE_1620:
link_clock = 162000;
break;
case DPLL_CTRL1_LINK_RATE_2160:
link_clock = 216000;
break;
case DPLL_CTRL1_LINK_RATE_2700:
link_clock = 270000;
break;
default:
WARN(1, "Unsupported link rate\n");
break;
}
link_clock *= 2;
}
pipe_config->port_clock = link_clock;
ddi_dotclock_get(pipe_config);
}
static void hsw_ddi_clock_get(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
int link_clock = 0;
u32 val, pll;
val = hsw_pll_to_ddi_pll_sel(pipe_config->shared_dpll);
switch (val & PORT_CLK_SEL_MASK) {
case PORT_CLK_SEL_LCPLL_810:
link_clock = 81000;
break;
case PORT_CLK_SEL_LCPLL_1350:
link_clock = 135000;
break;
case PORT_CLK_SEL_LCPLL_2700:
link_clock = 270000;
break;
case PORT_CLK_SEL_WRPLL1:
link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(0));
break;
case PORT_CLK_SEL_WRPLL2:
link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(1));
break;
case PORT_CLK_SEL_SPLL:
pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
if (pll == SPLL_PLL_FREQ_810MHz)
link_clock = 81000;
else if (pll == SPLL_PLL_FREQ_1350MHz)
link_clock = 135000;
else if (pll == SPLL_PLL_FREQ_2700MHz)
link_clock = 270000;
else {
WARN(1, "bad spll freq\n");
return;
}
break;
default:
WARN(1, "bad port clock sel\n");
return;
}
pipe_config->port_clock = link_clock * 2;
ddi_dotclock_get(pipe_config);
}
static int bxt_calc_pll_link(const struct intel_dpll_hw_state *pll_state)
{
struct dpll clock;
clock.m1 = 2;
clock.m2 = (pll_state->pll0 & PORT_PLL_M2_MASK) << 22;
if (pll_state->pll3 & PORT_PLL_M2_FRAC_ENABLE)
clock.m2 |= pll_state->pll2 & PORT_PLL_M2_FRAC_MASK;
clock.n = (pll_state->pll1 & PORT_PLL_N_MASK) >> PORT_PLL_N_SHIFT;
clock.p1 = (pll_state->ebb0 & PORT_PLL_P1_MASK) >> PORT_PLL_P1_SHIFT;
clock.p2 = (pll_state->ebb0 & PORT_PLL_P2_MASK) >> PORT_PLL_P2_SHIFT;
return chv_calc_dpll_params(100000, &clock);
}
static void bxt_ddi_clock_get(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
pipe_config->port_clock =
bxt_calc_pll_link(&pipe_config->dpll_hw_state);
ddi_dotclock_get(pipe_config);
}
static void intel_ddi_clock_get(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
if (INTEL_GEN(dev_priv) >= 11)
icl_ddi_clock_get(encoder, pipe_config);
else if (IS_CANNONLAKE(dev_priv))
cnl_ddi_clock_get(encoder, pipe_config);
else if (IS_GEN9_LP(dev_priv))
bxt_ddi_clock_get(encoder, pipe_config);
else if (IS_GEN9_BC(dev_priv))
skl_ddi_clock_get(encoder, pipe_config);
else if (INTEL_GEN(dev_priv) <= 8)
hsw_ddi_clock_get(encoder, pipe_config);
}
void intel_ddi_set_pipe_settings(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
u32 temp;
if (!intel_crtc_has_dp_encoder(crtc_state))
return;
WARN_ON(transcoder_is_dsi(cpu_transcoder));
temp = TRANS_MSA_SYNC_CLK;
if (crtc_state->limited_color_range)
temp |= TRANS_MSA_CEA_RANGE;
switch (crtc_state->pipe_bpp) {
case 18:
temp |= TRANS_MSA_6_BPC;
break;
case 24:
temp |= TRANS_MSA_8_BPC;
break;
case 30:
temp |= TRANS_MSA_10_BPC;
break;
case 36:
temp |= TRANS_MSA_12_BPC;
break;
default:
MISSING_CASE(crtc_state->pipe_bpp);
break;
}
/*
* As per DP 1.2 spec section 2.3.4.3 while sending
* YCBCR 444 signals we should program MSA MISC1/0 fields with
* colorspace information. The output colorspace encoding is BT601.
*/
if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
temp |= TRANS_MSA_SAMPLING_444 | TRANS_MSA_CLRSP_YCBCR;
I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
}
void intel_ddi_set_vc_payload_alloc(const struct intel_crtc_state *crtc_state,
bool state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
u32 temp;
temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
if (state == true)
temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
else
temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
}
void intel_ddi_enable_transcoder_func(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct intel_encoder *encoder = intel_ddi_get_crtc_encoder(crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
enum port port = encoder->port;
u32 temp;
/* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
temp = TRANS_DDI_FUNC_ENABLE;
temp |= TRANS_DDI_SELECT_PORT(port);
switch (crtc_state->pipe_bpp) {
case 18:
temp |= TRANS_DDI_BPC_6;
break;
case 24:
temp |= TRANS_DDI_BPC_8;
break;
case 30:
temp |= TRANS_DDI_BPC_10;
break;
case 36:
temp |= TRANS_DDI_BPC_12;
break;
default:
BUG();
}
if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
temp |= TRANS_DDI_PVSYNC;
if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
temp |= TRANS_DDI_PHSYNC;
if (cpu_transcoder == TRANSCODER_EDP) {
switch (pipe) {
case PIPE_A:
/* On Haswell, can only use the always-on power well for
* eDP when not using the panel fitter, and when not
* using motion blur mitigation (which we don't
* support). */
if (IS_HASWELL(dev_priv) &&
(crtc_state->pch_pfit.enabled ||
crtc_state->pch_pfit.force_thru))
temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
else
temp |= TRANS_DDI_EDP_INPUT_A_ON;
break;
case PIPE_B:
temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
break;
case PIPE_C:
temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
break;
default:
BUG();
break;
}
}
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
if (crtc_state->has_hdmi_sink)
temp |= TRANS_DDI_MODE_SELECT_HDMI;
else
temp |= TRANS_DDI_MODE_SELECT_DVI;
if (crtc_state->hdmi_scrambling)
temp |= TRANS_DDI_HDMI_SCRAMBLING;
if (crtc_state->hdmi_high_tmds_clock_ratio)
temp |= TRANS_DDI_HIGH_TMDS_CHAR_RATE;
} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
temp |= TRANS_DDI_MODE_SELECT_FDI;
temp |= (crtc_state->fdi_lanes - 1) << 1;
} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST)) {
temp |= TRANS_DDI_MODE_SELECT_DP_MST;
temp |= DDI_PORT_WIDTH(crtc_state->lane_count);
} else {
temp |= TRANS_DDI_MODE_SELECT_DP_SST;
temp |= DDI_PORT_WIDTH(crtc_state->lane_count);
}
I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
}
void intel_ddi_disable_transcoder_func(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
i915_reg_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
u32 val = I915_READ(reg);
val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
val |= TRANS_DDI_PORT_NONE;
I915_WRITE(reg, val);
if (dev_priv->quirks & QUIRK_INCREASE_DDI_DISABLED_TIME &&
intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
DRM_DEBUG_KMS("Quirk Increase DDI disabled time\n");
/* Quirk time at 100ms for reliable operation */
msleep(100);
}
}
int intel_ddi_toggle_hdcp_signalling(struct intel_encoder *intel_encoder,
bool enable)
{
struct drm_device *dev = intel_encoder->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
intel_wakeref_t wakeref;
enum pipe pipe = 0;
int ret = 0;
u32 tmp;
wakeref = intel_display_power_get_if_enabled(dev_priv,
intel_encoder->power_domain);
if (WARN_ON(!wakeref))
return -ENXIO;
if (WARN_ON(!intel_encoder->get_hw_state(intel_encoder, &pipe))) {
ret = -EIO;
goto out;
}
tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe));
if (enable)
tmp |= TRANS_DDI_HDCP_SIGNALLING;
else
tmp &= ~TRANS_DDI_HDCP_SIGNALLING;
I915_WRITE(TRANS_DDI_FUNC_CTL(pipe), tmp);
out:
intel_display_power_put(dev_priv, intel_encoder->power_domain, wakeref);
return ret;
}
bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
{
struct drm_device *dev = intel_connector->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_encoder *encoder = intel_connector->encoder;
int type = intel_connector->base.connector_type;
enum port port = encoder->port;
enum transcoder cpu_transcoder;
intel_wakeref_t wakeref;
enum pipe pipe = 0;
u32 tmp;
bool ret;
wakeref = intel_display_power_get_if_enabled(dev_priv,
encoder->power_domain);
if (!wakeref)
return false;
if (!encoder->get_hw_state(encoder, &pipe)) {
ret = false;
goto out;
}
if (HAS_TRANSCODER_EDP(dev_priv) && port == PORT_A)
cpu_transcoder = TRANSCODER_EDP;
else
cpu_transcoder = (enum transcoder) pipe;
tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
case TRANS_DDI_MODE_SELECT_HDMI:
case TRANS_DDI_MODE_SELECT_DVI:
ret = type == DRM_MODE_CONNECTOR_HDMIA;
break;
case TRANS_DDI_MODE_SELECT_DP_SST:
ret = type == DRM_MODE_CONNECTOR_eDP ||
type == DRM_MODE_CONNECTOR_DisplayPort;
break;
case TRANS_DDI_MODE_SELECT_DP_MST:
/* if the transcoder is in MST state then
* connector isn't connected */
ret = false;
break;
case TRANS_DDI_MODE_SELECT_FDI:
ret = type == DRM_MODE_CONNECTOR_VGA;
break;
default:
ret = false;
break;
}
out:
intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
return ret;
}
static void intel_ddi_get_encoder_pipes(struct intel_encoder *encoder,
u8 *pipe_mask, bool *is_dp_mst)
{
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum port port = encoder->port;
intel_wakeref_t wakeref;
enum pipe p;
u32 tmp;
u8 mst_pipe_mask;
*pipe_mask = 0;
*is_dp_mst = false;
wakeref = intel_display_power_get_if_enabled(dev_priv,
encoder->power_domain);
if (!wakeref)
return;
tmp = I915_READ(DDI_BUF_CTL(port));
if (!(tmp & DDI_BUF_CTL_ENABLE))
goto out;
if (HAS_TRANSCODER_EDP(dev_priv) && port == PORT_A) {
tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
default:
MISSING_CASE(tmp & TRANS_DDI_EDP_INPUT_MASK);
/* fallthrough */
case TRANS_DDI_EDP_INPUT_A_ON:
case TRANS_DDI_EDP_INPUT_A_ONOFF:
*pipe_mask = BIT(PIPE_A);
break;
case TRANS_DDI_EDP_INPUT_B_ONOFF:
*pipe_mask = BIT(PIPE_B);
break;
case TRANS_DDI_EDP_INPUT_C_ONOFF:
*pipe_mask = BIT(PIPE_C);
break;
}
goto out;
}
mst_pipe_mask = 0;
for_each_pipe(dev_priv, p) {
enum transcoder cpu_transcoder = (enum transcoder)p;
tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
if ((tmp & TRANS_DDI_PORT_MASK) != TRANS_DDI_SELECT_PORT(port))
continue;
if ((tmp & TRANS_DDI_MODE_SELECT_MASK) ==
TRANS_DDI_MODE_SELECT_DP_MST)
mst_pipe_mask |= BIT(p);
*pipe_mask |= BIT(p);
}
if (!*pipe_mask)
DRM_DEBUG_KMS("No pipe for ddi port %c found\n",
port_name(port));
if (!mst_pipe_mask && hweight8(*pipe_mask) > 1) {
DRM_DEBUG_KMS("Multiple pipes for non DP-MST port %c (pipe_mask %02x)\n",
port_name(port), *pipe_mask);
*pipe_mask = BIT(ffs(*pipe_mask) - 1);
}
if (mst_pipe_mask && mst_pipe_mask != *pipe_mask)
DRM_DEBUG_KMS("Conflicting MST and non-MST encoders for port %c (pipe_mask %02x mst_pipe_mask %02x)\n",
port_name(port), *pipe_mask, mst_pipe_mask);
else
*is_dp_mst = mst_pipe_mask;
out:
if (*pipe_mask && IS_GEN9_LP(dev_priv)) {
tmp = I915_READ(BXT_PHY_CTL(port));
if ((tmp & (BXT_PHY_CMNLANE_POWERDOWN_ACK |
BXT_PHY_LANE_POWERDOWN_ACK |
BXT_PHY_LANE_ENABLED)) != BXT_PHY_LANE_ENABLED)
DRM_ERROR("Port %c enabled but PHY powered down? "
"(PHY_CTL %08x)\n", port_name(port), tmp);
}
intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
}
bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
enum pipe *pipe)
{
u8 pipe_mask;
bool is_mst;
intel_ddi_get_encoder_pipes(encoder, &pipe_mask, &is_mst);
if (is_mst || !pipe_mask)
return false;
*pipe = ffs(pipe_mask) - 1;
return true;
}
static inline enum intel_display_power_domain
intel_ddi_main_link_aux_domain(struct intel_digital_port *dig_port)
{
/* CNL+ HW requires corresponding AUX IOs to be powered up for PSR with
* DC states enabled at the same time, while for driver initiated AUX
* transfers we need the same AUX IOs to be powered but with DC states
* disabled. Accordingly use the AUX power domain here which leaves DC
* states enabled.
* However, for non-A AUX ports the corresponding non-EDP transcoders
* would have already enabled power well 2 and DC_OFF. This means we can
* acquire a wider POWER_DOMAIN_AUX_{B,C,D,F} reference instead of a
* specific AUX_IO reference without powering up any extra wells.
* Note that PSR is enabled only on Port A even though this function
* returns the correct domain for other ports too.
*/
return dig_port->aux_ch == AUX_CH_A ? POWER_DOMAIN_AUX_IO_A :
intel_aux_power_domain(dig_port);
}
static void intel_ddi_get_power_domains(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_digital_port *dig_port;
/*
* TODO: Add support for MST encoders. Atm, the following should never
* happen since fake-MST encoders don't set their get_power_domains()
* hook.
*/
if (WARN_ON(intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST)))
return;
dig_port = enc_to_dig_port(&encoder->base);
intel_display_power_get(dev_priv, dig_port->ddi_io_power_domain);
/*
* AUX power is only needed for (e)DP mode, and for HDMI mode on TC
* ports.
*/
if (intel_crtc_has_dp_encoder(crtc_state) ||
intel_port_is_tc(dev_priv, encoder->port))
intel_display_power_get(dev_priv,
intel_ddi_main_link_aux_domain(dig_port));
/*
* VDSC power is needed when DSC is enabled
*/
if (crtc_state->dsc_params.compression_enable)
intel_display_power_get(dev_priv,
intel_dsc_power_domain(crtc_state));
}
void intel_ddi_enable_pipe_clock(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_encoder *encoder = intel_ddi_get_crtc_encoder(crtc);
enum port port = encoder->port;
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (cpu_transcoder != TRANSCODER_EDP)
I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
TRANS_CLK_SEL_PORT(port));
}
void intel_ddi_disable_pipe_clock(const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (cpu_transcoder != TRANSCODER_EDP)
I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
TRANS_CLK_SEL_DISABLED);
}
static void _skl_ddi_set_iboost(struct drm_i915_private *dev_priv,
enum port port, u8 iboost)
{
u32 tmp;
tmp = I915_READ(DISPIO_CR_TX_BMU_CR0);
tmp &= ~(BALANCE_LEG_MASK(port) | BALANCE_LEG_DISABLE(port));
if (iboost)
tmp |= iboost << BALANCE_LEG_SHIFT(port);
else
tmp |= BALANCE_LEG_DISABLE(port);
I915_WRITE(DISPIO_CR_TX_BMU_CR0, tmp);
}
static void skl_ddi_set_iboost(struct intel_encoder *encoder,
int level, enum intel_output_type type)
{
struct intel_digital_port *intel_dig_port = enc_to_dig_port(&encoder->base);
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum port port = encoder->port;
u8 iboost;
if (type == INTEL_OUTPUT_HDMI)
iboost = dev_priv->vbt.ddi_port_info[port].hdmi_boost_level;
else
iboost = dev_priv->vbt.ddi_port_info[port].dp_boost_level;
if (iboost == 0) {
const struct ddi_buf_trans *ddi_translations;
int n_entries;
if (type == INTEL_OUTPUT_HDMI)
ddi_translations = intel_ddi_get_buf_trans_hdmi(dev_priv, &n_entries);
else if (type == INTEL_OUTPUT_EDP)
ddi_translations = intel_ddi_get_buf_trans_edp(dev_priv, port, &n_entries);
else
ddi_translations = intel_ddi_get_buf_trans_dp(dev_priv, port, &n_entries);
if (WARN_ON_ONCE(!ddi_translations))
return;
if (WARN_ON_ONCE(level >= n_entries))
level = n_entries - 1;
iboost = ddi_translations[level].i_boost;
}
/* Make sure that the requested I_boost is valid */
if (iboost && iboost != 0x1 && iboost != 0x3 && iboost != 0x7) {
DRM_ERROR("Invalid I_boost value %u\n", iboost);
return;
}
_skl_ddi_set_iboost(dev_priv, port, iboost);
if (port == PORT_A && intel_dig_port->max_lanes == 4)
_skl_ddi_set_iboost(dev_priv, PORT_E, iboost);
}
static void bxt_ddi_vswing_sequence(struct intel_encoder *encoder,
int level, enum intel_output_type type)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
const struct bxt_ddi_buf_trans *ddi_translations;
enum port port = encoder->port;
int n_entries;
if (type == INTEL_OUTPUT_HDMI)
ddi_translations = bxt_get_buf_trans_hdmi(dev_priv, &n_entries);
else if (type == INTEL_OUTPUT_EDP)
ddi_translations = bxt_get_buf_trans_edp(dev_priv, &n_entries);
else
ddi_translations = bxt_get_buf_trans_dp(dev_priv, &n_entries);
if (WARN_ON_ONCE(!ddi_translations))
return;
if (WARN_ON_ONCE(level >= n_entries))
level = n_entries - 1;
bxt_ddi_phy_set_signal_level(dev_priv, port,
ddi_translations[level].margin,
ddi_translations[level].scale,
ddi_translations[level].enable,
ddi_translations[level].deemphasis);
}
u8 intel_ddi_dp_voltage_max(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
enum port port = encoder->port;
int n_entries;
if (INTEL_GEN(dev_priv) >= 11) {
if (intel_port_is_combophy(dev_priv, port))
icl_get_combo_buf_trans(dev_priv, port, encoder->type,
intel_dp->link_rate, &n_entries);
else
n_entries = ARRAY_SIZE(icl_mg_phy_ddi_translations);
} else if (IS_CANNONLAKE(dev_priv)) {
if (encoder->type == INTEL_OUTPUT_EDP)
cnl_get_buf_trans_edp(dev_priv, &n_entries);
else
cnl_get_buf_trans_dp(dev_priv, &n_entries);
} else if (IS_GEN9_LP(dev_priv)) {
if (encoder->type == INTEL_OUTPUT_EDP)
bxt_get_buf_trans_edp(dev_priv, &n_entries);
else
bxt_get_buf_trans_dp(dev_priv, &n_entries);
} else {
if (encoder->type == INTEL_OUTPUT_EDP)
intel_ddi_get_buf_trans_edp(dev_priv, port, &n_entries);
else
intel_ddi_get_buf_trans_dp(dev_priv, port, &n_entries);
}
if (WARN_ON(n_entries < 1))
n_entries = 1;
if (WARN_ON(n_entries > ARRAY_SIZE(index_to_dp_signal_levels)))
n_entries = ARRAY_SIZE(index_to_dp_signal_levels);
return index_to_dp_signal_levels[n_entries - 1] &
DP_TRAIN_VOLTAGE_SWING_MASK;
}
/*
* We assume that the full set of pre-emphasis values can be
* used on all DDI platforms. Should that change we need to
* rethink this code.
*/
u8 intel_ddi_dp_pre_emphasis_max(struct intel_encoder *encoder, u8 voltage_swing)
{
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
return DP_TRAIN_PRE_EMPH_LEVEL_3;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
return DP_TRAIN_PRE_EMPH_LEVEL_2;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
return DP_TRAIN_PRE_EMPH_LEVEL_1;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
default:
return DP_TRAIN_PRE_EMPH_LEVEL_0;
}
}
static void cnl_ddi_vswing_program(struct intel_encoder *encoder,
int level, enum intel_output_type type)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
const struct cnl_ddi_buf_trans *ddi_translations;
enum port port = encoder->port;
int n_entries, ln;
u32 val;
if (type == INTEL_OUTPUT_HDMI)
ddi_translations = cnl_get_buf_trans_hdmi(dev_priv, &n_entries);
else if (type == INTEL_OUTPUT_EDP)
ddi_translations = cnl_get_buf_trans_edp(dev_priv, &n_entries);
else
ddi_translations = cnl_get_buf_trans_dp(dev_priv, &n_entries);
if (WARN_ON_ONCE(!ddi_translations))
return;
if (WARN_ON_ONCE(level >= n_entries))
level = n_entries - 1;
/* Set PORT_TX_DW5 Scaling Mode Sel to 010b. */
val = I915_READ(CNL_PORT_TX_DW5_LN0(port));
val &= ~SCALING_MODE_SEL_MASK;
val |= SCALING_MODE_SEL(2);
I915_WRITE(CNL_PORT_TX_DW5_GRP(port), val);
/* Program PORT_TX_DW2 */
val = I915_READ(CNL_PORT_TX_DW2_LN0(port));
val &= ~(SWING_SEL_LOWER_MASK | SWING_SEL_UPPER_MASK |
RCOMP_SCALAR_MASK);
val |= SWING_SEL_UPPER(ddi_translations[level].dw2_swing_sel);
val |= SWING_SEL_LOWER(ddi_translations[level].dw2_swing_sel);
/* Rcomp scalar is fixed as 0x98 for every table entry */
val |= RCOMP_SCALAR(0x98);
I915_WRITE(CNL_PORT_TX_DW2_GRP(port), val);
/* Program PORT_TX_DW4 */
/* We cannot write to GRP. It would overrite individual loadgen */
for (ln = 0; ln < 4; ln++) {
val = I915_READ(CNL_PORT_TX_DW4_LN(ln, port));
val &= ~(POST_CURSOR_1_MASK | POST_CURSOR_2_MASK |
CURSOR_COEFF_MASK);
val |= POST_CURSOR_1(ddi_translations[level].dw4_post_cursor_1);
val |= POST_CURSOR_2(ddi_translations[level].dw4_post_cursor_2);
val |= CURSOR_COEFF(ddi_translations[level].dw4_cursor_coeff);
I915_WRITE(CNL_PORT_TX_DW4_LN(ln, port), val);
}
/* Program PORT_TX_DW5 */
/* All DW5 values are fixed for every table entry */
val = I915_READ(CNL_PORT_TX_DW5_LN0(port));
val &= ~RTERM_SELECT_MASK;
val |= RTERM_SELECT(6);
val |= TAP3_DISABLE;
I915_WRITE(CNL_PORT_TX_DW5_GRP(port), val);
/* Program PORT_TX_DW7 */
val = I915_READ(CNL_PORT_TX_DW7_LN0(port));
val &= ~N_SCALAR_MASK;
val |= N_SCALAR(ddi_translations[level].dw7_n_scalar);
I915_WRITE(CNL_PORT_TX_DW7_GRP(port), val);
}
static void cnl_ddi_vswing_sequence(struct intel_encoder *encoder,
int level, enum intel_output_type type)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum port port = encoder->port;
int width, rate, ln;
u32 val;
if (type == INTEL_OUTPUT_HDMI) {
width = 4;
rate = 0; /* Rate is always < than 6GHz for HDMI */
} else {
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
width = intel_dp->lane_count;
rate = intel_dp->link_rate;
}
/*
* 1. If port type is eDP or DP,
* set PORT_PCS_DW1 cmnkeeper_enable to 1b,
* else clear to 0b.
*/
val = I915_READ(CNL_PORT_PCS_DW1_LN0(port));
if (type != INTEL_OUTPUT_HDMI)
val |= COMMON_KEEPER_EN;
else
val &= ~COMMON_KEEPER_EN;
I915_WRITE(CNL_PORT_PCS_DW1_GRP(port), val);
/* 2. Program loadgen select */
/*
* Program PORT_TX_DW4_LN depending on Bit rate and used lanes
* <= 6 GHz and 4 lanes (LN0=0, LN1=1, LN2=1, LN3=1)
* <= 6 GHz and 1,2 lanes (LN0=0, LN1=1, LN2=1, LN3=0)
* > 6 GHz (LN0=0, LN1=0, LN2=0, LN3=0)
*/
for (ln = 0; ln <= 3; ln++) {
val = I915_READ(CNL_PORT_TX_DW4_LN(ln, port));
val &= ~LOADGEN_SELECT;
if ((rate <= 600000 && width == 4 && ln >= 1) ||
(rate <= 600000 && width < 4 && (ln == 1 || ln == 2))) {
val |= LOADGEN_SELECT;
}
I915_WRITE(CNL_PORT_TX_DW4_LN(ln, port), val);
}
/* 3. Set PORT_CL_DW5 SUS Clock Config to 11b */
val = I915_READ(CNL_PORT_CL1CM_DW5);
val |= SUS_CLOCK_CONFIG;
I915_WRITE(CNL_PORT_CL1CM_DW5, val);
/* 4. Clear training enable to change swing values */
val = I915_READ(CNL_PORT_TX_DW5_LN0(port));
val &= ~TX_TRAINING_EN;
I915_WRITE(CNL_PORT_TX_DW5_GRP(port), val);
/* 5. Program swing and de-emphasis */
cnl_ddi_vswing_program(encoder, level, type);
/* 6. Set training enable to trigger update */
val = I915_READ(CNL_PORT_TX_DW5_LN0(port));
val |= TX_TRAINING_EN;
I915_WRITE(CNL_PORT_TX_DW5_GRP(port), val);
}
static void icl_ddi_combo_vswing_program(struct drm_i915_private *dev_priv,
u32 level, enum port port, int type,
int rate)
{
const struct cnl_ddi_buf_trans *ddi_translations = NULL;
u32 n_entries, val;
int ln;
ddi_translations = icl_get_combo_buf_trans(dev_priv, port, type,
rate, &n_entries);
if (!ddi_translations)
return;
if (level >= n_entries) {
DRM_DEBUG_KMS("DDI translation not found for level %d. Using %d instead.", level, n_entries - 1);
level = n_entries - 1;
}
/* Set PORT_TX_DW5 */
val = I915_READ(ICL_PORT_TX_DW5_LN0(port));
val &= ~(SCALING_MODE_SEL_MASK | RTERM_SELECT_MASK |
TAP2_DISABLE | TAP3_DISABLE);
val |= SCALING_MODE_SEL(0x2);
val |= RTERM_SELECT(0x6);
val |= TAP3_DISABLE;
I915_WRITE(ICL_PORT_TX_DW5_GRP(port), val);
/* Program PORT_TX_DW2 */
val = I915_READ(ICL_PORT_TX_DW2_LN0(port));
val &= ~(SWING_SEL_LOWER_MASK | SWING_SEL_UPPER_MASK |
RCOMP_SCALAR_MASK);
val |= SWING_SEL_UPPER(ddi_translations[level].dw2_swing_sel);
val |= SWING_SEL_LOWER(ddi_translations[level].dw2_swing_sel);
/* Program Rcomp scalar for every table entry */
val |= RCOMP_SCALAR(0x98);
I915_WRITE(ICL_PORT_TX_DW2_GRP(port), val);
/* Program PORT_TX_DW4 */
/* We cannot write to GRP. It would overwrite individual loadgen. */
for (ln = 0; ln <= 3; ln++) {
val = I915_READ(ICL_PORT_TX_DW4_LN(ln, port));
val &= ~(POST_CURSOR_1_MASK | POST_CURSOR_2_MASK |
CURSOR_COEFF_MASK);
val |= POST_CURSOR_1(ddi_translations[level].dw4_post_cursor_1);
val |= POST_CURSOR_2(ddi_translations[level].dw4_post_cursor_2);
val |= CURSOR_COEFF(ddi_translations[level].dw4_cursor_coeff);
I915_WRITE(ICL_PORT_TX_DW4_LN(ln, port), val);
}
/* Program PORT_TX_DW7 */
val = I915_READ(ICL_PORT_TX_DW7_LN0(port));
val &= ~N_SCALAR_MASK;
val |= N_SCALAR(ddi_translations[level].dw7_n_scalar);
I915_WRITE(ICL_PORT_TX_DW7_GRP(port), val);
}
static void icl_combo_phy_ddi_vswing_sequence(struct intel_encoder *encoder,
u32 level,
enum intel_output_type type)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum port port = encoder->port;
int width = 0;
int rate = 0;
u32 val;
int ln = 0;
if (type == INTEL_OUTPUT_HDMI) {
width = 4;
/* Rate is always < than 6GHz for HDMI */
} else {
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
width = intel_dp->lane_count;
rate = intel_dp->link_rate;
}
/*
* 1. If port type is eDP or DP,
* set PORT_PCS_DW1 cmnkeeper_enable to 1b,
* else clear to 0b.
*/
val = I915_READ(ICL_PORT_PCS_DW1_LN0(port));
if (type == INTEL_OUTPUT_HDMI)
val &= ~COMMON_KEEPER_EN;
else
val |= COMMON_KEEPER_EN;
I915_WRITE(ICL_PORT_PCS_DW1_GRP(port), val);
/* 2. Program loadgen select */
/*
* Program PORT_TX_DW4_LN depending on Bit rate and used lanes
* <= 6 GHz and 4 lanes (LN0=0, LN1=1, LN2=1, LN3=1)
* <= 6 GHz and 1,2 lanes (LN0=0, LN1=1, LN2=1, LN3=0)
* > 6 GHz (LN0=0, LN1=0, LN2=0, LN3=0)
*/
for (ln = 0; ln <= 3; ln++) {
val = I915_READ(ICL_PORT_TX_DW4_LN(ln, port));
val &= ~LOADGEN_SELECT;
if ((rate <= 600000 && width == 4 && ln >= 1) ||
(rate <= 600000 && width < 4 && (ln == 1 || ln == 2))) {
val |= LOADGEN_SELECT;
}
I915_WRITE(ICL_PORT_TX_DW4_LN(ln, port), val);
}
/* 3. Set PORT_CL_DW5 SUS Clock Config to 11b */
val = I915_READ(ICL_PORT_CL_DW5(port));
val |= SUS_CLOCK_CONFIG;
I915_WRITE(ICL_PORT_CL_DW5(port), val);
/* 4. Clear training enable to change swing values */
val = I915_READ(ICL_PORT_TX_DW5_LN0(port));
val &= ~TX_TRAINING_EN;
I915_WRITE(ICL_PORT_TX_DW5_GRP(port), val);
/* 5. Program swing and de-emphasis */
icl_ddi_combo_vswing_program(dev_priv, level, port, type, rate);
/* 6. Set training enable to trigger update */
val = I915_READ(ICL_PORT_TX_DW5_LN0(port));
val |= TX_TRAINING_EN;
I915_WRITE(ICL_PORT_TX_DW5_GRP(port), val);
}
static void icl_mg_phy_ddi_vswing_sequence(struct intel_encoder *encoder,
int link_clock,
u32 level)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum port port = encoder->port;
const struct icl_mg_phy_ddi_buf_trans *ddi_translations;
u32 n_entries, val;
int ln;
n_entries = ARRAY_SIZE(icl_mg_phy_ddi_translations);
ddi_translations = icl_mg_phy_ddi_translations;
/* The table does not have values for level 3 and level 9. */
if (level >= n_entries || level == 3 || level == 9) {
DRM_DEBUG_KMS("DDI translation not found for level %d. Using %d instead.",
level, n_entries - 2);
level = n_entries - 2;
}
/* Set MG_TX_LINK_PARAMS cri_use_fs32 to 0. */
for (ln = 0; ln < 2; ln++) {
val = I915_READ(MG_TX1_LINK_PARAMS(ln, port));
val &= ~CRI_USE_FS32;
I915_WRITE(MG_TX1_LINK_PARAMS(ln, port), val);
val = I915_READ(MG_TX2_LINK_PARAMS(ln, port));
val &= ~CRI_USE_FS32;
I915_WRITE(MG_TX2_LINK_PARAMS(ln, port), val);
}
/* Program MG_TX_SWINGCTRL with values from vswing table */
for (ln = 0; ln < 2; ln++) {
val = I915_READ(MG_TX1_SWINGCTRL(ln, port));
val &= ~CRI_TXDEEMPH_OVERRIDE_17_12_MASK;
val |= CRI_TXDEEMPH_OVERRIDE_17_12(
ddi_translations[level].cri_txdeemph_override_17_12);
I915_WRITE(MG_TX1_SWINGCTRL(ln, port), val);
val = I915_READ(MG_TX2_SWINGCTRL(ln, port));
val &= ~CRI_TXDEEMPH_OVERRIDE_17_12_MASK;
val |= CRI_TXDEEMPH_OVERRIDE_17_12(
ddi_translations[level].cri_txdeemph_override_17_12);
I915_WRITE(MG_TX2_SWINGCTRL(ln, port), val);
}
/* Program MG_TX_DRVCTRL with values from vswing table */
for (ln = 0; ln < 2; ln++) {
val = I915_READ(MG_TX1_DRVCTRL(ln, port));
val &= ~(CRI_TXDEEMPH_OVERRIDE_11_6_MASK |
CRI_TXDEEMPH_OVERRIDE_5_0_MASK);
val |= CRI_TXDEEMPH_OVERRIDE_5_0(
ddi_translations[level].cri_txdeemph_override_5_0) |
CRI_TXDEEMPH_OVERRIDE_11_6(
ddi_translations[level].cri_txdeemph_override_11_6) |
CRI_TXDEEMPH_OVERRIDE_EN;
I915_WRITE(MG_TX1_DRVCTRL(ln, port), val);
val = I915_READ(MG_TX2_DRVCTRL(ln, port));
val &= ~(CRI_TXDEEMPH_OVERRIDE_11_6_MASK |
CRI_TXDEEMPH_OVERRIDE_5_0_MASK);
val |= CRI_TXDEEMPH_OVERRIDE_5_0(
ddi_translations[level].cri_txdeemph_override_5_0) |
CRI_TXDEEMPH_OVERRIDE_11_6(
ddi_translations[level].cri_txdeemph_override_11_6) |
CRI_TXDEEMPH_OVERRIDE_EN;
I915_WRITE(MG_TX2_DRVCTRL(ln, port), val);
/* FIXME: Program CRI_LOADGEN_SEL after the spec is updated */
}
/*
* Program MG_CLKHUB<LN, port being used> with value from frequency table
* In case of Legacy mode on MG PHY, both TX1 and TX2 enabled so use the
* values from table for which TX1 and TX2 enabled.
*/
for (ln = 0; ln < 2; ln++) {
val = I915_READ(MG_CLKHUB(ln, port));
if (link_clock < 300000)
val |= CFG_LOW_RATE_LKREN_EN;
else
val &= ~CFG_LOW_RATE_LKREN_EN;
I915_WRITE(MG_CLKHUB(ln, port), val);
}
/* Program the MG_TX_DCC<LN, port being used> based on the link frequency */
for (ln = 0; ln < 2; ln++) {
val = I915_READ(MG_TX1_DCC(ln, port));
val &= ~CFG_AMI_CK_DIV_OVERRIDE_VAL_MASK;
if (link_clock <= 500000) {
val &= ~CFG_AMI_CK_DIV_OVERRIDE_EN;
} else {
val |= CFG_AMI_CK_DIV_OVERRIDE_EN |
CFG_AMI_CK_DIV_OVERRIDE_VAL(1);
}
I915_WRITE(MG_TX1_DCC(ln, port), val);
val = I915_READ(MG_TX2_DCC(ln, port));
val &= ~CFG_AMI_CK_DIV_OVERRIDE_VAL_MASK;
if (link_clock <= 500000) {
val &= ~CFG_AMI_CK_DIV_OVERRIDE_EN;
} else {
val |= CFG_AMI_CK_DIV_OVERRIDE_EN |
CFG_AMI_CK_DIV_OVERRIDE_VAL(1);
}
I915_WRITE(MG_TX2_DCC(ln, port), val);
}
/* Program MG_TX_PISO_READLOAD with values from vswing table */
for (ln = 0; ln < 2; ln++) {
val = I915_READ(MG_TX1_PISO_READLOAD(ln, port));
val |= CRI_CALCINIT;
I915_WRITE(MG_TX1_PISO_READLOAD(ln, port), val);
val = I915_READ(MG_TX2_PISO_READLOAD(ln, port));
val |= CRI_CALCINIT;
I915_WRITE(MG_TX2_PISO_READLOAD(ln, port), val);
}
}
static void icl_ddi_vswing_sequence(struct intel_encoder *encoder,
int link_clock,
u32 level,
enum intel_output_type type)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum port port = encoder->port;
if (intel_port_is_combophy(dev_priv, port))
icl_combo_phy_ddi_vswing_sequence(encoder, level, type);
else
icl_mg_phy_ddi_vswing_sequence(encoder, link_clock, level);
}
static u32 translate_signal_level(int signal_levels)
{
int i;
for (i = 0; i < ARRAY_SIZE(index_to_dp_signal_levels); i++) {
if (index_to_dp_signal_levels[i] == signal_levels)
return i;
}
WARN(1, "Unsupported voltage swing/pre-emphasis level: 0x%x\n",
signal_levels);
return 0;
}
static u32 intel_ddi_dp_level(struct intel_dp *intel_dp)
{
u8 train_set = intel_dp->train_set[0];
int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
DP_TRAIN_PRE_EMPHASIS_MASK);
return translate_signal_level(signal_levels);
}
u32 bxt_signal_levels(struct intel_dp *intel_dp)
{
struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
struct intel_encoder *encoder = &dport->base;
int level = intel_ddi_dp_level(intel_dp);
if (INTEL_GEN(dev_priv) >= 11)
icl_ddi_vswing_sequence(encoder, intel_dp->link_rate,
level, encoder->type);
else if (IS_CANNONLAKE(dev_priv))
cnl_ddi_vswing_sequence(encoder, level, encoder->type);
else
bxt_ddi_vswing_sequence(encoder, level, encoder->type);
return 0;
}
u32 ddi_signal_levels(struct intel_dp *intel_dp)
{
struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
struct intel_encoder *encoder = &dport->base;
int level = intel_ddi_dp_level(intel_dp);
if (IS_GEN9_BC(dev_priv))
skl_ddi_set_iboost(encoder, level, encoder->type);
return DDI_BUF_TRANS_SELECT(level);
}
static inline
u32 icl_dpclka_cfgcr0_clk_off(struct drm_i915_private *dev_priv,
enum port port)
{
if (intel_port_is_combophy(dev_priv, port)) {
return ICL_DPCLKA_CFGCR0_DDI_CLK_OFF(port);
} else if (intel_port_is_tc(dev_priv, port)) {
enum tc_port tc_port = intel_port_to_tc(dev_priv, port);
return ICL_DPCLKA_CFGCR0_TC_CLK_OFF(tc_port);
}
return 0;
}
static void icl_map_plls_to_ports(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_shared_dpll *pll = crtc_state->shared_dpll;
enum port port = encoder->port;
u32 val;
mutex_lock(&dev_priv->dpll_lock);
val = I915_READ(DPCLKA_CFGCR0_ICL);
WARN_ON((val & icl_dpclka_cfgcr0_clk_off(dev_priv, port)) == 0);
if (intel_port_is_combophy(dev_priv, port)) {
val &= ~DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port);
val |= DPCLKA_CFGCR0_DDI_CLK_SEL(pll->info->id, port);
I915_WRITE(DPCLKA_CFGCR0_ICL, val);
POSTING_READ(DPCLKA_CFGCR0_ICL);
}
val &= ~icl_dpclka_cfgcr0_clk_off(dev_priv, port);
I915_WRITE(DPCLKA_CFGCR0_ICL, val);
mutex_unlock(&dev_priv->dpll_lock);
}
static void icl_unmap_plls_to_ports(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum port port = encoder->port;
u32 val;
mutex_lock(&dev_priv->dpll_lock);
val = I915_READ(DPCLKA_CFGCR0_ICL);
val |= icl_dpclka_cfgcr0_clk_off(dev_priv, port);
I915_WRITE(DPCLKA_CFGCR0_ICL, val);
mutex_unlock(&dev_priv->dpll_lock);
}
void icl_sanitize_encoder_pll_mapping(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
u32 val;
enum port port;
u32 port_mask;
bool ddi_clk_needed;
/*
* In case of DP MST, we sanitize the primary encoder only, not the
* virtual ones.
*/
if (encoder->type == INTEL_OUTPUT_DP_MST)
return;
if (!encoder->base.crtc && intel_encoder_is_dp(encoder)) {
u8 pipe_mask;
bool is_mst;
intel_ddi_get_encoder_pipes(encoder, &pipe_mask, &is_mst);
/*
* In the unlikely case that BIOS enables DP in MST mode, just
* warn since our MST HW readout is incomplete.
*/
if (WARN_ON(is_mst))
return;
}
port_mask = BIT(encoder->port);
ddi_clk_needed = encoder->base.crtc;
if (encoder->type == INTEL_OUTPUT_DSI) {
struct intel_encoder *other_encoder;
port_mask = intel_dsi_encoder_ports(encoder);
/*
* Sanity check that we haven't incorrectly registered another
* encoder using any of the ports of this DSI encoder.
*/
for_each_intel_encoder(&dev_priv->drm, other_encoder) {
if (other_encoder == encoder)
continue;
if (WARN_ON(port_mask & BIT(other_encoder->port)))
return;
}
/*
* DSI ports should have their DDI clock ungated when disabled
* and gated when enabled.
*/
ddi_clk_needed = !encoder->base.crtc;
}
val = I915_READ(DPCLKA_CFGCR0_ICL);
for_each_port_masked(port, port_mask) {
bool ddi_clk_ungated = !(val &
icl_dpclka_cfgcr0_clk_off(dev_priv,
port));
if (ddi_clk_needed == ddi_clk_ungated)
continue;
/*
* Punt on the case now where clock is gated, but it would
* be needed by the port. Something else is really broken then.
*/
if (WARN_ON(ddi_clk_needed))
continue;
DRM_NOTE("Port %c is disabled/in DSI mode with an ungated DDI clock, gate it\n",
port_name(port));
val |= icl_dpclka_cfgcr0_clk_off(dev_priv, port);
I915_WRITE(DPCLKA_CFGCR0_ICL, val);
}
}
static void intel_ddi_clk_select(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum port port = encoder->port;
u32 val;
const struct intel_shared_dpll *pll = crtc_state->shared_dpll;
if (WARN_ON(!pll))
return;
mutex_lock(&dev_priv->dpll_lock);
if (INTEL_GEN(dev_priv) >= 11) {
if (!intel_port_is_combophy(dev_priv, port))
I915_WRITE(DDI_CLK_SEL(port),
icl_pll_to_ddi_clk_sel(encoder, crtc_state));
} else if (IS_CANNONLAKE(dev_priv)) {
/* Configure DPCLKA_CFGCR0 to map the DPLL to the DDI. */
val = I915_READ(DPCLKA_CFGCR0);
val &= ~DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port);
val |= DPCLKA_CFGCR0_DDI_CLK_SEL(pll->info->id, port);
I915_WRITE(DPCLKA_CFGCR0, val);
/*
* Configure DPCLKA_CFGCR0 to turn on the clock for the DDI.
* This step and the step before must be done with separate
* register writes.
*/
val = I915_READ(DPCLKA_CFGCR0);
val &= ~DPCLKA_CFGCR0_DDI_CLK_OFF(port);
I915_WRITE(DPCLKA_CFGCR0, val);
} else if (IS_GEN9_BC(dev_priv)) {
/* DDI -> PLL mapping */
val = I915_READ(DPLL_CTRL2);
val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
val |= (DPLL_CTRL2_DDI_CLK_SEL(pll->info->id, port) |
DPLL_CTRL2_DDI_SEL_OVERRIDE(port));
I915_WRITE(DPLL_CTRL2, val);
} else if (INTEL_GEN(dev_priv) < 9) {
I915_WRITE(PORT_CLK_SEL(port), hsw_pll_to_ddi_pll_sel(pll));
}
mutex_unlock(&dev_priv->dpll_lock);
}
static void intel_ddi_clk_disable(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum port port = encoder->port;
if (INTEL_GEN(dev_priv) >= 11) {
if (!intel_port_is_combophy(dev_priv, port))
I915_WRITE(DDI_CLK_SEL(port), DDI_CLK_SEL_NONE);
} else if (IS_CANNONLAKE(dev_priv)) {
I915_WRITE(DPCLKA_CFGCR0, I915_READ(DPCLKA_CFGCR0) |
DPCLKA_CFGCR0_DDI_CLK_OFF(port));
} else if (IS_GEN9_BC(dev_priv)) {
I915_WRITE(DPLL_CTRL2, I915_READ(DPLL_CTRL2) |
DPLL_CTRL2_DDI_CLK_OFF(port));
} else if (INTEL_GEN(dev_priv) < 9) {
I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
}
}
static void icl_enable_phy_clock_gating(struct intel_digital_port *dig_port)
{
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
enum port port = dig_port->base.port;
enum tc_port tc_port = intel_port_to_tc(dev_priv, port);
i915_reg_t mg_regs[2] = { MG_DP_MODE(0, port), MG_DP_MODE(1, port) };
u32 val;
int i;
if (tc_port == PORT_TC_NONE)
return;
for (i = 0; i < ARRAY_SIZE(mg_regs); i++) {
val = I915_READ(mg_regs[i]);
val |= MG_DP_MODE_CFG_TR2PWR_GATING |
MG_DP_MODE_CFG_TRPWR_GATING |
MG_DP_MODE_CFG_CLNPWR_GATING |
MG_DP_MODE_CFG_DIGPWR_GATING |
MG_DP_MODE_CFG_GAONPWR_GATING;
I915_WRITE(mg_regs[i], val);
}
val = I915_READ(MG_MISC_SUS0(tc_port));
val |= MG_MISC_SUS0_SUSCLK_DYNCLKGATE_MODE(3) |
MG_MISC_SUS0_CFG_TR2PWR_GATING |
MG_MISC_SUS0_CFG_CL2PWR_GATING |
MG_MISC_SUS0_CFG_GAONPWR_GATING |
MG_MISC_SUS0_CFG_TRPWR_GATING |
MG_MISC_SUS0_CFG_CL1PWR_GATING |
MG_MISC_SUS0_CFG_DGPWR_GATING;
I915_WRITE(MG_MISC_SUS0(tc_port), val);
}
static void icl_disable_phy_clock_gating(struct intel_digital_port *dig_port)
{
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
enum port port = dig_port->base.port;
enum tc_port tc_port = intel_port_to_tc(dev_priv, port);
i915_reg_t mg_regs[2] = { MG_DP_MODE(port, 0), MG_DP_MODE(port, 1) };
u32 val;
int i;
if (tc_port == PORT_TC_NONE)
return;
for (i = 0; i < ARRAY_SIZE(mg_regs); i++) {
val = I915_READ(mg_regs[i]);
val &= ~(MG_DP_MODE_CFG_TR2PWR_GATING |
MG_DP_MODE_CFG_TRPWR_GATING |
MG_DP_MODE_CFG_CLNPWR_GATING |
MG_DP_MODE_CFG_DIGPWR_GATING |
MG_DP_MODE_CFG_GAONPWR_GATING);
I915_WRITE(mg_regs[i], val);
}
val = I915_READ(MG_MISC_SUS0(tc_port));
val &= ~(MG_MISC_SUS0_SUSCLK_DYNCLKGATE_MODE_MASK |
MG_MISC_SUS0_CFG_TR2PWR_GATING |
MG_MISC_SUS0_CFG_CL2PWR_GATING |
MG_MISC_SUS0_CFG_GAONPWR_GATING |
MG_MISC_SUS0_CFG_TRPWR_GATING |
MG_MISC_SUS0_CFG_CL1PWR_GATING |
MG_MISC_SUS0_CFG_DGPWR_GATING);
I915_WRITE(MG_MISC_SUS0(tc_port), val);
}
static void icl_program_mg_dp_mode(struct intel_digital_port *intel_dig_port)
{
struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
enum port port = intel_dig_port->base.port;
enum tc_port tc_port = intel_port_to_tc(dev_priv, port);
u32 ln0, ln1, lane_info;
if (tc_port == PORT_TC_NONE || intel_dig_port->tc_type == TC_PORT_TBT)
return;
ln0 = I915_READ(MG_DP_MODE(0, port));
ln1 = I915_READ(MG_DP_MODE(1, port));
switch (intel_dig_port->tc_type) {
case TC_PORT_TYPEC:
ln0 &= ~(MG_DP_MODE_CFG_DP_X1_MODE | MG_DP_MODE_CFG_DP_X2_MODE);
ln1 &= ~(MG_DP_MODE_CFG_DP_X1_MODE | MG_DP_MODE_CFG_DP_X2_MODE);
lane_info = (I915_READ(PORT_TX_DFLEXDPSP) &
DP_LANE_ASSIGNMENT_MASK(tc_port)) >>
DP_LANE_ASSIGNMENT_SHIFT(tc_port);
switch (lane_info) {
case 0x1:
case 0x4:
break;
case 0x2:
ln0 |= MG_DP_MODE_CFG_DP_X1_MODE;
break;
case 0x3:
ln0 |= MG_DP_MODE_CFG_DP_X1_MODE |
MG_DP_MODE_CFG_DP_X2_MODE;
break;
case 0x8:
ln1 |= MG_DP_MODE_CFG_DP_X1_MODE;
break;
case 0xC:
ln1 |= MG_DP_MODE_CFG_DP_X1_MODE |
MG_DP_MODE_CFG_DP_X2_MODE;
break;
case 0xF:
ln0 |= MG_DP_MODE_CFG_DP_X1_MODE |
MG_DP_MODE_CFG_DP_X2_MODE;
ln1 |= MG_DP_MODE_CFG_DP_X1_MODE |
MG_DP_MODE_CFG_DP_X2_MODE;
break;
default:
MISSING_CASE(lane_info);
}
break;
case TC_PORT_LEGACY:
ln0 |= MG_DP_MODE_CFG_DP_X1_MODE | MG_DP_MODE_CFG_DP_X2_MODE;
ln1 |= MG_DP_MODE_CFG_DP_X1_MODE | MG_DP_MODE_CFG_DP_X2_MODE;
break;
default:
MISSING_CASE(intel_dig_port->tc_type);
return;
}
I915_WRITE(MG_DP_MODE(0, port), ln0);
I915_WRITE(MG_DP_MODE(1, port), ln1);
}
static void intel_dp_sink_set_fec_ready(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
if (!crtc_state->fec_enable)
return;
if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_FEC_CONFIGURATION, DP_FEC_READY) <= 0)
DRM_DEBUG_KMS("Failed to set FEC_READY in the sink\n");
}
static void intel_ddi_enable_fec(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum port port = encoder->port;
u32 val;
if (!crtc_state->fec_enable)
return;
val = I915_READ(DP_TP_CTL(port));
val |= DP_TP_CTL_FEC_ENABLE;
I915_WRITE(DP_TP_CTL(port), val);
if (intel_wait_for_register(&dev_priv->uncore, DP_TP_STATUS(port),
DP_TP_STATUS_FEC_ENABLE_LIVE,
DP_TP_STATUS_FEC_ENABLE_LIVE,
1))
DRM_ERROR("Timed out waiting for FEC Enable Status\n");
}
static void intel_ddi_disable_fec_state(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum port port = encoder->port;
u32 val;
if (!crtc_state->fec_enable)
return;
val = I915_READ(DP_TP_CTL(port));
val &= ~DP_TP_CTL_FEC_ENABLE;
I915_WRITE(DP_TP_CTL(port), val);
POSTING_READ(DP_TP_CTL(port));
}
static void intel_ddi_pre_enable_dp(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum port port = encoder->port;
struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
bool is_mst = intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST);
int level = intel_ddi_dp_level(intel_dp);
WARN_ON(is_mst && (port == PORT_A || port == PORT_E));
intel_dp_set_link_params(intel_dp, crtc_state->port_clock,
crtc_state->lane_count, is_mst);
intel_edp_panel_on(intel_dp);
intel_ddi_clk_select(encoder, crtc_state);
intel_display_power_get(dev_priv, dig_port->ddi_io_power_domain);
icl_program_mg_dp_mode(dig_port);
icl_disable_phy_clock_gating(dig_port);
if (INTEL_GEN(dev_priv) >= 11)
icl_ddi_vswing_sequence(encoder, crtc_state->port_clock,
level, encoder->type);
else if (IS_CANNONLAKE(dev_priv))
cnl_ddi_vswing_sequence(encoder, level, encoder->type);
else if (IS_GEN9_LP(dev_priv))
bxt_ddi_vswing_sequence(encoder, level, encoder->type);
else
intel_prepare_dp_ddi_buffers(encoder, crtc_state);
intel_ddi_init_dp_buf_reg(encoder);
if (!is_mst)
intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
intel_dp_sink_set_decompression_state(intel_dp, crtc_state,
true);
intel_dp_sink_set_fec_ready(intel_dp, crtc_state);
intel_dp_start_link_train(intel_dp);
if (port != PORT_A || INTEL_GEN(dev_priv) >= 9)
intel_dp_stop_link_train(intel_dp);
intel_ddi_enable_fec(encoder, crtc_state);
icl_enable_phy_clock_gating(dig_port);
if (!is_mst)
intel_ddi_enable_pipe_clock(crtc_state);
intel_dsc_enable(encoder, crtc_state);
}
static void intel_ddi_pre_enable_hdmi(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct intel_digital_port *intel_dig_port = enc_to_dig_port(&encoder->base);
struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum port port = encoder->port;
int level = intel_ddi_hdmi_level(dev_priv, port);
struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
intel_ddi_clk_select(encoder, crtc_state);
intel_display_power_get(dev_priv, dig_port->ddi_io_power_domain);
icl_program_mg_dp_mode(dig_port);
icl_disable_phy_clock_gating(dig_port);
if (INTEL_GEN(dev_priv) >= 11)
icl_ddi_vswing_sequence(encoder, crtc_state->port_clock,
level, INTEL_OUTPUT_HDMI);
else if (IS_CANNONLAKE(dev_priv))
cnl_ddi_vswing_sequence(encoder, level, INTEL_OUTPUT_HDMI);
else if (IS_GEN9_LP(dev_priv))
bxt_ddi_vswing_sequence(encoder, level, INTEL_OUTPUT_HDMI);
else
intel_prepare_hdmi_ddi_buffers(encoder, level);
icl_enable_phy_clock_gating(dig_port);
if (IS_GEN9_BC(dev_priv))
skl_ddi_set_iboost(encoder, level, INTEL_OUTPUT_HDMI);
intel_ddi_enable_pipe_clock(crtc_state);
intel_dig_port->set_infoframes(encoder,
crtc_state->has_infoframe,
crtc_state, conn_state);
}
static void intel_ddi_pre_enable(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
/*
* When called from DP MST code:
* - conn_state will be NULL
* - encoder will be the main encoder (ie. mst->primary)
* - the main connector associated with this port
* won't be active or linked to a crtc
* - crtc_state will be the state of the first stream to
* be activated on this port, and it may not be the same
* stream that will be deactivated last, but each stream
* should have a state that is identical when it comes to
* the DP link parameteres
*/
WARN_ON(crtc_state->has_pch_encoder);
if (INTEL_GEN(dev_priv) >= 11)
icl_map_plls_to_ports(encoder, crtc_state);
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
intel_ddi_pre_enable_hdmi(encoder, crtc_state, conn_state);
} else {
struct intel_lspcon *lspcon =
enc_to_intel_lspcon(&encoder->base);
intel_ddi_pre_enable_dp(encoder, crtc_state, conn_state);
if (lspcon->active) {
struct intel_digital_port *dig_port =
enc_to_dig_port(&encoder->base);
dig_port->set_infoframes(encoder,
crtc_state->has_infoframe,
crtc_state, conn_state);
}
}
}
static void intel_disable_ddi_buf(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum port port = encoder->port;
bool wait = false;
u32 val;
val = I915_READ(DDI_BUF_CTL(port));
if (val & DDI_BUF_CTL_ENABLE) {
val &= ~DDI_BUF_CTL_ENABLE;
I915_WRITE(DDI_BUF_CTL(port), val);
wait = true;
}
val = I915_READ(DP_TP_CTL(port));
val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
val |= DP_TP_CTL_LINK_TRAIN_PAT1;
I915_WRITE(DP_TP_CTL(port), val);
/* Disable FEC in DP Sink */
intel_ddi_disable_fec_state(encoder, crtc_state);
if (wait)
intel_wait_ddi_buf_idle(dev_priv, port);
}
static void intel_ddi_post_disable_dp(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
struct intel_dp *intel_dp = &dig_port->dp;
bool is_mst = intel_crtc_has_type(old_crtc_state,
INTEL_OUTPUT_DP_MST);
if (!is_mst) {
intel_ddi_disable_pipe_clock(old_crtc_state);
/*
* Power down sink before disabling the port, otherwise we end
* up getting interrupts from the sink on detecting link loss.
*/
intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
}
intel_disable_ddi_buf(encoder, old_crtc_state);
intel_edp_panel_vdd_on(intel_dp);
intel_edp_panel_off(intel_dp);
intel_display_power_put_unchecked(dev_priv,
dig_port->ddi_io_power_domain);
intel_ddi_clk_disable(encoder);
}
static void intel_ddi_post_disable_hdmi(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
dig_port->set_infoframes(encoder, false,
old_crtc_state, old_conn_state);
intel_ddi_disable_pipe_clock(old_crtc_state);
intel_disable_ddi_buf(encoder, old_crtc_state);
intel_display_power_put_unchecked(dev_priv,
dig_port->ddi_io_power_domain);
intel_ddi_clk_disable(encoder);
intel_dp_dual_mode_set_tmds_output(intel_hdmi, false);
}
static void intel_ddi_post_disable(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
/*
* When called from DP MST code:
* - old_conn_state will be NULL
* - encoder will be the main encoder (ie. mst->primary)
* - the main connector associated with this port
* won't be active or linked to a crtc
* - old_crtc_state will be the state of the last stream to
* be deactivated on this port, and it may not be the same
* stream that was activated last, but each stream
* should have a state that is identical when it comes to
* the DP link parameteres
*/
if (intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_HDMI))
intel_ddi_post_disable_hdmi(encoder,
old_crtc_state, old_conn_state);
else
intel_ddi_post_disable_dp(encoder,
old_crtc_state, old_conn_state);
if (INTEL_GEN(dev_priv) >= 11)
icl_unmap_plls_to_ports(encoder);
}
void intel_ddi_fdi_post_disable(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
u32 val;
/*
* Bspec lists this as both step 13 (before DDI_BUF_CTL disable)
* and step 18 (after clearing PORT_CLK_SEL). Based on a BUN,
* step 13 is the correct place for it. Step 18 is where it was
* originally before the BUN.
*/
val = I915_READ(FDI_RX_CTL(PIPE_A));
val &= ~FDI_RX_ENABLE;
I915_WRITE(FDI_RX_CTL(PIPE_A), val);
intel_disable_ddi_buf(encoder, old_crtc_state);
intel_ddi_clk_disable(encoder);
val = I915_READ(FDI_RX_MISC(PIPE_A));
val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
I915_WRITE(FDI_RX_MISC(PIPE_A), val);
val = I915_READ(FDI_RX_CTL(PIPE_A));
val &= ~FDI_PCDCLK;
I915_WRITE(FDI_RX_CTL(PIPE_A), val);
val = I915_READ(FDI_RX_CTL(PIPE_A));
val &= ~FDI_RX_PLL_ENABLE;
I915_WRITE(FDI_RX_CTL(PIPE_A), val);
}
static void intel_enable_ddi_dp(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
enum port port = encoder->port;
if (port == PORT_A && INTEL_GEN(dev_priv) < 9)
intel_dp_stop_link_train(intel_dp);
intel_edp_backlight_on(crtc_state, conn_state);
intel_psr_enable(intel_dp, crtc_state);
intel_edp_drrs_enable(intel_dp, crtc_state);
if (crtc_state->has_audio)
intel_audio_codec_enable(encoder, crtc_state, conn_state);
}
static i915_reg_t
gen9_chicken_trans_reg_by_port(struct drm_i915_private *dev_priv,
enum port port)
{
static const i915_reg_t regs[] = {
[PORT_A] = CHICKEN_TRANS_EDP,
[PORT_B] = CHICKEN_TRANS_A,
[PORT_C] = CHICKEN_TRANS_B,
[PORT_D] = CHICKEN_TRANS_C,
[PORT_E] = CHICKEN_TRANS_A,
};
WARN_ON(INTEL_GEN(dev_priv) < 9);
if (WARN_ON(port < PORT_A || port > PORT_E))
port = PORT_A;
return regs[port];
}
static void intel_enable_ddi_hdmi(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
struct drm_connector *connector = conn_state->connector;
enum port port = encoder->port;
if (!intel_hdmi_handle_sink_scrambling(encoder, connector,
crtc_state->hdmi_high_tmds_clock_ratio,
crtc_state->hdmi_scrambling))
DRM_ERROR("[CONNECTOR:%d:%s] Failed to configure sink scrambling/TMDS bit clock ratio\n",
connector->base.id, connector->name);
/* Display WA #1143: skl,kbl,cfl */
if (IS_GEN9_BC(dev_priv)) {
/*
* For some reason these chicken bits have been
* stuffed into a transcoder register, event though
* the bits affect a specific DDI port rather than
* a specific transcoder.
*/
i915_reg_t reg = gen9_chicken_trans_reg_by_port(dev_priv, port);
u32 val;
val = I915_READ(reg);
if (port == PORT_E)
val |= DDIE_TRAINING_OVERRIDE_ENABLE |
DDIE_TRAINING_OVERRIDE_VALUE;
else
val |= DDI_TRAINING_OVERRIDE_ENABLE |
DDI_TRAINING_OVERRIDE_VALUE;
I915_WRITE(reg, val);
POSTING_READ(reg);
udelay(1);
if (port == PORT_E)
val &= ~(DDIE_TRAINING_OVERRIDE_ENABLE |
DDIE_TRAINING_OVERRIDE_VALUE);
else
val &= ~(DDI_TRAINING_OVERRIDE_ENABLE |
DDI_TRAINING_OVERRIDE_VALUE);
I915_WRITE(reg, val);
}
/* In HDMI/DVI mode, the port width, and swing/emphasis values
* are ignored so nothing special needs to be done besides
* enabling the port.
*/
I915_WRITE(DDI_BUF_CTL(port),
dig_port->saved_port_bits | DDI_BUF_CTL_ENABLE);
if (crtc_state->has_audio)
intel_audio_codec_enable(encoder, crtc_state, conn_state);
}
static void intel_enable_ddi(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
intel_enable_ddi_hdmi(encoder, crtc_state, conn_state);
else
intel_enable_ddi_dp(encoder, crtc_state, conn_state);
/* Enable hdcp if it's desired */
if (conn_state->content_protection ==
DRM_MODE_CONTENT_PROTECTION_DESIRED)
intel_hdcp_enable(to_intel_connector(conn_state->connector));
}
static void intel_disable_ddi_dp(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
intel_dp->link_trained = false;
if (old_crtc_state->has_audio)
intel_audio_codec_disable(encoder,
old_crtc_state, old_conn_state);
intel_edp_drrs_disable(intel_dp, old_crtc_state);
intel_psr_disable(intel_dp, old_crtc_state);
intel_edp_backlight_off(old_conn_state);
/* Disable the decompression in DP Sink */
intel_dp_sink_set_decompression_state(intel_dp, old_crtc_state,
false);
}
static void intel_disable_ddi_hdmi(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
struct drm_connector *connector = old_conn_state->connector;
if (old_crtc_state->has_audio)
intel_audio_codec_disable(encoder,
old_crtc_state, old_conn_state);
if (!intel_hdmi_handle_sink_scrambling(encoder, connector,
false, false))
DRM_DEBUG_KMS("[CONNECTOR:%d:%s] Failed to reset sink scrambling/TMDS bit clock ratio\n",
connector->base.id, connector->name);
}
static void intel_disable_ddi(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
intel_hdcp_disable(to_intel_connector(old_conn_state->connector));
if (intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_HDMI))
intel_disable_ddi_hdmi(encoder, old_crtc_state, old_conn_state);
else
intel_disable_ddi_dp(encoder, old_crtc_state, old_conn_state);
}
static void intel_ddi_update_pipe_dp(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
intel_ddi_set_pipe_settings(crtc_state);
intel_psr_update(intel_dp, crtc_state);
intel_edp_drrs_enable(intel_dp, crtc_state);
intel_panel_update_backlight(encoder, crtc_state, conn_state);
}
static void intel_ddi_update_pipe(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
intel_ddi_update_pipe_dp(encoder, crtc_state, conn_state);
if (conn_state->content_protection ==
DRM_MODE_CONTENT_PROTECTION_DESIRED)
intel_hdcp_enable(to_intel_connector(conn_state->connector));
else if (conn_state->content_protection ==
DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
intel_hdcp_disable(to_intel_connector(conn_state->connector));
}
static void intel_ddi_set_fia_lane_count(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
enum port port)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
enum tc_port tc_port = intel_port_to_tc(dev_priv, port);
u32 val = I915_READ(PORT_TX_DFLEXDPMLE1);
bool lane_reversal = dig_port->saved_port_bits & DDI_BUF_PORT_REVERSAL;
val &= ~DFLEXDPMLE1_DPMLETC_MASK(tc_port);
switch (pipe_config->lane_count) {
case 1:
val |= (lane_reversal) ? DFLEXDPMLE1_DPMLETC_ML3(tc_port) :
DFLEXDPMLE1_DPMLETC_ML0(tc_port);
break;
case 2:
val |= (lane_reversal) ? DFLEXDPMLE1_DPMLETC_ML3_2(tc_port) :
DFLEXDPMLE1_DPMLETC_ML1_0(tc_port);
break;
case 4:
val |= DFLEXDPMLE1_DPMLETC_ML3_0(tc_port);
break;
default:
MISSING_CASE(pipe_config->lane_count);
}
I915_WRITE(PORT_TX_DFLEXDPMLE1, val);
}
static void
intel_ddi_pre_pll_enable(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
enum port port = encoder->port;
if (intel_crtc_has_dp_encoder(crtc_state) ||
intel_port_is_tc(dev_priv, encoder->port))
intel_display_power_get(dev_priv,
intel_ddi_main_link_aux_domain(dig_port));
if (IS_GEN9_LP(dev_priv))
bxt_ddi_phy_set_lane_optim_mask(encoder,
crtc_state->lane_lat_optim_mask);
/*
* Program the lane count for static/dynamic connections on Type-C ports.
* Skip this step for TBT.
*/
if (dig_port->tc_type == TC_PORT_UNKNOWN ||
dig_port->tc_type == TC_PORT_TBT)
return;
intel_ddi_set_fia_lane_count(encoder, crtc_state, port);
}
static void
intel_ddi_post_pll_disable(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
if (intel_crtc_has_dp_encoder(crtc_state) ||
intel_port_is_tc(dev_priv, encoder->port))
intel_display_power_put_unchecked(dev_priv,
intel_ddi_main_link_aux_domain(dig_port));
}
void intel_ddi_prepare_link_retrain(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv =
to_i915(intel_dig_port->base.base.dev);
enum port port = intel_dig_port->base.port;
u32 val;
bool wait = false;
if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
val = I915_READ(DDI_BUF_CTL(port));
if (val & DDI_BUF_CTL_ENABLE) {
val &= ~DDI_BUF_CTL_ENABLE;
I915_WRITE(DDI_BUF_CTL(port), val);
wait = true;
}
val = I915_READ(DP_TP_CTL(port));
val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
val |= DP_TP_CTL_LINK_TRAIN_PAT1;
I915_WRITE(DP_TP_CTL(port), val);
POSTING_READ(DP_TP_CTL(port));
if (wait)
intel_wait_ddi_buf_idle(dev_priv, port);
}
val = DP_TP_CTL_ENABLE |
DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
if (intel_dp->link_mst)
val |= DP_TP_CTL_MODE_MST;
else {
val |= DP_TP_CTL_MODE_SST;
if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
}
I915_WRITE(DP_TP_CTL(port), val);
POSTING_READ(DP_TP_CTL(port));
intel_dp->DP |= DDI_BUF_CTL_ENABLE;
I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
POSTING_READ(DDI_BUF_CTL(port));
udelay(600);
}
static bool intel_ddi_is_audio_enabled(struct drm_i915_private *dev_priv,
enum transcoder cpu_transcoder)
{
if (cpu_transcoder == TRANSCODER_EDP)
return false;
if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO))
return false;
return I915_READ(HSW_AUD_PIN_ELD_CP_VLD) &
AUDIO_OUTPUT_ENABLE(cpu_transcoder);
}
void intel_ddi_compute_min_voltage_level(struct drm_i915_private *dev_priv,
struct intel_crtc_state *crtc_state)
{
if (INTEL_GEN(dev_priv) >= 11 && crtc_state->port_clock > 594000)
crtc_state->min_voltage_level = 1;
else if (IS_CANNONLAKE(dev_priv) && crtc_state->port_clock > 594000)
crtc_state->min_voltage_level = 2;
}
void intel_ddi_get_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
struct intel_digital_port *intel_dig_port;
u32 temp, flags = 0;
/* XXX: DSI transcoder paranoia */
if (WARN_ON(transcoder_is_dsi(cpu_transcoder)))
return;
temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
if (temp & TRANS_DDI_PHSYNC)
flags |= DRM_MODE_FLAG_PHSYNC;
else
flags |= DRM_MODE_FLAG_NHSYNC;
if (temp & TRANS_DDI_PVSYNC)
flags |= DRM_MODE_FLAG_PVSYNC;
else
flags |= DRM_MODE_FLAG_NVSYNC;
pipe_config->base.adjusted_mode.flags |= flags;
switch (temp & TRANS_DDI_BPC_MASK) {
case TRANS_DDI_BPC_6:
pipe_config->pipe_bpp = 18;
break;
case TRANS_DDI_BPC_8:
pipe_config->pipe_bpp = 24;
break;
case TRANS_DDI_BPC_10:
pipe_config->pipe_bpp = 30;
break;
case TRANS_DDI_BPC_12:
pipe_config->pipe_bpp = 36;
break;
default:
break;
}
switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
case TRANS_DDI_MODE_SELECT_HDMI:
pipe_config->has_hdmi_sink = true;
intel_dig_port = enc_to_dig_port(&encoder->base);
pipe_config->infoframes.enable |=
intel_hdmi_infoframes_enabled(encoder, pipe_config);
if (pipe_config->infoframes.enable)
pipe_config->has_infoframe = true;
if (temp & TRANS_DDI_HDMI_SCRAMBLING)
pipe_config->hdmi_scrambling = true;
if (temp & TRANS_DDI_HIGH_TMDS_CHAR_RATE)
pipe_config->hdmi_high_tmds_clock_ratio = true;
/* fall through */
case TRANS_DDI_MODE_SELECT_DVI:
pipe_config->output_types |= BIT(INTEL_OUTPUT_HDMI);
pipe_config->lane_count = 4;
break;
case TRANS_DDI_MODE_SELECT_FDI:
pipe_config->output_types |= BIT(INTEL_OUTPUT_ANALOG);
break;
case TRANS_DDI_MODE_SELECT_DP_SST:
if (encoder->type == INTEL_OUTPUT_EDP)
pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
else
pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
pipe_config->lane_count =
((temp & DDI_PORT_WIDTH_MASK) >> DDI_PORT_WIDTH_SHIFT) + 1;
intel_dp_get_m_n(intel_crtc, pipe_config);
break;
case TRANS_DDI_MODE_SELECT_DP_MST:
pipe_config->output_types |= BIT(INTEL_OUTPUT_DP_MST);
pipe_config->lane_count =
((temp & DDI_PORT_WIDTH_MASK) >> DDI_PORT_WIDTH_SHIFT) + 1;
intel_dp_get_m_n(intel_crtc, pipe_config);
break;
default:
break;
}
pipe_config->has_audio =
intel_ddi_is_audio_enabled(dev_priv, cpu_transcoder);
if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp.bpp &&
pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
/*
* This is a big fat ugly hack.
*
* Some machines in UEFI boot mode provide us a VBT that has 18
* bpp and 1.62 GHz link bandwidth for eDP, which for reasons
* unknown we fail to light up. Yet the same BIOS boots up with
* 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
* max, not what it tells us to use.
*
* Note: This will still be broken if the eDP panel is not lit
* up by the BIOS, and thus we can't get the mode at module
* load.
*/
DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
}
intel_ddi_clock_get(encoder, pipe_config);
if (IS_GEN9_LP(dev_priv))
pipe_config->lane_lat_optim_mask =
bxt_ddi_phy_get_lane_lat_optim_mask(encoder);
intel_ddi_compute_min_voltage_level(dev_priv, pipe_config);
intel_hdmi_read_gcp_infoframe(encoder, pipe_config);
intel_read_infoframe(encoder, pipe_config,
HDMI_INFOFRAME_TYPE_AVI,
&pipe_config->infoframes.avi);
intel_read_infoframe(encoder, pipe_config,
HDMI_INFOFRAME_TYPE_SPD,
&pipe_config->infoframes.spd);
intel_read_infoframe(encoder, pipe_config,
HDMI_INFOFRAME_TYPE_VENDOR,
&pipe_config->infoframes.hdmi);
}
static enum intel_output_type
intel_ddi_compute_output_type(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
switch (conn_state->connector->connector_type) {
case DRM_MODE_CONNECTOR_HDMIA:
return INTEL_OUTPUT_HDMI;
case DRM_MODE_CONNECTOR_eDP:
return INTEL_OUTPUT_EDP;
case DRM_MODE_CONNECTOR_DisplayPort:
return INTEL_OUTPUT_DP;
default:
MISSING_CASE(conn_state->connector->connector_type);
return INTEL_OUTPUT_UNUSED;
}
}
static int intel_ddi_compute_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config,
struct drm_connector_state *conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum port port = encoder->port;
int ret;
if (HAS_TRANSCODER_EDP(dev_priv) && port == PORT_A)
pipe_config->cpu_transcoder = TRANSCODER_EDP;
if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI))
ret = intel_hdmi_compute_config(encoder, pipe_config, conn_state);
else
ret = intel_dp_compute_config(encoder, pipe_config, conn_state);
if (IS_GEN9_LP(dev_priv) && ret)
pipe_config->lane_lat_optim_mask =
bxt_ddi_phy_calc_lane_lat_optim_mask(pipe_config->lane_count);
intel_ddi_compute_min_voltage_level(dev_priv, pipe_config);
return ret;
}
static void intel_ddi_encoder_suspend(struct intel_encoder *encoder)
{
struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
intel_dp_encoder_suspend(encoder);
/*
* TODO: disconnect also from USB DP alternate mode once we have a
* way to handle the modeset restore in that mode during resume
* even if the sink has disappeared while being suspended.
*/
if (dig_port->tc_legacy_port)
icl_tc_phy_disconnect(i915, dig_port);
}
static void intel_ddi_encoder_reset(struct drm_encoder *drm_encoder)
{
struct intel_digital_port *dig_port = enc_to_dig_port(drm_encoder);
struct drm_i915_private *i915 = to_i915(drm_encoder->dev);
if (intel_port_is_tc(i915, dig_port->base.port))
intel_digital_port_connected(&dig_port->base);
intel_dp_encoder_reset(drm_encoder);
}
static void intel_ddi_encoder_destroy(struct drm_encoder *encoder)
{
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
struct drm_i915_private *i915 = to_i915(encoder->dev);
intel_dp_encoder_flush_work(encoder);
if (intel_port_is_tc(i915, dig_port->base.port))
icl_tc_phy_disconnect(i915, dig_port);
drm_encoder_cleanup(encoder);
kfree(dig_port);
}
static const struct drm_encoder_funcs intel_ddi_funcs = {
.reset = intel_ddi_encoder_reset,
.destroy = intel_ddi_encoder_destroy,
};
static struct intel_connector *
intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
{
struct intel_connector *connector;
enum port port = intel_dig_port->base.port;
connector = intel_connector_alloc();
if (!connector)
return NULL;
intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
if (!intel_dp_init_connector(intel_dig_port, connector)) {
kfree(connector);
return NULL;
}
return connector;
}
static int modeset_pipe(struct drm_crtc *crtc,
struct drm_modeset_acquire_ctx *ctx)
{
struct drm_atomic_state *state;
struct drm_crtc_state *crtc_state;
int ret;
state = drm_atomic_state_alloc(crtc->dev);
if (!state)
return -ENOMEM;
state->acquire_ctx = ctx;
crtc_state = drm_atomic_get_crtc_state(state, crtc);
if (IS_ERR(crtc_state)) {
ret = PTR_ERR(crtc_state);
goto out;
}
crtc_state->connectors_changed = true;
ret = drm_atomic_commit(state);
out:
drm_atomic_state_put(state);
return ret;
}
static int intel_hdmi_reset_link(struct intel_encoder *encoder,
struct drm_modeset_acquire_ctx *ctx)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_hdmi *hdmi = enc_to_intel_hdmi(&encoder->base);
struct intel_connector *connector = hdmi->attached_connector;
struct i2c_adapter *adapter =
intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
struct drm_connector_state *conn_state;
struct intel_crtc_state *crtc_state;
struct intel_crtc *crtc;
u8 config;
int ret;
if (!connector || connector->base.status != connector_status_connected)
return 0;
ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
ctx);
if (ret)
return ret;
conn_state = connector->base.state;
crtc = to_intel_crtc(conn_state->crtc);
if (!crtc)
return 0;
ret = drm_modeset_lock(&crtc->base.mutex, ctx);
if (ret)
return ret;
crtc_state = to_intel_crtc_state(crtc->base.state);
WARN_ON(!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI));
if (!crtc_state->base.active)
return 0;
if (!crtc_state->hdmi_high_tmds_clock_ratio &&
!crtc_state->hdmi_scrambling)
return 0;
if (conn_state->commit &&
!try_wait_for_completion(&conn_state->commit->hw_done))
return 0;
ret = drm_scdc_readb(adapter, SCDC_TMDS_CONFIG, &config);
if (ret < 0) {
DRM_ERROR("Failed to read TMDS config: %d\n", ret);
return 0;
}
if (!!(config & SCDC_TMDS_BIT_CLOCK_RATIO_BY_40) ==
crtc_state->hdmi_high_tmds_clock_ratio &&
!!(config & SCDC_SCRAMBLING_ENABLE) ==
crtc_state->hdmi_scrambling)
return 0;
/*
* HDMI 2.0 says that one should not send scrambled data
* prior to configuring the sink scrambling, and that
* TMDS clock/data transmission should be suspended when
* changing the TMDS clock rate in the sink. So let's
* just do a full modeset here, even though some sinks
* would be perfectly happy if were to just reconfigure
* the SCDC settings on the fly.
*/
return modeset_pipe(&crtc->base, ctx);
}
static bool intel_ddi_hotplug(struct intel_encoder *encoder,
struct intel_connector *connector)
{
struct drm_modeset_acquire_ctx ctx;
bool changed;
int ret;
changed = intel_encoder_hotplug(encoder, connector);
drm_modeset_acquire_init(&ctx, 0);
for (;;) {
if (connector->base.connector_type == DRM_MODE_CONNECTOR_HDMIA)
ret = intel_hdmi_reset_link(encoder, &ctx);
else
ret = intel_dp_retrain_link(encoder, &ctx);
if (ret == -EDEADLK) {
drm_modeset_backoff(&ctx);
continue;
}
break;
}
drm_modeset_drop_locks(&ctx);
drm_modeset_acquire_fini(&ctx);
WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
return changed;
}
static struct intel_connector *
intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
{
struct intel_connector *connector;
enum port port = intel_dig_port->base.port;
connector = intel_connector_alloc();
if (!connector)
return NULL;
intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
intel_hdmi_init_connector(intel_dig_port, connector);
return connector;
}
static bool intel_ddi_a_force_4_lanes(struct intel_digital_port *dport)
{
struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
if (dport->base.port != PORT_A)
return false;
if (dport->saved_port_bits & DDI_A_4_LANES)
return false;
/* Broxton/Geminilake: Bspec says that DDI_A_4_LANES is the only
* supported configuration
*/
if (IS_GEN9_LP(dev_priv))
return true;
/* Cannonlake: Most of SKUs don't support DDI_E, and the only
* one who does also have a full A/E split called
* DDI_F what makes DDI_E useless. However for this
* case let's trust VBT info.
*/
if (IS_CANNONLAKE(dev_priv) &&
!intel_bios_is_port_present(dev_priv, PORT_E))
return true;
return false;
}
static int
intel_ddi_max_lanes(struct intel_digital_port *intel_dport)
{
struct drm_i915_private *dev_priv = to_i915(intel_dport->base.base.dev);
enum port port = intel_dport->base.port;
int max_lanes = 4;
if (INTEL_GEN(dev_priv) >= 11)
return max_lanes;
if (port == PORT_A || port == PORT_E) {
if (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
max_lanes = port == PORT_A ? 4 : 0;
else
/* Both A and E share 2 lanes */
max_lanes = 2;
}
/*
* Some BIOS might fail to set this bit on port A if eDP
* wasn't lit up at boot. Force this bit set when needed
* so we use the proper lane count for our calculations.
*/
if (intel_ddi_a_force_4_lanes(intel_dport)) {
DRM_DEBUG_KMS("Forcing DDI_A_4_LANES for port A\n");
intel_dport->saved_port_bits |= DDI_A_4_LANES;
max_lanes = 4;
}
return max_lanes;
}
void intel_ddi_init(struct drm_i915_private *dev_priv, enum port port)
{
struct ddi_vbt_port_info *port_info =
&dev_priv->vbt.ddi_port_info[port];
struct intel_digital_port *intel_dig_port;
struct intel_encoder *intel_encoder;
struct drm_encoder *encoder;
bool init_hdmi, init_dp, init_lspcon = false;
enum pipe pipe;
init_hdmi = port_info->supports_dvi || port_info->supports_hdmi;
init_dp = port_info->supports_dp;
if (intel_bios_is_lspcon_present(dev_priv, port)) {
/*
* Lspcon device needs to be driven with DP connector
* with special detection sequence. So make sure DP
* is initialized before lspcon.
*/
init_dp = true;
init_lspcon = true;
init_hdmi = false;
DRM_DEBUG_KMS("VBT says port %c has lspcon\n", port_name(port));
}
if (!init_dp && !init_hdmi) {
DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, respect it\n",
port_name(port));
return;
}
intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
if (!intel_dig_port)
return;
intel_encoder = &intel_dig_port->base;
encoder = &intel_encoder->base;
drm_encoder_init(&dev_priv->drm, encoder, &intel_ddi_funcs,
DRM_MODE_ENCODER_TMDS, "DDI %c", port_name(port));
intel_encoder->hotplug = intel_ddi_hotplug;
intel_encoder->compute_output_type = intel_ddi_compute_output_type;
intel_encoder->compute_config = intel_ddi_compute_config;
intel_encoder->enable = intel_enable_ddi;
intel_encoder->pre_pll_enable = intel_ddi_pre_pll_enable;
intel_encoder->post_pll_disable = intel_ddi_post_pll_disable;
intel_encoder->pre_enable = intel_ddi_pre_enable;
intel_encoder->disable = intel_disable_ddi;
intel_encoder->post_disable = intel_ddi_post_disable;
intel_encoder->update_pipe = intel_ddi_update_pipe;
intel_encoder->get_hw_state = intel_ddi_get_hw_state;
intel_encoder->get_config = intel_ddi_get_config;
intel_encoder->suspend = intel_ddi_encoder_suspend;
intel_encoder->get_power_domains = intel_ddi_get_power_domains;
intel_encoder->type = INTEL_OUTPUT_DDI;
intel_encoder->power_domain = intel_port_to_power_domain(port);
intel_encoder->port = port;
intel_encoder->cloneable = 0;
for_each_pipe(dev_priv, pipe)
intel_encoder->crtc_mask |= BIT(pipe);
if (INTEL_GEN(dev_priv) >= 11)
intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
DDI_BUF_PORT_REVERSAL;
else
intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
(DDI_BUF_PORT_REVERSAL | DDI_A_4_LANES);
intel_dig_port->dp.output_reg = INVALID_MMIO_REG;
intel_dig_port->max_lanes = intel_ddi_max_lanes(intel_dig_port);
intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
intel_dig_port->tc_legacy_port = intel_port_is_tc(dev_priv, port) &&
!port_info->supports_typec_usb &&
!port_info->supports_tbt;
switch (port) {
case PORT_A:
intel_dig_port->ddi_io_power_domain =
POWER_DOMAIN_PORT_DDI_A_IO;
break;
case PORT_B:
intel_dig_port->ddi_io_power_domain =
POWER_DOMAIN_PORT_DDI_B_IO;
break;
case PORT_C:
intel_dig_port->ddi_io_power_domain =
POWER_DOMAIN_PORT_DDI_C_IO;
break;
case PORT_D:
intel_dig_port->ddi_io_power_domain =
POWER_DOMAIN_PORT_DDI_D_IO;
break;
case PORT_E:
intel_dig_port->ddi_io_power_domain =
POWER_DOMAIN_PORT_DDI_E_IO;
break;
case PORT_F:
intel_dig_port->ddi_io_power_domain =
POWER_DOMAIN_PORT_DDI_F_IO;
break;
default:
MISSING_CASE(port);
}
if (init_dp) {
if (!intel_ddi_init_dp_connector(intel_dig_port))
goto err;
intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
}
/* In theory we don't need the encoder->type check, but leave it just in
* case we have some really bad VBTs... */
if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
if (!intel_ddi_init_hdmi_connector(intel_dig_port))
goto err;
}
if (init_lspcon) {
if (lspcon_init(intel_dig_port))
/* TODO: handle hdmi info frame part */
DRM_DEBUG_KMS("LSPCON init success on port %c\n",
port_name(port));
else
/*
* LSPCON init faied, but DP init was success, so
* lets try to drive as DP++ port.
*/
DRM_ERROR("LSPCON init failed on port %c\n",
port_name(port));
}
intel_infoframe_init(intel_dig_port);
if (intel_port_is_tc(dev_priv, port))
intel_digital_port_connected(intel_encoder);
return;
err:
drm_encoder_cleanup(encoder);
kfree(intel_dig_port);
}