mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-21 23:53:45 +07:00
cf11e85fc0
Commit 944d9fec8d
("hugetlb: add support for gigantic page allocation
at runtime") has added the run-time allocation of gigantic pages.
However it actually works only at early stages of the system loading,
when the majority of memory is free. After some time the memory gets
fragmented by non-movable pages, so the chances to find a contiguous 1GB
block are getting close to zero. Even dropping caches manually doesn't
help a lot.
At large scale rebooting servers in order to allocate gigantic hugepages
is quite expensive and complex. At the same time keeping some constant
percentage of memory in reserved hugepages even if the workload isn't
using it is a big waste: not all workloads can benefit from using 1 GB
pages.
The following solution can solve the problem:
1) On boot time a dedicated cma area* is reserved. The size is passed
as a kernel argument.
2) Run-time allocations of gigantic hugepages are performed using the
cma allocator and the dedicated cma area
In this case gigantic hugepages can be allocated successfully with a
high probability, however the memory isn't completely wasted if nobody
is using 1GB hugepages: it can be used for pagecache, anon memory, THPs,
etc.
* On a multi-node machine a per-node cma area is allocated on each node.
Following gigantic hugetlb allocation are using the first available
numa node if the mask isn't specified by a user.
Usage:
1) configure the kernel to allocate a cma area for hugetlb allocations:
pass hugetlb_cma=10G as a kernel argument
2) allocate hugetlb pages as usual, e.g.
echo 10 > /sys/kernel/mm/hugepages/hugepages-1048576kB/nr_hugepages
If the option isn't enabled or the allocation of the cma area failed,
the current behavior of the system is preserved.
x86 and arm-64 are covered by this patch, other architectures can be
trivially added later.
The patch contains clean-ups and fixes proposed and implemented by Aslan
Bakirov and Randy Dunlap. It also contains ideas and suggestions
proposed by Rik van Riel, Michal Hocko and Mike Kravetz. Thanks!
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Andreas Schaufler <andreas.schaufler@gmx.de>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@kernel.org>
Cc: Aslan Bakirov <aslan@fb.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Link: http://lkml.kernel.org/r/20200407163840.92263-3-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
5618 lines
153 KiB
C
5618 lines
153 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Generic hugetlb support.
|
|
* (C) Nadia Yvette Chambers, April 2004
|
|
*/
|
|
#include <linux/list.h>
|
|
#include <linux/init.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/sysctl.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/mmu_notifier.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/mempolicy.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/cpuset.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/sysfs.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mmdebug.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/rmap.h>
|
|
#include <linux/string_helpers.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/swapops.h>
|
|
#include <linux/jhash.h>
|
|
#include <linux/numa.h>
|
|
#include <linux/llist.h>
|
|
#include <linux/cma.h>
|
|
|
|
#include <asm/page.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/tlb.h>
|
|
|
|
#include <linux/io.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/hugetlb_cgroup.h>
|
|
#include <linux/node.h>
|
|
#include <linux/userfaultfd_k.h>
|
|
#include <linux/page_owner.h>
|
|
#include "internal.h"
|
|
|
|
int hugetlb_max_hstate __read_mostly;
|
|
unsigned int default_hstate_idx;
|
|
struct hstate hstates[HUGE_MAX_HSTATE];
|
|
|
|
static struct cma *hugetlb_cma[MAX_NUMNODES];
|
|
|
|
/*
|
|
* Minimum page order among possible hugepage sizes, set to a proper value
|
|
* at boot time.
|
|
*/
|
|
static unsigned int minimum_order __read_mostly = UINT_MAX;
|
|
|
|
__initdata LIST_HEAD(huge_boot_pages);
|
|
|
|
/* for command line parsing */
|
|
static struct hstate * __initdata parsed_hstate;
|
|
static unsigned long __initdata default_hstate_max_huge_pages;
|
|
static unsigned long __initdata default_hstate_size;
|
|
static bool __initdata parsed_valid_hugepagesz = true;
|
|
|
|
/*
|
|
* Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
|
|
* free_huge_pages, and surplus_huge_pages.
|
|
*/
|
|
DEFINE_SPINLOCK(hugetlb_lock);
|
|
|
|
/*
|
|
* Serializes faults on the same logical page. This is used to
|
|
* prevent spurious OOMs when the hugepage pool is fully utilized.
|
|
*/
|
|
static int num_fault_mutexes;
|
|
struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
|
|
|
|
/* Forward declaration */
|
|
static int hugetlb_acct_memory(struct hstate *h, long delta);
|
|
|
|
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
|
|
{
|
|
bool free = (spool->count == 0) && (spool->used_hpages == 0);
|
|
|
|
spin_unlock(&spool->lock);
|
|
|
|
/* If no pages are used, and no other handles to the subpool
|
|
* remain, give up any reservations mased on minimum size and
|
|
* free the subpool */
|
|
if (free) {
|
|
if (spool->min_hpages != -1)
|
|
hugetlb_acct_memory(spool->hstate,
|
|
-spool->min_hpages);
|
|
kfree(spool);
|
|
}
|
|
}
|
|
|
|
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
|
|
long min_hpages)
|
|
{
|
|
struct hugepage_subpool *spool;
|
|
|
|
spool = kzalloc(sizeof(*spool), GFP_KERNEL);
|
|
if (!spool)
|
|
return NULL;
|
|
|
|
spin_lock_init(&spool->lock);
|
|
spool->count = 1;
|
|
spool->max_hpages = max_hpages;
|
|
spool->hstate = h;
|
|
spool->min_hpages = min_hpages;
|
|
|
|
if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
|
|
kfree(spool);
|
|
return NULL;
|
|
}
|
|
spool->rsv_hpages = min_hpages;
|
|
|
|
return spool;
|
|
}
|
|
|
|
void hugepage_put_subpool(struct hugepage_subpool *spool)
|
|
{
|
|
spin_lock(&spool->lock);
|
|
BUG_ON(!spool->count);
|
|
spool->count--;
|
|
unlock_or_release_subpool(spool);
|
|
}
|
|
|
|
/*
|
|
* Subpool accounting for allocating and reserving pages.
|
|
* Return -ENOMEM if there are not enough resources to satisfy the
|
|
* the request. Otherwise, return the number of pages by which the
|
|
* global pools must be adjusted (upward). The returned value may
|
|
* only be different than the passed value (delta) in the case where
|
|
* a subpool minimum size must be manitained.
|
|
*/
|
|
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
|
|
long delta)
|
|
{
|
|
long ret = delta;
|
|
|
|
if (!spool)
|
|
return ret;
|
|
|
|
spin_lock(&spool->lock);
|
|
|
|
if (spool->max_hpages != -1) { /* maximum size accounting */
|
|
if ((spool->used_hpages + delta) <= spool->max_hpages)
|
|
spool->used_hpages += delta;
|
|
else {
|
|
ret = -ENOMEM;
|
|
goto unlock_ret;
|
|
}
|
|
}
|
|
|
|
/* minimum size accounting */
|
|
if (spool->min_hpages != -1 && spool->rsv_hpages) {
|
|
if (delta > spool->rsv_hpages) {
|
|
/*
|
|
* Asking for more reserves than those already taken on
|
|
* behalf of subpool. Return difference.
|
|
*/
|
|
ret = delta - spool->rsv_hpages;
|
|
spool->rsv_hpages = 0;
|
|
} else {
|
|
ret = 0; /* reserves already accounted for */
|
|
spool->rsv_hpages -= delta;
|
|
}
|
|
}
|
|
|
|
unlock_ret:
|
|
spin_unlock(&spool->lock);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Subpool accounting for freeing and unreserving pages.
|
|
* Return the number of global page reservations that must be dropped.
|
|
* The return value may only be different than the passed value (delta)
|
|
* in the case where a subpool minimum size must be maintained.
|
|
*/
|
|
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
|
|
long delta)
|
|
{
|
|
long ret = delta;
|
|
|
|
if (!spool)
|
|
return delta;
|
|
|
|
spin_lock(&spool->lock);
|
|
|
|
if (spool->max_hpages != -1) /* maximum size accounting */
|
|
spool->used_hpages -= delta;
|
|
|
|
/* minimum size accounting */
|
|
if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
|
|
if (spool->rsv_hpages + delta <= spool->min_hpages)
|
|
ret = 0;
|
|
else
|
|
ret = spool->rsv_hpages + delta - spool->min_hpages;
|
|
|
|
spool->rsv_hpages += delta;
|
|
if (spool->rsv_hpages > spool->min_hpages)
|
|
spool->rsv_hpages = spool->min_hpages;
|
|
}
|
|
|
|
/*
|
|
* If hugetlbfs_put_super couldn't free spool due to an outstanding
|
|
* quota reference, free it now.
|
|
*/
|
|
unlock_or_release_subpool(spool);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
|
|
{
|
|
return HUGETLBFS_SB(inode->i_sb)->spool;
|
|
}
|
|
|
|
static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
|
|
{
|
|
return subpool_inode(file_inode(vma->vm_file));
|
|
}
|
|
|
|
/* Helper that removes a struct file_region from the resv_map cache and returns
|
|
* it for use.
|
|
*/
|
|
static struct file_region *
|
|
get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
|
|
{
|
|
struct file_region *nrg = NULL;
|
|
|
|
VM_BUG_ON(resv->region_cache_count <= 0);
|
|
|
|
resv->region_cache_count--;
|
|
nrg = list_first_entry(&resv->region_cache, struct file_region, link);
|
|
VM_BUG_ON(!nrg);
|
|
list_del(&nrg->link);
|
|
|
|
nrg->from = from;
|
|
nrg->to = to;
|
|
|
|
return nrg;
|
|
}
|
|
|
|
static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
|
|
struct file_region *rg)
|
|
{
|
|
#ifdef CONFIG_CGROUP_HUGETLB
|
|
nrg->reservation_counter = rg->reservation_counter;
|
|
nrg->css = rg->css;
|
|
if (rg->css)
|
|
css_get(rg->css);
|
|
#endif
|
|
}
|
|
|
|
/* Helper that records hugetlb_cgroup uncharge info. */
|
|
static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
|
|
struct hstate *h,
|
|
struct resv_map *resv,
|
|
struct file_region *nrg)
|
|
{
|
|
#ifdef CONFIG_CGROUP_HUGETLB
|
|
if (h_cg) {
|
|
nrg->reservation_counter =
|
|
&h_cg->rsvd_hugepage[hstate_index(h)];
|
|
nrg->css = &h_cg->css;
|
|
if (!resv->pages_per_hpage)
|
|
resv->pages_per_hpage = pages_per_huge_page(h);
|
|
/* pages_per_hpage should be the same for all entries in
|
|
* a resv_map.
|
|
*/
|
|
VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
|
|
} else {
|
|
nrg->reservation_counter = NULL;
|
|
nrg->css = NULL;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static bool has_same_uncharge_info(struct file_region *rg,
|
|
struct file_region *org)
|
|
{
|
|
#ifdef CONFIG_CGROUP_HUGETLB
|
|
return rg && org &&
|
|
rg->reservation_counter == org->reservation_counter &&
|
|
rg->css == org->css;
|
|
|
|
#else
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
|
|
{
|
|
struct file_region *nrg = NULL, *prg = NULL;
|
|
|
|
prg = list_prev_entry(rg, link);
|
|
if (&prg->link != &resv->regions && prg->to == rg->from &&
|
|
has_same_uncharge_info(prg, rg)) {
|
|
prg->to = rg->to;
|
|
|
|
list_del(&rg->link);
|
|
kfree(rg);
|
|
|
|
coalesce_file_region(resv, prg);
|
|
return;
|
|
}
|
|
|
|
nrg = list_next_entry(rg, link);
|
|
if (&nrg->link != &resv->regions && nrg->from == rg->to &&
|
|
has_same_uncharge_info(nrg, rg)) {
|
|
nrg->from = rg->from;
|
|
|
|
list_del(&rg->link);
|
|
kfree(rg);
|
|
|
|
coalesce_file_region(resv, nrg);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Must be called with resv->lock held. Calling this with count_only == true
|
|
* will count the number of pages to be added but will not modify the linked
|
|
* list. If regions_needed != NULL and count_only == true, then regions_needed
|
|
* will indicate the number of file_regions needed in the cache to carry out to
|
|
* add the regions for this range.
|
|
*/
|
|
static long add_reservation_in_range(struct resv_map *resv, long f, long t,
|
|
struct hugetlb_cgroup *h_cg,
|
|
struct hstate *h, long *regions_needed,
|
|
bool count_only)
|
|
{
|
|
long add = 0;
|
|
struct list_head *head = &resv->regions;
|
|
long last_accounted_offset = f;
|
|
struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
|
|
|
|
if (regions_needed)
|
|
*regions_needed = 0;
|
|
|
|
/* In this loop, we essentially handle an entry for the range
|
|
* [last_accounted_offset, rg->from), at every iteration, with some
|
|
* bounds checking.
|
|
*/
|
|
list_for_each_entry_safe(rg, trg, head, link) {
|
|
/* Skip irrelevant regions that start before our range. */
|
|
if (rg->from < f) {
|
|
/* If this region ends after the last accounted offset,
|
|
* then we need to update last_accounted_offset.
|
|
*/
|
|
if (rg->to > last_accounted_offset)
|
|
last_accounted_offset = rg->to;
|
|
continue;
|
|
}
|
|
|
|
/* When we find a region that starts beyond our range, we've
|
|
* finished.
|
|
*/
|
|
if (rg->from > t)
|
|
break;
|
|
|
|
/* Add an entry for last_accounted_offset -> rg->from, and
|
|
* update last_accounted_offset.
|
|
*/
|
|
if (rg->from > last_accounted_offset) {
|
|
add += rg->from - last_accounted_offset;
|
|
if (!count_only) {
|
|
nrg = get_file_region_entry_from_cache(
|
|
resv, last_accounted_offset, rg->from);
|
|
record_hugetlb_cgroup_uncharge_info(h_cg, h,
|
|
resv, nrg);
|
|
list_add(&nrg->link, rg->link.prev);
|
|
coalesce_file_region(resv, nrg);
|
|
} else if (regions_needed)
|
|
*regions_needed += 1;
|
|
}
|
|
|
|
last_accounted_offset = rg->to;
|
|
}
|
|
|
|
/* Handle the case where our range extends beyond
|
|
* last_accounted_offset.
|
|
*/
|
|
if (last_accounted_offset < t) {
|
|
add += t - last_accounted_offset;
|
|
if (!count_only) {
|
|
nrg = get_file_region_entry_from_cache(
|
|
resv, last_accounted_offset, t);
|
|
record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
|
|
list_add(&nrg->link, rg->link.prev);
|
|
coalesce_file_region(resv, nrg);
|
|
} else if (regions_needed)
|
|
*regions_needed += 1;
|
|
}
|
|
|
|
VM_BUG_ON(add < 0);
|
|
return add;
|
|
}
|
|
|
|
/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
|
|
*/
|
|
static int allocate_file_region_entries(struct resv_map *resv,
|
|
int regions_needed)
|
|
__must_hold(&resv->lock)
|
|
{
|
|
struct list_head allocated_regions;
|
|
int to_allocate = 0, i = 0;
|
|
struct file_region *trg = NULL, *rg = NULL;
|
|
|
|
VM_BUG_ON(regions_needed < 0);
|
|
|
|
INIT_LIST_HEAD(&allocated_regions);
|
|
|
|
/*
|
|
* Check for sufficient descriptors in the cache to accommodate
|
|
* the number of in progress add operations plus regions_needed.
|
|
*
|
|
* This is a while loop because when we drop the lock, some other call
|
|
* to region_add or region_del may have consumed some region_entries,
|
|
* so we keep looping here until we finally have enough entries for
|
|
* (adds_in_progress + regions_needed).
|
|
*/
|
|
while (resv->region_cache_count <
|
|
(resv->adds_in_progress + regions_needed)) {
|
|
to_allocate = resv->adds_in_progress + regions_needed -
|
|
resv->region_cache_count;
|
|
|
|
/* At this point, we should have enough entries in the cache
|
|
* for all the existings adds_in_progress. We should only be
|
|
* needing to allocate for regions_needed.
|
|
*/
|
|
VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
|
|
|
|
spin_unlock(&resv->lock);
|
|
for (i = 0; i < to_allocate; i++) {
|
|
trg = kmalloc(sizeof(*trg), GFP_KERNEL);
|
|
if (!trg)
|
|
goto out_of_memory;
|
|
list_add(&trg->link, &allocated_regions);
|
|
}
|
|
|
|
spin_lock(&resv->lock);
|
|
|
|
list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
|
|
list_del(&rg->link);
|
|
list_add(&rg->link, &resv->region_cache);
|
|
resv->region_cache_count++;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_of_memory:
|
|
list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
|
|
list_del(&rg->link);
|
|
kfree(rg);
|
|
}
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* Add the huge page range represented by [f, t) to the reserve
|
|
* map. Regions will be taken from the cache to fill in this range.
|
|
* Sufficient regions should exist in the cache due to the previous
|
|
* call to region_chg with the same range, but in some cases the cache will not
|
|
* have sufficient entries due to races with other code doing region_add or
|
|
* region_del. The extra needed entries will be allocated.
|
|
*
|
|
* regions_needed is the out value provided by a previous call to region_chg.
|
|
*
|
|
* Return the number of new huge pages added to the map. This number is greater
|
|
* than or equal to zero. If file_region entries needed to be allocated for
|
|
* this operation and we were not able to allocate, it ruturns -ENOMEM.
|
|
* region_add of regions of length 1 never allocate file_regions and cannot
|
|
* fail; region_chg will always allocate at least 1 entry and a region_add for
|
|
* 1 page will only require at most 1 entry.
|
|
*/
|
|
static long region_add(struct resv_map *resv, long f, long t,
|
|
long in_regions_needed, struct hstate *h,
|
|
struct hugetlb_cgroup *h_cg)
|
|
{
|
|
long add = 0, actual_regions_needed = 0;
|
|
|
|
spin_lock(&resv->lock);
|
|
retry:
|
|
|
|
/* Count how many regions are actually needed to execute this add. */
|
|
add_reservation_in_range(resv, f, t, NULL, NULL, &actual_regions_needed,
|
|
true);
|
|
|
|
/*
|
|
* Check for sufficient descriptors in the cache to accommodate
|
|
* this add operation. Note that actual_regions_needed may be greater
|
|
* than in_regions_needed, as the resv_map may have been modified since
|
|
* the region_chg call. In this case, we need to make sure that we
|
|
* allocate extra entries, such that we have enough for all the
|
|
* existing adds_in_progress, plus the excess needed for this
|
|
* operation.
|
|
*/
|
|
if (actual_regions_needed > in_regions_needed &&
|
|
resv->region_cache_count <
|
|
resv->adds_in_progress +
|
|
(actual_regions_needed - in_regions_needed)) {
|
|
/* region_add operation of range 1 should never need to
|
|
* allocate file_region entries.
|
|
*/
|
|
VM_BUG_ON(t - f <= 1);
|
|
|
|
if (allocate_file_region_entries(
|
|
resv, actual_regions_needed - in_regions_needed)) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
goto retry;
|
|
}
|
|
|
|
add = add_reservation_in_range(resv, f, t, h_cg, h, NULL, false);
|
|
|
|
resv->adds_in_progress -= in_regions_needed;
|
|
|
|
spin_unlock(&resv->lock);
|
|
VM_BUG_ON(add < 0);
|
|
return add;
|
|
}
|
|
|
|
/*
|
|
* Examine the existing reserve map and determine how many
|
|
* huge pages in the specified range [f, t) are NOT currently
|
|
* represented. This routine is called before a subsequent
|
|
* call to region_add that will actually modify the reserve
|
|
* map to add the specified range [f, t). region_chg does
|
|
* not change the number of huge pages represented by the
|
|
* map. A number of new file_region structures is added to the cache as a
|
|
* placeholder, for the subsequent region_add call to use. At least 1
|
|
* file_region structure is added.
|
|
*
|
|
* out_regions_needed is the number of regions added to the
|
|
* resv->adds_in_progress. This value needs to be provided to a follow up call
|
|
* to region_add or region_abort for proper accounting.
|
|
*
|
|
* Returns the number of huge pages that need to be added to the existing
|
|
* reservation map for the range [f, t). This number is greater or equal to
|
|
* zero. -ENOMEM is returned if a new file_region structure or cache entry
|
|
* is needed and can not be allocated.
|
|
*/
|
|
static long region_chg(struct resv_map *resv, long f, long t,
|
|
long *out_regions_needed)
|
|
{
|
|
long chg = 0;
|
|
|
|
spin_lock(&resv->lock);
|
|
|
|
/* Count how many hugepages in this range are NOT respresented. */
|
|
chg = add_reservation_in_range(resv, f, t, NULL, NULL,
|
|
out_regions_needed, true);
|
|
|
|
if (*out_regions_needed == 0)
|
|
*out_regions_needed = 1;
|
|
|
|
if (allocate_file_region_entries(resv, *out_regions_needed))
|
|
return -ENOMEM;
|
|
|
|
resv->adds_in_progress += *out_regions_needed;
|
|
|
|
spin_unlock(&resv->lock);
|
|
return chg;
|
|
}
|
|
|
|
/*
|
|
* Abort the in progress add operation. The adds_in_progress field
|
|
* of the resv_map keeps track of the operations in progress between
|
|
* calls to region_chg and region_add. Operations are sometimes
|
|
* aborted after the call to region_chg. In such cases, region_abort
|
|
* is called to decrement the adds_in_progress counter. regions_needed
|
|
* is the value returned by the region_chg call, it is used to decrement
|
|
* the adds_in_progress counter.
|
|
*
|
|
* NOTE: The range arguments [f, t) are not needed or used in this
|
|
* routine. They are kept to make reading the calling code easier as
|
|
* arguments will match the associated region_chg call.
|
|
*/
|
|
static void region_abort(struct resv_map *resv, long f, long t,
|
|
long regions_needed)
|
|
{
|
|
spin_lock(&resv->lock);
|
|
VM_BUG_ON(!resv->region_cache_count);
|
|
resv->adds_in_progress -= regions_needed;
|
|
spin_unlock(&resv->lock);
|
|
}
|
|
|
|
/*
|
|
* Delete the specified range [f, t) from the reserve map. If the
|
|
* t parameter is LONG_MAX, this indicates that ALL regions after f
|
|
* should be deleted. Locate the regions which intersect [f, t)
|
|
* and either trim, delete or split the existing regions.
|
|
*
|
|
* Returns the number of huge pages deleted from the reserve map.
|
|
* In the normal case, the return value is zero or more. In the
|
|
* case where a region must be split, a new region descriptor must
|
|
* be allocated. If the allocation fails, -ENOMEM will be returned.
|
|
* NOTE: If the parameter t == LONG_MAX, then we will never split
|
|
* a region and possibly return -ENOMEM. Callers specifying
|
|
* t == LONG_MAX do not need to check for -ENOMEM error.
|
|
*/
|
|
static long region_del(struct resv_map *resv, long f, long t)
|
|
{
|
|
struct list_head *head = &resv->regions;
|
|
struct file_region *rg, *trg;
|
|
struct file_region *nrg = NULL;
|
|
long del = 0;
|
|
|
|
retry:
|
|
spin_lock(&resv->lock);
|
|
list_for_each_entry_safe(rg, trg, head, link) {
|
|
/*
|
|
* Skip regions before the range to be deleted. file_region
|
|
* ranges are normally of the form [from, to). However, there
|
|
* may be a "placeholder" entry in the map which is of the form
|
|
* (from, to) with from == to. Check for placeholder entries
|
|
* at the beginning of the range to be deleted.
|
|
*/
|
|
if (rg->to <= f && (rg->to != rg->from || rg->to != f))
|
|
continue;
|
|
|
|
if (rg->from >= t)
|
|
break;
|
|
|
|
if (f > rg->from && t < rg->to) { /* Must split region */
|
|
/*
|
|
* Check for an entry in the cache before dropping
|
|
* lock and attempting allocation.
|
|
*/
|
|
if (!nrg &&
|
|
resv->region_cache_count > resv->adds_in_progress) {
|
|
nrg = list_first_entry(&resv->region_cache,
|
|
struct file_region,
|
|
link);
|
|
list_del(&nrg->link);
|
|
resv->region_cache_count--;
|
|
}
|
|
|
|
if (!nrg) {
|
|
spin_unlock(&resv->lock);
|
|
nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
|
|
if (!nrg)
|
|
return -ENOMEM;
|
|
goto retry;
|
|
}
|
|
|
|
del += t - f;
|
|
|
|
/* New entry for end of split region */
|
|
nrg->from = t;
|
|
nrg->to = rg->to;
|
|
|
|
copy_hugetlb_cgroup_uncharge_info(nrg, rg);
|
|
|
|
INIT_LIST_HEAD(&nrg->link);
|
|
|
|
/* Original entry is trimmed */
|
|
rg->to = f;
|
|
|
|
hugetlb_cgroup_uncharge_file_region(
|
|
resv, rg, nrg->to - nrg->from);
|
|
|
|
list_add(&nrg->link, &rg->link);
|
|
nrg = NULL;
|
|
break;
|
|
}
|
|
|
|
if (f <= rg->from && t >= rg->to) { /* Remove entire region */
|
|
del += rg->to - rg->from;
|
|
hugetlb_cgroup_uncharge_file_region(resv, rg,
|
|
rg->to - rg->from);
|
|
list_del(&rg->link);
|
|
kfree(rg);
|
|
continue;
|
|
}
|
|
|
|
if (f <= rg->from) { /* Trim beginning of region */
|
|
del += t - rg->from;
|
|
rg->from = t;
|
|
|
|
hugetlb_cgroup_uncharge_file_region(resv, rg,
|
|
t - rg->from);
|
|
} else { /* Trim end of region */
|
|
del += rg->to - f;
|
|
rg->to = f;
|
|
|
|
hugetlb_cgroup_uncharge_file_region(resv, rg,
|
|
rg->to - f);
|
|
}
|
|
}
|
|
|
|
spin_unlock(&resv->lock);
|
|
kfree(nrg);
|
|
return del;
|
|
}
|
|
|
|
/*
|
|
* A rare out of memory error was encountered which prevented removal of
|
|
* the reserve map region for a page. The huge page itself was free'ed
|
|
* and removed from the page cache. This routine will adjust the subpool
|
|
* usage count, and the global reserve count if needed. By incrementing
|
|
* these counts, the reserve map entry which could not be deleted will
|
|
* appear as a "reserved" entry instead of simply dangling with incorrect
|
|
* counts.
|
|
*/
|
|
void hugetlb_fix_reserve_counts(struct inode *inode)
|
|
{
|
|
struct hugepage_subpool *spool = subpool_inode(inode);
|
|
long rsv_adjust;
|
|
|
|
rsv_adjust = hugepage_subpool_get_pages(spool, 1);
|
|
if (rsv_adjust) {
|
|
struct hstate *h = hstate_inode(inode);
|
|
|
|
hugetlb_acct_memory(h, 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Count and return the number of huge pages in the reserve map
|
|
* that intersect with the range [f, t).
|
|
*/
|
|
static long region_count(struct resv_map *resv, long f, long t)
|
|
{
|
|
struct list_head *head = &resv->regions;
|
|
struct file_region *rg;
|
|
long chg = 0;
|
|
|
|
spin_lock(&resv->lock);
|
|
/* Locate each segment we overlap with, and count that overlap. */
|
|
list_for_each_entry(rg, head, link) {
|
|
long seg_from;
|
|
long seg_to;
|
|
|
|
if (rg->to <= f)
|
|
continue;
|
|
if (rg->from >= t)
|
|
break;
|
|
|
|
seg_from = max(rg->from, f);
|
|
seg_to = min(rg->to, t);
|
|
|
|
chg += seg_to - seg_from;
|
|
}
|
|
spin_unlock(&resv->lock);
|
|
|
|
return chg;
|
|
}
|
|
|
|
/*
|
|
* Convert the address within this vma to the page offset within
|
|
* the mapping, in pagecache page units; huge pages here.
|
|
*/
|
|
static pgoff_t vma_hugecache_offset(struct hstate *h,
|
|
struct vm_area_struct *vma, unsigned long address)
|
|
{
|
|
return ((address - vma->vm_start) >> huge_page_shift(h)) +
|
|
(vma->vm_pgoff >> huge_page_order(h));
|
|
}
|
|
|
|
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
|
|
unsigned long address)
|
|
{
|
|
return vma_hugecache_offset(hstate_vma(vma), vma, address);
|
|
}
|
|
EXPORT_SYMBOL_GPL(linear_hugepage_index);
|
|
|
|
/*
|
|
* Return the size of the pages allocated when backing a VMA. In the majority
|
|
* cases this will be same size as used by the page table entries.
|
|
*/
|
|
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
|
|
{
|
|
if (vma->vm_ops && vma->vm_ops->pagesize)
|
|
return vma->vm_ops->pagesize(vma);
|
|
return PAGE_SIZE;
|
|
}
|
|
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
|
|
|
|
/*
|
|
* Return the page size being used by the MMU to back a VMA. In the majority
|
|
* of cases, the page size used by the kernel matches the MMU size. On
|
|
* architectures where it differs, an architecture-specific 'strong'
|
|
* version of this symbol is required.
|
|
*/
|
|
__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
|
|
{
|
|
return vma_kernel_pagesize(vma);
|
|
}
|
|
|
|
/*
|
|
* Flags for MAP_PRIVATE reservations. These are stored in the bottom
|
|
* bits of the reservation map pointer, which are always clear due to
|
|
* alignment.
|
|
*/
|
|
#define HPAGE_RESV_OWNER (1UL << 0)
|
|
#define HPAGE_RESV_UNMAPPED (1UL << 1)
|
|
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
|
|
|
|
/*
|
|
* These helpers are used to track how many pages are reserved for
|
|
* faults in a MAP_PRIVATE mapping. Only the process that called mmap()
|
|
* is guaranteed to have their future faults succeed.
|
|
*
|
|
* With the exception of reset_vma_resv_huge_pages() which is called at fork(),
|
|
* the reserve counters are updated with the hugetlb_lock held. It is safe
|
|
* to reset the VMA at fork() time as it is not in use yet and there is no
|
|
* chance of the global counters getting corrupted as a result of the values.
|
|
*
|
|
* The private mapping reservation is represented in a subtly different
|
|
* manner to a shared mapping. A shared mapping has a region map associated
|
|
* with the underlying file, this region map represents the backing file
|
|
* pages which have ever had a reservation assigned which this persists even
|
|
* after the page is instantiated. A private mapping has a region map
|
|
* associated with the original mmap which is attached to all VMAs which
|
|
* reference it, this region map represents those offsets which have consumed
|
|
* reservation ie. where pages have been instantiated.
|
|
*/
|
|
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
|
|
{
|
|
return (unsigned long)vma->vm_private_data;
|
|
}
|
|
|
|
static void set_vma_private_data(struct vm_area_struct *vma,
|
|
unsigned long value)
|
|
{
|
|
vma->vm_private_data = (void *)value;
|
|
}
|
|
|
|
static void
|
|
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
|
|
struct hugetlb_cgroup *h_cg,
|
|
struct hstate *h)
|
|
{
|
|
#ifdef CONFIG_CGROUP_HUGETLB
|
|
if (!h_cg || !h) {
|
|
resv_map->reservation_counter = NULL;
|
|
resv_map->pages_per_hpage = 0;
|
|
resv_map->css = NULL;
|
|
} else {
|
|
resv_map->reservation_counter =
|
|
&h_cg->rsvd_hugepage[hstate_index(h)];
|
|
resv_map->pages_per_hpage = pages_per_huge_page(h);
|
|
resv_map->css = &h_cg->css;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
struct resv_map *resv_map_alloc(void)
|
|
{
|
|
struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
|
|
struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
|
|
|
|
if (!resv_map || !rg) {
|
|
kfree(resv_map);
|
|
kfree(rg);
|
|
return NULL;
|
|
}
|
|
|
|
kref_init(&resv_map->refs);
|
|
spin_lock_init(&resv_map->lock);
|
|
INIT_LIST_HEAD(&resv_map->regions);
|
|
|
|
resv_map->adds_in_progress = 0;
|
|
/*
|
|
* Initialize these to 0. On shared mappings, 0's here indicate these
|
|
* fields don't do cgroup accounting. On private mappings, these will be
|
|
* re-initialized to the proper values, to indicate that hugetlb cgroup
|
|
* reservations are to be un-charged from here.
|
|
*/
|
|
resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
|
|
|
|
INIT_LIST_HEAD(&resv_map->region_cache);
|
|
list_add(&rg->link, &resv_map->region_cache);
|
|
resv_map->region_cache_count = 1;
|
|
|
|
return resv_map;
|
|
}
|
|
|
|
void resv_map_release(struct kref *ref)
|
|
{
|
|
struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
|
|
struct list_head *head = &resv_map->region_cache;
|
|
struct file_region *rg, *trg;
|
|
|
|
/* Clear out any active regions before we release the map. */
|
|
region_del(resv_map, 0, LONG_MAX);
|
|
|
|
/* ... and any entries left in the cache */
|
|
list_for_each_entry_safe(rg, trg, head, link) {
|
|
list_del(&rg->link);
|
|
kfree(rg);
|
|
}
|
|
|
|
VM_BUG_ON(resv_map->adds_in_progress);
|
|
|
|
kfree(resv_map);
|
|
}
|
|
|
|
static inline struct resv_map *inode_resv_map(struct inode *inode)
|
|
{
|
|
/*
|
|
* At inode evict time, i_mapping may not point to the original
|
|
* address space within the inode. This original address space
|
|
* contains the pointer to the resv_map. So, always use the
|
|
* address space embedded within the inode.
|
|
* The VERY common case is inode->mapping == &inode->i_data but,
|
|
* this may not be true for device special inodes.
|
|
*/
|
|
return (struct resv_map *)(&inode->i_data)->private_data;
|
|
}
|
|
|
|
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
|
|
{
|
|
VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
|
|
if (vma->vm_flags & VM_MAYSHARE) {
|
|
struct address_space *mapping = vma->vm_file->f_mapping;
|
|
struct inode *inode = mapping->host;
|
|
|
|
return inode_resv_map(inode);
|
|
|
|
} else {
|
|
return (struct resv_map *)(get_vma_private_data(vma) &
|
|
~HPAGE_RESV_MASK);
|
|
}
|
|
}
|
|
|
|
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
|
|
{
|
|
VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
|
|
VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
|
|
|
|
set_vma_private_data(vma, (get_vma_private_data(vma) &
|
|
HPAGE_RESV_MASK) | (unsigned long)map);
|
|
}
|
|
|
|
static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
|
|
{
|
|
VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
|
|
VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
|
|
|
|
set_vma_private_data(vma, get_vma_private_data(vma) | flags);
|
|
}
|
|
|
|
static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
|
|
{
|
|
VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
|
|
|
|
return (get_vma_private_data(vma) & flag) != 0;
|
|
}
|
|
|
|
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
|
|
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
|
|
{
|
|
VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
|
|
if (!(vma->vm_flags & VM_MAYSHARE))
|
|
vma->vm_private_data = (void *)0;
|
|
}
|
|
|
|
/* Returns true if the VMA has associated reserve pages */
|
|
static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
|
|
{
|
|
if (vma->vm_flags & VM_NORESERVE) {
|
|
/*
|
|
* This address is already reserved by other process(chg == 0),
|
|
* so, we should decrement reserved count. Without decrementing,
|
|
* reserve count remains after releasing inode, because this
|
|
* allocated page will go into page cache and is regarded as
|
|
* coming from reserved pool in releasing step. Currently, we
|
|
* don't have any other solution to deal with this situation
|
|
* properly, so add work-around here.
|
|
*/
|
|
if (vma->vm_flags & VM_MAYSHARE && chg == 0)
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
/* Shared mappings always use reserves */
|
|
if (vma->vm_flags & VM_MAYSHARE) {
|
|
/*
|
|
* We know VM_NORESERVE is not set. Therefore, there SHOULD
|
|
* be a region map for all pages. The only situation where
|
|
* there is no region map is if a hole was punched via
|
|
* fallocate. In this case, there really are no reverves to
|
|
* use. This situation is indicated if chg != 0.
|
|
*/
|
|
if (chg)
|
|
return false;
|
|
else
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Only the process that called mmap() has reserves for
|
|
* private mappings.
|
|
*/
|
|
if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
|
|
/*
|
|
* Like the shared case above, a hole punch or truncate
|
|
* could have been performed on the private mapping.
|
|
* Examine the value of chg to determine if reserves
|
|
* actually exist or were previously consumed.
|
|
* Very Subtle - The value of chg comes from a previous
|
|
* call to vma_needs_reserves(). The reserve map for
|
|
* private mappings has different (opposite) semantics
|
|
* than that of shared mappings. vma_needs_reserves()
|
|
* has already taken this difference in semantics into
|
|
* account. Therefore, the meaning of chg is the same
|
|
* as in the shared case above. Code could easily be
|
|
* combined, but keeping it separate draws attention to
|
|
* subtle differences.
|
|
*/
|
|
if (chg)
|
|
return false;
|
|
else
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void enqueue_huge_page(struct hstate *h, struct page *page)
|
|
{
|
|
int nid = page_to_nid(page);
|
|
list_move(&page->lru, &h->hugepage_freelists[nid]);
|
|
h->free_huge_pages++;
|
|
h->free_huge_pages_node[nid]++;
|
|
}
|
|
|
|
static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
|
|
{
|
|
struct page *page;
|
|
|
|
list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
|
|
if (!PageHWPoison(page))
|
|
break;
|
|
/*
|
|
* if 'non-isolated free hugepage' not found on the list,
|
|
* the allocation fails.
|
|
*/
|
|
if (&h->hugepage_freelists[nid] == &page->lru)
|
|
return NULL;
|
|
list_move(&page->lru, &h->hugepage_activelist);
|
|
set_page_refcounted(page);
|
|
h->free_huge_pages--;
|
|
h->free_huge_pages_node[nid]--;
|
|
return page;
|
|
}
|
|
|
|
static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
|
|
nodemask_t *nmask)
|
|
{
|
|
unsigned int cpuset_mems_cookie;
|
|
struct zonelist *zonelist;
|
|
struct zone *zone;
|
|
struct zoneref *z;
|
|
int node = NUMA_NO_NODE;
|
|
|
|
zonelist = node_zonelist(nid, gfp_mask);
|
|
|
|
retry_cpuset:
|
|
cpuset_mems_cookie = read_mems_allowed_begin();
|
|
for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
|
|
struct page *page;
|
|
|
|
if (!cpuset_zone_allowed(zone, gfp_mask))
|
|
continue;
|
|
/*
|
|
* no need to ask again on the same node. Pool is node rather than
|
|
* zone aware
|
|
*/
|
|
if (zone_to_nid(zone) == node)
|
|
continue;
|
|
node = zone_to_nid(zone);
|
|
|
|
page = dequeue_huge_page_node_exact(h, node);
|
|
if (page)
|
|
return page;
|
|
}
|
|
if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
|
|
goto retry_cpuset;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Movability of hugepages depends on migration support. */
|
|
static inline gfp_t htlb_alloc_mask(struct hstate *h)
|
|
{
|
|
if (hugepage_movable_supported(h))
|
|
return GFP_HIGHUSER_MOVABLE;
|
|
else
|
|
return GFP_HIGHUSER;
|
|
}
|
|
|
|
static struct page *dequeue_huge_page_vma(struct hstate *h,
|
|
struct vm_area_struct *vma,
|
|
unsigned long address, int avoid_reserve,
|
|
long chg)
|
|
{
|
|
struct page *page;
|
|
struct mempolicy *mpol;
|
|
gfp_t gfp_mask;
|
|
nodemask_t *nodemask;
|
|
int nid;
|
|
|
|
/*
|
|
* A child process with MAP_PRIVATE mappings created by their parent
|
|
* have no page reserves. This check ensures that reservations are
|
|
* not "stolen". The child may still get SIGKILLed
|
|
*/
|
|
if (!vma_has_reserves(vma, chg) &&
|
|
h->free_huge_pages - h->resv_huge_pages == 0)
|
|
goto err;
|
|
|
|
/* If reserves cannot be used, ensure enough pages are in the pool */
|
|
if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
|
|
goto err;
|
|
|
|
gfp_mask = htlb_alloc_mask(h);
|
|
nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
|
|
page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
|
|
if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
|
|
SetPagePrivate(page);
|
|
h->resv_huge_pages--;
|
|
}
|
|
|
|
mpol_cond_put(mpol);
|
|
return page;
|
|
|
|
err:
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* common helper functions for hstate_next_node_to_{alloc|free}.
|
|
* We may have allocated or freed a huge page based on a different
|
|
* nodes_allowed previously, so h->next_node_to_{alloc|free} might
|
|
* be outside of *nodes_allowed. Ensure that we use an allowed
|
|
* node for alloc or free.
|
|
*/
|
|
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
|
|
{
|
|
nid = next_node_in(nid, *nodes_allowed);
|
|
VM_BUG_ON(nid >= MAX_NUMNODES);
|
|
|
|
return nid;
|
|
}
|
|
|
|
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
|
|
{
|
|
if (!node_isset(nid, *nodes_allowed))
|
|
nid = next_node_allowed(nid, nodes_allowed);
|
|
return nid;
|
|
}
|
|
|
|
/*
|
|
* returns the previously saved node ["this node"] from which to
|
|
* allocate a persistent huge page for the pool and advance the
|
|
* next node from which to allocate, handling wrap at end of node
|
|
* mask.
|
|
*/
|
|
static int hstate_next_node_to_alloc(struct hstate *h,
|
|
nodemask_t *nodes_allowed)
|
|
{
|
|
int nid;
|
|
|
|
VM_BUG_ON(!nodes_allowed);
|
|
|
|
nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
|
|
h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
|
|
|
|
return nid;
|
|
}
|
|
|
|
/*
|
|
* helper for free_pool_huge_page() - return the previously saved
|
|
* node ["this node"] from which to free a huge page. Advance the
|
|
* next node id whether or not we find a free huge page to free so
|
|
* that the next attempt to free addresses the next node.
|
|
*/
|
|
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
|
|
{
|
|
int nid;
|
|
|
|
VM_BUG_ON(!nodes_allowed);
|
|
|
|
nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
|
|
h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
|
|
|
|
return nid;
|
|
}
|
|
|
|
#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
|
|
for (nr_nodes = nodes_weight(*mask); \
|
|
nr_nodes > 0 && \
|
|
((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
|
|
nr_nodes--)
|
|
|
|
#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
|
|
for (nr_nodes = nodes_weight(*mask); \
|
|
nr_nodes > 0 && \
|
|
((node = hstate_next_node_to_free(hs, mask)) || 1); \
|
|
nr_nodes--)
|
|
|
|
#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
|
|
static void destroy_compound_gigantic_page(struct page *page,
|
|
unsigned int order)
|
|
{
|
|
int i;
|
|
int nr_pages = 1 << order;
|
|
struct page *p = page + 1;
|
|
|
|
atomic_set(compound_mapcount_ptr(page), 0);
|
|
if (hpage_pincount_available(page))
|
|
atomic_set(compound_pincount_ptr(page), 0);
|
|
|
|
for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
|
|
clear_compound_head(p);
|
|
set_page_refcounted(p);
|
|
}
|
|
|
|
set_compound_order(page, 0);
|
|
__ClearPageHead(page);
|
|
}
|
|
|
|
static void free_gigantic_page(struct page *page, unsigned int order)
|
|
{
|
|
/*
|
|
* If the page isn't allocated using the cma allocator,
|
|
* cma_release() returns false.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_CMA) &&
|
|
cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
|
|
return;
|
|
|
|
free_contig_range(page_to_pfn(page), 1 << order);
|
|
}
|
|
|
|
#ifdef CONFIG_CONTIG_ALLOC
|
|
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
|
|
int nid, nodemask_t *nodemask)
|
|
{
|
|
unsigned long nr_pages = 1UL << huge_page_order(h);
|
|
|
|
if (IS_ENABLED(CONFIG_CMA)) {
|
|
struct page *page;
|
|
int node;
|
|
|
|
for_each_node_mask(node, *nodemask) {
|
|
if (!hugetlb_cma[node])
|
|
continue;
|
|
|
|
page = cma_alloc(hugetlb_cma[node], nr_pages,
|
|
huge_page_order(h), true);
|
|
if (page)
|
|
return page;
|
|
}
|
|
}
|
|
|
|
return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
|
|
}
|
|
|
|
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
|
|
static void prep_compound_gigantic_page(struct page *page, unsigned int order);
|
|
#else /* !CONFIG_CONTIG_ALLOC */
|
|
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
|
|
int nid, nodemask_t *nodemask)
|
|
{
|
|
return NULL;
|
|
}
|
|
#endif /* CONFIG_CONTIG_ALLOC */
|
|
|
|
#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
|
|
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
|
|
int nid, nodemask_t *nodemask)
|
|
{
|
|
return NULL;
|
|
}
|
|
static inline void free_gigantic_page(struct page *page, unsigned int order) { }
|
|
static inline void destroy_compound_gigantic_page(struct page *page,
|
|
unsigned int order) { }
|
|
#endif
|
|
|
|
static void update_and_free_page(struct hstate *h, struct page *page)
|
|
{
|
|
int i;
|
|
|
|
if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
|
|
return;
|
|
|
|
h->nr_huge_pages--;
|
|
h->nr_huge_pages_node[page_to_nid(page)]--;
|
|
for (i = 0; i < pages_per_huge_page(h); i++) {
|
|
page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
|
|
1 << PG_referenced | 1 << PG_dirty |
|
|
1 << PG_active | 1 << PG_private |
|
|
1 << PG_writeback);
|
|
}
|
|
VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
|
|
VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
|
|
set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
|
|
set_page_refcounted(page);
|
|
if (hstate_is_gigantic(h)) {
|
|
/*
|
|
* Temporarily drop the hugetlb_lock, because
|
|
* we might block in free_gigantic_page().
|
|
*/
|
|
spin_unlock(&hugetlb_lock);
|
|
destroy_compound_gigantic_page(page, huge_page_order(h));
|
|
free_gigantic_page(page, huge_page_order(h));
|
|
spin_lock(&hugetlb_lock);
|
|
} else {
|
|
__free_pages(page, huge_page_order(h));
|
|
}
|
|
}
|
|
|
|
struct hstate *size_to_hstate(unsigned long size)
|
|
{
|
|
struct hstate *h;
|
|
|
|
for_each_hstate(h) {
|
|
if (huge_page_size(h) == size)
|
|
return h;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Test to determine whether the hugepage is "active/in-use" (i.e. being linked
|
|
* to hstate->hugepage_activelist.)
|
|
*
|
|
* This function can be called for tail pages, but never returns true for them.
|
|
*/
|
|
bool page_huge_active(struct page *page)
|
|
{
|
|
VM_BUG_ON_PAGE(!PageHuge(page), page);
|
|
return PageHead(page) && PagePrivate(&page[1]);
|
|
}
|
|
|
|
/* never called for tail page */
|
|
static void set_page_huge_active(struct page *page)
|
|
{
|
|
VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
|
|
SetPagePrivate(&page[1]);
|
|
}
|
|
|
|
static void clear_page_huge_active(struct page *page)
|
|
{
|
|
VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
|
|
ClearPagePrivate(&page[1]);
|
|
}
|
|
|
|
/*
|
|
* Internal hugetlb specific page flag. Do not use outside of the hugetlb
|
|
* code
|
|
*/
|
|
static inline bool PageHugeTemporary(struct page *page)
|
|
{
|
|
if (!PageHuge(page))
|
|
return false;
|
|
|
|
return (unsigned long)page[2].mapping == -1U;
|
|
}
|
|
|
|
static inline void SetPageHugeTemporary(struct page *page)
|
|
{
|
|
page[2].mapping = (void *)-1U;
|
|
}
|
|
|
|
static inline void ClearPageHugeTemporary(struct page *page)
|
|
{
|
|
page[2].mapping = NULL;
|
|
}
|
|
|
|
static void __free_huge_page(struct page *page)
|
|
{
|
|
/*
|
|
* Can't pass hstate in here because it is called from the
|
|
* compound page destructor.
|
|
*/
|
|
struct hstate *h = page_hstate(page);
|
|
int nid = page_to_nid(page);
|
|
struct hugepage_subpool *spool =
|
|
(struct hugepage_subpool *)page_private(page);
|
|
bool restore_reserve;
|
|
|
|
VM_BUG_ON_PAGE(page_count(page), page);
|
|
VM_BUG_ON_PAGE(page_mapcount(page), page);
|
|
|
|
set_page_private(page, 0);
|
|
page->mapping = NULL;
|
|
restore_reserve = PagePrivate(page);
|
|
ClearPagePrivate(page);
|
|
|
|
/*
|
|
* If PagePrivate() was set on page, page allocation consumed a
|
|
* reservation. If the page was associated with a subpool, there
|
|
* would have been a page reserved in the subpool before allocation
|
|
* via hugepage_subpool_get_pages(). Since we are 'restoring' the
|
|
* reservtion, do not call hugepage_subpool_put_pages() as this will
|
|
* remove the reserved page from the subpool.
|
|
*/
|
|
if (!restore_reserve) {
|
|
/*
|
|
* A return code of zero implies that the subpool will be
|
|
* under its minimum size if the reservation is not restored
|
|
* after page is free. Therefore, force restore_reserve
|
|
* operation.
|
|
*/
|
|
if (hugepage_subpool_put_pages(spool, 1) == 0)
|
|
restore_reserve = true;
|
|
}
|
|
|
|
spin_lock(&hugetlb_lock);
|
|
clear_page_huge_active(page);
|
|
hugetlb_cgroup_uncharge_page(hstate_index(h),
|
|
pages_per_huge_page(h), page);
|
|
hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
|
|
pages_per_huge_page(h), page);
|
|
if (restore_reserve)
|
|
h->resv_huge_pages++;
|
|
|
|
if (PageHugeTemporary(page)) {
|
|
list_del(&page->lru);
|
|
ClearPageHugeTemporary(page);
|
|
update_and_free_page(h, page);
|
|
} else if (h->surplus_huge_pages_node[nid]) {
|
|
/* remove the page from active list */
|
|
list_del(&page->lru);
|
|
update_and_free_page(h, page);
|
|
h->surplus_huge_pages--;
|
|
h->surplus_huge_pages_node[nid]--;
|
|
} else {
|
|
arch_clear_hugepage_flags(page);
|
|
enqueue_huge_page(h, page);
|
|
}
|
|
spin_unlock(&hugetlb_lock);
|
|
}
|
|
|
|
/*
|
|
* As free_huge_page() can be called from a non-task context, we have
|
|
* to defer the actual freeing in a workqueue to prevent potential
|
|
* hugetlb_lock deadlock.
|
|
*
|
|
* free_hpage_workfn() locklessly retrieves the linked list of pages to
|
|
* be freed and frees them one-by-one. As the page->mapping pointer is
|
|
* going to be cleared in __free_huge_page() anyway, it is reused as the
|
|
* llist_node structure of a lockless linked list of huge pages to be freed.
|
|
*/
|
|
static LLIST_HEAD(hpage_freelist);
|
|
|
|
static void free_hpage_workfn(struct work_struct *work)
|
|
{
|
|
struct llist_node *node;
|
|
struct page *page;
|
|
|
|
node = llist_del_all(&hpage_freelist);
|
|
|
|
while (node) {
|
|
page = container_of((struct address_space **)node,
|
|
struct page, mapping);
|
|
node = node->next;
|
|
__free_huge_page(page);
|
|
}
|
|
}
|
|
static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
|
|
|
|
void free_huge_page(struct page *page)
|
|
{
|
|
/*
|
|
* Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
|
|
*/
|
|
if (!in_task()) {
|
|
/*
|
|
* Only call schedule_work() if hpage_freelist is previously
|
|
* empty. Otherwise, schedule_work() had been called but the
|
|
* workfn hasn't retrieved the list yet.
|
|
*/
|
|
if (llist_add((struct llist_node *)&page->mapping,
|
|
&hpage_freelist))
|
|
schedule_work(&free_hpage_work);
|
|
return;
|
|
}
|
|
|
|
__free_huge_page(page);
|
|
}
|
|
|
|
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
|
|
{
|
|
INIT_LIST_HEAD(&page->lru);
|
|
set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
|
|
spin_lock(&hugetlb_lock);
|
|
set_hugetlb_cgroup(page, NULL);
|
|
set_hugetlb_cgroup_rsvd(page, NULL);
|
|
h->nr_huge_pages++;
|
|
h->nr_huge_pages_node[nid]++;
|
|
spin_unlock(&hugetlb_lock);
|
|
}
|
|
|
|
static void prep_compound_gigantic_page(struct page *page, unsigned int order)
|
|
{
|
|
int i;
|
|
int nr_pages = 1 << order;
|
|
struct page *p = page + 1;
|
|
|
|
/* we rely on prep_new_huge_page to set the destructor */
|
|
set_compound_order(page, order);
|
|
__ClearPageReserved(page);
|
|
__SetPageHead(page);
|
|
for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
|
|
/*
|
|
* For gigantic hugepages allocated through bootmem at
|
|
* boot, it's safer to be consistent with the not-gigantic
|
|
* hugepages and clear the PG_reserved bit from all tail pages
|
|
* too. Otherwse drivers using get_user_pages() to access tail
|
|
* pages may get the reference counting wrong if they see
|
|
* PG_reserved set on a tail page (despite the head page not
|
|
* having PG_reserved set). Enforcing this consistency between
|
|
* head and tail pages allows drivers to optimize away a check
|
|
* on the head page when they need know if put_page() is needed
|
|
* after get_user_pages().
|
|
*/
|
|
__ClearPageReserved(p);
|
|
set_page_count(p, 0);
|
|
set_compound_head(p, page);
|
|
}
|
|
atomic_set(compound_mapcount_ptr(page), -1);
|
|
|
|
if (hpage_pincount_available(page))
|
|
atomic_set(compound_pincount_ptr(page), 0);
|
|
}
|
|
|
|
/*
|
|
* PageHuge() only returns true for hugetlbfs pages, but not for normal or
|
|
* transparent huge pages. See the PageTransHuge() documentation for more
|
|
* details.
|
|
*/
|
|
int PageHuge(struct page *page)
|
|
{
|
|
if (!PageCompound(page))
|
|
return 0;
|
|
|
|
page = compound_head(page);
|
|
return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
|
|
}
|
|
EXPORT_SYMBOL_GPL(PageHuge);
|
|
|
|
/*
|
|
* PageHeadHuge() only returns true for hugetlbfs head page, but not for
|
|
* normal or transparent huge pages.
|
|
*/
|
|
int PageHeadHuge(struct page *page_head)
|
|
{
|
|
if (!PageHead(page_head))
|
|
return 0;
|
|
|
|
return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
|
|
}
|
|
|
|
/*
|
|
* Find address_space associated with hugetlbfs page.
|
|
* Upon entry page is locked and page 'was' mapped although mapped state
|
|
* could change. If necessary, use anon_vma to find vma and associated
|
|
* address space. The returned mapping may be stale, but it can not be
|
|
* invalid as page lock (which is held) is required to destroy mapping.
|
|
*/
|
|
static struct address_space *_get_hugetlb_page_mapping(struct page *hpage)
|
|
{
|
|
struct anon_vma *anon_vma;
|
|
pgoff_t pgoff_start, pgoff_end;
|
|
struct anon_vma_chain *avc;
|
|
struct address_space *mapping = page_mapping(hpage);
|
|
|
|
/* Simple file based mapping */
|
|
if (mapping)
|
|
return mapping;
|
|
|
|
/*
|
|
* Even anonymous hugetlbfs mappings are associated with an
|
|
* underlying hugetlbfs file (see hugetlb_file_setup in mmap
|
|
* code). Find a vma associated with the anonymous vma, and
|
|
* use the file pointer to get address_space.
|
|
*/
|
|
anon_vma = page_lock_anon_vma_read(hpage);
|
|
if (!anon_vma)
|
|
return mapping; /* NULL */
|
|
|
|
/* Use first found vma */
|
|
pgoff_start = page_to_pgoff(hpage);
|
|
pgoff_end = pgoff_start + hpage_nr_pages(hpage) - 1;
|
|
anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
|
|
pgoff_start, pgoff_end) {
|
|
struct vm_area_struct *vma = avc->vma;
|
|
|
|
mapping = vma->vm_file->f_mapping;
|
|
break;
|
|
}
|
|
|
|
anon_vma_unlock_read(anon_vma);
|
|
return mapping;
|
|
}
|
|
|
|
/*
|
|
* Find and lock address space (mapping) in write mode.
|
|
*
|
|
* Upon entry, the page is locked which allows us to find the mapping
|
|
* even in the case of an anon page. However, locking order dictates
|
|
* the i_mmap_rwsem be acquired BEFORE the page lock. This is hugetlbfs
|
|
* specific. So, we first try to lock the sema while still holding the
|
|
* page lock. If this works, great! If not, then we need to drop the
|
|
* page lock and then acquire i_mmap_rwsem and reacquire page lock. Of
|
|
* course, need to revalidate state along the way.
|
|
*/
|
|
struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
|
|
{
|
|
struct address_space *mapping, *mapping2;
|
|
|
|
mapping = _get_hugetlb_page_mapping(hpage);
|
|
retry:
|
|
if (!mapping)
|
|
return mapping;
|
|
|
|
/*
|
|
* If no contention, take lock and return
|
|
*/
|
|
if (i_mmap_trylock_write(mapping))
|
|
return mapping;
|
|
|
|
/*
|
|
* Must drop page lock and wait on mapping sema.
|
|
* Note: Once page lock is dropped, mapping could become invalid.
|
|
* As a hack, increase map count until we lock page again.
|
|
*/
|
|
atomic_inc(&hpage->_mapcount);
|
|
unlock_page(hpage);
|
|
i_mmap_lock_write(mapping);
|
|
lock_page(hpage);
|
|
atomic_add_negative(-1, &hpage->_mapcount);
|
|
|
|
/* verify page is still mapped */
|
|
if (!page_mapped(hpage)) {
|
|
i_mmap_unlock_write(mapping);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Get address space again and verify it is the same one
|
|
* we locked. If not, drop lock and retry.
|
|
*/
|
|
mapping2 = _get_hugetlb_page_mapping(hpage);
|
|
if (mapping2 != mapping) {
|
|
i_mmap_unlock_write(mapping);
|
|
mapping = mapping2;
|
|
goto retry;
|
|
}
|
|
|
|
return mapping;
|
|
}
|
|
|
|
pgoff_t __basepage_index(struct page *page)
|
|
{
|
|
struct page *page_head = compound_head(page);
|
|
pgoff_t index = page_index(page_head);
|
|
unsigned long compound_idx;
|
|
|
|
if (!PageHuge(page_head))
|
|
return page_index(page);
|
|
|
|
if (compound_order(page_head) >= MAX_ORDER)
|
|
compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
|
|
else
|
|
compound_idx = page - page_head;
|
|
|
|
return (index << compound_order(page_head)) + compound_idx;
|
|
}
|
|
|
|
static struct page *alloc_buddy_huge_page(struct hstate *h,
|
|
gfp_t gfp_mask, int nid, nodemask_t *nmask,
|
|
nodemask_t *node_alloc_noretry)
|
|
{
|
|
int order = huge_page_order(h);
|
|
struct page *page;
|
|
bool alloc_try_hard = true;
|
|
|
|
/*
|
|
* By default we always try hard to allocate the page with
|
|
* __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
|
|
* a loop (to adjust global huge page counts) and previous allocation
|
|
* failed, do not continue to try hard on the same node. Use the
|
|
* node_alloc_noretry bitmap to manage this state information.
|
|
*/
|
|
if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
|
|
alloc_try_hard = false;
|
|
gfp_mask |= __GFP_COMP|__GFP_NOWARN;
|
|
if (alloc_try_hard)
|
|
gfp_mask |= __GFP_RETRY_MAYFAIL;
|
|
if (nid == NUMA_NO_NODE)
|
|
nid = numa_mem_id();
|
|
page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
|
|
if (page)
|
|
__count_vm_event(HTLB_BUDDY_PGALLOC);
|
|
else
|
|
__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
|
|
|
|
/*
|
|
* If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
|
|
* indicates an overall state change. Clear bit so that we resume
|
|
* normal 'try hard' allocations.
|
|
*/
|
|
if (node_alloc_noretry && page && !alloc_try_hard)
|
|
node_clear(nid, *node_alloc_noretry);
|
|
|
|
/*
|
|
* If we tried hard to get a page but failed, set bit so that
|
|
* subsequent attempts will not try as hard until there is an
|
|
* overall state change.
|
|
*/
|
|
if (node_alloc_noretry && !page && alloc_try_hard)
|
|
node_set(nid, *node_alloc_noretry);
|
|
|
|
return page;
|
|
}
|
|
|
|
/*
|
|
* Common helper to allocate a fresh hugetlb page. All specific allocators
|
|
* should use this function to get new hugetlb pages
|
|
*/
|
|
static struct page *alloc_fresh_huge_page(struct hstate *h,
|
|
gfp_t gfp_mask, int nid, nodemask_t *nmask,
|
|
nodemask_t *node_alloc_noretry)
|
|
{
|
|
struct page *page;
|
|
|
|
if (hstate_is_gigantic(h))
|
|
page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
|
|
else
|
|
page = alloc_buddy_huge_page(h, gfp_mask,
|
|
nid, nmask, node_alloc_noretry);
|
|
if (!page)
|
|
return NULL;
|
|
|
|
if (hstate_is_gigantic(h))
|
|
prep_compound_gigantic_page(page, huge_page_order(h));
|
|
prep_new_huge_page(h, page, page_to_nid(page));
|
|
|
|
return page;
|
|
}
|
|
|
|
/*
|
|
* Allocates a fresh page to the hugetlb allocator pool in the node interleaved
|
|
* manner.
|
|
*/
|
|
static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
|
|
nodemask_t *node_alloc_noretry)
|
|
{
|
|
struct page *page;
|
|
int nr_nodes, node;
|
|
gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
|
|
|
|
for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
|
|
page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
|
|
node_alloc_noretry);
|
|
if (page)
|
|
break;
|
|
}
|
|
|
|
if (!page)
|
|
return 0;
|
|
|
|
put_page(page); /* free it into the hugepage allocator */
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Free huge page from pool from next node to free.
|
|
* Attempt to keep persistent huge pages more or less
|
|
* balanced over allowed nodes.
|
|
* Called with hugetlb_lock locked.
|
|
*/
|
|
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
|
|
bool acct_surplus)
|
|
{
|
|
int nr_nodes, node;
|
|
int ret = 0;
|
|
|
|
for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
|
|
/*
|
|
* If we're returning unused surplus pages, only examine
|
|
* nodes with surplus pages.
|
|
*/
|
|
if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
|
|
!list_empty(&h->hugepage_freelists[node])) {
|
|
struct page *page =
|
|
list_entry(h->hugepage_freelists[node].next,
|
|
struct page, lru);
|
|
list_del(&page->lru);
|
|
h->free_huge_pages--;
|
|
h->free_huge_pages_node[node]--;
|
|
if (acct_surplus) {
|
|
h->surplus_huge_pages--;
|
|
h->surplus_huge_pages_node[node]--;
|
|
}
|
|
update_and_free_page(h, page);
|
|
ret = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Dissolve a given free hugepage into free buddy pages. This function does
|
|
* nothing for in-use hugepages and non-hugepages.
|
|
* This function returns values like below:
|
|
*
|
|
* -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
|
|
* (allocated or reserved.)
|
|
* 0: successfully dissolved free hugepages or the page is not a
|
|
* hugepage (considered as already dissolved)
|
|
*/
|
|
int dissolve_free_huge_page(struct page *page)
|
|
{
|
|
int rc = -EBUSY;
|
|
|
|
/* Not to disrupt normal path by vainly holding hugetlb_lock */
|
|
if (!PageHuge(page))
|
|
return 0;
|
|
|
|
spin_lock(&hugetlb_lock);
|
|
if (!PageHuge(page)) {
|
|
rc = 0;
|
|
goto out;
|
|
}
|
|
|
|
if (!page_count(page)) {
|
|
struct page *head = compound_head(page);
|
|
struct hstate *h = page_hstate(head);
|
|
int nid = page_to_nid(head);
|
|
if (h->free_huge_pages - h->resv_huge_pages == 0)
|
|
goto out;
|
|
/*
|
|
* Move PageHWPoison flag from head page to the raw error page,
|
|
* which makes any subpages rather than the error page reusable.
|
|
*/
|
|
if (PageHWPoison(head) && page != head) {
|
|
SetPageHWPoison(page);
|
|
ClearPageHWPoison(head);
|
|
}
|
|
list_del(&head->lru);
|
|
h->free_huge_pages--;
|
|
h->free_huge_pages_node[nid]--;
|
|
h->max_huge_pages--;
|
|
update_and_free_page(h, head);
|
|
rc = 0;
|
|
}
|
|
out:
|
|
spin_unlock(&hugetlb_lock);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Dissolve free hugepages in a given pfn range. Used by memory hotplug to
|
|
* make specified memory blocks removable from the system.
|
|
* Note that this will dissolve a free gigantic hugepage completely, if any
|
|
* part of it lies within the given range.
|
|
* Also note that if dissolve_free_huge_page() returns with an error, all
|
|
* free hugepages that were dissolved before that error are lost.
|
|
*/
|
|
int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
|
|
{
|
|
unsigned long pfn;
|
|
struct page *page;
|
|
int rc = 0;
|
|
|
|
if (!hugepages_supported())
|
|
return rc;
|
|
|
|
for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
|
|
page = pfn_to_page(pfn);
|
|
rc = dissolve_free_huge_page(page);
|
|
if (rc)
|
|
break;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Allocates a fresh surplus page from the page allocator.
|
|
*/
|
|
static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
|
|
int nid, nodemask_t *nmask)
|
|
{
|
|
struct page *page = NULL;
|
|
|
|
if (hstate_is_gigantic(h))
|
|
return NULL;
|
|
|
|
spin_lock(&hugetlb_lock);
|
|
if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
|
|
goto out_unlock;
|
|
spin_unlock(&hugetlb_lock);
|
|
|
|
page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
|
|
if (!page)
|
|
return NULL;
|
|
|
|
spin_lock(&hugetlb_lock);
|
|
/*
|
|
* We could have raced with the pool size change.
|
|
* Double check that and simply deallocate the new page
|
|
* if we would end up overcommiting the surpluses. Abuse
|
|
* temporary page to workaround the nasty free_huge_page
|
|
* codeflow
|
|
*/
|
|
if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
|
|
SetPageHugeTemporary(page);
|
|
spin_unlock(&hugetlb_lock);
|
|
put_page(page);
|
|
return NULL;
|
|
} else {
|
|
h->surplus_huge_pages++;
|
|
h->surplus_huge_pages_node[page_to_nid(page)]++;
|
|
}
|
|
|
|
out_unlock:
|
|
spin_unlock(&hugetlb_lock);
|
|
|
|
return page;
|
|
}
|
|
|
|
struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
|
|
int nid, nodemask_t *nmask)
|
|
{
|
|
struct page *page;
|
|
|
|
if (hstate_is_gigantic(h))
|
|
return NULL;
|
|
|
|
page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
|
|
if (!page)
|
|
return NULL;
|
|
|
|
/*
|
|
* We do not account these pages as surplus because they are only
|
|
* temporary and will be released properly on the last reference
|
|
*/
|
|
SetPageHugeTemporary(page);
|
|
|
|
return page;
|
|
}
|
|
|
|
/*
|
|
* Use the VMA's mpolicy to allocate a huge page from the buddy.
|
|
*/
|
|
static
|
|
struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
|
|
struct vm_area_struct *vma, unsigned long addr)
|
|
{
|
|
struct page *page;
|
|
struct mempolicy *mpol;
|
|
gfp_t gfp_mask = htlb_alloc_mask(h);
|
|
int nid;
|
|
nodemask_t *nodemask;
|
|
|
|
nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
|
|
page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
|
|
mpol_cond_put(mpol);
|
|
|
|
return page;
|
|
}
|
|
|
|
/* page migration callback function */
|
|
struct page *alloc_huge_page_node(struct hstate *h, int nid)
|
|
{
|
|
gfp_t gfp_mask = htlb_alloc_mask(h);
|
|
struct page *page = NULL;
|
|
|
|
if (nid != NUMA_NO_NODE)
|
|
gfp_mask |= __GFP_THISNODE;
|
|
|
|
spin_lock(&hugetlb_lock);
|
|
if (h->free_huge_pages - h->resv_huge_pages > 0)
|
|
page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
|
|
spin_unlock(&hugetlb_lock);
|
|
|
|
if (!page)
|
|
page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
|
|
|
|
return page;
|
|
}
|
|
|
|
/* page migration callback function */
|
|
struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
|
|
nodemask_t *nmask)
|
|
{
|
|
gfp_t gfp_mask = htlb_alloc_mask(h);
|
|
|
|
spin_lock(&hugetlb_lock);
|
|
if (h->free_huge_pages - h->resv_huge_pages > 0) {
|
|
struct page *page;
|
|
|
|
page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
|
|
if (page) {
|
|
spin_unlock(&hugetlb_lock);
|
|
return page;
|
|
}
|
|
}
|
|
spin_unlock(&hugetlb_lock);
|
|
|
|
return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
|
|
}
|
|
|
|
/* mempolicy aware migration callback */
|
|
struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
|
|
unsigned long address)
|
|
{
|
|
struct mempolicy *mpol;
|
|
nodemask_t *nodemask;
|
|
struct page *page;
|
|
gfp_t gfp_mask;
|
|
int node;
|
|
|
|
gfp_mask = htlb_alloc_mask(h);
|
|
node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
|
|
page = alloc_huge_page_nodemask(h, node, nodemask);
|
|
mpol_cond_put(mpol);
|
|
|
|
return page;
|
|
}
|
|
|
|
/*
|
|
* Increase the hugetlb pool such that it can accommodate a reservation
|
|
* of size 'delta'.
|
|
*/
|
|
static int gather_surplus_pages(struct hstate *h, int delta)
|
|
__must_hold(&hugetlb_lock)
|
|
{
|
|
struct list_head surplus_list;
|
|
struct page *page, *tmp;
|
|
int ret, i;
|
|
int needed, allocated;
|
|
bool alloc_ok = true;
|
|
|
|
needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
|
|
if (needed <= 0) {
|
|
h->resv_huge_pages += delta;
|
|
return 0;
|
|
}
|
|
|
|
allocated = 0;
|
|
INIT_LIST_HEAD(&surplus_list);
|
|
|
|
ret = -ENOMEM;
|
|
retry:
|
|
spin_unlock(&hugetlb_lock);
|
|
for (i = 0; i < needed; i++) {
|
|
page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
|
|
NUMA_NO_NODE, NULL);
|
|
if (!page) {
|
|
alloc_ok = false;
|
|
break;
|
|
}
|
|
list_add(&page->lru, &surplus_list);
|
|
cond_resched();
|
|
}
|
|
allocated += i;
|
|
|
|
/*
|
|
* After retaking hugetlb_lock, we need to recalculate 'needed'
|
|
* because either resv_huge_pages or free_huge_pages may have changed.
|
|
*/
|
|
spin_lock(&hugetlb_lock);
|
|
needed = (h->resv_huge_pages + delta) -
|
|
(h->free_huge_pages + allocated);
|
|
if (needed > 0) {
|
|
if (alloc_ok)
|
|
goto retry;
|
|
/*
|
|
* We were not able to allocate enough pages to
|
|
* satisfy the entire reservation so we free what
|
|
* we've allocated so far.
|
|
*/
|
|
goto free;
|
|
}
|
|
/*
|
|
* The surplus_list now contains _at_least_ the number of extra pages
|
|
* needed to accommodate the reservation. Add the appropriate number
|
|
* of pages to the hugetlb pool and free the extras back to the buddy
|
|
* allocator. Commit the entire reservation here to prevent another
|
|
* process from stealing the pages as they are added to the pool but
|
|
* before they are reserved.
|
|
*/
|
|
needed += allocated;
|
|
h->resv_huge_pages += delta;
|
|
ret = 0;
|
|
|
|
/* Free the needed pages to the hugetlb pool */
|
|
list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
|
|
if ((--needed) < 0)
|
|
break;
|
|
/*
|
|
* This page is now managed by the hugetlb allocator and has
|
|
* no users -- drop the buddy allocator's reference.
|
|
*/
|
|
put_page_testzero(page);
|
|
VM_BUG_ON_PAGE(page_count(page), page);
|
|
enqueue_huge_page(h, page);
|
|
}
|
|
free:
|
|
spin_unlock(&hugetlb_lock);
|
|
|
|
/* Free unnecessary surplus pages to the buddy allocator */
|
|
list_for_each_entry_safe(page, tmp, &surplus_list, lru)
|
|
put_page(page);
|
|
spin_lock(&hugetlb_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This routine has two main purposes:
|
|
* 1) Decrement the reservation count (resv_huge_pages) by the value passed
|
|
* in unused_resv_pages. This corresponds to the prior adjustments made
|
|
* to the associated reservation map.
|
|
* 2) Free any unused surplus pages that may have been allocated to satisfy
|
|
* the reservation. As many as unused_resv_pages may be freed.
|
|
*
|
|
* Called with hugetlb_lock held. However, the lock could be dropped (and
|
|
* reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
|
|
* we must make sure nobody else can claim pages we are in the process of
|
|
* freeing. Do this by ensuring resv_huge_page always is greater than the
|
|
* number of huge pages we plan to free when dropping the lock.
|
|
*/
|
|
static void return_unused_surplus_pages(struct hstate *h,
|
|
unsigned long unused_resv_pages)
|
|
{
|
|
unsigned long nr_pages;
|
|
|
|
/* Cannot return gigantic pages currently */
|
|
if (hstate_is_gigantic(h))
|
|
goto out;
|
|
|
|
/*
|
|
* Part (or even all) of the reservation could have been backed
|
|
* by pre-allocated pages. Only free surplus pages.
|
|
*/
|
|
nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
|
|
|
|
/*
|
|
* We want to release as many surplus pages as possible, spread
|
|
* evenly across all nodes with memory. Iterate across these nodes
|
|
* until we can no longer free unreserved surplus pages. This occurs
|
|
* when the nodes with surplus pages have no free pages.
|
|
* free_pool_huge_page() will balance the the freed pages across the
|
|
* on-line nodes with memory and will handle the hstate accounting.
|
|
*
|
|
* Note that we decrement resv_huge_pages as we free the pages. If
|
|
* we drop the lock, resv_huge_pages will still be sufficiently large
|
|
* to cover subsequent pages we may free.
|
|
*/
|
|
while (nr_pages--) {
|
|
h->resv_huge_pages--;
|
|
unused_resv_pages--;
|
|
if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
|
|
goto out;
|
|
cond_resched_lock(&hugetlb_lock);
|
|
}
|
|
|
|
out:
|
|
/* Fully uncommit the reservation */
|
|
h->resv_huge_pages -= unused_resv_pages;
|
|
}
|
|
|
|
|
|
/*
|
|
* vma_needs_reservation, vma_commit_reservation and vma_end_reservation
|
|
* are used by the huge page allocation routines to manage reservations.
|
|
*
|
|
* vma_needs_reservation is called to determine if the huge page at addr
|
|
* within the vma has an associated reservation. If a reservation is
|
|
* needed, the value 1 is returned. The caller is then responsible for
|
|
* managing the global reservation and subpool usage counts. After
|
|
* the huge page has been allocated, vma_commit_reservation is called
|
|
* to add the page to the reservation map. If the page allocation fails,
|
|
* the reservation must be ended instead of committed. vma_end_reservation
|
|
* is called in such cases.
|
|
*
|
|
* In the normal case, vma_commit_reservation returns the same value
|
|
* as the preceding vma_needs_reservation call. The only time this
|
|
* is not the case is if a reserve map was changed between calls. It
|
|
* is the responsibility of the caller to notice the difference and
|
|
* take appropriate action.
|
|
*
|
|
* vma_add_reservation is used in error paths where a reservation must
|
|
* be restored when a newly allocated huge page must be freed. It is
|
|
* to be called after calling vma_needs_reservation to determine if a
|
|
* reservation exists.
|
|
*/
|
|
enum vma_resv_mode {
|
|
VMA_NEEDS_RESV,
|
|
VMA_COMMIT_RESV,
|
|
VMA_END_RESV,
|
|
VMA_ADD_RESV,
|
|
};
|
|
static long __vma_reservation_common(struct hstate *h,
|
|
struct vm_area_struct *vma, unsigned long addr,
|
|
enum vma_resv_mode mode)
|
|
{
|
|
struct resv_map *resv;
|
|
pgoff_t idx;
|
|
long ret;
|
|
long dummy_out_regions_needed;
|
|
|
|
resv = vma_resv_map(vma);
|
|
if (!resv)
|
|
return 1;
|
|
|
|
idx = vma_hugecache_offset(h, vma, addr);
|
|
switch (mode) {
|
|
case VMA_NEEDS_RESV:
|
|
ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
|
|
/* We assume that vma_reservation_* routines always operate on
|
|
* 1 page, and that adding to resv map a 1 page entry can only
|
|
* ever require 1 region.
|
|
*/
|
|
VM_BUG_ON(dummy_out_regions_needed != 1);
|
|
break;
|
|
case VMA_COMMIT_RESV:
|
|
ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
|
|
/* region_add calls of range 1 should never fail. */
|
|
VM_BUG_ON(ret < 0);
|
|
break;
|
|
case VMA_END_RESV:
|
|
region_abort(resv, idx, idx + 1, 1);
|
|
ret = 0;
|
|
break;
|
|
case VMA_ADD_RESV:
|
|
if (vma->vm_flags & VM_MAYSHARE) {
|
|
ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
|
|
/* region_add calls of range 1 should never fail. */
|
|
VM_BUG_ON(ret < 0);
|
|
} else {
|
|
region_abort(resv, idx, idx + 1, 1);
|
|
ret = region_del(resv, idx, idx + 1);
|
|
}
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
if (vma->vm_flags & VM_MAYSHARE)
|
|
return ret;
|
|
else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
|
|
/*
|
|
* In most cases, reserves always exist for private mappings.
|
|
* However, a file associated with mapping could have been
|
|
* hole punched or truncated after reserves were consumed.
|
|
* As subsequent fault on such a range will not use reserves.
|
|
* Subtle - The reserve map for private mappings has the
|
|
* opposite meaning than that of shared mappings. If NO
|
|
* entry is in the reserve map, it means a reservation exists.
|
|
* If an entry exists in the reserve map, it means the
|
|
* reservation has already been consumed. As a result, the
|
|
* return value of this routine is the opposite of the
|
|
* value returned from reserve map manipulation routines above.
|
|
*/
|
|
if (ret)
|
|
return 0;
|
|
else
|
|
return 1;
|
|
}
|
|
else
|
|
return ret < 0 ? ret : 0;
|
|
}
|
|
|
|
static long vma_needs_reservation(struct hstate *h,
|
|
struct vm_area_struct *vma, unsigned long addr)
|
|
{
|
|
return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
|
|
}
|
|
|
|
static long vma_commit_reservation(struct hstate *h,
|
|
struct vm_area_struct *vma, unsigned long addr)
|
|
{
|
|
return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
|
|
}
|
|
|
|
static void vma_end_reservation(struct hstate *h,
|
|
struct vm_area_struct *vma, unsigned long addr)
|
|
{
|
|
(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
|
|
}
|
|
|
|
static long vma_add_reservation(struct hstate *h,
|
|
struct vm_area_struct *vma, unsigned long addr)
|
|
{
|
|
return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
|
|
}
|
|
|
|
/*
|
|
* This routine is called to restore a reservation on error paths. In the
|
|
* specific error paths, a huge page was allocated (via alloc_huge_page)
|
|
* and is about to be freed. If a reservation for the page existed,
|
|
* alloc_huge_page would have consumed the reservation and set PagePrivate
|
|
* in the newly allocated page. When the page is freed via free_huge_page,
|
|
* the global reservation count will be incremented if PagePrivate is set.
|
|
* However, free_huge_page can not adjust the reserve map. Adjust the
|
|
* reserve map here to be consistent with global reserve count adjustments
|
|
* to be made by free_huge_page.
|
|
*/
|
|
static void restore_reserve_on_error(struct hstate *h,
|
|
struct vm_area_struct *vma, unsigned long address,
|
|
struct page *page)
|
|
{
|
|
if (unlikely(PagePrivate(page))) {
|
|
long rc = vma_needs_reservation(h, vma, address);
|
|
|
|
if (unlikely(rc < 0)) {
|
|
/*
|
|
* Rare out of memory condition in reserve map
|
|
* manipulation. Clear PagePrivate so that
|
|
* global reserve count will not be incremented
|
|
* by free_huge_page. This will make it appear
|
|
* as though the reservation for this page was
|
|
* consumed. This may prevent the task from
|
|
* faulting in the page at a later time. This
|
|
* is better than inconsistent global huge page
|
|
* accounting of reserve counts.
|
|
*/
|
|
ClearPagePrivate(page);
|
|
} else if (rc) {
|
|
rc = vma_add_reservation(h, vma, address);
|
|
if (unlikely(rc < 0))
|
|
/*
|
|
* See above comment about rare out of
|
|
* memory condition.
|
|
*/
|
|
ClearPagePrivate(page);
|
|
} else
|
|
vma_end_reservation(h, vma, address);
|
|
}
|
|
}
|
|
|
|
struct page *alloc_huge_page(struct vm_area_struct *vma,
|
|
unsigned long addr, int avoid_reserve)
|
|
{
|
|
struct hugepage_subpool *spool = subpool_vma(vma);
|
|
struct hstate *h = hstate_vma(vma);
|
|
struct page *page;
|
|
long map_chg, map_commit;
|
|
long gbl_chg;
|
|
int ret, idx;
|
|
struct hugetlb_cgroup *h_cg;
|
|
bool deferred_reserve;
|
|
|
|
idx = hstate_index(h);
|
|
/*
|
|
* Examine the region/reserve map to determine if the process
|
|
* has a reservation for the page to be allocated. A return
|
|
* code of zero indicates a reservation exists (no change).
|
|
*/
|
|
map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
|
|
if (map_chg < 0)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
/*
|
|
* Processes that did not create the mapping will have no
|
|
* reserves as indicated by the region/reserve map. Check
|
|
* that the allocation will not exceed the subpool limit.
|
|
* Allocations for MAP_NORESERVE mappings also need to be
|
|
* checked against any subpool limit.
|
|
*/
|
|
if (map_chg || avoid_reserve) {
|
|
gbl_chg = hugepage_subpool_get_pages(spool, 1);
|
|
if (gbl_chg < 0) {
|
|
vma_end_reservation(h, vma, addr);
|
|
return ERR_PTR(-ENOSPC);
|
|
}
|
|
|
|
/*
|
|
* Even though there was no reservation in the region/reserve
|
|
* map, there could be reservations associated with the
|
|
* subpool that can be used. This would be indicated if the
|
|
* return value of hugepage_subpool_get_pages() is zero.
|
|
* However, if avoid_reserve is specified we still avoid even
|
|
* the subpool reservations.
|
|
*/
|
|
if (avoid_reserve)
|
|
gbl_chg = 1;
|
|
}
|
|
|
|
/* If this allocation is not consuming a reservation, charge it now.
|
|
*/
|
|
deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
|
|
if (deferred_reserve) {
|
|
ret = hugetlb_cgroup_charge_cgroup_rsvd(
|
|
idx, pages_per_huge_page(h), &h_cg);
|
|
if (ret)
|
|
goto out_subpool_put;
|
|
}
|
|
|
|
ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
|
|
if (ret)
|
|
goto out_uncharge_cgroup_reservation;
|
|
|
|
spin_lock(&hugetlb_lock);
|
|
/*
|
|
* glb_chg is passed to indicate whether or not a page must be taken
|
|
* from the global free pool (global change). gbl_chg == 0 indicates
|
|
* a reservation exists for the allocation.
|
|
*/
|
|
page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
|
|
if (!page) {
|
|
spin_unlock(&hugetlb_lock);
|
|
page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
|
|
if (!page)
|
|
goto out_uncharge_cgroup;
|
|
if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
|
|
SetPagePrivate(page);
|
|
h->resv_huge_pages--;
|
|
}
|
|
spin_lock(&hugetlb_lock);
|
|
list_move(&page->lru, &h->hugepage_activelist);
|
|
/* Fall through */
|
|
}
|
|
hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
|
|
/* If allocation is not consuming a reservation, also store the
|
|
* hugetlb_cgroup pointer on the page.
|
|
*/
|
|
if (deferred_reserve) {
|
|
hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
|
|
h_cg, page);
|
|
}
|
|
|
|
spin_unlock(&hugetlb_lock);
|
|
|
|
set_page_private(page, (unsigned long)spool);
|
|
|
|
map_commit = vma_commit_reservation(h, vma, addr);
|
|
if (unlikely(map_chg > map_commit)) {
|
|
/*
|
|
* The page was added to the reservation map between
|
|
* vma_needs_reservation and vma_commit_reservation.
|
|
* This indicates a race with hugetlb_reserve_pages.
|
|
* Adjust for the subpool count incremented above AND
|
|
* in hugetlb_reserve_pages for the same page. Also,
|
|
* the reservation count added in hugetlb_reserve_pages
|
|
* no longer applies.
|
|
*/
|
|
long rsv_adjust;
|
|
|
|
rsv_adjust = hugepage_subpool_put_pages(spool, 1);
|
|
hugetlb_acct_memory(h, -rsv_adjust);
|
|
}
|
|
return page;
|
|
|
|
out_uncharge_cgroup:
|
|
hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
|
|
out_uncharge_cgroup_reservation:
|
|
if (deferred_reserve)
|
|
hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
|
|
h_cg);
|
|
out_subpool_put:
|
|
if (map_chg || avoid_reserve)
|
|
hugepage_subpool_put_pages(spool, 1);
|
|
vma_end_reservation(h, vma, addr);
|
|
return ERR_PTR(-ENOSPC);
|
|
}
|
|
|
|
int alloc_bootmem_huge_page(struct hstate *h)
|
|
__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
|
|
int __alloc_bootmem_huge_page(struct hstate *h)
|
|
{
|
|
struct huge_bootmem_page *m;
|
|
int nr_nodes, node;
|
|
|
|
for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
|
|
void *addr;
|
|
|
|
addr = memblock_alloc_try_nid_raw(
|
|
huge_page_size(h), huge_page_size(h),
|
|
0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
|
|
if (addr) {
|
|
/*
|
|
* Use the beginning of the huge page to store the
|
|
* huge_bootmem_page struct (until gather_bootmem
|
|
* puts them into the mem_map).
|
|
*/
|
|
m = addr;
|
|
goto found;
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
found:
|
|
BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
|
|
/* Put them into a private list first because mem_map is not up yet */
|
|
INIT_LIST_HEAD(&m->list);
|
|
list_add(&m->list, &huge_boot_pages);
|
|
m->hstate = h;
|
|
return 1;
|
|
}
|
|
|
|
static void __init prep_compound_huge_page(struct page *page,
|
|
unsigned int order)
|
|
{
|
|
if (unlikely(order > (MAX_ORDER - 1)))
|
|
prep_compound_gigantic_page(page, order);
|
|
else
|
|
prep_compound_page(page, order);
|
|
}
|
|
|
|
/* Put bootmem huge pages into the standard lists after mem_map is up */
|
|
static void __init gather_bootmem_prealloc(void)
|
|
{
|
|
struct huge_bootmem_page *m;
|
|
|
|
list_for_each_entry(m, &huge_boot_pages, list) {
|
|
struct page *page = virt_to_page(m);
|
|
struct hstate *h = m->hstate;
|
|
|
|
WARN_ON(page_count(page) != 1);
|
|
prep_compound_huge_page(page, h->order);
|
|
WARN_ON(PageReserved(page));
|
|
prep_new_huge_page(h, page, page_to_nid(page));
|
|
put_page(page); /* free it into the hugepage allocator */
|
|
|
|
/*
|
|
* If we had gigantic hugepages allocated at boot time, we need
|
|
* to restore the 'stolen' pages to totalram_pages in order to
|
|
* fix confusing memory reports from free(1) and another
|
|
* side-effects, like CommitLimit going negative.
|
|
*/
|
|
if (hstate_is_gigantic(h))
|
|
adjust_managed_page_count(page, 1 << h->order);
|
|
cond_resched();
|
|
}
|
|
}
|
|
|
|
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
|
|
{
|
|
unsigned long i;
|
|
nodemask_t *node_alloc_noretry;
|
|
|
|
if (!hstate_is_gigantic(h)) {
|
|
/*
|
|
* Bit mask controlling how hard we retry per-node allocations.
|
|
* Ignore errors as lower level routines can deal with
|
|
* node_alloc_noretry == NULL. If this kmalloc fails at boot
|
|
* time, we are likely in bigger trouble.
|
|
*/
|
|
node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
|
|
GFP_KERNEL);
|
|
} else {
|
|
/* allocations done at boot time */
|
|
node_alloc_noretry = NULL;
|
|
}
|
|
|
|
/* bit mask controlling how hard we retry per-node allocations */
|
|
if (node_alloc_noretry)
|
|
nodes_clear(*node_alloc_noretry);
|
|
|
|
for (i = 0; i < h->max_huge_pages; ++i) {
|
|
if (hstate_is_gigantic(h)) {
|
|
if (IS_ENABLED(CONFIG_CMA) && hugetlb_cma[0]) {
|
|
pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
|
|
break;
|
|
}
|
|
if (!alloc_bootmem_huge_page(h))
|
|
break;
|
|
} else if (!alloc_pool_huge_page(h,
|
|
&node_states[N_MEMORY],
|
|
node_alloc_noretry))
|
|
break;
|
|
cond_resched();
|
|
}
|
|
if (i < h->max_huge_pages) {
|
|
char buf[32];
|
|
|
|
string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
|
|
pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
|
|
h->max_huge_pages, buf, i);
|
|
h->max_huge_pages = i;
|
|
}
|
|
|
|
kfree(node_alloc_noretry);
|
|
}
|
|
|
|
static void __init hugetlb_init_hstates(void)
|
|
{
|
|
struct hstate *h;
|
|
|
|
for_each_hstate(h) {
|
|
if (minimum_order > huge_page_order(h))
|
|
minimum_order = huge_page_order(h);
|
|
|
|
/* oversize hugepages were init'ed in early boot */
|
|
if (!hstate_is_gigantic(h))
|
|
hugetlb_hstate_alloc_pages(h);
|
|
}
|
|
VM_BUG_ON(minimum_order == UINT_MAX);
|
|
}
|
|
|
|
static void __init report_hugepages(void)
|
|
{
|
|
struct hstate *h;
|
|
|
|
for_each_hstate(h) {
|
|
char buf[32];
|
|
|
|
string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
|
|
pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
|
|
buf, h->free_huge_pages);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_HIGHMEM
|
|
static void try_to_free_low(struct hstate *h, unsigned long count,
|
|
nodemask_t *nodes_allowed)
|
|
{
|
|
int i;
|
|
|
|
if (hstate_is_gigantic(h))
|
|
return;
|
|
|
|
for_each_node_mask(i, *nodes_allowed) {
|
|
struct page *page, *next;
|
|
struct list_head *freel = &h->hugepage_freelists[i];
|
|
list_for_each_entry_safe(page, next, freel, lru) {
|
|
if (count >= h->nr_huge_pages)
|
|
return;
|
|
if (PageHighMem(page))
|
|
continue;
|
|
list_del(&page->lru);
|
|
update_and_free_page(h, page);
|
|
h->free_huge_pages--;
|
|
h->free_huge_pages_node[page_to_nid(page)]--;
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
static inline void try_to_free_low(struct hstate *h, unsigned long count,
|
|
nodemask_t *nodes_allowed)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Increment or decrement surplus_huge_pages. Keep node-specific counters
|
|
* balanced by operating on them in a round-robin fashion.
|
|
* Returns 1 if an adjustment was made.
|
|
*/
|
|
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
|
|
int delta)
|
|
{
|
|
int nr_nodes, node;
|
|
|
|
VM_BUG_ON(delta != -1 && delta != 1);
|
|
|
|
if (delta < 0) {
|
|
for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
|
|
if (h->surplus_huge_pages_node[node])
|
|
goto found;
|
|
}
|
|
} else {
|
|
for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
|
|
if (h->surplus_huge_pages_node[node] <
|
|
h->nr_huge_pages_node[node])
|
|
goto found;
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
found:
|
|
h->surplus_huge_pages += delta;
|
|
h->surplus_huge_pages_node[node] += delta;
|
|
return 1;
|
|
}
|
|
|
|
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
|
|
static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
|
|
nodemask_t *nodes_allowed)
|
|
{
|
|
unsigned long min_count, ret;
|
|
NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
|
|
|
|
/*
|
|
* Bit mask controlling how hard we retry per-node allocations.
|
|
* If we can not allocate the bit mask, do not attempt to allocate
|
|
* the requested huge pages.
|
|
*/
|
|
if (node_alloc_noretry)
|
|
nodes_clear(*node_alloc_noretry);
|
|
else
|
|
return -ENOMEM;
|
|
|
|
spin_lock(&hugetlb_lock);
|
|
|
|
/*
|
|
* Check for a node specific request.
|
|
* Changing node specific huge page count may require a corresponding
|
|
* change to the global count. In any case, the passed node mask
|
|
* (nodes_allowed) will restrict alloc/free to the specified node.
|
|
*/
|
|
if (nid != NUMA_NO_NODE) {
|
|
unsigned long old_count = count;
|
|
|
|
count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
|
|
/*
|
|
* User may have specified a large count value which caused the
|
|
* above calculation to overflow. In this case, they wanted
|
|
* to allocate as many huge pages as possible. Set count to
|
|
* largest possible value to align with their intention.
|
|
*/
|
|
if (count < old_count)
|
|
count = ULONG_MAX;
|
|
}
|
|
|
|
/*
|
|
* Gigantic pages runtime allocation depend on the capability for large
|
|
* page range allocation.
|
|
* If the system does not provide this feature, return an error when
|
|
* the user tries to allocate gigantic pages but let the user free the
|
|
* boottime allocated gigantic pages.
|
|
*/
|
|
if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
|
|
if (count > persistent_huge_pages(h)) {
|
|
spin_unlock(&hugetlb_lock);
|
|
NODEMASK_FREE(node_alloc_noretry);
|
|
return -EINVAL;
|
|
}
|
|
/* Fall through to decrease pool */
|
|
}
|
|
|
|
/*
|
|
* Increase the pool size
|
|
* First take pages out of surplus state. Then make up the
|
|
* remaining difference by allocating fresh huge pages.
|
|
*
|
|
* We might race with alloc_surplus_huge_page() here and be unable
|
|
* to convert a surplus huge page to a normal huge page. That is
|
|
* not critical, though, it just means the overall size of the
|
|
* pool might be one hugepage larger than it needs to be, but
|
|
* within all the constraints specified by the sysctls.
|
|
*/
|
|
while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
|
|
if (!adjust_pool_surplus(h, nodes_allowed, -1))
|
|
break;
|
|
}
|
|
|
|
while (count > persistent_huge_pages(h)) {
|
|
/*
|
|
* If this allocation races such that we no longer need the
|
|
* page, free_huge_page will handle it by freeing the page
|
|
* and reducing the surplus.
|
|
*/
|
|
spin_unlock(&hugetlb_lock);
|
|
|
|
/* yield cpu to avoid soft lockup */
|
|
cond_resched();
|
|
|
|
ret = alloc_pool_huge_page(h, nodes_allowed,
|
|
node_alloc_noretry);
|
|
spin_lock(&hugetlb_lock);
|
|
if (!ret)
|
|
goto out;
|
|
|
|
/* Bail for signals. Probably ctrl-c from user */
|
|
if (signal_pending(current))
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Decrease the pool size
|
|
* First return free pages to the buddy allocator (being careful
|
|
* to keep enough around to satisfy reservations). Then place
|
|
* pages into surplus state as needed so the pool will shrink
|
|
* to the desired size as pages become free.
|
|
*
|
|
* By placing pages into the surplus state independent of the
|
|
* overcommit value, we are allowing the surplus pool size to
|
|
* exceed overcommit. There are few sane options here. Since
|
|
* alloc_surplus_huge_page() is checking the global counter,
|
|
* though, we'll note that we're not allowed to exceed surplus
|
|
* and won't grow the pool anywhere else. Not until one of the
|
|
* sysctls are changed, or the surplus pages go out of use.
|
|
*/
|
|
min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
|
|
min_count = max(count, min_count);
|
|
try_to_free_low(h, min_count, nodes_allowed);
|
|
while (min_count < persistent_huge_pages(h)) {
|
|
if (!free_pool_huge_page(h, nodes_allowed, 0))
|
|
break;
|
|
cond_resched_lock(&hugetlb_lock);
|
|
}
|
|
while (count < persistent_huge_pages(h)) {
|
|
if (!adjust_pool_surplus(h, nodes_allowed, 1))
|
|
break;
|
|
}
|
|
out:
|
|
h->max_huge_pages = persistent_huge_pages(h);
|
|
spin_unlock(&hugetlb_lock);
|
|
|
|
NODEMASK_FREE(node_alloc_noretry);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define HSTATE_ATTR_RO(_name) \
|
|
static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
|
|
|
|
#define HSTATE_ATTR(_name) \
|
|
static struct kobj_attribute _name##_attr = \
|
|
__ATTR(_name, 0644, _name##_show, _name##_store)
|
|
|
|
static struct kobject *hugepages_kobj;
|
|
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
|
|
|
|
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
|
|
|
|
static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < HUGE_MAX_HSTATE; i++)
|
|
if (hstate_kobjs[i] == kobj) {
|
|
if (nidp)
|
|
*nidp = NUMA_NO_NODE;
|
|
return &hstates[i];
|
|
}
|
|
|
|
return kobj_to_node_hstate(kobj, nidp);
|
|
}
|
|
|
|
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
struct hstate *h;
|
|
unsigned long nr_huge_pages;
|
|
int nid;
|
|
|
|
h = kobj_to_hstate(kobj, &nid);
|
|
if (nid == NUMA_NO_NODE)
|
|
nr_huge_pages = h->nr_huge_pages;
|
|
else
|
|
nr_huge_pages = h->nr_huge_pages_node[nid];
|
|
|
|
return sprintf(buf, "%lu\n", nr_huge_pages);
|
|
}
|
|
|
|
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
|
|
struct hstate *h, int nid,
|
|
unsigned long count, size_t len)
|
|
{
|
|
int err;
|
|
nodemask_t nodes_allowed, *n_mask;
|
|
|
|
if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
|
|
return -EINVAL;
|
|
|
|
if (nid == NUMA_NO_NODE) {
|
|
/*
|
|
* global hstate attribute
|
|
*/
|
|
if (!(obey_mempolicy &&
|
|
init_nodemask_of_mempolicy(&nodes_allowed)))
|
|
n_mask = &node_states[N_MEMORY];
|
|
else
|
|
n_mask = &nodes_allowed;
|
|
} else {
|
|
/*
|
|
* Node specific request. count adjustment happens in
|
|
* set_max_huge_pages() after acquiring hugetlb_lock.
|
|
*/
|
|
init_nodemask_of_node(&nodes_allowed, nid);
|
|
n_mask = &nodes_allowed;
|
|
}
|
|
|
|
err = set_max_huge_pages(h, count, nid, n_mask);
|
|
|
|
return err ? err : len;
|
|
}
|
|
|
|
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
|
|
struct kobject *kobj, const char *buf,
|
|
size_t len)
|
|
{
|
|
struct hstate *h;
|
|
unsigned long count;
|
|
int nid;
|
|
int err;
|
|
|
|
err = kstrtoul(buf, 10, &count);
|
|
if (err)
|
|
return err;
|
|
|
|
h = kobj_to_hstate(kobj, &nid);
|
|
return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
|
|
}
|
|
|
|
static ssize_t nr_hugepages_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
return nr_hugepages_show_common(kobj, attr, buf);
|
|
}
|
|
|
|
static ssize_t nr_hugepages_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr, const char *buf, size_t len)
|
|
{
|
|
return nr_hugepages_store_common(false, kobj, buf, len);
|
|
}
|
|
HSTATE_ATTR(nr_hugepages);
|
|
|
|
#ifdef CONFIG_NUMA
|
|
|
|
/*
|
|
* hstate attribute for optionally mempolicy-based constraint on persistent
|
|
* huge page alloc/free.
|
|
*/
|
|
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
return nr_hugepages_show_common(kobj, attr, buf);
|
|
}
|
|
|
|
static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr, const char *buf, size_t len)
|
|
{
|
|
return nr_hugepages_store_common(true, kobj, buf, len);
|
|
}
|
|
HSTATE_ATTR(nr_hugepages_mempolicy);
|
|
#endif
|
|
|
|
|
|
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
struct hstate *h = kobj_to_hstate(kobj, NULL);
|
|
return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
|
|
}
|
|
|
|
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr, const char *buf, size_t count)
|
|
{
|
|
int err;
|
|
unsigned long input;
|
|
struct hstate *h = kobj_to_hstate(kobj, NULL);
|
|
|
|
if (hstate_is_gigantic(h))
|
|
return -EINVAL;
|
|
|
|
err = kstrtoul(buf, 10, &input);
|
|
if (err)
|
|
return err;
|
|
|
|
spin_lock(&hugetlb_lock);
|
|
h->nr_overcommit_huge_pages = input;
|
|
spin_unlock(&hugetlb_lock);
|
|
|
|
return count;
|
|
}
|
|
HSTATE_ATTR(nr_overcommit_hugepages);
|
|
|
|
static ssize_t free_hugepages_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
struct hstate *h;
|
|
unsigned long free_huge_pages;
|
|
int nid;
|
|
|
|
h = kobj_to_hstate(kobj, &nid);
|
|
if (nid == NUMA_NO_NODE)
|
|
free_huge_pages = h->free_huge_pages;
|
|
else
|
|
free_huge_pages = h->free_huge_pages_node[nid];
|
|
|
|
return sprintf(buf, "%lu\n", free_huge_pages);
|
|
}
|
|
HSTATE_ATTR_RO(free_hugepages);
|
|
|
|
static ssize_t resv_hugepages_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
struct hstate *h = kobj_to_hstate(kobj, NULL);
|
|
return sprintf(buf, "%lu\n", h->resv_huge_pages);
|
|
}
|
|
HSTATE_ATTR_RO(resv_hugepages);
|
|
|
|
static ssize_t surplus_hugepages_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
struct hstate *h;
|
|
unsigned long surplus_huge_pages;
|
|
int nid;
|
|
|
|
h = kobj_to_hstate(kobj, &nid);
|
|
if (nid == NUMA_NO_NODE)
|
|
surplus_huge_pages = h->surplus_huge_pages;
|
|
else
|
|
surplus_huge_pages = h->surplus_huge_pages_node[nid];
|
|
|
|
return sprintf(buf, "%lu\n", surplus_huge_pages);
|
|
}
|
|
HSTATE_ATTR_RO(surplus_hugepages);
|
|
|
|
static struct attribute *hstate_attrs[] = {
|
|
&nr_hugepages_attr.attr,
|
|
&nr_overcommit_hugepages_attr.attr,
|
|
&free_hugepages_attr.attr,
|
|
&resv_hugepages_attr.attr,
|
|
&surplus_hugepages_attr.attr,
|
|
#ifdef CONFIG_NUMA
|
|
&nr_hugepages_mempolicy_attr.attr,
|
|
#endif
|
|
NULL,
|
|
};
|
|
|
|
static const struct attribute_group hstate_attr_group = {
|
|
.attrs = hstate_attrs,
|
|
};
|
|
|
|
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
|
|
struct kobject **hstate_kobjs,
|
|
const struct attribute_group *hstate_attr_group)
|
|
{
|
|
int retval;
|
|
int hi = hstate_index(h);
|
|
|
|
hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
|
|
if (!hstate_kobjs[hi])
|
|
return -ENOMEM;
|
|
|
|
retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
|
|
if (retval)
|
|
kobject_put(hstate_kobjs[hi]);
|
|
|
|
return retval;
|
|
}
|
|
|
|
static void __init hugetlb_sysfs_init(void)
|
|
{
|
|
struct hstate *h;
|
|
int err;
|
|
|
|
hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
|
|
if (!hugepages_kobj)
|
|
return;
|
|
|
|
for_each_hstate(h) {
|
|
err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
|
|
hstate_kobjs, &hstate_attr_group);
|
|
if (err)
|
|
pr_err("Hugetlb: Unable to add hstate %s", h->name);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
|
|
/*
|
|
* node_hstate/s - associate per node hstate attributes, via their kobjects,
|
|
* with node devices in node_devices[] using a parallel array. The array
|
|
* index of a node device or _hstate == node id.
|
|
* This is here to avoid any static dependency of the node device driver, in
|
|
* the base kernel, on the hugetlb module.
|
|
*/
|
|
struct node_hstate {
|
|
struct kobject *hugepages_kobj;
|
|
struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
|
|
};
|
|
static struct node_hstate node_hstates[MAX_NUMNODES];
|
|
|
|
/*
|
|
* A subset of global hstate attributes for node devices
|
|
*/
|
|
static struct attribute *per_node_hstate_attrs[] = {
|
|
&nr_hugepages_attr.attr,
|
|
&free_hugepages_attr.attr,
|
|
&surplus_hugepages_attr.attr,
|
|
NULL,
|
|
};
|
|
|
|
static const struct attribute_group per_node_hstate_attr_group = {
|
|
.attrs = per_node_hstate_attrs,
|
|
};
|
|
|
|
/*
|
|
* kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
|
|
* Returns node id via non-NULL nidp.
|
|
*/
|
|
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
|
|
{
|
|
int nid;
|
|
|
|
for (nid = 0; nid < nr_node_ids; nid++) {
|
|
struct node_hstate *nhs = &node_hstates[nid];
|
|
int i;
|
|
for (i = 0; i < HUGE_MAX_HSTATE; i++)
|
|
if (nhs->hstate_kobjs[i] == kobj) {
|
|
if (nidp)
|
|
*nidp = nid;
|
|
return &hstates[i];
|
|
}
|
|
}
|
|
|
|
BUG();
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Unregister hstate attributes from a single node device.
|
|
* No-op if no hstate attributes attached.
|
|
*/
|
|
static void hugetlb_unregister_node(struct node *node)
|
|
{
|
|
struct hstate *h;
|
|
struct node_hstate *nhs = &node_hstates[node->dev.id];
|
|
|
|
if (!nhs->hugepages_kobj)
|
|
return; /* no hstate attributes */
|
|
|
|
for_each_hstate(h) {
|
|
int idx = hstate_index(h);
|
|
if (nhs->hstate_kobjs[idx]) {
|
|
kobject_put(nhs->hstate_kobjs[idx]);
|
|
nhs->hstate_kobjs[idx] = NULL;
|
|
}
|
|
}
|
|
|
|
kobject_put(nhs->hugepages_kobj);
|
|
nhs->hugepages_kobj = NULL;
|
|
}
|
|
|
|
|
|
/*
|
|
* Register hstate attributes for a single node device.
|
|
* No-op if attributes already registered.
|
|
*/
|
|
static void hugetlb_register_node(struct node *node)
|
|
{
|
|
struct hstate *h;
|
|
struct node_hstate *nhs = &node_hstates[node->dev.id];
|
|
int err;
|
|
|
|
if (nhs->hugepages_kobj)
|
|
return; /* already allocated */
|
|
|
|
nhs->hugepages_kobj = kobject_create_and_add("hugepages",
|
|
&node->dev.kobj);
|
|
if (!nhs->hugepages_kobj)
|
|
return;
|
|
|
|
for_each_hstate(h) {
|
|
err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
|
|
nhs->hstate_kobjs,
|
|
&per_node_hstate_attr_group);
|
|
if (err) {
|
|
pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
|
|
h->name, node->dev.id);
|
|
hugetlb_unregister_node(node);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* hugetlb init time: register hstate attributes for all registered node
|
|
* devices of nodes that have memory. All on-line nodes should have
|
|
* registered their associated device by this time.
|
|
*/
|
|
static void __init hugetlb_register_all_nodes(void)
|
|
{
|
|
int nid;
|
|
|
|
for_each_node_state(nid, N_MEMORY) {
|
|
struct node *node = node_devices[nid];
|
|
if (node->dev.id == nid)
|
|
hugetlb_register_node(node);
|
|
}
|
|
|
|
/*
|
|
* Let the node device driver know we're here so it can
|
|
* [un]register hstate attributes on node hotplug.
|
|
*/
|
|
register_hugetlbfs_with_node(hugetlb_register_node,
|
|
hugetlb_unregister_node);
|
|
}
|
|
#else /* !CONFIG_NUMA */
|
|
|
|
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
|
|
{
|
|
BUG();
|
|
if (nidp)
|
|
*nidp = -1;
|
|
return NULL;
|
|
}
|
|
|
|
static void hugetlb_register_all_nodes(void) { }
|
|
|
|
#endif
|
|
|
|
static int __init hugetlb_init(void)
|
|
{
|
|
int i;
|
|
|
|
if (!hugepages_supported())
|
|
return 0;
|
|
|
|
if (!size_to_hstate(default_hstate_size)) {
|
|
if (default_hstate_size != 0) {
|
|
pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
|
|
default_hstate_size, HPAGE_SIZE);
|
|
}
|
|
|
|
default_hstate_size = HPAGE_SIZE;
|
|
if (!size_to_hstate(default_hstate_size))
|
|
hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
|
|
}
|
|
default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
|
|
if (default_hstate_max_huge_pages) {
|
|
if (!default_hstate.max_huge_pages)
|
|
default_hstate.max_huge_pages = default_hstate_max_huge_pages;
|
|
}
|
|
|
|
hugetlb_cma_check();
|
|
hugetlb_init_hstates();
|
|
gather_bootmem_prealloc();
|
|
report_hugepages();
|
|
|
|
hugetlb_sysfs_init();
|
|
hugetlb_register_all_nodes();
|
|
hugetlb_cgroup_file_init();
|
|
|
|
#ifdef CONFIG_SMP
|
|
num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
|
|
#else
|
|
num_fault_mutexes = 1;
|
|
#endif
|
|
hugetlb_fault_mutex_table =
|
|
kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
|
|
GFP_KERNEL);
|
|
BUG_ON(!hugetlb_fault_mutex_table);
|
|
|
|
for (i = 0; i < num_fault_mutexes; i++)
|
|
mutex_init(&hugetlb_fault_mutex_table[i]);
|
|
return 0;
|
|
}
|
|
subsys_initcall(hugetlb_init);
|
|
|
|
/* Should be called on processing a hugepagesz=... option */
|
|
void __init hugetlb_bad_size(void)
|
|
{
|
|
parsed_valid_hugepagesz = false;
|
|
}
|
|
|
|
void __init hugetlb_add_hstate(unsigned int order)
|
|
{
|
|
struct hstate *h;
|
|
unsigned long i;
|
|
|
|
if (size_to_hstate(PAGE_SIZE << order)) {
|
|
pr_warn("hugepagesz= specified twice, ignoring\n");
|
|
return;
|
|
}
|
|
BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
|
|
BUG_ON(order == 0);
|
|
h = &hstates[hugetlb_max_hstate++];
|
|
h->order = order;
|
|
h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
|
|
h->nr_huge_pages = 0;
|
|
h->free_huge_pages = 0;
|
|
for (i = 0; i < MAX_NUMNODES; ++i)
|
|
INIT_LIST_HEAD(&h->hugepage_freelists[i]);
|
|
INIT_LIST_HEAD(&h->hugepage_activelist);
|
|
h->next_nid_to_alloc = first_memory_node;
|
|
h->next_nid_to_free = first_memory_node;
|
|
snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
|
|
huge_page_size(h)/1024);
|
|
|
|
parsed_hstate = h;
|
|
}
|
|
|
|
static int __init hugetlb_nrpages_setup(char *s)
|
|
{
|
|
unsigned long *mhp;
|
|
static unsigned long *last_mhp;
|
|
|
|
if (!parsed_valid_hugepagesz) {
|
|
pr_warn("hugepages = %s preceded by "
|
|
"an unsupported hugepagesz, ignoring\n", s);
|
|
parsed_valid_hugepagesz = true;
|
|
return 1;
|
|
}
|
|
/*
|
|
* !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
|
|
* so this hugepages= parameter goes to the "default hstate".
|
|
*/
|
|
else if (!hugetlb_max_hstate)
|
|
mhp = &default_hstate_max_huge_pages;
|
|
else
|
|
mhp = &parsed_hstate->max_huge_pages;
|
|
|
|
if (mhp == last_mhp) {
|
|
pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
|
|
return 1;
|
|
}
|
|
|
|
if (sscanf(s, "%lu", mhp) <= 0)
|
|
*mhp = 0;
|
|
|
|
/*
|
|
* Global state is always initialized later in hugetlb_init.
|
|
* But we need to allocate >= MAX_ORDER hstates here early to still
|
|
* use the bootmem allocator.
|
|
*/
|
|
if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
|
|
hugetlb_hstate_alloc_pages(parsed_hstate);
|
|
|
|
last_mhp = mhp;
|
|
|
|
return 1;
|
|
}
|
|
__setup("hugepages=", hugetlb_nrpages_setup);
|
|
|
|
static int __init hugetlb_default_setup(char *s)
|
|
{
|
|
default_hstate_size = memparse(s, &s);
|
|
return 1;
|
|
}
|
|
__setup("default_hugepagesz=", hugetlb_default_setup);
|
|
|
|
static unsigned int cpuset_mems_nr(unsigned int *array)
|
|
{
|
|
int node;
|
|
unsigned int nr = 0;
|
|
|
|
for_each_node_mask(node, cpuset_current_mems_allowed)
|
|
nr += array[node];
|
|
|
|
return nr;
|
|
}
|
|
|
|
#ifdef CONFIG_SYSCTL
|
|
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
|
|
struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *length, loff_t *ppos)
|
|
{
|
|
struct hstate *h = &default_hstate;
|
|
unsigned long tmp = h->max_huge_pages;
|
|
int ret;
|
|
|
|
if (!hugepages_supported())
|
|
return -EOPNOTSUPP;
|
|
|
|
table->data = &tmp;
|
|
table->maxlen = sizeof(unsigned long);
|
|
ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (write)
|
|
ret = __nr_hugepages_store_common(obey_mempolicy, h,
|
|
NUMA_NO_NODE, tmp, *length);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *length, loff_t *ppos)
|
|
{
|
|
|
|
return hugetlb_sysctl_handler_common(false, table, write,
|
|
buffer, length, ppos);
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *length, loff_t *ppos)
|
|
{
|
|
return hugetlb_sysctl_handler_common(true, table, write,
|
|
buffer, length, ppos);
|
|
}
|
|
#endif /* CONFIG_NUMA */
|
|
|
|
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
|
|
void __user *buffer,
|
|
size_t *length, loff_t *ppos)
|
|
{
|
|
struct hstate *h = &default_hstate;
|
|
unsigned long tmp;
|
|
int ret;
|
|
|
|
if (!hugepages_supported())
|
|
return -EOPNOTSUPP;
|
|
|
|
tmp = h->nr_overcommit_huge_pages;
|
|
|
|
if (write && hstate_is_gigantic(h))
|
|
return -EINVAL;
|
|
|
|
table->data = &tmp;
|
|
table->maxlen = sizeof(unsigned long);
|
|
ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (write) {
|
|
spin_lock(&hugetlb_lock);
|
|
h->nr_overcommit_huge_pages = tmp;
|
|
spin_unlock(&hugetlb_lock);
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
#endif /* CONFIG_SYSCTL */
|
|
|
|
void hugetlb_report_meminfo(struct seq_file *m)
|
|
{
|
|
struct hstate *h;
|
|
unsigned long total = 0;
|
|
|
|
if (!hugepages_supported())
|
|
return;
|
|
|
|
for_each_hstate(h) {
|
|
unsigned long count = h->nr_huge_pages;
|
|
|
|
total += (PAGE_SIZE << huge_page_order(h)) * count;
|
|
|
|
if (h == &default_hstate)
|
|
seq_printf(m,
|
|
"HugePages_Total: %5lu\n"
|
|
"HugePages_Free: %5lu\n"
|
|
"HugePages_Rsvd: %5lu\n"
|
|
"HugePages_Surp: %5lu\n"
|
|
"Hugepagesize: %8lu kB\n",
|
|
count,
|
|
h->free_huge_pages,
|
|
h->resv_huge_pages,
|
|
h->surplus_huge_pages,
|
|
(PAGE_SIZE << huge_page_order(h)) / 1024);
|
|
}
|
|
|
|
seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
|
|
}
|
|
|
|
int hugetlb_report_node_meminfo(int nid, char *buf)
|
|
{
|
|
struct hstate *h = &default_hstate;
|
|
if (!hugepages_supported())
|
|
return 0;
|
|
return sprintf(buf,
|
|
"Node %d HugePages_Total: %5u\n"
|
|
"Node %d HugePages_Free: %5u\n"
|
|
"Node %d HugePages_Surp: %5u\n",
|
|
nid, h->nr_huge_pages_node[nid],
|
|
nid, h->free_huge_pages_node[nid],
|
|
nid, h->surplus_huge_pages_node[nid]);
|
|
}
|
|
|
|
void hugetlb_show_meminfo(void)
|
|
{
|
|
struct hstate *h;
|
|
int nid;
|
|
|
|
if (!hugepages_supported())
|
|
return;
|
|
|
|
for_each_node_state(nid, N_MEMORY)
|
|
for_each_hstate(h)
|
|
pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
|
|
nid,
|
|
h->nr_huge_pages_node[nid],
|
|
h->free_huge_pages_node[nid],
|
|
h->surplus_huge_pages_node[nid],
|
|
1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
|
|
}
|
|
|
|
void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
|
|
{
|
|
seq_printf(m, "HugetlbPages:\t%8lu kB\n",
|
|
atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
|
|
}
|
|
|
|
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
|
|
unsigned long hugetlb_total_pages(void)
|
|
{
|
|
struct hstate *h;
|
|
unsigned long nr_total_pages = 0;
|
|
|
|
for_each_hstate(h)
|
|
nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
|
|
return nr_total_pages;
|
|
}
|
|
|
|
static int hugetlb_acct_memory(struct hstate *h, long delta)
|
|
{
|
|
int ret = -ENOMEM;
|
|
|
|
spin_lock(&hugetlb_lock);
|
|
/*
|
|
* When cpuset is configured, it breaks the strict hugetlb page
|
|
* reservation as the accounting is done on a global variable. Such
|
|
* reservation is completely rubbish in the presence of cpuset because
|
|
* the reservation is not checked against page availability for the
|
|
* current cpuset. Application can still potentially OOM'ed by kernel
|
|
* with lack of free htlb page in cpuset that the task is in.
|
|
* Attempt to enforce strict accounting with cpuset is almost
|
|
* impossible (or too ugly) because cpuset is too fluid that
|
|
* task or memory node can be dynamically moved between cpusets.
|
|
*
|
|
* The change of semantics for shared hugetlb mapping with cpuset is
|
|
* undesirable. However, in order to preserve some of the semantics,
|
|
* we fall back to check against current free page availability as
|
|
* a best attempt and hopefully to minimize the impact of changing
|
|
* semantics that cpuset has.
|
|
*/
|
|
if (delta > 0) {
|
|
if (gather_surplus_pages(h, delta) < 0)
|
|
goto out;
|
|
|
|
if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
|
|
return_unused_surplus_pages(h, delta);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
ret = 0;
|
|
if (delta < 0)
|
|
return_unused_surplus_pages(h, (unsigned long) -delta);
|
|
|
|
out:
|
|
spin_unlock(&hugetlb_lock);
|
|
return ret;
|
|
}
|
|
|
|
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
|
|
{
|
|
struct resv_map *resv = vma_resv_map(vma);
|
|
|
|
/*
|
|
* This new VMA should share its siblings reservation map if present.
|
|
* The VMA will only ever have a valid reservation map pointer where
|
|
* it is being copied for another still existing VMA. As that VMA
|
|
* has a reference to the reservation map it cannot disappear until
|
|
* after this open call completes. It is therefore safe to take a
|
|
* new reference here without additional locking.
|
|
*/
|
|
if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
|
|
kref_get(&resv->refs);
|
|
}
|
|
|
|
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
|
|
{
|
|
struct hstate *h = hstate_vma(vma);
|
|
struct resv_map *resv = vma_resv_map(vma);
|
|
struct hugepage_subpool *spool = subpool_vma(vma);
|
|
unsigned long reserve, start, end;
|
|
long gbl_reserve;
|
|
|
|
if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
|
|
return;
|
|
|
|
start = vma_hugecache_offset(h, vma, vma->vm_start);
|
|
end = vma_hugecache_offset(h, vma, vma->vm_end);
|
|
|
|
reserve = (end - start) - region_count(resv, start, end);
|
|
hugetlb_cgroup_uncharge_counter(resv, start, end);
|
|
if (reserve) {
|
|
/*
|
|
* Decrement reserve counts. The global reserve count may be
|
|
* adjusted if the subpool has a minimum size.
|
|
*/
|
|
gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
|
|
hugetlb_acct_memory(h, -gbl_reserve);
|
|
}
|
|
|
|
kref_put(&resv->refs, resv_map_release);
|
|
}
|
|
|
|
static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
|
|
{
|
|
if (addr & ~(huge_page_mask(hstate_vma(vma))))
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
|
|
{
|
|
struct hstate *hstate = hstate_vma(vma);
|
|
|
|
return 1UL << huge_page_shift(hstate);
|
|
}
|
|
|
|
/*
|
|
* We cannot handle pagefaults against hugetlb pages at all. They cause
|
|
* handle_mm_fault() to try to instantiate regular-sized pages in the
|
|
* hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
|
|
* this far.
|
|
*/
|
|
static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
|
|
{
|
|
BUG();
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* When a new function is introduced to vm_operations_struct and added
|
|
* to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
|
|
* This is because under System V memory model, mappings created via
|
|
* shmget/shmat with "huge page" specified are backed by hugetlbfs files,
|
|
* their original vm_ops are overwritten with shm_vm_ops.
|
|
*/
|
|
const struct vm_operations_struct hugetlb_vm_ops = {
|
|
.fault = hugetlb_vm_op_fault,
|
|
.open = hugetlb_vm_op_open,
|
|
.close = hugetlb_vm_op_close,
|
|
.split = hugetlb_vm_op_split,
|
|
.pagesize = hugetlb_vm_op_pagesize,
|
|
};
|
|
|
|
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
|
|
int writable)
|
|
{
|
|
pte_t entry;
|
|
|
|
if (writable) {
|
|
entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
|
|
vma->vm_page_prot)));
|
|
} else {
|
|
entry = huge_pte_wrprotect(mk_huge_pte(page,
|
|
vma->vm_page_prot));
|
|
}
|
|
entry = pte_mkyoung(entry);
|
|
entry = pte_mkhuge(entry);
|
|
entry = arch_make_huge_pte(entry, vma, page, writable);
|
|
|
|
return entry;
|
|
}
|
|
|
|
static void set_huge_ptep_writable(struct vm_area_struct *vma,
|
|
unsigned long address, pte_t *ptep)
|
|
{
|
|
pte_t entry;
|
|
|
|
entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
|
|
if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
|
|
update_mmu_cache(vma, address, ptep);
|
|
}
|
|
|
|
bool is_hugetlb_entry_migration(pte_t pte)
|
|
{
|
|
swp_entry_t swp;
|
|
|
|
if (huge_pte_none(pte) || pte_present(pte))
|
|
return false;
|
|
swp = pte_to_swp_entry(pte);
|
|
if (non_swap_entry(swp) && is_migration_entry(swp))
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
static int is_hugetlb_entry_hwpoisoned(pte_t pte)
|
|
{
|
|
swp_entry_t swp;
|
|
|
|
if (huge_pte_none(pte) || pte_present(pte))
|
|
return 0;
|
|
swp = pte_to_swp_entry(pte);
|
|
if (non_swap_entry(swp) && is_hwpoison_entry(swp))
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
|
|
struct vm_area_struct *vma)
|
|
{
|
|
pte_t *src_pte, *dst_pte, entry, dst_entry;
|
|
struct page *ptepage;
|
|
unsigned long addr;
|
|
int cow;
|
|
struct hstate *h = hstate_vma(vma);
|
|
unsigned long sz = huge_page_size(h);
|
|
struct address_space *mapping = vma->vm_file->f_mapping;
|
|
struct mmu_notifier_range range;
|
|
int ret = 0;
|
|
|
|
cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
|
|
|
|
if (cow) {
|
|
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
|
|
vma->vm_start,
|
|
vma->vm_end);
|
|
mmu_notifier_invalidate_range_start(&range);
|
|
} else {
|
|
/*
|
|
* For shared mappings i_mmap_rwsem must be held to call
|
|
* huge_pte_alloc, otherwise the returned ptep could go
|
|
* away if part of a shared pmd and another thread calls
|
|
* huge_pmd_unshare.
|
|
*/
|
|
i_mmap_lock_read(mapping);
|
|
}
|
|
|
|
for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
|
|
spinlock_t *src_ptl, *dst_ptl;
|
|
src_pte = huge_pte_offset(src, addr, sz);
|
|
if (!src_pte)
|
|
continue;
|
|
dst_pte = huge_pte_alloc(dst, addr, sz);
|
|
if (!dst_pte) {
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If the pagetables are shared don't copy or take references.
|
|
* dst_pte == src_pte is the common case of src/dest sharing.
|
|
*
|
|
* However, src could have 'unshared' and dst shares with
|
|
* another vma. If dst_pte !none, this implies sharing.
|
|
* Check here before taking page table lock, and once again
|
|
* after taking the lock below.
|
|
*/
|
|
dst_entry = huge_ptep_get(dst_pte);
|
|
if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
|
|
continue;
|
|
|
|
dst_ptl = huge_pte_lock(h, dst, dst_pte);
|
|
src_ptl = huge_pte_lockptr(h, src, src_pte);
|
|
spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
|
|
entry = huge_ptep_get(src_pte);
|
|
dst_entry = huge_ptep_get(dst_pte);
|
|
if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
|
|
/*
|
|
* Skip if src entry none. Also, skip in the
|
|
* unlikely case dst entry !none as this implies
|
|
* sharing with another vma.
|
|
*/
|
|
;
|
|
} else if (unlikely(is_hugetlb_entry_migration(entry) ||
|
|
is_hugetlb_entry_hwpoisoned(entry))) {
|
|
swp_entry_t swp_entry = pte_to_swp_entry(entry);
|
|
|
|
if (is_write_migration_entry(swp_entry) && cow) {
|
|
/*
|
|
* COW mappings require pages in both
|
|
* parent and child to be set to read.
|
|
*/
|
|
make_migration_entry_read(&swp_entry);
|
|
entry = swp_entry_to_pte(swp_entry);
|
|
set_huge_swap_pte_at(src, addr, src_pte,
|
|
entry, sz);
|
|
}
|
|
set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
|
|
} else {
|
|
if (cow) {
|
|
/*
|
|
* No need to notify as we are downgrading page
|
|
* table protection not changing it to point
|
|
* to a new page.
|
|
*
|
|
* See Documentation/vm/mmu_notifier.rst
|
|
*/
|
|
huge_ptep_set_wrprotect(src, addr, src_pte);
|
|
}
|
|
entry = huge_ptep_get(src_pte);
|
|
ptepage = pte_page(entry);
|
|
get_page(ptepage);
|
|
page_dup_rmap(ptepage, true);
|
|
set_huge_pte_at(dst, addr, dst_pte, entry);
|
|
hugetlb_count_add(pages_per_huge_page(h), dst);
|
|
}
|
|
spin_unlock(src_ptl);
|
|
spin_unlock(dst_ptl);
|
|
}
|
|
|
|
if (cow)
|
|
mmu_notifier_invalidate_range_end(&range);
|
|
else
|
|
i_mmap_unlock_read(mapping);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
|
|
unsigned long start, unsigned long end,
|
|
struct page *ref_page)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
unsigned long address;
|
|
pte_t *ptep;
|
|
pte_t pte;
|
|
spinlock_t *ptl;
|
|
struct page *page;
|
|
struct hstate *h = hstate_vma(vma);
|
|
unsigned long sz = huge_page_size(h);
|
|
struct mmu_notifier_range range;
|
|
|
|
WARN_ON(!is_vm_hugetlb_page(vma));
|
|
BUG_ON(start & ~huge_page_mask(h));
|
|
BUG_ON(end & ~huge_page_mask(h));
|
|
|
|
/*
|
|
* This is a hugetlb vma, all the pte entries should point
|
|
* to huge page.
|
|
*/
|
|
tlb_change_page_size(tlb, sz);
|
|
tlb_start_vma(tlb, vma);
|
|
|
|
/*
|
|
* If sharing possible, alert mmu notifiers of worst case.
|
|
*/
|
|
mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
|
|
end);
|
|
adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
|
|
mmu_notifier_invalidate_range_start(&range);
|
|
address = start;
|
|
for (; address < end; address += sz) {
|
|
ptep = huge_pte_offset(mm, address, sz);
|
|
if (!ptep)
|
|
continue;
|
|
|
|
ptl = huge_pte_lock(h, mm, ptep);
|
|
if (huge_pmd_unshare(mm, &address, ptep)) {
|
|
spin_unlock(ptl);
|
|
/*
|
|
* We just unmapped a page of PMDs by clearing a PUD.
|
|
* The caller's TLB flush range should cover this area.
|
|
*/
|
|
continue;
|
|
}
|
|
|
|
pte = huge_ptep_get(ptep);
|
|
if (huge_pte_none(pte)) {
|
|
spin_unlock(ptl);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Migrating hugepage or HWPoisoned hugepage is already
|
|
* unmapped and its refcount is dropped, so just clear pte here.
|
|
*/
|
|
if (unlikely(!pte_present(pte))) {
|
|
huge_pte_clear(mm, address, ptep, sz);
|
|
spin_unlock(ptl);
|
|
continue;
|
|
}
|
|
|
|
page = pte_page(pte);
|
|
/*
|
|
* If a reference page is supplied, it is because a specific
|
|
* page is being unmapped, not a range. Ensure the page we
|
|
* are about to unmap is the actual page of interest.
|
|
*/
|
|
if (ref_page) {
|
|
if (page != ref_page) {
|
|
spin_unlock(ptl);
|
|
continue;
|
|
}
|
|
/*
|
|
* Mark the VMA as having unmapped its page so that
|
|
* future faults in this VMA will fail rather than
|
|
* looking like data was lost
|
|
*/
|
|
set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
|
|
}
|
|
|
|
pte = huge_ptep_get_and_clear(mm, address, ptep);
|
|
tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
|
|
if (huge_pte_dirty(pte))
|
|
set_page_dirty(page);
|
|
|
|
hugetlb_count_sub(pages_per_huge_page(h), mm);
|
|
page_remove_rmap(page, true);
|
|
|
|
spin_unlock(ptl);
|
|
tlb_remove_page_size(tlb, page, huge_page_size(h));
|
|
/*
|
|
* Bail out after unmapping reference page if supplied
|
|
*/
|
|
if (ref_page)
|
|
break;
|
|
}
|
|
mmu_notifier_invalidate_range_end(&range);
|
|
tlb_end_vma(tlb, vma);
|
|
}
|
|
|
|
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
|
|
struct vm_area_struct *vma, unsigned long start,
|
|
unsigned long end, struct page *ref_page)
|
|
{
|
|
__unmap_hugepage_range(tlb, vma, start, end, ref_page);
|
|
|
|
/*
|
|
* Clear this flag so that x86's huge_pmd_share page_table_shareable
|
|
* test will fail on a vma being torn down, and not grab a page table
|
|
* on its way out. We're lucky that the flag has such an appropriate
|
|
* name, and can in fact be safely cleared here. We could clear it
|
|
* before the __unmap_hugepage_range above, but all that's necessary
|
|
* is to clear it before releasing the i_mmap_rwsem. This works
|
|
* because in the context this is called, the VMA is about to be
|
|
* destroyed and the i_mmap_rwsem is held.
|
|
*/
|
|
vma->vm_flags &= ~VM_MAYSHARE;
|
|
}
|
|
|
|
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
|
|
unsigned long end, struct page *ref_page)
|
|
{
|
|
struct mm_struct *mm;
|
|
struct mmu_gather tlb;
|
|
unsigned long tlb_start = start;
|
|
unsigned long tlb_end = end;
|
|
|
|
/*
|
|
* If shared PMDs were possibly used within this vma range, adjust
|
|
* start/end for worst case tlb flushing.
|
|
* Note that we can not be sure if PMDs are shared until we try to
|
|
* unmap pages. However, we want to make sure TLB flushing covers
|
|
* the largest possible range.
|
|
*/
|
|
adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
|
|
|
|
mm = vma->vm_mm;
|
|
|
|
tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
|
|
__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
|
|
tlb_finish_mmu(&tlb, tlb_start, tlb_end);
|
|
}
|
|
|
|
/*
|
|
* This is called when the original mapper is failing to COW a MAP_PRIVATE
|
|
* mappping it owns the reserve page for. The intention is to unmap the page
|
|
* from other VMAs and let the children be SIGKILLed if they are faulting the
|
|
* same region.
|
|
*/
|
|
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
|
|
struct page *page, unsigned long address)
|
|
{
|
|
struct hstate *h = hstate_vma(vma);
|
|
struct vm_area_struct *iter_vma;
|
|
struct address_space *mapping;
|
|
pgoff_t pgoff;
|
|
|
|
/*
|
|
* vm_pgoff is in PAGE_SIZE units, hence the different calculation
|
|
* from page cache lookup which is in HPAGE_SIZE units.
|
|
*/
|
|
address = address & huge_page_mask(h);
|
|
pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
|
|
vma->vm_pgoff;
|
|
mapping = vma->vm_file->f_mapping;
|
|
|
|
/*
|
|
* Take the mapping lock for the duration of the table walk. As
|
|
* this mapping should be shared between all the VMAs,
|
|
* __unmap_hugepage_range() is called as the lock is already held
|
|
*/
|
|
i_mmap_lock_write(mapping);
|
|
vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
|
|
/* Do not unmap the current VMA */
|
|
if (iter_vma == vma)
|
|
continue;
|
|
|
|
/*
|
|
* Shared VMAs have their own reserves and do not affect
|
|
* MAP_PRIVATE accounting but it is possible that a shared
|
|
* VMA is using the same page so check and skip such VMAs.
|
|
*/
|
|
if (iter_vma->vm_flags & VM_MAYSHARE)
|
|
continue;
|
|
|
|
/*
|
|
* Unmap the page from other VMAs without their own reserves.
|
|
* They get marked to be SIGKILLed if they fault in these
|
|
* areas. This is because a future no-page fault on this VMA
|
|
* could insert a zeroed page instead of the data existing
|
|
* from the time of fork. This would look like data corruption
|
|
*/
|
|
if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
|
|
unmap_hugepage_range(iter_vma, address,
|
|
address + huge_page_size(h), page);
|
|
}
|
|
i_mmap_unlock_write(mapping);
|
|
}
|
|
|
|
/*
|
|
* Hugetlb_cow() should be called with page lock of the original hugepage held.
|
|
* Called with hugetlb_instantiation_mutex held and pte_page locked so we
|
|
* cannot race with other handlers or page migration.
|
|
* Keep the pte_same checks anyway to make transition from the mutex easier.
|
|
*/
|
|
static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
|
|
unsigned long address, pte_t *ptep,
|
|
struct page *pagecache_page, spinlock_t *ptl)
|
|
{
|
|
pte_t pte;
|
|
struct hstate *h = hstate_vma(vma);
|
|
struct page *old_page, *new_page;
|
|
int outside_reserve = 0;
|
|
vm_fault_t ret = 0;
|
|
unsigned long haddr = address & huge_page_mask(h);
|
|
struct mmu_notifier_range range;
|
|
|
|
pte = huge_ptep_get(ptep);
|
|
old_page = pte_page(pte);
|
|
|
|
retry_avoidcopy:
|
|
/* If no-one else is actually using this page, avoid the copy
|
|
* and just make the page writable */
|
|
if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
|
|
page_move_anon_rmap(old_page, vma);
|
|
set_huge_ptep_writable(vma, haddr, ptep);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If the process that created a MAP_PRIVATE mapping is about to
|
|
* perform a COW due to a shared page count, attempt to satisfy
|
|
* the allocation without using the existing reserves. The pagecache
|
|
* page is used to determine if the reserve at this address was
|
|
* consumed or not. If reserves were used, a partial faulted mapping
|
|
* at the time of fork() could consume its reserves on COW instead
|
|
* of the full address range.
|
|
*/
|
|
if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
|
|
old_page != pagecache_page)
|
|
outside_reserve = 1;
|
|
|
|
get_page(old_page);
|
|
|
|
/*
|
|
* Drop page table lock as buddy allocator may be called. It will
|
|
* be acquired again before returning to the caller, as expected.
|
|
*/
|
|
spin_unlock(ptl);
|
|
new_page = alloc_huge_page(vma, haddr, outside_reserve);
|
|
|
|
if (IS_ERR(new_page)) {
|
|
/*
|
|
* If a process owning a MAP_PRIVATE mapping fails to COW,
|
|
* it is due to references held by a child and an insufficient
|
|
* huge page pool. To guarantee the original mappers
|
|
* reliability, unmap the page from child processes. The child
|
|
* may get SIGKILLed if it later faults.
|
|
*/
|
|
if (outside_reserve) {
|
|
put_page(old_page);
|
|
BUG_ON(huge_pte_none(pte));
|
|
unmap_ref_private(mm, vma, old_page, haddr);
|
|
BUG_ON(huge_pte_none(pte));
|
|
spin_lock(ptl);
|
|
ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
|
|
if (likely(ptep &&
|
|
pte_same(huge_ptep_get(ptep), pte)))
|
|
goto retry_avoidcopy;
|
|
/*
|
|
* race occurs while re-acquiring page table
|
|
* lock, and our job is done.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
ret = vmf_error(PTR_ERR(new_page));
|
|
goto out_release_old;
|
|
}
|
|
|
|
/*
|
|
* When the original hugepage is shared one, it does not have
|
|
* anon_vma prepared.
|
|
*/
|
|
if (unlikely(anon_vma_prepare(vma))) {
|
|
ret = VM_FAULT_OOM;
|
|
goto out_release_all;
|
|
}
|
|
|
|
copy_user_huge_page(new_page, old_page, address, vma,
|
|
pages_per_huge_page(h));
|
|
__SetPageUptodate(new_page);
|
|
|
|
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
|
|
haddr + huge_page_size(h));
|
|
mmu_notifier_invalidate_range_start(&range);
|
|
|
|
/*
|
|
* Retake the page table lock to check for racing updates
|
|
* before the page tables are altered
|
|
*/
|
|
spin_lock(ptl);
|
|
ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
|
|
if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
|
|
ClearPagePrivate(new_page);
|
|
|
|
/* Break COW */
|
|
huge_ptep_clear_flush(vma, haddr, ptep);
|
|
mmu_notifier_invalidate_range(mm, range.start, range.end);
|
|
set_huge_pte_at(mm, haddr, ptep,
|
|
make_huge_pte(vma, new_page, 1));
|
|
page_remove_rmap(old_page, true);
|
|
hugepage_add_new_anon_rmap(new_page, vma, haddr);
|
|
set_page_huge_active(new_page);
|
|
/* Make the old page be freed below */
|
|
new_page = old_page;
|
|
}
|
|
spin_unlock(ptl);
|
|
mmu_notifier_invalidate_range_end(&range);
|
|
out_release_all:
|
|
restore_reserve_on_error(h, vma, haddr, new_page);
|
|
put_page(new_page);
|
|
out_release_old:
|
|
put_page(old_page);
|
|
|
|
spin_lock(ptl); /* Caller expects lock to be held */
|
|
return ret;
|
|
}
|
|
|
|
/* Return the pagecache page at a given address within a VMA */
|
|
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
|
|
struct vm_area_struct *vma, unsigned long address)
|
|
{
|
|
struct address_space *mapping;
|
|
pgoff_t idx;
|
|
|
|
mapping = vma->vm_file->f_mapping;
|
|
idx = vma_hugecache_offset(h, vma, address);
|
|
|
|
return find_lock_page(mapping, idx);
|
|
}
|
|
|
|
/*
|
|
* Return whether there is a pagecache page to back given address within VMA.
|
|
* Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
|
|
*/
|
|
static bool hugetlbfs_pagecache_present(struct hstate *h,
|
|
struct vm_area_struct *vma, unsigned long address)
|
|
{
|
|
struct address_space *mapping;
|
|
pgoff_t idx;
|
|
struct page *page;
|
|
|
|
mapping = vma->vm_file->f_mapping;
|
|
idx = vma_hugecache_offset(h, vma, address);
|
|
|
|
page = find_get_page(mapping, idx);
|
|
if (page)
|
|
put_page(page);
|
|
return page != NULL;
|
|
}
|
|
|
|
int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
|
|
pgoff_t idx)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
struct hstate *h = hstate_inode(inode);
|
|
int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
|
|
|
|
if (err)
|
|
return err;
|
|
ClearPagePrivate(page);
|
|
|
|
/*
|
|
* set page dirty so that it will not be removed from cache/file
|
|
* by non-hugetlbfs specific code paths.
|
|
*/
|
|
set_page_dirty(page);
|
|
|
|
spin_lock(&inode->i_lock);
|
|
inode->i_blocks += blocks_per_huge_page(h);
|
|
spin_unlock(&inode->i_lock);
|
|
return 0;
|
|
}
|
|
|
|
static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
|
|
struct vm_area_struct *vma,
|
|
struct address_space *mapping, pgoff_t idx,
|
|
unsigned long address, pte_t *ptep, unsigned int flags)
|
|
{
|
|
struct hstate *h = hstate_vma(vma);
|
|
vm_fault_t ret = VM_FAULT_SIGBUS;
|
|
int anon_rmap = 0;
|
|
unsigned long size;
|
|
struct page *page;
|
|
pte_t new_pte;
|
|
spinlock_t *ptl;
|
|
unsigned long haddr = address & huge_page_mask(h);
|
|
bool new_page = false;
|
|
|
|
/*
|
|
* Currently, we are forced to kill the process in the event the
|
|
* original mapper has unmapped pages from the child due to a failed
|
|
* COW. Warn that such a situation has occurred as it may not be obvious
|
|
*/
|
|
if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
|
|
pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
|
|
current->pid);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* We can not race with truncation due to holding i_mmap_rwsem.
|
|
* i_size is modified when holding i_mmap_rwsem, so check here
|
|
* once for faults beyond end of file.
|
|
*/
|
|
size = i_size_read(mapping->host) >> huge_page_shift(h);
|
|
if (idx >= size)
|
|
goto out;
|
|
|
|
retry:
|
|
page = find_lock_page(mapping, idx);
|
|
if (!page) {
|
|
/*
|
|
* Check for page in userfault range
|
|
*/
|
|
if (userfaultfd_missing(vma)) {
|
|
u32 hash;
|
|
struct vm_fault vmf = {
|
|
.vma = vma,
|
|
.address = haddr,
|
|
.flags = flags,
|
|
/*
|
|
* Hard to debug if it ends up being
|
|
* used by a callee that assumes
|
|
* something about the other
|
|
* uninitialized fields... same as in
|
|
* memory.c
|
|
*/
|
|
};
|
|
|
|
/*
|
|
* hugetlb_fault_mutex and i_mmap_rwsem must be
|
|
* dropped before handling userfault. Reacquire
|
|
* after handling fault to make calling code simpler.
|
|
*/
|
|
hash = hugetlb_fault_mutex_hash(mapping, idx);
|
|
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
|
|
i_mmap_unlock_read(mapping);
|
|
ret = handle_userfault(&vmf, VM_UFFD_MISSING);
|
|
i_mmap_lock_read(mapping);
|
|
mutex_lock(&hugetlb_fault_mutex_table[hash]);
|
|
goto out;
|
|
}
|
|
|
|
page = alloc_huge_page(vma, haddr, 0);
|
|
if (IS_ERR(page)) {
|
|
/*
|
|
* Returning error will result in faulting task being
|
|
* sent SIGBUS. The hugetlb fault mutex prevents two
|
|
* tasks from racing to fault in the same page which
|
|
* could result in false unable to allocate errors.
|
|
* Page migration does not take the fault mutex, but
|
|
* does a clear then write of pte's under page table
|
|
* lock. Page fault code could race with migration,
|
|
* notice the clear pte and try to allocate a page
|
|
* here. Before returning error, get ptl and make
|
|
* sure there really is no pte entry.
|
|
*/
|
|
ptl = huge_pte_lock(h, mm, ptep);
|
|
if (!huge_pte_none(huge_ptep_get(ptep))) {
|
|
ret = 0;
|
|
spin_unlock(ptl);
|
|
goto out;
|
|
}
|
|
spin_unlock(ptl);
|
|
ret = vmf_error(PTR_ERR(page));
|
|
goto out;
|
|
}
|
|
clear_huge_page(page, address, pages_per_huge_page(h));
|
|
__SetPageUptodate(page);
|
|
new_page = true;
|
|
|
|
if (vma->vm_flags & VM_MAYSHARE) {
|
|
int err = huge_add_to_page_cache(page, mapping, idx);
|
|
if (err) {
|
|
put_page(page);
|
|
if (err == -EEXIST)
|
|
goto retry;
|
|
goto out;
|
|
}
|
|
} else {
|
|
lock_page(page);
|
|
if (unlikely(anon_vma_prepare(vma))) {
|
|
ret = VM_FAULT_OOM;
|
|
goto backout_unlocked;
|
|
}
|
|
anon_rmap = 1;
|
|
}
|
|
} else {
|
|
/*
|
|
* If memory error occurs between mmap() and fault, some process
|
|
* don't have hwpoisoned swap entry for errored virtual address.
|
|
* So we need to block hugepage fault by PG_hwpoison bit check.
|
|
*/
|
|
if (unlikely(PageHWPoison(page))) {
|
|
ret = VM_FAULT_HWPOISON |
|
|
VM_FAULT_SET_HINDEX(hstate_index(h));
|
|
goto backout_unlocked;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we are going to COW a private mapping later, we examine the
|
|
* pending reservations for this page now. This will ensure that
|
|
* any allocations necessary to record that reservation occur outside
|
|
* the spinlock.
|
|
*/
|
|
if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
|
|
if (vma_needs_reservation(h, vma, haddr) < 0) {
|
|
ret = VM_FAULT_OOM;
|
|
goto backout_unlocked;
|
|
}
|
|
/* Just decrements count, does not deallocate */
|
|
vma_end_reservation(h, vma, haddr);
|
|
}
|
|
|
|
ptl = huge_pte_lock(h, mm, ptep);
|
|
ret = 0;
|
|
if (!huge_pte_none(huge_ptep_get(ptep)))
|
|
goto backout;
|
|
|
|
if (anon_rmap) {
|
|
ClearPagePrivate(page);
|
|
hugepage_add_new_anon_rmap(page, vma, haddr);
|
|
} else
|
|
page_dup_rmap(page, true);
|
|
new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
|
|
&& (vma->vm_flags & VM_SHARED)));
|
|
set_huge_pte_at(mm, haddr, ptep, new_pte);
|
|
|
|
hugetlb_count_add(pages_per_huge_page(h), mm);
|
|
if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
|
|
/* Optimization, do the COW without a second fault */
|
|
ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
|
|
}
|
|
|
|
spin_unlock(ptl);
|
|
|
|
/*
|
|
* Only make newly allocated pages active. Existing pages found
|
|
* in the pagecache could be !page_huge_active() if they have been
|
|
* isolated for migration.
|
|
*/
|
|
if (new_page)
|
|
set_page_huge_active(page);
|
|
|
|
unlock_page(page);
|
|
out:
|
|
return ret;
|
|
|
|
backout:
|
|
spin_unlock(ptl);
|
|
backout_unlocked:
|
|
unlock_page(page);
|
|
restore_reserve_on_error(h, vma, haddr, page);
|
|
put_page(page);
|
|
goto out;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
|
|
{
|
|
unsigned long key[2];
|
|
u32 hash;
|
|
|
|
key[0] = (unsigned long) mapping;
|
|
key[1] = idx;
|
|
|
|
hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
|
|
|
|
return hash & (num_fault_mutexes - 1);
|
|
}
|
|
#else
|
|
/*
|
|
* For uniprocesor systems we always use a single mutex, so just
|
|
* return 0 and avoid the hashing overhead.
|
|
*/
|
|
u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
|
|
unsigned long address, unsigned int flags)
|
|
{
|
|
pte_t *ptep, entry;
|
|
spinlock_t *ptl;
|
|
vm_fault_t ret;
|
|
u32 hash;
|
|
pgoff_t idx;
|
|
struct page *page = NULL;
|
|
struct page *pagecache_page = NULL;
|
|
struct hstate *h = hstate_vma(vma);
|
|
struct address_space *mapping;
|
|
int need_wait_lock = 0;
|
|
unsigned long haddr = address & huge_page_mask(h);
|
|
|
|
ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
|
|
if (ptep) {
|
|
/*
|
|
* Since we hold no locks, ptep could be stale. That is
|
|
* OK as we are only making decisions based on content and
|
|
* not actually modifying content here.
|
|
*/
|
|
entry = huge_ptep_get(ptep);
|
|
if (unlikely(is_hugetlb_entry_migration(entry))) {
|
|
migration_entry_wait_huge(vma, mm, ptep);
|
|
return 0;
|
|
} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
|
|
return VM_FAULT_HWPOISON_LARGE |
|
|
VM_FAULT_SET_HINDEX(hstate_index(h));
|
|
} else {
|
|
ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
|
|
if (!ptep)
|
|
return VM_FAULT_OOM;
|
|
}
|
|
|
|
/*
|
|
* Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
|
|
* until finished with ptep. This serves two purposes:
|
|
* 1) It prevents huge_pmd_unshare from being called elsewhere
|
|
* and making the ptep no longer valid.
|
|
* 2) It synchronizes us with i_size modifications during truncation.
|
|
*
|
|
* ptep could have already be assigned via huge_pte_offset. That
|
|
* is OK, as huge_pte_alloc will return the same value unless
|
|
* something has changed.
|
|
*/
|
|
mapping = vma->vm_file->f_mapping;
|
|
i_mmap_lock_read(mapping);
|
|
ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
|
|
if (!ptep) {
|
|
i_mmap_unlock_read(mapping);
|
|
return VM_FAULT_OOM;
|
|
}
|
|
|
|
/*
|
|
* Serialize hugepage allocation and instantiation, so that we don't
|
|
* get spurious allocation failures if two CPUs race to instantiate
|
|
* the same page in the page cache.
|
|
*/
|
|
idx = vma_hugecache_offset(h, vma, haddr);
|
|
hash = hugetlb_fault_mutex_hash(mapping, idx);
|
|
mutex_lock(&hugetlb_fault_mutex_table[hash]);
|
|
|
|
entry = huge_ptep_get(ptep);
|
|
if (huge_pte_none(entry)) {
|
|
ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
|
|
goto out_mutex;
|
|
}
|
|
|
|
ret = 0;
|
|
|
|
/*
|
|
* entry could be a migration/hwpoison entry at this point, so this
|
|
* check prevents the kernel from going below assuming that we have
|
|
* a active hugepage in pagecache. This goto expects the 2nd page fault,
|
|
* and is_hugetlb_entry_(migration|hwpoisoned) check will properly
|
|
* handle it.
|
|
*/
|
|
if (!pte_present(entry))
|
|
goto out_mutex;
|
|
|
|
/*
|
|
* If we are going to COW the mapping later, we examine the pending
|
|
* reservations for this page now. This will ensure that any
|
|
* allocations necessary to record that reservation occur outside the
|
|
* spinlock. For private mappings, we also lookup the pagecache
|
|
* page now as it is used to determine if a reservation has been
|
|
* consumed.
|
|
*/
|
|
if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
|
|
if (vma_needs_reservation(h, vma, haddr) < 0) {
|
|
ret = VM_FAULT_OOM;
|
|
goto out_mutex;
|
|
}
|
|
/* Just decrements count, does not deallocate */
|
|
vma_end_reservation(h, vma, haddr);
|
|
|
|
if (!(vma->vm_flags & VM_MAYSHARE))
|
|
pagecache_page = hugetlbfs_pagecache_page(h,
|
|
vma, haddr);
|
|
}
|
|
|
|
ptl = huge_pte_lock(h, mm, ptep);
|
|
|
|
/* Check for a racing update before calling hugetlb_cow */
|
|
if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
|
|
goto out_ptl;
|
|
|
|
/*
|
|
* hugetlb_cow() requires page locks of pte_page(entry) and
|
|
* pagecache_page, so here we need take the former one
|
|
* when page != pagecache_page or !pagecache_page.
|
|
*/
|
|
page = pte_page(entry);
|
|
if (page != pagecache_page)
|
|
if (!trylock_page(page)) {
|
|
need_wait_lock = 1;
|
|
goto out_ptl;
|
|
}
|
|
|
|
get_page(page);
|
|
|
|
if (flags & FAULT_FLAG_WRITE) {
|
|
if (!huge_pte_write(entry)) {
|
|
ret = hugetlb_cow(mm, vma, address, ptep,
|
|
pagecache_page, ptl);
|
|
goto out_put_page;
|
|
}
|
|
entry = huge_pte_mkdirty(entry);
|
|
}
|
|
entry = pte_mkyoung(entry);
|
|
if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
|
|
flags & FAULT_FLAG_WRITE))
|
|
update_mmu_cache(vma, haddr, ptep);
|
|
out_put_page:
|
|
if (page != pagecache_page)
|
|
unlock_page(page);
|
|
put_page(page);
|
|
out_ptl:
|
|
spin_unlock(ptl);
|
|
|
|
if (pagecache_page) {
|
|
unlock_page(pagecache_page);
|
|
put_page(pagecache_page);
|
|
}
|
|
out_mutex:
|
|
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
|
|
i_mmap_unlock_read(mapping);
|
|
/*
|
|
* Generally it's safe to hold refcount during waiting page lock. But
|
|
* here we just wait to defer the next page fault to avoid busy loop and
|
|
* the page is not used after unlocked before returning from the current
|
|
* page fault. So we are safe from accessing freed page, even if we wait
|
|
* here without taking refcount.
|
|
*/
|
|
if (need_wait_lock)
|
|
wait_on_page_locked(page);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
|
|
* modifications for huge pages.
|
|
*/
|
|
int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
|
|
pte_t *dst_pte,
|
|
struct vm_area_struct *dst_vma,
|
|
unsigned long dst_addr,
|
|
unsigned long src_addr,
|
|
struct page **pagep)
|
|
{
|
|
struct address_space *mapping;
|
|
pgoff_t idx;
|
|
unsigned long size;
|
|
int vm_shared = dst_vma->vm_flags & VM_SHARED;
|
|
struct hstate *h = hstate_vma(dst_vma);
|
|
pte_t _dst_pte;
|
|
spinlock_t *ptl;
|
|
int ret;
|
|
struct page *page;
|
|
|
|
if (!*pagep) {
|
|
ret = -ENOMEM;
|
|
page = alloc_huge_page(dst_vma, dst_addr, 0);
|
|
if (IS_ERR(page))
|
|
goto out;
|
|
|
|
ret = copy_huge_page_from_user(page,
|
|
(const void __user *) src_addr,
|
|
pages_per_huge_page(h), false);
|
|
|
|
/* fallback to copy_from_user outside mmap_sem */
|
|
if (unlikely(ret)) {
|
|
ret = -ENOENT;
|
|
*pagep = page;
|
|
/* don't free the page */
|
|
goto out;
|
|
}
|
|
} else {
|
|
page = *pagep;
|
|
*pagep = NULL;
|
|
}
|
|
|
|
/*
|
|
* The memory barrier inside __SetPageUptodate makes sure that
|
|
* preceding stores to the page contents become visible before
|
|
* the set_pte_at() write.
|
|
*/
|
|
__SetPageUptodate(page);
|
|
|
|
mapping = dst_vma->vm_file->f_mapping;
|
|
idx = vma_hugecache_offset(h, dst_vma, dst_addr);
|
|
|
|
/*
|
|
* If shared, add to page cache
|
|
*/
|
|
if (vm_shared) {
|
|
size = i_size_read(mapping->host) >> huge_page_shift(h);
|
|
ret = -EFAULT;
|
|
if (idx >= size)
|
|
goto out_release_nounlock;
|
|
|
|
/*
|
|
* Serialization between remove_inode_hugepages() and
|
|
* huge_add_to_page_cache() below happens through the
|
|
* hugetlb_fault_mutex_table that here must be hold by
|
|
* the caller.
|
|
*/
|
|
ret = huge_add_to_page_cache(page, mapping, idx);
|
|
if (ret)
|
|
goto out_release_nounlock;
|
|
}
|
|
|
|
ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
|
|
spin_lock(ptl);
|
|
|
|
/*
|
|
* Recheck the i_size after holding PT lock to make sure not
|
|
* to leave any page mapped (as page_mapped()) beyond the end
|
|
* of the i_size (remove_inode_hugepages() is strict about
|
|
* enforcing that). If we bail out here, we'll also leave a
|
|
* page in the radix tree in the vm_shared case beyond the end
|
|
* of the i_size, but remove_inode_hugepages() will take care
|
|
* of it as soon as we drop the hugetlb_fault_mutex_table.
|
|
*/
|
|
size = i_size_read(mapping->host) >> huge_page_shift(h);
|
|
ret = -EFAULT;
|
|
if (idx >= size)
|
|
goto out_release_unlock;
|
|
|
|
ret = -EEXIST;
|
|
if (!huge_pte_none(huge_ptep_get(dst_pte)))
|
|
goto out_release_unlock;
|
|
|
|
if (vm_shared) {
|
|
page_dup_rmap(page, true);
|
|
} else {
|
|
ClearPagePrivate(page);
|
|
hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
|
|
}
|
|
|
|
_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
|
|
if (dst_vma->vm_flags & VM_WRITE)
|
|
_dst_pte = huge_pte_mkdirty(_dst_pte);
|
|
_dst_pte = pte_mkyoung(_dst_pte);
|
|
|
|
set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
|
|
|
|
(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
|
|
dst_vma->vm_flags & VM_WRITE);
|
|
hugetlb_count_add(pages_per_huge_page(h), dst_mm);
|
|
|
|
/* No need to invalidate - it was non-present before */
|
|
update_mmu_cache(dst_vma, dst_addr, dst_pte);
|
|
|
|
spin_unlock(ptl);
|
|
set_page_huge_active(page);
|
|
if (vm_shared)
|
|
unlock_page(page);
|
|
ret = 0;
|
|
out:
|
|
return ret;
|
|
out_release_unlock:
|
|
spin_unlock(ptl);
|
|
if (vm_shared)
|
|
unlock_page(page);
|
|
out_release_nounlock:
|
|
put_page(page);
|
|
goto out;
|
|
}
|
|
|
|
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
|
|
struct page **pages, struct vm_area_struct **vmas,
|
|
unsigned long *position, unsigned long *nr_pages,
|
|
long i, unsigned int flags, int *locked)
|
|
{
|
|
unsigned long pfn_offset;
|
|
unsigned long vaddr = *position;
|
|
unsigned long remainder = *nr_pages;
|
|
struct hstate *h = hstate_vma(vma);
|
|
int err = -EFAULT;
|
|
|
|
while (vaddr < vma->vm_end && remainder) {
|
|
pte_t *pte;
|
|
spinlock_t *ptl = NULL;
|
|
int absent;
|
|
struct page *page;
|
|
|
|
/*
|
|
* If we have a pending SIGKILL, don't keep faulting pages and
|
|
* potentially allocating memory.
|
|
*/
|
|
if (fatal_signal_pending(current)) {
|
|
remainder = 0;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Some archs (sparc64, sh*) have multiple pte_ts to
|
|
* each hugepage. We have to make sure we get the
|
|
* first, for the page indexing below to work.
|
|
*
|
|
* Note that page table lock is not held when pte is null.
|
|
*/
|
|
pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
|
|
huge_page_size(h));
|
|
if (pte)
|
|
ptl = huge_pte_lock(h, mm, pte);
|
|
absent = !pte || huge_pte_none(huge_ptep_get(pte));
|
|
|
|
/*
|
|
* When coredumping, it suits get_dump_page if we just return
|
|
* an error where there's an empty slot with no huge pagecache
|
|
* to back it. This way, we avoid allocating a hugepage, and
|
|
* the sparse dumpfile avoids allocating disk blocks, but its
|
|
* huge holes still show up with zeroes where they need to be.
|
|
*/
|
|
if (absent && (flags & FOLL_DUMP) &&
|
|
!hugetlbfs_pagecache_present(h, vma, vaddr)) {
|
|
if (pte)
|
|
spin_unlock(ptl);
|
|
remainder = 0;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We need call hugetlb_fault for both hugepages under migration
|
|
* (in which case hugetlb_fault waits for the migration,) and
|
|
* hwpoisoned hugepages (in which case we need to prevent the
|
|
* caller from accessing to them.) In order to do this, we use
|
|
* here is_swap_pte instead of is_hugetlb_entry_migration and
|
|
* is_hugetlb_entry_hwpoisoned. This is because it simply covers
|
|
* both cases, and because we can't follow correct pages
|
|
* directly from any kind of swap entries.
|
|
*/
|
|
if (absent || is_swap_pte(huge_ptep_get(pte)) ||
|
|
((flags & FOLL_WRITE) &&
|
|
!huge_pte_write(huge_ptep_get(pte)))) {
|
|
vm_fault_t ret;
|
|
unsigned int fault_flags = 0;
|
|
|
|
if (pte)
|
|
spin_unlock(ptl);
|
|
if (flags & FOLL_WRITE)
|
|
fault_flags |= FAULT_FLAG_WRITE;
|
|
if (locked)
|
|
fault_flags |= FAULT_FLAG_ALLOW_RETRY |
|
|
FAULT_FLAG_KILLABLE;
|
|
if (flags & FOLL_NOWAIT)
|
|
fault_flags |= FAULT_FLAG_ALLOW_RETRY |
|
|
FAULT_FLAG_RETRY_NOWAIT;
|
|
if (flags & FOLL_TRIED) {
|
|
/*
|
|
* Note: FAULT_FLAG_ALLOW_RETRY and
|
|
* FAULT_FLAG_TRIED can co-exist
|
|
*/
|
|
fault_flags |= FAULT_FLAG_TRIED;
|
|
}
|
|
ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
|
|
if (ret & VM_FAULT_ERROR) {
|
|
err = vm_fault_to_errno(ret, flags);
|
|
remainder = 0;
|
|
break;
|
|
}
|
|
if (ret & VM_FAULT_RETRY) {
|
|
if (locked &&
|
|
!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
|
|
*locked = 0;
|
|
*nr_pages = 0;
|
|
/*
|
|
* VM_FAULT_RETRY must not return an
|
|
* error, it will return zero
|
|
* instead.
|
|
*
|
|
* No need to update "position" as the
|
|
* caller will not check it after
|
|
* *nr_pages is set to 0.
|
|
*/
|
|
return i;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
|
|
page = pte_page(huge_ptep_get(pte));
|
|
|
|
/*
|
|
* If subpage information not requested, update counters
|
|
* and skip the same_page loop below.
|
|
*/
|
|
if (!pages && !vmas && !pfn_offset &&
|
|
(vaddr + huge_page_size(h) < vma->vm_end) &&
|
|
(remainder >= pages_per_huge_page(h))) {
|
|
vaddr += huge_page_size(h);
|
|
remainder -= pages_per_huge_page(h);
|
|
i += pages_per_huge_page(h);
|
|
spin_unlock(ptl);
|
|
continue;
|
|
}
|
|
|
|
same_page:
|
|
if (pages) {
|
|
pages[i] = mem_map_offset(page, pfn_offset);
|
|
/*
|
|
* try_grab_page() should always succeed here, because:
|
|
* a) we hold the ptl lock, and b) we've just checked
|
|
* that the huge page is present in the page tables. If
|
|
* the huge page is present, then the tail pages must
|
|
* also be present. The ptl prevents the head page and
|
|
* tail pages from being rearranged in any way. So this
|
|
* page must be available at this point, unless the page
|
|
* refcount overflowed:
|
|
*/
|
|
if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
|
|
spin_unlock(ptl);
|
|
remainder = 0;
|
|
err = -ENOMEM;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (vmas)
|
|
vmas[i] = vma;
|
|
|
|
vaddr += PAGE_SIZE;
|
|
++pfn_offset;
|
|
--remainder;
|
|
++i;
|
|
if (vaddr < vma->vm_end && remainder &&
|
|
pfn_offset < pages_per_huge_page(h)) {
|
|
/*
|
|
* We use pfn_offset to avoid touching the pageframes
|
|
* of this compound page.
|
|
*/
|
|
goto same_page;
|
|
}
|
|
spin_unlock(ptl);
|
|
}
|
|
*nr_pages = remainder;
|
|
/*
|
|
* setting position is actually required only if remainder is
|
|
* not zero but it's faster not to add a "if (remainder)"
|
|
* branch.
|
|
*/
|
|
*position = vaddr;
|
|
|
|
return i ? i : err;
|
|
}
|
|
|
|
#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
|
|
/*
|
|
* ARCHes with special requirements for evicting HUGETLB backing TLB entries can
|
|
* implement this.
|
|
*/
|
|
#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
|
|
#endif
|
|
|
|
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
|
|
unsigned long address, unsigned long end, pgprot_t newprot)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
unsigned long start = address;
|
|
pte_t *ptep;
|
|
pte_t pte;
|
|
struct hstate *h = hstate_vma(vma);
|
|
unsigned long pages = 0;
|
|
bool shared_pmd = false;
|
|
struct mmu_notifier_range range;
|
|
|
|
/*
|
|
* In the case of shared PMDs, the area to flush could be beyond
|
|
* start/end. Set range.start/range.end to cover the maximum possible
|
|
* range if PMD sharing is possible.
|
|
*/
|
|
mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
|
|
0, vma, mm, start, end);
|
|
adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
|
|
|
|
BUG_ON(address >= end);
|
|
flush_cache_range(vma, range.start, range.end);
|
|
|
|
mmu_notifier_invalidate_range_start(&range);
|
|
i_mmap_lock_write(vma->vm_file->f_mapping);
|
|
for (; address < end; address += huge_page_size(h)) {
|
|
spinlock_t *ptl;
|
|
ptep = huge_pte_offset(mm, address, huge_page_size(h));
|
|
if (!ptep)
|
|
continue;
|
|
ptl = huge_pte_lock(h, mm, ptep);
|
|
if (huge_pmd_unshare(mm, &address, ptep)) {
|
|
pages++;
|
|
spin_unlock(ptl);
|
|
shared_pmd = true;
|
|
continue;
|
|
}
|
|
pte = huge_ptep_get(ptep);
|
|
if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
|
|
spin_unlock(ptl);
|
|
continue;
|
|
}
|
|
if (unlikely(is_hugetlb_entry_migration(pte))) {
|
|
swp_entry_t entry = pte_to_swp_entry(pte);
|
|
|
|
if (is_write_migration_entry(entry)) {
|
|
pte_t newpte;
|
|
|
|
make_migration_entry_read(&entry);
|
|
newpte = swp_entry_to_pte(entry);
|
|
set_huge_swap_pte_at(mm, address, ptep,
|
|
newpte, huge_page_size(h));
|
|
pages++;
|
|
}
|
|
spin_unlock(ptl);
|
|
continue;
|
|
}
|
|
if (!huge_pte_none(pte)) {
|
|
pte_t old_pte;
|
|
|
|
old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
|
|
pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
|
|
pte = arch_make_huge_pte(pte, vma, NULL, 0);
|
|
huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
|
|
pages++;
|
|
}
|
|
spin_unlock(ptl);
|
|
}
|
|
/*
|
|
* Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
|
|
* may have cleared our pud entry and done put_page on the page table:
|
|
* once we release i_mmap_rwsem, another task can do the final put_page
|
|
* and that page table be reused and filled with junk. If we actually
|
|
* did unshare a page of pmds, flush the range corresponding to the pud.
|
|
*/
|
|
if (shared_pmd)
|
|
flush_hugetlb_tlb_range(vma, range.start, range.end);
|
|
else
|
|
flush_hugetlb_tlb_range(vma, start, end);
|
|
/*
|
|
* No need to call mmu_notifier_invalidate_range() we are downgrading
|
|
* page table protection not changing it to point to a new page.
|
|
*
|
|
* See Documentation/vm/mmu_notifier.rst
|
|
*/
|
|
i_mmap_unlock_write(vma->vm_file->f_mapping);
|
|
mmu_notifier_invalidate_range_end(&range);
|
|
|
|
return pages << h->order;
|
|
}
|
|
|
|
int hugetlb_reserve_pages(struct inode *inode,
|
|
long from, long to,
|
|
struct vm_area_struct *vma,
|
|
vm_flags_t vm_flags)
|
|
{
|
|
long ret, chg, add = -1;
|
|
struct hstate *h = hstate_inode(inode);
|
|
struct hugepage_subpool *spool = subpool_inode(inode);
|
|
struct resv_map *resv_map;
|
|
struct hugetlb_cgroup *h_cg = NULL;
|
|
long gbl_reserve, regions_needed = 0;
|
|
|
|
/* This should never happen */
|
|
if (from > to) {
|
|
VM_WARN(1, "%s called with a negative range\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Only apply hugepage reservation if asked. At fault time, an
|
|
* attempt will be made for VM_NORESERVE to allocate a page
|
|
* without using reserves
|
|
*/
|
|
if (vm_flags & VM_NORESERVE)
|
|
return 0;
|
|
|
|
/*
|
|
* Shared mappings base their reservation on the number of pages that
|
|
* are already allocated on behalf of the file. Private mappings need
|
|
* to reserve the full area even if read-only as mprotect() may be
|
|
* called to make the mapping read-write. Assume !vma is a shm mapping
|
|
*/
|
|
if (!vma || vma->vm_flags & VM_MAYSHARE) {
|
|
/*
|
|
* resv_map can not be NULL as hugetlb_reserve_pages is only
|
|
* called for inodes for which resv_maps were created (see
|
|
* hugetlbfs_get_inode).
|
|
*/
|
|
resv_map = inode_resv_map(inode);
|
|
|
|
chg = region_chg(resv_map, from, to, ®ions_needed);
|
|
|
|
} else {
|
|
/* Private mapping. */
|
|
resv_map = resv_map_alloc();
|
|
if (!resv_map)
|
|
return -ENOMEM;
|
|
|
|
chg = to - from;
|
|
|
|
set_vma_resv_map(vma, resv_map);
|
|
set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
|
|
}
|
|
|
|
if (chg < 0) {
|
|
ret = chg;
|
|
goto out_err;
|
|
}
|
|
|
|
ret = hugetlb_cgroup_charge_cgroup_rsvd(
|
|
hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
|
|
|
|
if (ret < 0) {
|
|
ret = -ENOMEM;
|
|
goto out_err;
|
|
}
|
|
|
|
if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
|
|
/* For private mappings, the hugetlb_cgroup uncharge info hangs
|
|
* of the resv_map.
|
|
*/
|
|
resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
|
|
}
|
|
|
|
/*
|
|
* There must be enough pages in the subpool for the mapping. If
|
|
* the subpool has a minimum size, there may be some global
|
|
* reservations already in place (gbl_reserve).
|
|
*/
|
|
gbl_reserve = hugepage_subpool_get_pages(spool, chg);
|
|
if (gbl_reserve < 0) {
|
|
ret = -ENOSPC;
|
|
goto out_uncharge_cgroup;
|
|
}
|
|
|
|
/*
|
|
* Check enough hugepages are available for the reservation.
|
|
* Hand the pages back to the subpool if there are not
|
|
*/
|
|
ret = hugetlb_acct_memory(h, gbl_reserve);
|
|
if (ret < 0) {
|
|
goto out_put_pages;
|
|
}
|
|
|
|
/*
|
|
* Account for the reservations made. Shared mappings record regions
|
|
* that have reservations as they are shared by multiple VMAs.
|
|
* When the last VMA disappears, the region map says how much
|
|
* the reservation was and the page cache tells how much of
|
|
* the reservation was consumed. Private mappings are per-VMA and
|
|
* only the consumed reservations are tracked. When the VMA
|
|
* disappears, the original reservation is the VMA size and the
|
|
* consumed reservations are stored in the map. Hence, nothing
|
|
* else has to be done for private mappings here
|
|
*/
|
|
if (!vma || vma->vm_flags & VM_MAYSHARE) {
|
|
add = region_add(resv_map, from, to, regions_needed, h, h_cg);
|
|
|
|
if (unlikely(add < 0)) {
|
|
hugetlb_acct_memory(h, -gbl_reserve);
|
|
goto out_put_pages;
|
|
} else if (unlikely(chg > add)) {
|
|
/*
|
|
* pages in this range were added to the reserve
|
|
* map between region_chg and region_add. This
|
|
* indicates a race with alloc_huge_page. Adjust
|
|
* the subpool and reserve counts modified above
|
|
* based on the difference.
|
|
*/
|
|
long rsv_adjust;
|
|
|
|
hugetlb_cgroup_uncharge_cgroup_rsvd(
|
|
hstate_index(h),
|
|
(chg - add) * pages_per_huge_page(h), h_cg);
|
|
|
|
rsv_adjust = hugepage_subpool_put_pages(spool,
|
|
chg - add);
|
|
hugetlb_acct_memory(h, -rsv_adjust);
|
|
}
|
|
}
|
|
return 0;
|
|
out_put_pages:
|
|
/* put back original number of pages, chg */
|
|
(void)hugepage_subpool_put_pages(spool, chg);
|
|
out_uncharge_cgroup:
|
|
hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
|
|
chg * pages_per_huge_page(h), h_cg);
|
|
out_err:
|
|
if (!vma || vma->vm_flags & VM_MAYSHARE)
|
|
/* Only call region_abort if the region_chg succeeded but the
|
|
* region_add failed or didn't run.
|
|
*/
|
|
if (chg >= 0 && add < 0)
|
|
region_abort(resv_map, from, to, regions_needed);
|
|
if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
|
|
kref_put(&resv_map->refs, resv_map_release);
|
|
return ret;
|
|
}
|
|
|
|
long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
|
|
long freed)
|
|
{
|
|
struct hstate *h = hstate_inode(inode);
|
|
struct resv_map *resv_map = inode_resv_map(inode);
|
|
long chg = 0;
|
|
struct hugepage_subpool *spool = subpool_inode(inode);
|
|
long gbl_reserve;
|
|
|
|
/*
|
|
* Since this routine can be called in the evict inode path for all
|
|
* hugetlbfs inodes, resv_map could be NULL.
|
|
*/
|
|
if (resv_map) {
|
|
chg = region_del(resv_map, start, end);
|
|
/*
|
|
* region_del() can fail in the rare case where a region
|
|
* must be split and another region descriptor can not be
|
|
* allocated. If end == LONG_MAX, it will not fail.
|
|
*/
|
|
if (chg < 0)
|
|
return chg;
|
|
}
|
|
|
|
spin_lock(&inode->i_lock);
|
|
inode->i_blocks -= (blocks_per_huge_page(h) * freed);
|
|
spin_unlock(&inode->i_lock);
|
|
|
|
/*
|
|
* If the subpool has a minimum size, the number of global
|
|
* reservations to be released may be adjusted.
|
|
*/
|
|
gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
|
|
hugetlb_acct_memory(h, -gbl_reserve);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
|
|
static unsigned long page_table_shareable(struct vm_area_struct *svma,
|
|
struct vm_area_struct *vma,
|
|
unsigned long addr, pgoff_t idx)
|
|
{
|
|
unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
|
|
svma->vm_start;
|
|
unsigned long sbase = saddr & PUD_MASK;
|
|
unsigned long s_end = sbase + PUD_SIZE;
|
|
|
|
/* Allow segments to share if only one is marked locked */
|
|
unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
|
|
unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
|
|
|
|
/*
|
|
* match the virtual addresses, permission and the alignment of the
|
|
* page table page.
|
|
*/
|
|
if (pmd_index(addr) != pmd_index(saddr) ||
|
|
vm_flags != svm_flags ||
|
|
sbase < svma->vm_start || svma->vm_end < s_end)
|
|
return 0;
|
|
|
|
return saddr;
|
|
}
|
|
|
|
static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
|
|
{
|
|
unsigned long base = addr & PUD_MASK;
|
|
unsigned long end = base + PUD_SIZE;
|
|
|
|
/*
|
|
* check on proper vm_flags and page table alignment
|
|
*/
|
|
if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Determine if start,end range within vma could be mapped by shared pmd.
|
|
* If yes, adjust start and end to cover range associated with possible
|
|
* shared pmd mappings.
|
|
*/
|
|
void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
|
|
unsigned long *start, unsigned long *end)
|
|
{
|
|
unsigned long check_addr;
|
|
|
|
if (!(vma->vm_flags & VM_MAYSHARE))
|
|
return;
|
|
|
|
for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
|
|
unsigned long a_start = check_addr & PUD_MASK;
|
|
unsigned long a_end = a_start + PUD_SIZE;
|
|
|
|
/*
|
|
* If sharing is possible, adjust start/end if necessary.
|
|
*/
|
|
if (range_in_vma(vma, a_start, a_end)) {
|
|
if (a_start < *start)
|
|
*start = a_start;
|
|
if (a_end > *end)
|
|
*end = a_end;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
|
|
* and returns the corresponding pte. While this is not necessary for the
|
|
* !shared pmd case because we can allocate the pmd later as well, it makes the
|
|
* code much cleaner.
|
|
*
|
|
* This routine must be called with i_mmap_rwsem held in at least read mode.
|
|
* For hugetlbfs, this prevents removal of any page table entries associated
|
|
* with the address space. This is important as we are setting up sharing
|
|
* based on existing page table entries (mappings).
|
|
*/
|
|
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
|
|
{
|
|
struct vm_area_struct *vma = find_vma(mm, addr);
|
|
struct address_space *mapping = vma->vm_file->f_mapping;
|
|
pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
|
|
vma->vm_pgoff;
|
|
struct vm_area_struct *svma;
|
|
unsigned long saddr;
|
|
pte_t *spte = NULL;
|
|
pte_t *pte;
|
|
spinlock_t *ptl;
|
|
|
|
if (!vma_shareable(vma, addr))
|
|
return (pte_t *)pmd_alloc(mm, pud, addr);
|
|
|
|
vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
|
|
if (svma == vma)
|
|
continue;
|
|
|
|
saddr = page_table_shareable(svma, vma, addr, idx);
|
|
if (saddr) {
|
|
spte = huge_pte_offset(svma->vm_mm, saddr,
|
|
vma_mmu_pagesize(svma));
|
|
if (spte) {
|
|
get_page(virt_to_page(spte));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!spte)
|
|
goto out;
|
|
|
|
ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
|
|
if (pud_none(*pud)) {
|
|
pud_populate(mm, pud,
|
|
(pmd_t *)((unsigned long)spte & PAGE_MASK));
|
|
mm_inc_nr_pmds(mm);
|
|
} else {
|
|
put_page(virt_to_page(spte));
|
|
}
|
|
spin_unlock(ptl);
|
|
out:
|
|
pte = (pte_t *)pmd_alloc(mm, pud, addr);
|
|
return pte;
|
|
}
|
|
|
|
/*
|
|
* unmap huge page backed by shared pte.
|
|
*
|
|
* Hugetlb pte page is ref counted at the time of mapping. If pte is shared
|
|
* indicated by page_count > 1, unmap is achieved by clearing pud and
|
|
* decrementing the ref count. If count == 1, the pte page is not shared.
|
|
*
|
|
* Called with page table lock held and i_mmap_rwsem held in write mode.
|
|
*
|
|
* returns: 1 successfully unmapped a shared pte page
|
|
* 0 the underlying pte page is not shared, or it is the last user
|
|
*/
|
|
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
|
|
{
|
|
pgd_t *pgd = pgd_offset(mm, *addr);
|
|
p4d_t *p4d = p4d_offset(pgd, *addr);
|
|
pud_t *pud = pud_offset(p4d, *addr);
|
|
|
|
BUG_ON(page_count(virt_to_page(ptep)) == 0);
|
|
if (page_count(virt_to_page(ptep)) == 1)
|
|
return 0;
|
|
|
|
pud_clear(pud);
|
|
put_page(virt_to_page(ptep));
|
|
mm_dec_nr_pmds(mm);
|
|
*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
|
|
return 1;
|
|
}
|
|
#define want_pmd_share() (1)
|
|
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
|
|
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
|
|
unsigned long *start, unsigned long *end)
|
|
{
|
|
}
|
|
#define want_pmd_share() (0)
|
|
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
|
|
|
|
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
|
|
pte_t *huge_pte_alloc(struct mm_struct *mm,
|
|
unsigned long addr, unsigned long sz)
|
|
{
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pte_t *pte = NULL;
|
|
|
|
pgd = pgd_offset(mm, addr);
|
|
p4d = p4d_alloc(mm, pgd, addr);
|
|
if (!p4d)
|
|
return NULL;
|
|
pud = pud_alloc(mm, p4d, addr);
|
|
if (pud) {
|
|
if (sz == PUD_SIZE) {
|
|
pte = (pte_t *)pud;
|
|
} else {
|
|
BUG_ON(sz != PMD_SIZE);
|
|
if (want_pmd_share() && pud_none(*pud))
|
|
pte = huge_pmd_share(mm, addr, pud);
|
|
else
|
|
pte = (pte_t *)pmd_alloc(mm, pud, addr);
|
|
}
|
|
}
|
|
BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
|
|
|
|
return pte;
|
|
}
|
|
|
|
/*
|
|
* huge_pte_offset() - Walk the page table to resolve the hugepage
|
|
* entry at address @addr
|
|
*
|
|
* Return: Pointer to page table or swap entry (PUD or PMD) for
|
|
* address @addr, or NULL if a p*d_none() entry is encountered and the
|
|
* size @sz doesn't match the hugepage size at this level of the page
|
|
* table.
|
|
*/
|
|
pte_t *huge_pte_offset(struct mm_struct *mm,
|
|
unsigned long addr, unsigned long sz)
|
|
{
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
pgd = pgd_offset(mm, addr);
|
|
if (!pgd_present(*pgd))
|
|
return NULL;
|
|
p4d = p4d_offset(pgd, addr);
|
|
if (!p4d_present(*p4d))
|
|
return NULL;
|
|
|
|
pud = pud_offset(p4d, addr);
|
|
if (sz != PUD_SIZE && pud_none(*pud))
|
|
return NULL;
|
|
/* hugepage or swap? */
|
|
if (pud_huge(*pud) || !pud_present(*pud))
|
|
return (pte_t *)pud;
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
if (sz != PMD_SIZE && pmd_none(*pmd))
|
|
return NULL;
|
|
/* hugepage or swap? */
|
|
if (pmd_huge(*pmd) || !pmd_present(*pmd))
|
|
return (pte_t *)pmd;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
|
|
|
|
/*
|
|
* These functions are overwritable if your architecture needs its own
|
|
* behavior.
|
|
*/
|
|
struct page * __weak
|
|
follow_huge_addr(struct mm_struct *mm, unsigned long address,
|
|
int write)
|
|
{
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
struct page * __weak
|
|
follow_huge_pd(struct vm_area_struct *vma,
|
|
unsigned long address, hugepd_t hpd, int flags, int pdshift)
|
|
{
|
|
WARN(1, "hugepd follow called with no support for hugepage directory format\n");
|
|
return NULL;
|
|
}
|
|
|
|
struct page * __weak
|
|
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
|
|
pmd_t *pmd, int flags)
|
|
{
|
|
struct page *page = NULL;
|
|
spinlock_t *ptl;
|
|
pte_t pte;
|
|
|
|
/* FOLL_GET and FOLL_PIN are mutually exclusive. */
|
|
if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
|
|
(FOLL_PIN | FOLL_GET)))
|
|
return NULL;
|
|
|
|
retry:
|
|
ptl = pmd_lockptr(mm, pmd);
|
|
spin_lock(ptl);
|
|
/*
|
|
* make sure that the address range covered by this pmd is not
|
|
* unmapped from other threads.
|
|
*/
|
|
if (!pmd_huge(*pmd))
|
|
goto out;
|
|
pte = huge_ptep_get((pte_t *)pmd);
|
|
if (pte_present(pte)) {
|
|
page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
|
|
/*
|
|
* try_grab_page() should always succeed here, because: a) we
|
|
* hold the pmd (ptl) lock, and b) we've just checked that the
|
|
* huge pmd (head) page is present in the page tables. The ptl
|
|
* prevents the head page and tail pages from being rearranged
|
|
* in any way. So this page must be available at this point,
|
|
* unless the page refcount overflowed:
|
|
*/
|
|
if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
|
|
page = NULL;
|
|
goto out;
|
|
}
|
|
} else {
|
|
if (is_hugetlb_entry_migration(pte)) {
|
|
spin_unlock(ptl);
|
|
__migration_entry_wait(mm, (pte_t *)pmd, ptl);
|
|
goto retry;
|
|
}
|
|
/*
|
|
* hwpoisoned entry is treated as no_page_table in
|
|
* follow_page_mask().
|
|
*/
|
|
}
|
|
out:
|
|
spin_unlock(ptl);
|
|
return page;
|
|
}
|
|
|
|
struct page * __weak
|
|
follow_huge_pud(struct mm_struct *mm, unsigned long address,
|
|
pud_t *pud, int flags)
|
|
{
|
|
if (flags & (FOLL_GET | FOLL_PIN))
|
|
return NULL;
|
|
|
|
return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
|
|
}
|
|
|
|
struct page * __weak
|
|
follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
|
|
{
|
|
if (flags & (FOLL_GET | FOLL_PIN))
|
|
return NULL;
|
|
|
|
return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
|
|
}
|
|
|
|
bool isolate_huge_page(struct page *page, struct list_head *list)
|
|
{
|
|
bool ret = true;
|
|
|
|
VM_BUG_ON_PAGE(!PageHead(page), page);
|
|
spin_lock(&hugetlb_lock);
|
|
if (!page_huge_active(page) || !get_page_unless_zero(page)) {
|
|
ret = false;
|
|
goto unlock;
|
|
}
|
|
clear_page_huge_active(page);
|
|
list_move_tail(&page->lru, list);
|
|
unlock:
|
|
spin_unlock(&hugetlb_lock);
|
|
return ret;
|
|
}
|
|
|
|
void putback_active_hugepage(struct page *page)
|
|
{
|
|
VM_BUG_ON_PAGE(!PageHead(page), page);
|
|
spin_lock(&hugetlb_lock);
|
|
set_page_huge_active(page);
|
|
list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
|
|
spin_unlock(&hugetlb_lock);
|
|
put_page(page);
|
|
}
|
|
|
|
void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
|
|
{
|
|
struct hstate *h = page_hstate(oldpage);
|
|
|
|
hugetlb_cgroup_migrate(oldpage, newpage);
|
|
set_page_owner_migrate_reason(newpage, reason);
|
|
|
|
/*
|
|
* transfer temporary state of the new huge page. This is
|
|
* reverse to other transitions because the newpage is going to
|
|
* be final while the old one will be freed so it takes over
|
|
* the temporary status.
|
|
*
|
|
* Also note that we have to transfer the per-node surplus state
|
|
* here as well otherwise the global surplus count will not match
|
|
* the per-node's.
|
|
*/
|
|
if (PageHugeTemporary(newpage)) {
|
|
int old_nid = page_to_nid(oldpage);
|
|
int new_nid = page_to_nid(newpage);
|
|
|
|
SetPageHugeTemporary(oldpage);
|
|
ClearPageHugeTemporary(newpage);
|
|
|
|
spin_lock(&hugetlb_lock);
|
|
if (h->surplus_huge_pages_node[old_nid]) {
|
|
h->surplus_huge_pages_node[old_nid]--;
|
|
h->surplus_huge_pages_node[new_nid]++;
|
|
}
|
|
spin_unlock(&hugetlb_lock);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_CMA
|
|
static unsigned long hugetlb_cma_size __initdata;
|
|
static bool cma_reserve_called __initdata;
|
|
|
|
static int __init cmdline_parse_hugetlb_cma(char *p)
|
|
{
|
|
hugetlb_cma_size = memparse(p, &p);
|
|
return 0;
|
|
}
|
|
|
|
early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
|
|
|
|
void __init hugetlb_cma_reserve(int order)
|
|
{
|
|
unsigned long size, reserved, per_node;
|
|
int nid;
|
|
|
|
cma_reserve_called = true;
|
|
|
|
if (!hugetlb_cma_size)
|
|
return;
|
|
|
|
if (hugetlb_cma_size < (PAGE_SIZE << order)) {
|
|
pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
|
|
(PAGE_SIZE << order) / SZ_1M);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If 3 GB area is requested on a machine with 4 numa nodes,
|
|
* let's allocate 1 GB on first three nodes and ignore the last one.
|
|
*/
|
|
per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
|
|
pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
|
|
hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
|
|
|
|
reserved = 0;
|
|
for_each_node_state(nid, N_ONLINE) {
|
|
int res;
|
|
|
|
size = min(per_node, hugetlb_cma_size - reserved);
|
|
size = round_up(size, PAGE_SIZE << order);
|
|
|
|
res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
|
|
0, false, "hugetlb",
|
|
&hugetlb_cma[nid], nid);
|
|
if (res) {
|
|
pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
|
|
res, nid);
|
|
continue;
|
|
}
|
|
|
|
reserved += size;
|
|
pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
|
|
size / SZ_1M, nid);
|
|
|
|
if (reserved >= hugetlb_cma_size)
|
|
break;
|
|
}
|
|
}
|
|
|
|
void __init hugetlb_cma_check(void)
|
|
{
|
|
if (!hugetlb_cma_size || cma_reserve_called)
|
|
return;
|
|
|
|
pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
|
|
}
|
|
|
|
#endif /* CONFIG_CMA */
|