mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
e50944e219
Many shash algorithms set .cra_flags = CRYPTO_ALG_TYPE_SHASH. But this is redundant with the C structure type ('struct shash_alg'), and crypto_register_shash() already sets the type flag automatically, clearing any type flag that was already there. Apparently the useless assignment has just been copy+pasted around. So, remove the useless assignment from all the shash algorithms. This patch shouldn't change any actual behavior. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
275 lines
6.7 KiB
C
275 lines
6.7 KiB
C
/*
|
|
* Glue code for SHA-256 implementation for SPE instructions (PPC)
|
|
*
|
|
* Based on generic implementation. The assembler module takes care
|
|
* about the SPE registers so it can run from interrupt context.
|
|
*
|
|
* Copyright (c) 2015 Markus Stockhausen <stockhausen@collogia.de>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the Free
|
|
* Software Foundation; either version 2 of the License, or (at your option)
|
|
* any later version.
|
|
*
|
|
*/
|
|
|
|
#include <crypto/internal/hash.h>
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/cryptohash.h>
|
|
#include <linux/types.h>
|
|
#include <crypto/sha.h>
|
|
#include <asm/byteorder.h>
|
|
#include <asm/switch_to.h>
|
|
#include <linux/hardirq.h>
|
|
|
|
/*
|
|
* MAX_BYTES defines the number of bytes that are allowed to be processed
|
|
* between preempt_disable() and preempt_enable(). SHA256 takes ~2,000
|
|
* operations per 64 bytes. e500 cores can issue two arithmetic instructions
|
|
* per clock cycle using one 32/64 bit unit (SU1) and one 32 bit unit (SU2).
|
|
* Thus 1KB of input data will need an estimated maximum of 18,000 cycles.
|
|
* Headroom for cache misses included. Even with the low end model clocked
|
|
* at 667 MHz this equals to a critical time window of less than 27us.
|
|
*
|
|
*/
|
|
#define MAX_BYTES 1024
|
|
|
|
extern void ppc_spe_sha256_transform(u32 *state, const u8 *src, u32 blocks);
|
|
|
|
static void spe_begin(void)
|
|
{
|
|
/* We just start SPE operations and will save SPE registers later. */
|
|
preempt_disable();
|
|
enable_kernel_spe();
|
|
}
|
|
|
|
static void spe_end(void)
|
|
{
|
|
disable_kernel_spe();
|
|
/* reenable preemption */
|
|
preempt_enable();
|
|
}
|
|
|
|
static inline void ppc_sha256_clear_context(struct sha256_state *sctx)
|
|
{
|
|
int count = sizeof(struct sha256_state) >> 2;
|
|
u32 *ptr = (u32 *)sctx;
|
|
|
|
/* make sure we can clear the fast way */
|
|
BUILD_BUG_ON(sizeof(struct sha256_state) % 4);
|
|
do { *ptr++ = 0; } while (--count);
|
|
}
|
|
|
|
static int ppc_spe_sha256_init(struct shash_desc *desc)
|
|
{
|
|
struct sha256_state *sctx = shash_desc_ctx(desc);
|
|
|
|
sctx->state[0] = SHA256_H0;
|
|
sctx->state[1] = SHA256_H1;
|
|
sctx->state[2] = SHA256_H2;
|
|
sctx->state[3] = SHA256_H3;
|
|
sctx->state[4] = SHA256_H4;
|
|
sctx->state[5] = SHA256_H5;
|
|
sctx->state[6] = SHA256_H6;
|
|
sctx->state[7] = SHA256_H7;
|
|
sctx->count = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ppc_spe_sha224_init(struct shash_desc *desc)
|
|
{
|
|
struct sha256_state *sctx = shash_desc_ctx(desc);
|
|
|
|
sctx->state[0] = SHA224_H0;
|
|
sctx->state[1] = SHA224_H1;
|
|
sctx->state[2] = SHA224_H2;
|
|
sctx->state[3] = SHA224_H3;
|
|
sctx->state[4] = SHA224_H4;
|
|
sctx->state[5] = SHA224_H5;
|
|
sctx->state[6] = SHA224_H6;
|
|
sctx->state[7] = SHA224_H7;
|
|
sctx->count = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ppc_spe_sha256_update(struct shash_desc *desc, const u8 *data,
|
|
unsigned int len)
|
|
{
|
|
struct sha256_state *sctx = shash_desc_ctx(desc);
|
|
const unsigned int offset = sctx->count & 0x3f;
|
|
const unsigned int avail = 64 - offset;
|
|
unsigned int bytes;
|
|
const u8 *src = data;
|
|
|
|
if (avail > len) {
|
|
sctx->count += len;
|
|
memcpy((char *)sctx->buf + offset, src, len);
|
|
return 0;
|
|
}
|
|
|
|
sctx->count += len;
|
|
|
|
if (offset) {
|
|
memcpy((char *)sctx->buf + offset, src, avail);
|
|
|
|
spe_begin();
|
|
ppc_spe_sha256_transform(sctx->state, (const u8 *)sctx->buf, 1);
|
|
spe_end();
|
|
|
|
len -= avail;
|
|
src += avail;
|
|
}
|
|
|
|
while (len > 63) {
|
|
/* cut input data into smaller blocks */
|
|
bytes = (len > MAX_BYTES) ? MAX_BYTES : len;
|
|
bytes = bytes & ~0x3f;
|
|
|
|
spe_begin();
|
|
ppc_spe_sha256_transform(sctx->state, src, bytes >> 6);
|
|
spe_end();
|
|
|
|
src += bytes;
|
|
len -= bytes;
|
|
};
|
|
|
|
memcpy((char *)sctx->buf, src, len);
|
|
return 0;
|
|
}
|
|
|
|
static int ppc_spe_sha256_final(struct shash_desc *desc, u8 *out)
|
|
{
|
|
struct sha256_state *sctx = shash_desc_ctx(desc);
|
|
const unsigned int offset = sctx->count & 0x3f;
|
|
char *p = (char *)sctx->buf + offset;
|
|
int padlen;
|
|
__be64 *pbits = (__be64 *)(((char *)&sctx->buf) + 56);
|
|
__be32 *dst = (__be32 *)out;
|
|
|
|
padlen = 55 - offset;
|
|
*p++ = 0x80;
|
|
|
|
spe_begin();
|
|
|
|
if (padlen < 0) {
|
|
memset(p, 0x00, padlen + sizeof (u64));
|
|
ppc_spe_sha256_transform(sctx->state, sctx->buf, 1);
|
|
p = (char *)sctx->buf;
|
|
padlen = 56;
|
|
}
|
|
|
|
memset(p, 0, padlen);
|
|
*pbits = cpu_to_be64(sctx->count << 3);
|
|
ppc_spe_sha256_transform(sctx->state, sctx->buf, 1);
|
|
|
|
spe_end();
|
|
|
|
dst[0] = cpu_to_be32(sctx->state[0]);
|
|
dst[1] = cpu_to_be32(sctx->state[1]);
|
|
dst[2] = cpu_to_be32(sctx->state[2]);
|
|
dst[3] = cpu_to_be32(sctx->state[3]);
|
|
dst[4] = cpu_to_be32(sctx->state[4]);
|
|
dst[5] = cpu_to_be32(sctx->state[5]);
|
|
dst[6] = cpu_to_be32(sctx->state[6]);
|
|
dst[7] = cpu_to_be32(sctx->state[7]);
|
|
|
|
ppc_sha256_clear_context(sctx);
|
|
return 0;
|
|
}
|
|
|
|
static int ppc_spe_sha224_final(struct shash_desc *desc, u8 *out)
|
|
{
|
|
u32 D[SHA256_DIGEST_SIZE >> 2];
|
|
__be32 *dst = (__be32 *)out;
|
|
|
|
ppc_spe_sha256_final(desc, (u8 *)D);
|
|
|
|
/* avoid bytewise memcpy */
|
|
dst[0] = D[0];
|
|
dst[1] = D[1];
|
|
dst[2] = D[2];
|
|
dst[3] = D[3];
|
|
dst[4] = D[4];
|
|
dst[5] = D[5];
|
|
dst[6] = D[6];
|
|
|
|
/* clear sensitive data */
|
|
memzero_explicit(D, SHA256_DIGEST_SIZE);
|
|
return 0;
|
|
}
|
|
|
|
static int ppc_spe_sha256_export(struct shash_desc *desc, void *out)
|
|
{
|
|
struct sha256_state *sctx = shash_desc_ctx(desc);
|
|
|
|
memcpy(out, sctx, sizeof(*sctx));
|
|
return 0;
|
|
}
|
|
|
|
static int ppc_spe_sha256_import(struct shash_desc *desc, const void *in)
|
|
{
|
|
struct sha256_state *sctx = shash_desc_ctx(desc);
|
|
|
|
memcpy(sctx, in, sizeof(*sctx));
|
|
return 0;
|
|
}
|
|
|
|
static struct shash_alg algs[2] = { {
|
|
.digestsize = SHA256_DIGEST_SIZE,
|
|
.init = ppc_spe_sha256_init,
|
|
.update = ppc_spe_sha256_update,
|
|
.final = ppc_spe_sha256_final,
|
|
.export = ppc_spe_sha256_export,
|
|
.import = ppc_spe_sha256_import,
|
|
.descsize = sizeof(struct sha256_state),
|
|
.statesize = sizeof(struct sha256_state),
|
|
.base = {
|
|
.cra_name = "sha256",
|
|
.cra_driver_name= "sha256-ppc-spe",
|
|
.cra_priority = 300,
|
|
.cra_blocksize = SHA256_BLOCK_SIZE,
|
|
.cra_module = THIS_MODULE,
|
|
}
|
|
}, {
|
|
.digestsize = SHA224_DIGEST_SIZE,
|
|
.init = ppc_spe_sha224_init,
|
|
.update = ppc_spe_sha256_update,
|
|
.final = ppc_spe_sha224_final,
|
|
.export = ppc_spe_sha256_export,
|
|
.import = ppc_spe_sha256_import,
|
|
.descsize = sizeof(struct sha256_state),
|
|
.statesize = sizeof(struct sha256_state),
|
|
.base = {
|
|
.cra_name = "sha224",
|
|
.cra_driver_name= "sha224-ppc-spe",
|
|
.cra_priority = 300,
|
|
.cra_blocksize = SHA224_BLOCK_SIZE,
|
|
.cra_module = THIS_MODULE,
|
|
}
|
|
} };
|
|
|
|
static int __init ppc_spe_sha256_mod_init(void)
|
|
{
|
|
return crypto_register_shashes(algs, ARRAY_SIZE(algs));
|
|
}
|
|
|
|
static void __exit ppc_spe_sha256_mod_fini(void)
|
|
{
|
|
crypto_unregister_shashes(algs, ARRAY_SIZE(algs));
|
|
}
|
|
|
|
module_init(ppc_spe_sha256_mod_init);
|
|
module_exit(ppc_spe_sha256_mod_fini);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DESCRIPTION("SHA-224 and SHA-256 Secure Hash Algorithm, SPE optimized");
|
|
|
|
MODULE_ALIAS_CRYPTO("sha224");
|
|
MODULE_ALIAS_CRYPTO("sha224-ppc-spe");
|
|
MODULE_ALIAS_CRYPTO("sha256");
|
|
MODULE_ALIAS_CRYPTO("sha256-ppc-spe");
|