linux_dsm_epyc7002/net/8021q/vlan_dev.c
Jerome Borsboom 279e172a58 [VLAN]: Allow VLAN interface on top of bridge interface
When a VLAN interface is created on top of a bridge interface and 
netfilter is enabled to see the bridged packets, the packets can be 
corrupted when passing through the netfilter code. This is caused by the 
VLAN driver not setting the 'protocol' and 'nh' members of the sk_buff 
structure. In general, this is no problem as the VLAN interface is mostly 
connected to a physical ethernet interface which does not use the 
'protocol' and 'nh' members. For a bridge interface, however, these 
members do matter.

Signed-off-by: Jerome Borsboom <j.borsboom@erasmusmc.nl>
Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-13 16:12:47 -07:00

895 lines
24 KiB
C

/* -*- linux-c -*-
* INET 802.1Q VLAN
* Ethernet-type device handling.
*
* Authors: Ben Greear <greearb@candelatech.com>
* Please send support related email to: vlan@scry.wanfear.com
* VLAN Home Page: http://www.candelatech.com/~greear/vlan.html
*
* Fixes: Mar 22 2001: Martin Bokaemper <mbokaemper@unispherenetworks.com>
* - reset skb->pkt_type on incoming packets when MAC was changed
* - see that changed MAC is saddr for outgoing packets
* Oct 20, 2001: Ard van Breeman:
* - Fix MC-list, finally.
* - Flush MC-list on VLAN destroy.
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/in.h>
#include <linux/init.h>
#include <asm/uaccess.h> /* for copy_from_user */
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <net/datalink.h>
#include <net/p8022.h>
#include <net/arp.h>
#include "vlan.h"
#include "vlanproc.h"
#include <linux/if_vlan.h>
#include <net/ip.h>
/*
* Rebuild the Ethernet MAC header. This is called after an ARP
* (or in future other address resolution) has completed on this
* sk_buff. We now let ARP fill in the other fields.
*
* This routine CANNOT use cached dst->neigh!
* Really, it is used only when dst->neigh is wrong.
*
* TODO: This needs a checkup, I'm ignorant here. --BLG
*/
int vlan_dev_rebuild_header(struct sk_buff *skb)
{
struct net_device *dev = skb->dev;
struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data);
switch (veth->h_vlan_encapsulated_proto) {
#ifdef CONFIG_INET
case __constant_htons(ETH_P_IP):
/* TODO: Confirm this will work with VLAN headers... */
return arp_find(veth->h_dest, skb);
#endif
default:
printk(VLAN_DBG
"%s: unable to resolve type %X addresses.\n",
dev->name, ntohs(veth->h_vlan_encapsulated_proto));
memcpy(veth->h_source, dev->dev_addr, ETH_ALEN);
break;
};
return 0;
}
static inline struct sk_buff *vlan_check_reorder_header(struct sk_buff *skb)
{
if (VLAN_DEV_INFO(skb->dev)->flags & 1) {
if (skb_shared(skb) || skb_cloned(skb)) {
struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
kfree_skb(skb);
skb = nskb;
}
if (skb) {
/* Lifted from Gleb's VLAN code... */
memmove(skb->data - ETH_HLEN,
skb->data - VLAN_ETH_HLEN, 12);
skb->mac.raw += VLAN_HLEN;
}
}
return skb;
}
/*
* Determine the packet's protocol ID. The rule here is that we
* assume 802.3 if the type field is short enough to be a length.
* This is normal practice and works for any 'now in use' protocol.
*
* Also, at this point we assume that we ARE dealing exclusively with
* VLAN packets, or packets that should be made into VLAN packets based
* on a default VLAN ID.
*
* NOTE: Should be similar to ethernet/eth.c.
*
* SANITY NOTE: This method is called when a packet is moving up the stack
* towards userland. To get here, it would have already passed
* through the ethernet/eth.c eth_type_trans() method.
* SANITY NOTE 2: We are referencing to the VLAN_HDR frields, which MAY be
* stored UNALIGNED in the memory. RISC systems don't like
* such cases very much...
* SANITY NOTE 2a: According to Dave Miller & Alexey, it will always be aligned,
* so there doesn't need to be any of the unaligned stuff. It has
* been commented out now... --Ben
*
*/
int vlan_skb_recv(struct sk_buff *skb, struct net_device *dev,
struct packet_type* ptype, struct net_device *orig_dev)
{
unsigned char *rawp = NULL;
struct vlan_hdr *vhdr = (struct vlan_hdr *)(skb->data);
unsigned short vid;
struct net_device_stats *stats;
unsigned short vlan_TCI;
__be16 proto;
/* vlan_TCI = ntohs(get_unaligned(&vhdr->h_vlan_TCI)); */
vlan_TCI = ntohs(vhdr->h_vlan_TCI);
vid = (vlan_TCI & VLAN_VID_MASK);
#ifdef VLAN_DEBUG
printk(VLAN_DBG "%s: skb: %p vlan_id: %hx\n",
__FUNCTION__, skb, vid);
#endif
/* Ok, we will find the correct VLAN device, strip the header,
* and then go on as usual.
*/
/* We have 12 bits of vlan ID.
*
* We must not drop allow preempt until we hold a
* reference to the device (netif_rx does that) or we
* fail.
*/
rcu_read_lock();
skb->dev = __find_vlan_dev(dev, vid);
if (!skb->dev) {
rcu_read_unlock();
#ifdef VLAN_DEBUG
printk(VLAN_DBG "%s: ERROR: No net_device for VID: %i on dev: %s [%i]\n",
__FUNCTION__, (unsigned int)(vid), dev->name, dev->ifindex);
#endif
kfree_skb(skb);
return -1;
}
skb->dev->last_rx = jiffies;
/* Bump the rx counters for the VLAN device. */
stats = vlan_dev_get_stats(skb->dev);
stats->rx_packets++;
stats->rx_bytes += skb->len;
/* Take off the VLAN header (4 bytes currently) */
skb_pull_rcsum(skb, VLAN_HLEN);
/* Ok, lets check to make sure the device (dev) we
* came in on is what this VLAN is attached to.
*/
if (dev != VLAN_DEV_INFO(skb->dev)->real_dev) {
rcu_read_unlock();
#ifdef VLAN_DEBUG
printk(VLAN_DBG "%s: dropping skb: %p because came in on wrong device, dev: %s real_dev: %s, skb_dev: %s\n",
__FUNCTION__, skb, dev->name,
VLAN_DEV_INFO(skb->dev)->real_dev->name,
skb->dev->name);
#endif
kfree_skb(skb);
stats->rx_errors++;
return -1;
}
/*
* Deal with ingress priority mapping.
*/
skb->priority = vlan_get_ingress_priority(skb->dev, ntohs(vhdr->h_vlan_TCI));
#ifdef VLAN_DEBUG
printk(VLAN_DBG "%s: priority: %lu for TCI: %hu (hbo)\n",
__FUNCTION__, (unsigned long)(skb->priority),
ntohs(vhdr->h_vlan_TCI));
#endif
/* The ethernet driver already did the pkt_type calculations
* for us...
*/
switch (skb->pkt_type) {
case PACKET_BROADCAST: /* Yeah, stats collect these together.. */
// stats->broadcast ++; // no such counter :-(
break;
case PACKET_MULTICAST:
stats->multicast++;
break;
case PACKET_OTHERHOST:
/* Our lower layer thinks this is not local, let's make sure.
* This allows the VLAN to have a different MAC than the underlying
* device, and still route correctly.
*/
if (!compare_ether_addr(eth_hdr(skb)->h_dest, skb->dev->dev_addr)) {
/* It is for our (changed) MAC-address! */
skb->pkt_type = PACKET_HOST;
}
break;
default:
break;
};
/* Was a VLAN packet, grab the encapsulated protocol, which the layer
* three protocols care about.
*/
/* proto = get_unaligned(&vhdr->h_vlan_encapsulated_proto); */
proto = vhdr->h_vlan_encapsulated_proto;
skb->protocol = proto;
if (ntohs(proto) >= 1536) {
/* place it back on the queue to be handled by
* true layer 3 protocols.
*/
/* See if we are configured to re-write the VLAN header
* to make it look like ethernet...
*/
skb = vlan_check_reorder_header(skb);
/* Can be null if skb-clone fails when re-ordering */
if (skb) {
netif_rx(skb);
} else {
/* TODO: Add a more specific counter here. */
stats->rx_errors++;
}
rcu_read_unlock();
return 0;
}
rawp = skb->data;
/*
* This is a magic hack to spot IPX packets. Older Novell breaks
* the protocol design and runs IPX over 802.3 without an 802.2 LLC
* layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This
* won't work for fault tolerant netware but does for the rest.
*/
if (*(unsigned short *)rawp == 0xFFFF) {
skb->protocol = __constant_htons(ETH_P_802_3);
/* place it back on the queue to be handled by true layer 3 protocols.
*/
/* See if we are configured to re-write the VLAN header
* to make it look like ethernet...
*/
skb = vlan_check_reorder_header(skb);
/* Can be null if skb-clone fails when re-ordering */
if (skb) {
netif_rx(skb);
} else {
/* TODO: Add a more specific counter here. */
stats->rx_errors++;
}
rcu_read_unlock();
return 0;
}
/*
* Real 802.2 LLC
*/
skb->protocol = __constant_htons(ETH_P_802_2);
/* place it back on the queue to be handled by upper layer protocols.
*/
/* See if we are configured to re-write the VLAN header
* to make it look like ethernet...
*/
skb = vlan_check_reorder_header(skb);
/* Can be null if skb-clone fails when re-ordering */
if (skb) {
netif_rx(skb);
} else {
/* TODO: Add a more specific counter here. */
stats->rx_errors++;
}
rcu_read_unlock();
return 0;
}
static inline unsigned short vlan_dev_get_egress_qos_mask(struct net_device* dev,
struct sk_buff* skb)
{
struct vlan_priority_tci_mapping *mp =
VLAN_DEV_INFO(dev)->egress_priority_map[(skb->priority & 0xF)];
while (mp) {
if (mp->priority == skb->priority) {
return mp->vlan_qos; /* This should already be shifted to mask
* correctly with the VLAN's TCI
*/
}
mp = mp->next;
}
return 0;
}
/*
* Create the VLAN header for an arbitrary protocol layer
*
* saddr=NULL means use device source address
* daddr=NULL means leave destination address (eg unresolved arp)
*
* This is called when the SKB is moving down the stack towards the
* physical devices.
*/
int vlan_dev_hard_header(struct sk_buff *skb, struct net_device *dev,
unsigned short type, void *daddr, void *saddr,
unsigned len)
{
struct vlan_hdr *vhdr;
unsigned short veth_TCI = 0;
int rc = 0;
int build_vlan_header = 0;
struct net_device *vdev = dev; /* save this for the bottom of the method */
#ifdef VLAN_DEBUG
printk(VLAN_DBG "%s: skb: %p type: %hx len: %x vlan_id: %hx, daddr: %p\n",
__FUNCTION__, skb, type, len, VLAN_DEV_INFO(dev)->vlan_id, daddr);
#endif
/* build vlan header only if re_order_header flag is NOT set. This
* fixes some programs that get confused when they see a VLAN device
* sending a frame that is VLAN encoded (the consensus is that the VLAN
* device should look completely like an Ethernet device when the
* REORDER_HEADER flag is set) The drawback to this is some extra
* header shuffling in the hard_start_xmit. Users can turn off this
* REORDER behaviour with the vconfig tool.
*/
build_vlan_header = ((VLAN_DEV_INFO(dev)->flags & 1) == 0);
if (build_vlan_header) {
vhdr = (struct vlan_hdr *) skb_push(skb, VLAN_HLEN);
/* build the four bytes that make this a VLAN header. */
/* Now, construct the second two bytes. This field looks something
* like:
* usr_priority: 3 bits (high bits)
* CFI 1 bit
* VLAN ID 12 bits (low bits)
*
*/
veth_TCI = VLAN_DEV_INFO(dev)->vlan_id;
veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb);
vhdr->h_vlan_TCI = htons(veth_TCI);
/*
* Set the protocol type.
* For a packet of type ETH_P_802_3 we put the length in here instead.
* It is up to the 802.2 layer to carry protocol information.
*/
if (type != ETH_P_802_3) {
vhdr->h_vlan_encapsulated_proto = htons(type);
} else {
vhdr->h_vlan_encapsulated_proto = htons(len);
}
skb->protocol = htons(ETH_P_8021Q);
skb->nh.raw = skb->data;
}
/* Before delegating work to the lower layer, enter our MAC-address */
if (saddr == NULL)
saddr = dev->dev_addr;
dev = VLAN_DEV_INFO(dev)->real_dev;
/* MPLS can send us skbuffs w/out enough space. This check will grow the
* skb if it doesn't have enough headroom. Not a beautiful solution, so
* I'll tick a counter so that users can know it's happening... If they
* care...
*/
/* NOTE: This may still break if the underlying device is not the final
* device (and thus there are more headers to add...) It should work for
* good-ole-ethernet though.
*/
if (skb_headroom(skb) < dev->hard_header_len) {
struct sk_buff *sk_tmp = skb;
skb = skb_realloc_headroom(sk_tmp, dev->hard_header_len);
kfree_skb(sk_tmp);
if (skb == NULL) {
struct net_device_stats *stats = vlan_dev_get_stats(vdev);
stats->tx_dropped++;
return -ENOMEM;
}
VLAN_DEV_INFO(vdev)->cnt_inc_headroom_on_tx++;
#ifdef VLAN_DEBUG
printk(VLAN_DBG "%s: %s: had to grow skb.\n", __FUNCTION__, vdev->name);
#endif
}
if (build_vlan_header) {
/* Now make the underlying real hard header */
rc = dev->hard_header(skb, dev, ETH_P_8021Q, daddr, saddr, len + VLAN_HLEN);
if (rc > 0) {
rc += VLAN_HLEN;
} else if (rc < 0) {
rc -= VLAN_HLEN;
}
} else {
/* If here, then we'll just make a normal looking ethernet frame,
* but, the hard_start_xmit method will insert the tag (it has to
* be able to do this for bridged and other skbs that don't come
* down the protocol stack in an orderly manner.
*/
rc = dev->hard_header(skb, dev, type, daddr, saddr, len);
}
return rc;
}
int vlan_dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct net_device_stats *stats = vlan_dev_get_stats(dev);
struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data);
/* Handle non-VLAN frames if they are sent to us, for example by DHCP.
*
* NOTE: THIS ASSUMES DIX ETHERNET, SPECIFICALLY NOT SUPPORTING
* OTHER THINGS LIKE FDDI/TokenRing/802.3 SNAPs...
*/
if (veth->h_vlan_proto != __constant_htons(ETH_P_8021Q)) {
int orig_headroom = skb_headroom(skb);
unsigned short veth_TCI;
/* This is not a VLAN frame...but we can fix that! */
VLAN_DEV_INFO(dev)->cnt_encap_on_xmit++;
#ifdef VLAN_DEBUG
printk(VLAN_DBG "%s: proto to encap: 0x%hx (hbo)\n",
__FUNCTION__, htons(veth->h_vlan_proto));
#endif
/* Construct the second two bytes. This field looks something
* like:
* usr_priority: 3 bits (high bits)
* CFI 1 bit
* VLAN ID 12 bits (low bits)
*/
veth_TCI = VLAN_DEV_INFO(dev)->vlan_id;
veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb);
skb = __vlan_put_tag(skb, veth_TCI);
if (!skb) {
stats->tx_dropped++;
return 0;
}
if (orig_headroom < VLAN_HLEN) {
VLAN_DEV_INFO(dev)->cnt_inc_headroom_on_tx++;
}
}
#ifdef VLAN_DEBUG
printk(VLAN_DBG "%s: about to send skb: %p to dev: %s\n",
__FUNCTION__, skb, skb->dev->name);
printk(VLAN_DBG " %2hx.%2hx.%2hx.%2xh.%2hx.%2hx %2hx.%2hx.%2hx.%2hx.%2hx.%2hx %4hx %4hx %4hx\n",
veth->h_dest[0], veth->h_dest[1], veth->h_dest[2], veth->h_dest[3], veth->h_dest[4], veth->h_dest[5],
veth->h_source[0], veth->h_source[1], veth->h_source[2], veth->h_source[3], veth->h_source[4], veth->h_source[5],
veth->h_vlan_proto, veth->h_vlan_TCI, veth->h_vlan_encapsulated_proto);
#endif
stats->tx_packets++; /* for statics only */
stats->tx_bytes += skb->len;
skb->dev = VLAN_DEV_INFO(dev)->real_dev;
dev_queue_xmit(skb);
return 0;
}
int vlan_dev_hwaccel_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct net_device_stats *stats = vlan_dev_get_stats(dev);
unsigned short veth_TCI;
/* Construct the second two bytes. This field looks something
* like:
* usr_priority: 3 bits (high bits)
* CFI 1 bit
* VLAN ID 12 bits (low bits)
*/
veth_TCI = VLAN_DEV_INFO(dev)->vlan_id;
veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb);
skb = __vlan_hwaccel_put_tag(skb, veth_TCI);
stats->tx_packets++;
stats->tx_bytes += skb->len;
skb->dev = VLAN_DEV_INFO(dev)->real_dev;
dev_queue_xmit(skb);
return 0;
}
int vlan_dev_change_mtu(struct net_device *dev, int new_mtu)
{
/* TODO: gotta make sure the underlying layer can handle it,
* maybe an IFF_VLAN_CAPABLE flag for devices?
*/
if (VLAN_DEV_INFO(dev)->real_dev->mtu < new_mtu)
return -ERANGE;
dev->mtu = new_mtu;
return 0;
}
int vlan_dev_set_ingress_priority(char *dev_name, __u32 skb_prio, short vlan_prio)
{
struct net_device *dev = dev_get_by_name(dev_name);
if (dev) {
if (dev->priv_flags & IFF_802_1Q_VLAN) {
/* see if a priority mapping exists.. */
VLAN_DEV_INFO(dev)->ingress_priority_map[vlan_prio & 0x7] = skb_prio;
dev_put(dev);
return 0;
}
dev_put(dev);
}
return -EINVAL;
}
int vlan_dev_set_egress_priority(char *dev_name, __u32 skb_prio, short vlan_prio)
{
struct net_device *dev = dev_get_by_name(dev_name);
struct vlan_priority_tci_mapping *mp = NULL;
struct vlan_priority_tci_mapping *np;
if (dev) {
if (dev->priv_flags & IFF_802_1Q_VLAN) {
/* See if a priority mapping exists.. */
mp = VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF];
while (mp) {
if (mp->priority == skb_prio) {
mp->vlan_qos = ((vlan_prio << 13) & 0xE000);
dev_put(dev);
return 0;
}
mp = mp->next;
}
/* Create a new mapping then. */
mp = VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF];
np = kmalloc(sizeof(struct vlan_priority_tci_mapping), GFP_KERNEL);
if (np) {
np->next = mp;
np->priority = skb_prio;
np->vlan_qos = ((vlan_prio << 13) & 0xE000);
VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF] = np;
dev_put(dev);
return 0;
} else {
dev_put(dev);
return -ENOBUFS;
}
}
dev_put(dev);
}
return -EINVAL;
}
/* Flags are defined in the vlan_dev_info class in include/linux/if_vlan.h file. */
int vlan_dev_set_vlan_flag(char *dev_name, __u32 flag, short flag_val)
{
struct net_device *dev = dev_get_by_name(dev_name);
if (dev) {
if (dev->priv_flags & IFF_802_1Q_VLAN) {
/* verify flag is supported */
if (flag == 1) {
if (flag_val) {
VLAN_DEV_INFO(dev)->flags |= 1;
} else {
VLAN_DEV_INFO(dev)->flags &= ~1;
}
dev_put(dev);
return 0;
} else {
printk(KERN_ERR "%s: flag %i is not valid.\n",
__FUNCTION__, (int)(flag));
dev_put(dev);
return -EINVAL;
}
} else {
printk(KERN_ERR
"%s: %s is not a vlan device, priv_flags: %hX.\n",
__FUNCTION__, dev->name, dev->priv_flags);
dev_put(dev);
}
} else {
printk(KERN_ERR "%s: Could not find device: %s\n",
__FUNCTION__, dev_name);
}
return -EINVAL;
}
int vlan_dev_get_realdev_name(const char *dev_name, char* result)
{
struct net_device *dev = dev_get_by_name(dev_name);
int rv = 0;
if (dev) {
if (dev->priv_flags & IFF_802_1Q_VLAN) {
strncpy(result, VLAN_DEV_INFO(dev)->real_dev->name, 23);
rv = 0;
} else {
rv = -EINVAL;
}
dev_put(dev);
} else {
rv = -ENODEV;
}
return rv;
}
int vlan_dev_get_vid(const char *dev_name, unsigned short* result)
{
struct net_device *dev = dev_get_by_name(dev_name);
int rv = 0;
if (dev) {
if (dev->priv_flags & IFF_802_1Q_VLAN) {
*result = VLAN_DEV_INFO(dev)->vlan_id;
rv = 0;
} else {
rv = -EINVAL;
}
dev_put(dev);
} else {
rv = -ENODEV;
}
return rv;
}
int vlan_dev_set_mac_address(struct net_device *dev, void *addr_struct_p)
{
struct sockaddr *addr = (struct sockaddr *)(addr_struct_p);
int i;
if (netif_running(dev))
return -EBUSY;
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
printk("%s: Setting MAC address to ", dev->name);
for (i = 0; i < 6; i++)
printk(" %2.2x", dev->dev_addr[i]);
printk(".\n");
if (memcmp(VLAN_DEV_INFO(dev)->real_dev->dev_addr,
dev->dev_addr,
dev->addr_len) != 0) {
if (!(VLAN_DEV_INFO(dev)->real_dev->flags & IFF_PROMISC)) {
int flgs = VLAN_DEV_INFO(dev)->real_dev->flags;
/* Increment our in-use promiscuity counter */
dev_set_promiscuity(VLAN_DEV_INFO(dev)->real_dev, 1);
/* Make PROMISC visible to the user. */
flgs |= IFF_PROMISC;
printk("VLAN (%s): Setting underlying device (%s) to promiscious mode.\n",
dev->name, VLAN_DEV_INFO(dev)->real_dev->name);
dev_change_flags(VLAN_DEV_INFO(dev)->real_dev, flgs);
}
} else {
printk("VLAN (%s): Underlying device (%s) has same MAC, not checking promiscious mode.\n",
dev->name, VLAN_DEV_INFO(dev)->real_dev->name);
}
return 0;
}
static inline int vlan_dmi_equals(struct dev_mc_list *dmi1,
struct dev_mc_list *dmi2)
{
return ((dmi1->dmi_addrlen == dmi2->dmi_addrlen) &&
(memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0));
}
/** dmi is a single entry into a dev_mc_list, a single node. mc_list is
* an entire list, and we'll iterate through it.
*/
static int vlan_should_add_mc(struct dev_mc_list *dmi, struct dev_mc_list *mc_list)
{
struct dev_mc_list *idmi;
for (idmi = mc_list; idmi != NULL; ) {
if (vlan_dmi_equals(dmi, idmi)) {
if (dmi->dmi_users > idmi->dmi_users)
return 1;
else
return 0;
} else {
idmi = idmi->next;
}
}
return 1;
}
static inline void vlan_destroy_mc_list(struct dev_mc_list *mc_list)
{
struct dev_mc_list *dmi = mc_list;
struct dev_mc_list *next;
while(dmi) {
next = dmi->next;
kfree(dmi);
dmi = next;
}
}
static void vlan_copy_mc_list(struct dev_mc_list *mc_list, struct vlan_dev_info *vlan_info)
{
struct dev_mc_list *dmi, *new_dmi;
vlan_destroy_mc_list(vlan_info->old_mc_list);
vlan_info->old_mc_list = NULL;
for (dmi = mc_list; dmi != NULL; dmi = dmi->next) {
new_dmi = kmalloc(sizeof(*new_dmi), GFP_ATOMIC);
if (new_dmi == NULL) {
printk(KERN_ERR "vlan: cannot allocate memory. "
"Multicast may not work properly from now.\n");
return;
}
/* Copy whole structure, then make new 'next' pointer */
*new_dmi = *dmi;
new_dmi->next = vlan_info->old_mc_list;
vlan_info->old_mc_list = new_dmi;
}
}
static void vlan_flush_mc_list(struct net_device *dev)
{
struct dev_mc_list *dmi = dev->mc_list;
while (dmi) {
printk(KERN_DEBUG "%s: del %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address from vlan interface\n",
dev->name,
dmi->dmi_addr[0],
dmi->dmi_addr[1],
dmi->dmi_addr[2],
dmi->dmi_addr[3],
dmi->dmi_addr[4],
dmi->dmi_addr[5]);
dev_mc_delete(dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
dmi = dev->mc_list;
}
/* dev->mc_list is NULL by the time we get here. */
vlan_destroy_mc_list(VLAN_DEV_INFO(dev)->old_mc_list);
VLAN_DEV_INFO(dev)->old_mc_list = NULL;
}
int vlan_dev_open(struct net_device *dev)
{
if (!(VLAN_DEV_INFO(dev)->real_dev->flags & IFF_UP))
return -ENETDOWN;
return 0;
}
int vlan_dev_stop(struct net_device *dev)
{
vlan_flush_mc_list(dev);
return 0;
}
int vlan_dev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct net_device *real_dev = VLAN_DEV_INFO(dev)->real_dev;
struct ifreq ifrr;
int err = -EOPNOTSUPP;
strncpy(ifrr.ifr_name, real_dev->name, IFNAMSIZ);
ifrr.ifr_ifru = ifr->ifr_ifru;
switch(cmd) {
case SIOCGMIIPHY:
case SIOCGMIIREG:
case SIOCSMIIREG:
if (real_dev->do_ioctl && netif_device_present(real_dev))
err = real_dev->do_ioctl(real_dev, &ifrr, cmd);
break;
case SIOCETHTOOL:
err = dev_ethtool(&ifrr);
}
if (!err)
ifr->ifr_ifru = ifrr.ifr_ifru;
return err;
}
/** Taken from Gleb + Lennert's VLAN code, and modified... */
void vlan_dev_set_multicast_list(struct net_device *vlan_dev)
{
struct dev_mc_list *dmi;
struct net_device *real_dev;
int inc;
if (vlan_dev && (vlan_dev->priv_flags & IFF_802_1Q_VLAN)) {
/* Then it's a real vlan device, as far as we can tell.. */
real_dev = VLAN_DEV_INFO(vlan_dev)->real_dev;
/* compare the current promiscuity to the last promisc we had.. */
inc = vlan_dev->promiscuity - VLAN_DEV_INFO(vlan_dev)->old_promiscuity;
if (inc) {
printk(KERN_INFO "%s: dev_set_promiscuity(master, %d)\n",
vlan_dev->name, inc);
dev_set_promiscuity(real_dev, inc); /* found in dev.c */
VLAN_DEV_INFO(vlan_dev)->old_promiscuity = vlan_dev->promiscuity;
}
inc = vlan_dev->allmulti - VLAN_DEV_INFO(vlan_dev)->old_allmulti;
if (inc) {
printk(KERN_INFO "%s: dev_set_allmulti(master, %d)\n",
vlan_dev->name, inc);
dev_set_allmulti(real_dev, inc); /* dev.c */
VLAN_DEV_INFO(vlan_dev)->old_allmulti = vlan_dev->allmulti;
}
/* looking for addresses to add to master's list */
for (dmi = vlan_dev->mc_list; dmi != NULL; dmi = dmi->next) {
if (vlan_should_add_mc(dmi, VLAN_DEV_INFO(vlan_dev)->old_mc_list)) {
dev_mc_add(real_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
printk(KERN_DEBUG "%s: add %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address to master interface\n",
vlan_dev->name,
dmi->dmi_addr[0],
dmi->dmi_addr[1],
dmi->dmi_addr[2],
dmi->dmi_addr[3],
dmi->dmi_addr[4],
dmi->dmi_addr[5]);
}
}
/* looking for addresses to delete from master's list */
for (dmi = VLAN_DEV_INFO(vlan_dev)->old_mc_list; dmi != NULL; dmi = dmi->next) {
if (vlan_should_add_mc(dmi, vlan_dev->mc_list)) {
/* if we think we should add it to the new list, then we should really
* delete it from the real list on the underlying device.
*/
dev_mc_delete(real_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
printk(KERN_DEBUG "%s: del %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address from master interface\n",
vlan_dev->name,
dmi->dmi_addr[0],
dmi->dmi_addr[1],
dmi->dmi_addr[2],
dmi->dmi_addr[3],
dmi->dmi_addr[4],
dmi->dmi_addr[5]);
}
}
/* save multicast list */
vlan_copy_mc_list(vlan_dev->mc_list, VLAN_DEV_INFO(vlan_dev));
}
}