linux_dsm_epyc7002/drivers/infiniband/core/device.c
Colin Ian King 4469add9d3 RDMA/core: Fix spelling mistake "Could't" -> "Couldn't"
There is a spelling mistake in a pr_warn message. Fix it.

Link: https://lore.kernel.org/r/20200810075824.46770-1-colin.king@canonical.com
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
2020-08-20 08:31:41 -03:00

2835 lines
75 KiB
C

/*
* Copyright (c) 2004 Topspin Communications. All rights reserved.
* Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/module.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <net/net_namespace.h>
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/hashtable.h>
#include <rdma/rdma_netlink.h>
#include <rdma/ib_addr.h>
#include <rdma/ib_cache.h>
#include <rdma/rdma_counter.h>
#include "core_priv.h"
#include "restrack.h"
MODULE_AUTHOR("Roland Dreier");
MODULE_DESCRIPTION("core kernel InfiniBand API");
MODULE_LICENSE("Dual BSD/GPL");
struct workqueue_struct *ib_comp_wq;
struct workqueue_struct *ib_comp_unbound_wq;
struct workqueue_struct *ib_wq;
EXPORT_SYMBOL_GPL(ib_wq);
/*
* Each of the three rwsem locks (devices, clients, client_data) protects the
* xarray of the same name. Specifically it allows the caller to assert that
* the MARK will/will not be changing under the lock, and for devices and
* clients, that the value in the xarray is still a valid pointer. Change of
* the MARK is linked to the object state, so holding the lock and testing the
* MARK also asserts that the contained object is in a certain state.
*
* This is used to build a two stage register/unregister flow where objects
* can continue to be in the xarray even though they are still in progress to
* register/unregister.
*
* The xarray itself provides additional locking, and restartable iteration,
* which is also relied on.
*
* Locks should not be nested, with the exception of client_data, which is
* allowed to nest under the read side of the other two locks.
*
* The devices_rwsem also protects the device name list, any change or
* assignment of device name must also hold the write side to guarantee unique
* names.
*/
/*
* devices contains devices that have had their names assigned. The
* devices may not be registered. Users that care about the registration
* status need to call ib_device_try_get() on the device to ensure it is
* registered, and keep it registered, for the required duration.
*
*/
static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
static DECLARE_RWSEM(devices_rwsem);
#define DEVICE_REGISTERED XA_MARK_1
static u32 highest_client_id;
#define CLIENT_REGISTERED XA_MARK_1
static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
static DECLARE_RWSEM(clients_rwsem);
static void ib_client_put(struct ib_client *client)
{
if (refcount_dec_and_test(&client->uses))
complete(&client->uses_zero);
}
/*
* If client_data is registered then the corresponding client must also still
* be registered.
*/
#define CLIENT_DATA_REGISTERED XA_MARK_1
unsigned int rdma_dev_net_id;
/*
* A list of net namespaces is maintained in an xarray. This is necessary
* because we can't get the locking right using the existing net ns list. We
* would require a init_net callback after the list is updated.
*/
static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
/*
* rwsem to protect accessing the rdma_nets xarray entries.
*/
static DECLARE_RWSEM(rdma_nets_rwsem);
bool ib_devices_shared_netns = true;
module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
MODULE_PARM_DESC(netns_mode,
"Share device among net namespaces; default=1 (shared)");
/**
* rdma_dev_access_netns() - Return whether an rdma device can be accessed
* from a specified net namespace or not.
* @dev: Pointer to rdma device which needs to be checked
* @net: Pointer to net namesapce for which access to be checked
*
* When the rdma device is in shared mode, it ignores the net namespace.
* When the rdma device is exclusive to a net namespace, rdma device net
* namespace is checked against the specified one.
*/
bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
{
return (ib_devices_shared_netns ||
net_eq(read_pnet(&dev->coredev.rdma_net), net));
}
EXPORT_SYMBOL(rdma_dev_access_netns);
/*
* xarray has this behavior where it won't iterate over NULL values stored in
* allocated arrays. So we need our own iterator to see all values stored in
* the array. This does the same thing as xa_for_each except that it also
* returns NULL valued entries if the array is allocating. Simplified to only
* work on simple xarrays.
*/
static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
xa_mark_t filter)
{
XA_STATE(xas, xa, *indexp);
void *entry;
rcu_read_lock();
do {
entry = xas_find_marked(&xas, ULONG_MAX, filter);
if (xa_is_zero(entry))
break;
} while (xas_retry(&xas, entry));
rcu_read_unlock();
if (entry) {
*indexp = xas.xa_index;
if (xa_is_zero(entry))
return NULL;
return entry;
}
return XA_ERROR(-ENOENT);
}
#define xan_for_each_marked(xa, index, entry, filter) \
for (index = 0, entry = xan_find_marked(xa, &(index), filter); \
!xa_is_err(entry); \
(index)++, entry = xan_find_marked(xa, &(index), filter))
/* RCU hash table mapping netdevice pointers to struct ib_port_data */
static DEFINE_SPINLOCK(ndev_hash_lock);
static DECLARE_HASHTABLE(ndev_hash, 5);
static void free_netdevs(struct ib_device *ib_dev);
static void ib_unregister_work(struct work_struct *work);
static void __ib_unregister_device(struct ib_device *device);
static int ib_security_change(struct notifier_block *nb, unsigned long event,
void *lsm_data);
static void ib_policy_change_task(struct work_struct *work);
static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
struct va_format *vaf)
{
if (ibdev && ibdev->dev.parent)
dev_printk_emit(level[1] - '0',
ibdev->dev.parent,
"%s %s %s: %pV",
dev_driver_string(ibdev->dev.parent),
dev_name(ibdev->dev.parent),
dev_name(&ibdev->dev),
vaf);
else if (ibdev)
printk("%s%s: %pV",
level, dev_name(&ibdev->dev), vaf);
else
printk("%s(NULL ib_device): %pV", level, vaf);
}
void ibdev_printk(const char *level, const struct ib_device *ibdev,
const char *format, ...)
{
struct va_format vaf;
va_list args;
va_start(args, format);
vaf.fmt = format;
vaf.va = &args;
__ibdev_printk(level, ibdev, &vaf);
va_end(args);
}
EXPORT_SYMBOL(ibdev_printk);
#define define_ibdev_printk_level(func, level) \
void func(const struct ib_device *ibdev, const char *fmt, ...) \
{ \
struct va_format vaf; \
va_list args; \
\
va_start(args, fmt); \
\
vaf.fmt = fmt; \
vaf.va = &args; \
\
__ibdev_printk(level, ibdev, &vaf); \
\
va_end(args); \
} \
EXPORT_SYMBOL(func);
define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
define_ibdev_printk_level(ibdev_err, KERN_ERR);
define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
define_ibdev_printk_level(ibdev_info, KERN_INFO);
static struct notifier_block ibdev_lsm_nb = {
.notifier_call = ib_security_change,
};
static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
struct net *net);
/* Pointer to the RCU head at the start of the ib_port_data array */
struct ib_port_data_rcu {
struct rcu_head rcu_head;
struct ib_port_data pdata[];
};
static void ib_device_check_mandatory(struct ib_device *device)
{
#define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
static const struct {
size_t offset;
char *name;
} mandatory_table[] = {
IB_MANDATORY_FUNC(query_device),
IB_MANDATORY_FUNC(query_port),
IB_MANDATORY_FUNC(alloc_pd),
IB_MANDATORY_FUNC(dealloc_pd),
IB_MANDATORY_FUNC(create_qp),
IB_MANDATORY_FUNC(modify_qp),
IB_MANDATORY_FUNC(destroy_qp),
IB_MANDATORY_FUNC(post_send),
IB_MANDATORY_FUNC(post_recv),
IB_MANDATORY_FUNC(create_cq),
IB_MANDATORY_FUNC(destroy_cq),
IB_MANDATORY_FUNC(poll_cq),
IB_MANDATORY_FUNC(req_notify_cq),
IB_MANDATORY_FUNC(get_dma_mr),
IB_MANDATORY_FUNC(dereg_mr),
IB_MANDATORY_FUNC(get_port_immutable)
};
int i;
device->kverbs_provider = true;
for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
if (!*(void **) ((void *) &device->ops +
mandatory_table[i].offset)) {
device->kverbs_provider = false;
break;
}
}
}
/*
* Caller must perform ib_device_put() to return the device reference count
* when ib_device_get_by_index() returns valid device pointer.
*/
struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
{
struct ib_device *device;
down_read(&devices_rwsem);
device = xa_load(&devices, index);
if (device) {
if (!rdma_dev_access_netns(device, net)) {
device = NULL;
goto out;
}
if (!ib_device_try_get(device))
device = NULL;
}
out:
up_read(&devices_rwsem);
return device;
}
/**
* ib_device_put - Release IB device reference
* @device: device whose reference to be released
*
* ib_device_put() releases reference to the IB device to allow it to be
* unregistered and eventually free.
*/
void ib_device_put(struct ib_device *device)
{
if (refcount_dec_and_test(&device->refcount))
complete(&device->unreg_completion);
}
EXPORT_SYMBOL(ib_device_put);
static struct ib_device *__ib_device_get_by_name(const char *name)
{
struct ib_device *device;
unsigned long index;
xa_for_each (&devices, index, device)
if (!strcmp(name, dev_name(&device->dev)))
return device;
return NULL;
}
/**
* ib_device_get_by_name - Find an IB device by name
* @name: The name to look for
* @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
*
* Find and hold an ib_device by its name. The caller must call
* ib_device_put() on the returned pointer.
*/
struct ib_device *ib_device_get_by_name(const char *name,
enum rdma_driver_id driver_id)
{
struct ib_device *device;
down_read(&devices_rwsem);
device = __ib_device_get_by_name(name);
if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
device->ops.driver_id != driver_id)
device = NULL;
if (device) {
if (!ib_device_try_get(device))
device = NULL;
}
up_read(&devices_rwsem);
return device;
}
EXPORT_SYMBOL(ib_device_get_by_name);
static int rename_compat_devs(struct ib_device *device)
{
struct ib_core_device *cdev;
unsigned long index;
int ret = 0;
mutex_lock(&device->compat_devs_mutex);
xa_for_each (&device->compat_devs, index, cdev) {
ret = device_rename(&cdev->dev, dev_name(&device->dev));
if (ret) {
dev_warn(&cdev->dev,
"Fail to rename compatdev to new name %s\n",
dev_name(&device->dev));
break;
}
}
mutex_unlock(&device->compat_devs_mutex);
return ret;
}
int ib_device_rename(struct ib_device *ibdev, const char *name)
{
unsigned long index;
void *client_data;
int ret;
down_write(&devices_rwsem);
if (!strcmp(name, dev_name(&ibdev->dev))) {
up_write(&devices_rwsem);
return 0;
}
if (__ib_device_get_by_name(name)) {
up_write(&devices_rwsem);
return -EEXIST;
}
ret = device_rename(&ibdev->dev, name);
if (ret) {
up_write(&devices_rwsem);
return ret;
}
strlcpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
ret = rename_compat_devs(ibdev);
downgrade_write(&devices_rwsem);
down_read(&ibdev->client_data_rwsem);
xan_for_each_marked(&ibdev->client_data, index, client_data,
CLIENT_DATA_REGISTERED) {
struct ib_client *client = xa_load(&clients, index);
if (!client || !client->rename)
continue;
client->rename(ibdev, client_data);
}
up_read(&ibdev->client_data_rwsem);
up_read(&devices_rwsem);
return 0;
}
int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
{
if (use_dim > 1)
return -EINVAL;
ibdev->use_cq_dim = use_dim;
return 0;
}
static int alloc_name(struct ib_device *ibdev, const char *name)
{
struct ib_device *device;
unsigned long index;
struct ida inuse;
int rc;
int i;
lockdep_assert_held_write(&devices_rwsem);
ida_init(&inuse);
xa_for_each (&devices, index, device) {
char buf[IB_DEVICE_NAME_MAX];
if (sscanf(dev_name(&device->dev), name, &i) != 1)
continue;
if (i < 0 || i >= INT_MAX)
continue;
snprintf(buf, sizeof buf, name, i);
if (strcmp(buf, dev_name(&device->dev)) != 0)
continue;
rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
if (rc < 0)
goto out;
}
rc = ida_alloc(&inuse, GFP_KERNEL);
if (rc < 0)
goto out;
rc = dev_set_name(&ibdev->dev, name, rc);
out:
ida_destroy(&inuse);
return rc;
}
static void ib_device_release(struct device *device)
{
struct ib_device *dev = container_of(device, struct ib_device, dev);
free_netdevs(dev);
WARN_ON(refcount_read(&dev->refcount));
if (dev->port_data) {
ib_cache_release_one(dev);
ib_security_release_port_pkey_list(dev);
rdma_counter_release(dev);
kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
pdata[0]),
rcu_head);
}
mutex_destroy(&dev->unregistration_lock);
mutex_destroy(&dev->compat_devs_mutex);
xa_destroy(&dev->compat_devs);
xa_destroy(&dev->client_data);
kfree_rcu(dev, rcu_head);
}
static int ib_device_uevent(struct device *device,
struct kobj_uevent_env *env)
{
if (add_uevent_var(env, "NAME=%s", dev_name(device)))
return -ENOMEM;
/*
* It would be nice to pass the node GUID with the event...
*/
return 0;
}
static const void *net_namespace(struct device *d)
{
struct ib_core_device *coredev =
container_of(d, struct ib_core_device, dev);
return read_pnet(&coredev->rdma_net);
}
static struct class ib_class = {
.name = "infiniband",
.dev_release = ib_device_release,
.dev_uevent = ib_device_uevent,
.ns_type = &net_ns_type_operations,
.namespace = net_namespace,
};
static void rdma_init_coredev(struct ib_core_device *coredev,
struct ib_device *dev, struct net *net)
{
/* This BUILD_BUG_ON is intended to catch layout change
* of union of ib_core_device and device.
* dev must be the first element as ib_core and providers
* driver uses it. Adding anything in ib_core_device before
* device will break this assumption.
*/
BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
offsetof(struct ib_device, dev));
coredev->dev.class = &ib_class;
coredev->dev.groups = dev->groups;
device_initialize(&coredev->dev);
coredev->owner = dev;
INIT_LIST_HEAD(&coredev->port_list);
write_pnet(&coredev->rdma_net, net);
}
/**
* _ib_alloc_device - allocate an IB device struct
* @size:size of structure to allocate
*
* Low-level drivers should use ib_alloc_device() to allocate &struct
* ib_device. @size is the size of the structure to be allocated,
* including any private data used by the low-level driver.
* ib_dealloc_device() must be used to free structures allocated with
* ib_alloc_device().
*/
struct ib_device *_ib_alloc_device(size_t size)
{
struct ib_device *device;
if (WARN_ON(size < sizeof(struct ib_device)))
return NULL;
device = kzalloc(size, GFP_KERNEL);
if (!device)
return NULL;
if (rdma_restrack_init(device)) {
kfree(device);
return NULL;
}
device->groups[0] = &ib_dev_attr_group;
rdma_init_coredev(&device->coredev, device, &init_net);
INIT_LIST_HEAD(&device->event_handler_list);
spin_lock_init(&device->qp_open_list_lock);
init_rwsem(&device->event_handler_rwsem);
mutex_init(&device->unregistration_lock);
/*
* client_data needs to be alloc because we don't want our mark to be
* destroyed if the user stores NULL in the client data.
*/
xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
init_rwsem(&device->client_data_rwsem);
xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
mutex_init(&device->compat_devs_mutex);
init_completion(&device->unreg_completion);
INIT_WORK(&device->unregistration_work, ib_unregister_work);
return device;
}
EXPORT_SYMBOL(_ib_alloc_device);
/**
* ib_dealloc_device - free an IB device struct
* @device:structure to free
*
* Free a structure allocated with ib_alloc_device().
*/
void ib_dealloc_device(struct ib_device *device)
{
if (device->ops.dealloc_driver)
device->ops.dealloc_driver(device);
/*
* ib_unregister_driver() requires all devices to remain in the xarray
* while their ops are callable. The last op we call is dealloc_driver
* above. This is needed to create a fence on op callbacks prior to
* allowing the driver module to unload.
*/
down_write(&devices_rwsem);
if (xa_load(&devices, device->index) == device)
xa_erase(&devices, device->index);
up_write(&devices_rwsem);
/* Expedite releasing netdev references */
free_netdevs(device);
WARN_ON(!xa_empty(&device->compat_devs));
WARN_ON(!xa_empty(&device->client_data));
WARN_ON(refcount_read(&device->refcount));
rdma_restrack_clean(device);
/* Balances with device_initialize */
put_device(&device->dev);
}
EXPORT_SYMBOL(ib_dealloc_device);
/*
* add_client_context() and remove_client_context() must be safe against
* parallel calls on the same device - registration/unregistration of both the
* device and client can be occurring in parallel.
*
* The routines need to be a fence, any caller must not return until the add
* or remove is fully completed.
*/
static int add_client_context(struct ib_device *device,
struct ib_client *client)
{
int ret = 0;
if (!device->kverbs_provider && !client->no_kverbs_req)
return 0;
down_write(&device->client_data_rwsem);
/*
* So long as the client is registered hold both the client and device
* unregistration locks.
*/
if (!refcount_inc_not_zero(&client->uses))
goto out_unlock;
refcount_inc(&device->refcount);
/*
* Another caller to add_client_context got here first and has already
* completely initialized context.
*/
if (xa_get_mark(&device->client_data, client->client_id,
CLIENT_DATA_REGISTERED))
goto out;
ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
GFP_KERNEL));
if (ret)
goto out;
downgrade_write(&device->client_data_rwsem);
if (client->add) {
if (client->add(device)) {
/*
* If a client fails to add then the error code is
* ignored, but we won't call any more ops on this
* client.
*/
xa_erase(&device->client_data, client->client_id);
up_read(&device->client_data_rwsem);
ib_device_put(device);
ib_client_put(client);
return 0;
}
}
/* Readers shall not see a client until add has been completed */
xa_set_mark(&device->client_data, client->client_id,
CLIENT_DATA_REGISTERED);
up_read(&device->client_data_rwsem);
return 0;
out:
ib_device_put(device);
ib_client_put(client);
out_unlock:
up_write(&device->client_data_rwsem);
return ret;
}
static void remove_client_context(struct ib_device *device,
unsigned int client_id)
{
struct ib_client *client;
void *client_data;
down_write(&device->client_data_rwsem);
if (!xa_get_mark(&device->client_data, client_id,
CLIENT_DATA_REGISTERED)) {
up_write(&device->client_data_rwsem);
return;
}
client_data = xa_load(&device->client_data, client_id);
xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
client = xa_load(&clients, client_id);
up_write(&device->client_data_rwsem);
/*
* Notice we cannot be holding any exclusive locks when calling the
* remove callback as the remove callback can recurse back into any
* public functions in this module and thus try for any locks those
* functions take.
*
* For this reason clients and drivers should not call the
* unregistration functions will holdling any locks.
*/
if (client->remove)
client->remove(device, client_data);
xa_erase(&device->client_data, client_id);
ib_device_put(device);
ib_client_put(client);
}
static int alloc_port_data(struct ib_device *device)
{
struct ib_port_data_rcu *pdata_rcu;
unsigned int port;
if (device->port_data)
return 0;
/* This can only be called once the physical port range is defined */
if (WARN_ON(!device->phys_port_cnt))
return -EINVAL;
/*
* device->port_data is indexed directly by the port number to make
* access to this data as efficient as possible.
*
* Therefore port_data is declared as a 1 based array with potential
* empty slots at the beginning.
*/
pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
rdma_end_port(device) + 1),
GFP_KERNEL);
if (!pdata_rcu)
return -ENOMEM;
/*
* The rcu_head is put in front of the port data array and the stored
* pointer is adjusted since we never need to see that member until
* kfree_rcu.
*/
device->port_data = pdata_rcu->pdata;
rdma_for_each_port (device, port) {
struct ib_port_data *pdata = &device->port_data[port];
pdata->ib_dev = device;
spin_lock_init(&pdata->pkey_list_lock);
INIT_LIST_HEAD(&pdata->pkey_list);
spin_lock_init(&pdata->netdev_lock);
INIT_HLIST_NODE(&pdata->ndev_hash_link);
}
return 0;
}
static int verify_immutable(const struct ib_device *dev, u8 port)
{
return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
rdma_max_mad_size(dev, port) != 0);
}
static int setup_port_data(struct ib_device *device)
{
unsigned int port;
int ret;
ret = alloc_port_data(device);
if (ret)
return ret;
rdma_for_each_port (device, port) {
struct ib_port_data *pdata = &device->port_data[port];
ret = device->ops.get_port_immutable(device, port,
&pdata->immutable);
if (ret)
return ret;
if (verify_immutable(device, port))
return -EINVAL;
}
return 0;
}
void ib_get_device_fw_str(struct ib_device *dev, char *str)
{
if (dev->ops.get_dev_fw_str)
dev->ops.get_dev_fw_str(dev, str);
else
str[0] = '\0';
}
EXPORT_SYMBOL(ib_get_device_fw_str);
static void ib_policy_change_task(struct work_struct *work)
{
struct ib_device *dev;
unsigned long index;
down_read(&devices_rwsem);
xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
unsigned int i;
rdma_for_each_port (dev, i) {
u64 sp;
int ret = ib_get_cached_subnet_prefix(dev,
i,
&sp);
WARN_ONCE(ret,
"ib_get_cached_subnet_prefix err: %d, this should never happen here\n",
ret);
if (!ret)
ib_security_cache_change(dev, i, sp);
}
}
up_read(&devices_rwsem);
}
static int ib_security_change(struct notifier_block *nb, unsigned long event,
void *lsm_data)
{
if (event != LSM_POLICY_CHANGE)
return NOTIFY_DONE;
schedule_work(&ib_policy_change_work);
ib_mad_agent_security_change();
return NOTIFY_OK;
}
static void compatdev_release(struct device *dev)
{
struct ib_core_device *cdev =
container_of(dev, struct ib_core_device, dev);
kfree(cdev);
}
static int add_one_compat_dev(struct ib_device *device,
struct rdma_dev_net *rnet)
{
struct ib_core_device *cdev;
int ret;
lockdep_assert_held(&rdma_nets_rwsem);
if (!ib_devices_shared_netns)
return 0;
/*
* Create and add compat device in all namespaces other than where it
* is currently bound to.
*/
if (net_eq(read_pnet(&rnet->net),
read_pnet(&device->coredev.rdma_net)))
return 0;
/*
* The first of init_net() or ib_register_device() to take the
* compat_devs_mutex wins and gets to add the device. Others will wait
* for completion here.
*/
mutex_lock(&device->compat_devs_mutex);
cdev = xa_load(&device->compat_devs, rnet->id);
if (cdev) {
ret = 0;
goto done;
}
ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
if (ret)
goto done;
cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
if (!cdev) {
ret = -ENOMEM;
goto cdev_err;
}
cdev->dev.parent = device->dev.parent;
rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
cdev->dev.release = compatdev_release;
ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
if (ret)
goto add_err;
ret = device_add(&cdev->dev);
if (ret)
goto add_err;
ret = ib_setup_port_attrs(cdev);
if (ret)
goto port_err;
ret = xa_err(xa_store(&device->compat_devs, rnet->id,
cdev, GFP_KERNEL));
if (ret)
goto insert_err;
mutex_unlock(&device->compat_devs_mutex);
return 0;
insert_err:
ib_free_port_attrs(cdev);
port_err:
device_del(&cdev->dev);
add_err:
put_device(&cdev->dev);
cdev_err:
xa_release(&device->compat_devs, rnet->id);
done:
mutex_unlock(&device->compat_devs_mutex);
return ret;
}
static void remove_one_compat_dev(struct ib_device *device, u32 id)
{
struct ib_core_device *cdev;
mutex_lock(&device->compat_devs_mutex);
cdev = xa_erase(&device->compat_devs, id);
mutex_unlock(&device->compat_devs_mutex);
if (cdev) {
ib_free_port_attrs(cdev);
device_del(&cdev->dev);
put_device(&cdev->dev);
}
}
static void remove_compat_devs(struct ib_device *device)
{
struct ib_core_device *cdev;
unsigned long index;
xa_for_each (&device->compat_devs, index, cdev)
remove_one_compat_dev(device, index);
}
static int add_compat_devs(struct ib_device *device)
{
struct rdma_dev_net *rnet;
unsigned long index;
int ret = 0;
lockdep_assert_held(&devices_rwsem);
down_read(&rdma_nets_rwsem);
xa_for_each (&rdma_nets, index, rnet) {
ret = add_one_compat_dev(device, rnet);
if (ret)
break;
}
up_read(&rdma_nets_rwsem);
return ret;
}
static void remove_all_compat_devs(void)
{
struct ib_compat_device *cdev;
struct ib_device *dev;
unsigned long index;
down_read(&devices_rwsem);
xa_for_each (&devices, index, dev) {
unsigned long c_index = 0;
/* Hold nets_rwsem so that any other thread modifying this
* system param can sync with this thread.
*/
down_read(&rdma_nets_rwsem);
xa_for_each (&dev->compat_devs, c_index, cdev)
remove_one_compat_dev(dev, c_index);
up_read(&rdma_nets_rwsem);
}
up_read(&devices_rwsem);
}
static int add_all_compat_devs(void)
{
struct rdma_dev_net *rnet;
struct ib_device *dev;
unsigned long index;
int ret = 0;
down_read(&devices_rwsem);
xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
unsigned long net_index = 0;
/* Hold nets_rwsem so that any other thread modifying this
* system param can sync with this thread.
*/
down_read(&rdma_nets_rwsem);
xa_for_each (&rdma_nets, net_index, rnet) {
ret = add_one_compat_dev(dev, rnet);
if (ret)
break;
}
up_read(&rdma_nets_rwsem);
}
up_read(&devices_rwsem);
if (ret)
remove_all_compat_devs();
return ret;
}
int rdma_compatdev_set(u8 enable)
{
struct rdma_dev_net *rnet;
unsigned long index;
int ret = 0;
down_write(&rdma_nets_rwsem);
if (ib_devices_shared_netns == enable) {
up_write(&rdma_nets_rwsem);
return 0;
}
/* enable/disable of compat devices is not supported
* when more than default init_net exists.
*/
xa_for_each (&rdma_nets, index, rnet) {
ret++;
break;
}
if (!ret)
ib_devices_shared_netns = enable;
up_write(&rdma_nets_rwsem);
if (ret)
return -EBUSY;
if (enable)
ret = add_all_compat_devs();
else
remove_all_compat_devs();
return ret;
}
static void rdma_dev_exit_net(struct net *net)
{
struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
struct ib_device *dev;
unsigned long index;
int ret;
down_write(&rdma_nets_rwsem);
/*
* Prevent the ID from being re-used and hide the id from xa_for_each.
*/
ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
WARN_ON(ret);
up_write(&rdma_nets_rwsem);
down_read(&devices_rwsem);
xa_for_each (&devices, index, dev) {
get_device(&dev->dev);
/*
* Release the devices_rwsem so that pontentially blocking
* device_del, doesn't hold the devices_rwsem for too long.
*/
up_read(&devices_rwsem);
remove_one_compat_dev(dev, rnet->id);
/*
* If the real device is in the NS then move it back to init.
*/
rdma_dev_change_netns(dev, net, &init_net);
put_device(&dev->dev);
down_read(&devices_rwsem);
}
up_read(&devices_rwsem);
rdma_nl_net_exit(rnet);
xa_erase(&rdma_nets, rnet->id);
}
static __net_init int rdma_dev_init_net(struct net *net)
{
struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
unsigned long index;
struct ib_device *dev;
int ret;
write_pnet(&rnet->net, net);
ret = rdma_nl_net_init(rnet);
if (ret)
return ret;
/* No need to create any compat devices in default init_net. */
if (net_eq(net, &init_net))
return 0;
ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
if (ret) {
rdma_nl_net_exit(rnet);
return ret;
}
down_read(&devices_rwsem);
xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
/* Hold nets_rwsem so that netlink command cannot change
* system configuration for device sharing mode.
*/
down_read(&rdma_nets_rwsem);
ret = add_one_compat_dev(dev, rnet);
up_read(&rdma_nets_rwsem);
if (ret)
break;
}
up_read(&devices_rwsem);
if (ret)
rdma_dev_exit_net(net);
return ret;
}
/*
* Assign the unique string device name and the unique device index. This is
* undone by ib_dealloc_device.
*/
static int assign_name(struct ib_device *device, const char *name)
{
static u32 last_id;
int ret;
down_write(&devices_rwsem);
/* Assign a unique name to the device */
if (strchr(name, '%'))
ret = alloc_name(device, name);
else
ret = dev_set_name(&device->dev, name);
if (ret)
goto out;
if (__ib_device_get_by_name(dev_name(&device->dev))) {
ret = -ENFILE;
goto out;
}
strlcpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
&last_id, GFP_KERNEL);
if (ret > 0)
ret = 0;
out:
up_write(&devices_rwsem);
return ret;
}
static void setup_dma_device(struct ib_device *device)
{
struct device *parent = device->dev.parent;
WARN_ON_ONCE(device->dma_device);
#ifdef CONFIG_DMA_OPS
if (device->dev.dma_ops) {
/*
* The caller provided custom DMA operations. Copy the
* DMA-related fields that are used by e.g. dma_alloc_coherent()
* into device->dev.
*/
device->dma_device = &device->dev;
if (!device->dev.dma_mask) {
if (parent)
device->dev.dma_mask = parent->dma_mask;
else
WARN_ON_ONCE(true);
}
if (!device->dev.coherent_dma_mask) {
if (parent)
device->dev.coherent_dma_mask =
parent->coherent_dma_mask;
else
WARN_ON_ONCE(true);
}
} else
#endif /* CONFIG_DMA_OPS */
{
/*
* The caller did not provide custom DMA operations. Use the
* DMA mapping operations of the parent device.
*/
WARN_ON_ONCE(!parent);
device->dma_device = parent;
}
if (!device->dev.dma_parms) {
if (parent) {
/*
* The caller did not provide DMA parameters, so
* 'parent' probably represents a PCI device. The PCI
* core sets the maximum segment size to 64
* KB. Increase this parameter to 2 GB.
*/
device->dev.dma_parms = parent->dma_parms;
dma_set_max_seg_size(device->dma_device, SZ_2G);
} else {
WARN_ON_ONCE(true);
}
}
}
/*
* setup_device() allocates memory and sets up data that requires calling the
* device ops, this is the only reason these actions are not done during
* ib_alloc_device. It is undone by ib_dealloc_device().
*/
static int setup_device(struct ib_device *device)
{
struct ib_udata uhw = {.outlen = 0, .inlen = 0};
int ret;
setup_dma_device(device);
ib_device_check_mandatory(device);
ret = setup_port_data(device);
if (ret) {
dev_warn(&device->dev, "Couldn't create per-port data\n");
return ret;
}
memset(&device->attrs, 0, sizeof(device->attrs));
ret = device->ops.query_device(device, &device->attrs, &uhw);
if (ret) {
dev_warn(&device->dev,
"Couldn't query the device attributes\n");
return ret;
}
return 0;
}
static void disable_device(struct ib_device *device)
{
u32 cid;
WARN_ON(!refcount_read(&device->refcount));
down_write(&devices_rwsem);
xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
up_write(&devices_rwsem);
/*
* Remove clients in LIFO order, see assign_client_id. This could be
* more efficient if xarray learns to reverse iterate. Since no new
* clients can be added to this ib_device past this point we only need
* the maximum possible client_id value here.
*/
down_read(&clients_rwsem);
cid = highest_client_id;
up_read(&clients_rwsem);
while (cid) {
cid--;
remove_client_context(device, cid);
}
/* Pairs with refcount_set in enable_device */
ib_device_put(device);
wait_for_completion(&device->unreg_completion);
/*
* compat devices must be removed after device refcount drops to zero.
* Otherwise init_net() may add more compatdevs after removing compat
* devices and before device is disabled.
*/
remove_compat_devs(device);
}
/*
* An enabled device is visible to all clients and to all the public facing
* APIs that return a device pointer. This always returns with a new get, even
* if it fails.
*/
static int enable_device_and_get(struct ib_device *device)
{
struct ib_client *client;
unsigned long index;
int ret = 0;
/*
* One ref belongs to the xa and the other belongs to this
* thread. This is needed to guard against parallel unregistration.
*/
refcount_set(&device->refcount, 2);
down_write(&devices_rwsem);
xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
/*
* By using downgrade_write() we ensure that no other thread can clear
* DEVICE_REGISTERED while we are completing the client setup.
*/
downgrade_write(&devices_rwsem);
if (device->ops.enable_driver) {
ret = device->ops.enable_driver(device);
if (ret)
goto out;
}
down_read(&clients_rwsem);
xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
ret = add_client_context(device, client);
if (ret)
break;
}
up_read(&clients_rwsem);
if (!ret)
ret = add_compat_devs(device);
out:
up_read(&devices_rwsem);
return ret;
}
static void prevent_dealloc_device(struct ib_device *ib_dev)
{
}
/**
* ib_register_device - Register an IB device with IB core
* @device: Device to register
* @name: unique string device name. This may include a '%' which will
* cause a unique index to be added to the passed device name.
*
* Low-level drivers use ib_register_device() to register their
* devices with the IB core. All registered clients will receive a
* callback for each device that is added. @device must be allocated
* with ib_alloc_device().
*
* If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
* asynchronously then the device pointer may become freed as soon as this
* function returns.
*/
int ib_register_device(struct ib_device *device, const char *name)
{
int ret;
ret = assign_name(device, name);
if (ret)
return ret;
ret = setup_device(device);
if (ret)
return ret;
ret = ib_cache_setup_one(device);
if (ret) {
dev_warn(&device->dev,
"Couldn't set up InfiniBand P_Key/GID cache\n");
return ret;
}
ib_device_register_rdmacg(device);
rdma_counter_init(device);
/*
* Ensure that ADD uevent is not fired because it
* is too early amd device is not initialized yet.
*/
dev_set_uevent_suppress(&device->dev, true);
ret = device_add(&device->dev);
if (ret)
goto cg_cleanup;
ret = ib_device_register_sysfs(device);
if (ret) {
dev_warn(&device->dev,
"Couldn't register device with driver model\n");
goto dev_cleanup;
}
ib_cq_pool_init(device);
ret = enable_device_and_get(device);
dev_set_uevent_suppress(&device->dev, false);
/* Mark for userspace that device is ready */
kobject_uevent(&device->dev.kobj, KOBJ_ADD);
if (ret) {
void (*dealloc_fn)(struct ib_device *);
/*
* If we hit this error flow then we don't want to
* automatically dealloc the device since the caller is
* expected to call ib_dealloc_device() after
* ib_register_device() fails. This is tricky due to the
* possibility for a parallel unregistration along with this
* error flow. Since we have a refcount here we know any
* parallel flow is stopped in disable_device and will see the
* special dealloc_driver pointer, causing the responsibility to
* ib_dealloc_device() to revert back to this thread.
*/
dealloc_fn = device->ops.dealloc_driver;
device->ops.dealloc_driver = prevent_dealloc_device;
ib_device_put(device);
__ib_unregister_device(device);
device->ops.dealloc_driver = dealloc_fn;
return ret;
}
ib_device_put(device);
return 0;
dev_cleanup:
device_del(&device->dev);
cg_cleanup:
dev_set_uevent_suppress(&device->dev, false);
ib_device_unregister_rdmacg(device);
ib_cache_cleanup_one(device);
return ret;
}
EXPORT_SYMBOL(ib_register_device);
/* Callers must hold a get on the device. */
static void __ib_unregister_device(struct ib_device *ib_dev)
{
/*
* We have a registration lock so that all the calls to unregister are
* fully fenced, once any unregister returns the device is truely
* unregistered even if multiple callers are unregistering it at the
* same time. This also interacts with the registration flow and
* provides sane semantics if register and unregister are racing.
*/
mutex_lock(&ib_dev->unregistration_lock);
if (!refcount_read(&ib_dev->refcount))
goto out;
disable_device(ib_dev);
ib_cq_pool_destroy(ib_dev);
/* Expedite removing unregistered pointers from the hash table */
free_netdevs(ib_dev);
ib_device_unregister_sysfs(ib_dev);
device_del(&ib_dev->dev);
ib_device_unregister_rdmacg(ib_dev);
ib_cache_cleanup_one(ib_dev);
/*
* Drivers using the new flow may not call ib_dealloc_device except
* in error unwind prior to registration success.
*/
if (ib_dev->ops.dealloc_driver &&
ib_dev->ops.dealloc_driver != prevent_dealloc_device) {
WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
ib_dealloc_device(ib_dev);
}
out:
mutex_unlock(&ib_dev->unregistration_lock);
}
/**
* ib_unregister_device - Unregister an IB device
* @ib_dev: The device to unregister
*
* Unregister an IB device. All clients will receive a remove callback.
*
* Callers should call this routine only once, and protect against races with
* registration. Typically it should only be called as part of a remove
* callback in an implementation of driver core's struct device_driver and
* related.
*
* If ops.dealloc_driver is used then ib_dev will be freed upon return from
* this function.
*/
void ib_unregister_device(struct ib_device *ib_dev)
{
get_device(&ib_dev->dev);
__ib_unregister_device(ib_dev);
put_device(&ib_dev->dev);
}
EXPORT_SYMBOL(ib_unregister_device);
/**
* ib_unregister_device_and_put - Unregister a device while holding a 'get'
* @ib_dev: The device to unregister
*
* This is the same as ib_unregister_device(), except it includes an internal
* ib_device_put() that should match a 'get' obtained by the caller.
*
* It is safe to call this routine concurrently from multiple threads while
* holding the 'get'. When the function returns the device is fully
* unregistered.
*
* Drivers using this flow MUST use the driver_unregister callback to clean up
* their resources associated with the device and dealloc it.
*/
void ib_unregister_device_and_put(struct ib_device *ib_dev)
{
WARN_ON(!ib_dev->ops.dealloc_driver);
get_device(&ib_dev->dev);
ib_device_put(ib_dev);
__ib_unregister_device(ib_dev);
put_device(&ib_dev->dev);
}
EXPORT_SYMBOL(ib_unregister_device_and_put);
/**
* ib_unregister_driver - Unregister all IB devices for a driver
* @driver_id: The driver to unregister
*
* This implements a fence for device unregistration. It only returns once all
* devices associated with the driver_id have fully completed their
* unregistration and returned from ib_unregister_device*().
*
* If device's are not yet unregistered it goes ahead and starts unregistering
* them.
*
* This does not block creation of new devices with the given driver_id, that
* is the responsibility of the caller.
*/
void ib_unregister_driver(enum rdma_driver_id driver_id)
{
struct ib_device *ib_dev;
unsigned long index;
down_read(&devices_rwsem);
xa_for_each (&devices, index, ib_dev) {
if (ib_dev->ops.driver_id != driver_id)
continue;
get_device(&ib_dev->dev);
up_read(&devices_rwsem);
WARN_ON(!ib_dev->ops.dealloc_driver);
__ib_unregister_device(ib_dev);
put_device(&ib_dev->dev);
down_read(&devices_rwsem);
}
up_read(&devices_rwsem);
}
EXPORT_SYMBOL(ib_unregister_driver);
static void ib_unregister_work(struct work_struct *work)
{
struct ib_device *ib_dev =
container_of(work, struct ib_device, unregistration_work);
__ib_unregister_device(ib_dev);
put_device(&ib_dev->dev);
}
/**
* ib_unregister_device_queued - Unregister a device using a work queue
* @ib_dev: The device to unregister
*
* This schedules an asynchronous unregistration using a WQ for the device. A
* driver should use this to avoid holding locks while doing unregistration,
* such as holding the RTNL lock.
*
* Drivers using this API must use ib_unregister_driver before module unload
* to ensure that all scheduled unregistrations have completed.
*/
void ib_unregister_device_queued(struct ib_device *ib_dev)
{
WARN_ON(!refcount_read(&ib_dev->refcount));
WARN_ON(!ib_dev->ops.dealloc_driver);
get_device(&ib_dev->dev);
if (!queue_work(system_unbound_wq, &ib_dev->unregistration_work))
put_device(&ib_dev->dev);
}
EXPORT_SYMBOL(ib_unregister_device_queued);
/*
* The caller must pass in a device that has the kref held and the refcount
* released. If the device is in cur_net and still registered then it is moved
* into net.
*/
static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
struct net *net)
{
int ret2 = -EINVAL;
int ret;
mutex_lock(&device->unregistration_lock);
/*
* If a device not under ib_device_get() or if the unregistration_lock
* is not held, the namespace can be changed, or it can be unregistered.
* Check again under the lock.
*/
if (refcount_read(&device->refcount) == 0 ||
!net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
ret = -ENODEV;
goto out;
}
kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
disable_device(device);
/*
* At this point no one can be using the device, so it is safe to
* change the namespace.
*/
write_pnet(&device->coredev.rdma_net, net);
down_read(&devices_rwsem);
/*
* Currently rdma devices are system wide unique. So the device name
* is guaranteed free in the new namespace. Publish the new namespace
* at the sysfs level.
*/
ret = device_rename(&device->dev, dev_name(&device->dev));
up_read(&devices_rwsem);
if (ret) {
dev_warn(&device->dev,
"%s: Couldn't rename device after namespace change\n",
__func__);
/* Try and put things back and re-enable the device */
write_pnet(&device->coredev.rdma_net, cur_net);
}
ret2 = enable_device_and_get(device);
if (ret2) {
/*
* This shouldn't really happen, but if it does, let the user
* retry at later point. So don't disable the device.
*/
dev_warn(&device->dev,
"%s: Couldn't re-enable device after namespace change\n",
__func__);
}
kobject_uevent(&device->dev.kobj, KOBJ_ADD);
ib_device_put(device);
out:
mutex_unlock(&device->unregistration_lock);
if (ret)
return ret;
return ret2;
}
int ib_device_set_netns_put(struct sk_buff *skb,
struct ib_device *dev, u32 ns_fd)
{
struct net *net;
int ret;
net = get_net_ns_by_fd(ns_fd);
if (IS_ERR(net)) {
ret = PTR_ERR(net);
goto net_err;
}
if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
ret = -EPERM;
goto ns_err;
}
/*
* Currently supported only for those providers which support
* disassociation and don't do port specific sysfs init. Once a
* port_cleanup infrastructure is implemented, this limitation will be
* removed.
*/
if (!dev->ops.disassociate_ucontext || dev->ops.init_port ||
ib_devices_shared_netns) {
ret = -EOPNOTSUPP;
goto ns_err;
}
get_device(&dev->dev);
ib_device_put(dev);
ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
put_device(&dev->dev);
put_net(net);
return ret;
ns_err:
put_net(net);
net_err:
ib_device_put(dev);
return ret;
}
static struct pernet_operations rdma_dev_net_ops = {
.init = rdma_dev_init_net,
.exit = rdma_dev_exit_net,
.id = &rdma_dev_net_id,
.size = sizeof(struct rdma_dev_net),
};
static int assign_client_id(struct ib_client *client)
{
int ret;
down_write(&clients_rwsem);
/*
* The add/remove callbacks must be called in FIFO/LIFO order. To
* achieve this we assign client_ids so they are sorted in
* registration order.
*/
client->client_id = highest_client_id;
ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
if (ret)
goto out;
highest_client_id++;
xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
out:
up_write(&clients_rwsem);
return ret;
}
static void remove_client_id(struct ib_client *client)
{
down_write(&clients_rwsem);
xa_erase(&clients, client->client_id);
for (; highest_client_id; highest_client_id--)
if (xa_load(&clients, highest_client_id - 1))
break;
up_write(&clients_rwsem);
}
/**
* ib_register_client - Register an IB client
* @client:Client to register
*
* Upper level users of the IB drivers can use ib_register_client() to
* register callbacks for IB device addition and removal. When an IB
* device is added, each registered client's add method will be called
* (in the order the clients were registered), and when a device is
* removed, each client's remove method will be called (in the reverse
* order that clients were registered). In addition, when
* ib_register_client() is called, the client will receive an add
* callback for all devices already registered.
*/
int ib_register_client(struct ib_client *client)
{
struct ib_device *device;
unsigned long index;
int ret;
refcount_set(&client->uses, 1);
init_completion(&client->uses_zero);
ret = assign_client_id(client);
if (ret)
return ret;
down_read(&devices_rwsem);
xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
ret = add_client_context(device, client);
if (ret) {
up_read(&devices_rwsem);
ib_unregister_client(client);
return ret;
}
}
up_read(&devices_rwsem);
return 0;
}
EXPORT_SYMBOL(ib_register_client);
/**
* ib_unregister_client - Unregister an IB client
* @client:Client to unregister
*
* Upper level users use ib_unregister_client() to remove their client
* registration. When ib_unregister_client() is called, the client
* will receive a remove callback for each IB device still registered.
*
* This is a full fence, once it returns no client callbacks will be called,
* or are running in another thread.
*/
void ib_unregister_client(struct ib_client *client)
{
struct ib_device *device;
unsigned long index;
down_write(&clients_rwsem);
ib_client_put(client);
xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
up_write(&clients_rwsem);
/* We do not want to have locks while calling client->remove() */
rcu_read_lock();
xa_for_each (&devices, index, device) {
if (!ib_device_try_get(device))
continue;
rcu_read_unlock();
remove_client_context(device, client->client_id);
ib_device_put(device);
rcu_read_lock();
}
rcu_read_unlock();
/*
* remove_client_context() is not a fence, it can return even though a
* removal is ongoing. Wait until all removals are completed.
*/
wait_for_completion(&client->uses_zero);
remove_client_id(client);
}
EXPORT_SYMBOL(ib_unregister_client);
static int __ib_get_global_client_nl_info(const char *client_name,
struct ib_client_nl_info *res)
{
struct ib_client *client;
unsigned long index;
int ret = -ENOENT;
down_read(&clients_rwsem);
xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
if (strcmp(client->name, client_name) != 0)
continue;
if (!client->get_global_nl_info) {
ret = -EOPNOTSUPP;
break;
}
ret = client->get_global_nl_info(res);
if (WARN_ON(ret == -ENOENT))
ret = -EINVAL;
if (!ret && res->cdev)
get_device(res->cdev);
break;
}
up_read(&clients_rwsem);
return ret;
}
static int __ib_get_client_nl_info(struct ib_device *ibdev,
const char *client_name,
struct ib_client_nl_info *res)
{
unsigned long index;
void *client_data;
int ret = -ENOENT;
down_read(&ibdev->client_data_rwsem);
xan_for_each_marked (&ibdev->client_data, index, client_data,
CLIENT_DATA_REGISTERED) {
struct ib_client *client = xa_load(&clients, index);
if (!client || strcmp(client->name, client_name) != 0)
continue;
if (!client->get_nl_info) {
ret = -EOPNOTSUPP;
break;
}
ret = client->get_nl_info(ibdev, client_data, res);
if (WARN_ON(ret == -ENOENT))
ret = -EINVAL;
/*
* The cdev is guaranteed valid as long as we are inside the
* client_data_rwsem as remove_one can't be called. Keep it
* valid for the caller.
*/
if (!ret && res->cdev)
get_device(res->cdev);
break;
}
up_read(&ibdev->client_data_rwsem);
return ret;
}
/**
* ib_get_client_nl_info - Fetch the nl_info from a client
* @device - IB device
* @client_name - Name of the client
* @res - Result of the query
*/
int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
struct ib_client_nl_info *res)
{
int ret;
if (ibdev)
ret = __ib_get_client_nl_info(ibdev, client_name, res);
else
ret = __ib_get_global_client_nl_info(client_name, res);
#ifdef CONFIG_MODULES
if (ret == -ENOENT) {
request_module("rdma-client-%s", client_name);
if (ibdev)
ret = __ib_get_client_nl_info(ibdev, client_name, res);
else
ret = __ib_get_global_client_nl_info(client_name, res);
}
#endif
if (ret) {
if (ret == -ENOENT)
return -EOPNOTSUPP;
return ret;
}
if (WARN_ON(!res->cdev))
return -EINVAL;
return 0;
}
/**
* ib_set_client_data - Set IB client context
* @device:Device to set context for
* @client:Client to set context for
* @data:Context to set
*
* ib_set_client_data() sets client context data that can be retrieved with
* ib_get_client_data(). This can only be called while the client is
* registered to the device, once the ib_client remove() callback returns this
* cannot be called.
*/
void ib_set_client_data(struct ib_device *device, struct ib_client *client,
void *data)
{
void *rc;
if (WARN_ON(IS_ERR(data)))
data = NULL;
rc = xa_store(&device->client_data, client->client_id, data,
GFP_KERNEL);
WARN_ON(xa_is_err(rc));
}
EXPORT_SYMBOL(ib_set_client_data);
/**
* ib_register_event_handler - Register an IB event handler
* @event_handler:Handler to register
*
* ib_register_event_handler() registers an event handler that will be
* called back when asynchronous IB events occur (as defined in
* chapter 11 of the InfiniBand Architecture Specification). This
* callback occurs in workqueue context.
*/
void ib_register_event_handler(struct ib_event_handler *event_handler)
{
down_write(&event_handler->device->event_handler_rwsem);
list_add_tail(&event_handler->list,
&event_handler->device->event_handler_list);
up_write(&event_handler->device->event_handler_rwsem);
}
EXPORT_SYMBOL(ib_register_event_handler);
/**
* ib_unregister_event_handler - Unregister an event handler
* @event_handler:Handler to unregister
*
* Unregister an event handler registered with
* ib_register_event_handler().
*/
void ib_unregister_event_handler(struct ib_event_handler *event_handler)
{
down_write(&event_handler->device->event_handler_rwsem);
list_del(&event_handler->list);
up_write(&event_handler->device->event_handler_rwsem);
}
EXPORT_SYMBOL(ib_unregister_event_handler);
void ib_dispatch_event_clients(struct ib_event *event)
{
struct ib_event_handler *handler;
down_read(&event->device->event_handler_rwsem);
list_for_each_entry(handler, &event->device->event_handler_list, list)
handler->handler(handler, event);
up_read(&event->device->event_handler_rwsem);
}
static int iw_query_port(struct ib_device *device,
u8 port_num,
struct ib_port_attr *port_attr)
{
struct in_device *inetdev;
struct net_device *netdev;
memset(port_attr, 0, sizeof(*port_attr));
netdev = ib_device_get_netdev(device, port_num);
if (!netdev)
return -ENODEV;
port_attr->max_mtu = IB_MTU_4096;
port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu);
if (!netif_carrier_ok(netdev)) {
port_attr->state = IB_PORT_DOWN;
port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
} else {
rcu_read_lock();
inetdev = __in_dev_get_rcu(netdev);
if (inetdev && inetdev->ifa_list) {
port_attr->state = IB_PORT_ACTIVE;
port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
} else {
port_attr->state = IB_PORT_INIT;
port_attr->phys_state =
IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
}
rcu_read_unlock();
}
dev_put(netdev);
return device->ops.query_port(device, port_num, port_attr);
}
static int __ib_query_port(struct ib_device *device,
u8 port_num,
struct ib_port_attr *port_attr)
{
union ib_gid gid = {};
int err;
memset(port_attr, 0, sizeof(*port_attr));
err = device->ops.query_port(device, port_num, port_attr);
if (err || port_attr->subnet_prefix)
return err;
if (rdma_port_get_link_layer(device, port_num) !=
IB_LINK_LAYER_INFINIBAND)
return 0;
err = device->ops.query_gid(device, port_num, 0, &gid);
if (err)
return err;
port_attr->subnet_prefix = be64_to_cpu(gid.global.subnet_prefix);
return 0;
}
/**
* ib_query_port - Query IB port attributes
* @device:Device to query
* @port_num:Port number to query
* @port_attr:Port attributes
*
* ib_query_port() returns the attributes of a port through the
* @port_attr pointer.
*/
int ib_query_port(struct ib_device *device,
u8 port_num,
struct ib_port_attr *port_attr)
{
if (!rdma_is_port_valid(device, port_num))
return -EINVAL;
if (rdma_protocol_iwarp(device, port_num))
return iw_query_port(device, port_num, port_attr);
else
return __ib_query_port(device, port_num, port_attr);
}
EXPORT_SYMBOL(ib_query_port);
static void add_ndev_hash(struct ib_port_data *pdata)
{
unsigned long flags;
might_sleep();
spin_lock_irqsave(&ndev_hash_lock, flags);
if (hash_hashed(&pdata->ndev_hash_link)) {
hash_del_rcu(&pdata->ndev_hash_link);
spin_unlock_irqrestore(&ndev_hash_lock, flags);
/*
* We cannot do hash_add_rcu after a hash_del_rcu until the
* grace period
*/
synchronize_rcu();
spin_lock_irqsave(&ndev_hash_lock, flags);
}
if (pdata->netdev)
hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
(uintptr_t)pdata->netdev);
spin_unlock_irqrestore(&ndev_hash_lock, flags);
}
/**
* ib_device_set_netdev - Associate the ib_dev with an underlying net_device
* @ib_dev: Device to modify
* @ndev: net_device to affiliate, may be NULL
* @port: IB port the net_device is connected to
*
* Drivers should use this to link the ib_device to a netdev so the netdev
* shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
* affiliated with any port.
*
* The caller must ensure that the given ndev is not unregistered or
* unregistering, and that either the ib_device is unregistered or
* ib_device_set_netdev() is called with NULL when the ndev sends a
* NETDEV_UNREGISTER event.
*/
int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
unsigned int port)
{
struct net_device *old_ndev;
struct ib_port_data *pdata;
unsigned long flags;
int ret;
/*
* Drivers wish to call this before ib_register_driver, so we have to
* setup the port data early.
*/
ret = alloc_port_data(ib_dev);
if (ret)
return ret;
if (!rdma_is_port_valid(ib_dev, port))
return -EINVAL;
pdata = &ib_dev->port_data[port];
spin_lock_irqsave(&pdata->netdev_lock, flags);
old_ndev = rcu_dereference_protected(
pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
if (old_ndev == ndev) {
spin_unlock_irqrestore(&pdata->netdev_lock, flags);
return 0;
}
if (ndev)
dev_hold(ndev);
rcu_assign_pointer(pdata->netdev, ndev);
spin_unlock_irqrestore(&pdata->netdev_lock, flags);
add_ndev_hash(pdata);
if (old_ndev)
dev_put(old_ndev);
return 0;
}
EXPORT_SYMBOL(ib_device_set_netdev);
static void free_netdevs(struct ib_device *ib_dev)
{
unsigned long flags;
unsigned int port;
if (!ib_dev->port_data)
return;
rdma_for_each_port (ib_dev, port) {
struct ib_port_data *pdata = &ib_dev->port_data[port];
struct net_device *ndev;
spin_lock_irqsave(&pdata->netdev_lock, flags);
ndev = rcu_dereference_protected(
pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
if (ndev) {
spin_lock(&ndev_hash_lock);
hash_del_rcu(&pdata->ndev_hash_link);
spin_unlock(&ndev_hash_lock);
/*
* If this is the last dev_put there is still a
* synchronize_rcu before the netdev is kfreed, so we
* can continue to rely on unlocked pointer
* comparisons after the put
*/
rcu_assign_pointer(pdata->netdev, NULL);
dev_put(ndev);
}
spin_unlock_irqrestore(&pdata->netdev_lock, flags);
}
}
struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
unsigned int port)
{
struct ib_port_data *pdata;
struct net_device *res;
if (!rdma_is_port_valid(ib_dev, port))
return NULL;
pdata = &ib_dev->port_data[port];
/*
* New drivers should use ib_device_set_netdev() not the legacy
* get_netdev().
*/
if (ib_dev->ops.get_netdev)
res = ib_dev->ops.get_netdev(ib_dev, port);
else {
spin_lock(&pdata->netdev_lock);
res = rcu_dereference_protected(
pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
if (res)
dev_hold(res);
spin_unlock(&pdata->netdev_lock);
}
/*
* If we are starting to unregister expedite things by preventing
* propagation of an unregistering netdev.
*/
if (res && res->reg_state != NETREG_REGISTERED) {
dev_put(res);
return NULL;
}
return res;
}
/**
* ib_device_get_by_netdev - Find an IB device associated with a netdev
* @ndev: netdev to locate
* @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
*
* Find and hold an ib_device that is associated with a netdev via
* ib_device_set_netdev(). The caller must call ib_device_put() on the
* returned pointer.
*/
struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
enum rdma_driver_id driver_id)
{
struct ib_device *res = NULL;
struct ib_port_data *cur;
rcu_read_lock();
hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
(uintptr_t)ndev) {
if (rcu_access_pointer(cur->netdev) == ndev &&
(driver_id == RDMA_DRIVER_UNKNOWN ||
cur->ib_dev->ops.driver_id == driver_id) &&
ib_device_try_get(cur->ib_dev)) {
res = cur->ib_dev;
break;
}
}
rcu_read_unlock();
return res;
}
EXPORT_SYMBOL(ib_device_get_by_netdev);
/**
* ib_enum_roce_netdev - enumerate all RoCE ports
* @ib_dev : IB device we want to query
* @filter: Should we call the callback?
* @filter_cookie: Cookie passed to filter
* @cb: Callback to call for each found RoCE ports
* @cookie: Cookie passed back to the callback
*
* Enumerates all of the physical RoCE ports of ib_dev
* which are related to netdevice and calls callback() on each
* device for which filter() function returns non zero.
*/
void ib_enum_roce_netdev(struct ib_device *ib_dev,
roce_netdev_filter filter,
void *filter_cookie,
roce_netdev_callback cb,
void *cookie)
{
unsigned int port;
rdma_for_each_port (ib_dev, port)
if (rdma_protocol_roce(ib_dev, port)) {
struct net_device *idev =
ib_device_get_netdev(ib_dev, port);
if (filter(ib_dev, port, idev, filter_cookie))
cb(ib_dev, port, idev, cookie);
if (idev)
dev_put(idev);
}
}
/**
* ib_enum_all_roce_netdevs - enumerate all RoCE devices
* @filter: Should we call the callback?
* @filter_cookie: Cookie passed to filter
* @cb: Callback to call for each found RoCE ports
* @cookie: Cookie passed back to the callback
*
* Enumerates all RoCE devices' physical ports which are related
* to netdevices and calls callback() on each device for which
* filter() function returns non zero.
*/
void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
void *filter_cookie,
roce_netdev_callback cb,
void *cookie)
{
struct ib_device *dev;
unsigned long index;
down_read(&devices_rwsem);
xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
up_read(&devices_rwsem);
}
/**
* ib_enum_all_devs - enumerate all ib_devices
* @cb: Callback to call for each found ib_device
*
* Enumerates all ib_devices and calls callback() on each device.
*/
int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
struct netlink_callback *cb)
{
unsigned long index;
struct ib_device *dev;
unsigned int idx = 0;
int ret = 0;
down_read(&devices_rwsem);
xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
continue;
ret = nldev_cb(dev, skb, cb, idx);
if (ret)
break;
idx++;
}
up_read(&devices_rwsem);
return ret;
}
/**
* ib_query_pkey - Get P_Key table entry
* @device:Device to query
* @port_num:Port number to query
* @index:P_Key table index to query
* @pkey:Returned P_Key
*
* ib_query_pkey() fetches the specified P_Key table entry.
*/
int ib_query_pkey(struct ib_device *device,
u8 port_num, u16 index, u16 *pkey)
{
if (!rdma_is_port_valid(device, port_num))
return -EINVAL;
if (!device->ops.query_pkey)
return -EOPNOTSUPP;
return device->ops.query_pkey(device, port_num, index, pkey);
}
EXPORT_SYMBOL(ib_query_pkey);
/**
* ib_modify_device - Change IB device attributes
* @device:Device to modify
* @device_modify_mask:Mask of attributes to change
* @device_modify:New attribute values
*
* ib_modify_device() changes a device's attributes as specified by
* the @device_modify_mask and @device_modify structure.
*/
int ib_modify_device(struct ib_device *device,
int device_modify_mask,
struct ib_device_modify *device_modify)
{
if (!device->ops.modify_device)
return -EOPNOTSUPP;
return device->ops.modify_device(device, device_modify_mask,
device_modify);
}
EXPORT_SYMBOL(ib_modify_device);
/**
* ib_modify_port - Modifies the attributes for the specified port.
* @device: The device to modify.
* @port_num: The number of the port to modify.
* @port_modify_mask: Mask used to specify which attributes of the port
* to change.
* @port_modify: New attribute values for the port.
*
* ib_modify_port() changes a port's attributes as specified by the
* @port_modify_mask and @port_modify structure.
*/
int ib_modify_port(struct ib_device *device,
u8 port_num, int port_modify_mask,
struct ib_port_modify *port_modify)
{
int rc;
if (!rdma_is_port_valid(device, port_num))
return -EINVAL;
if (device->ops.modify_port)
rc = device->ops.modify_port(device, port_num,
port_modify_mask,
port_modify);
else if (rdma_protocol_roce(device, port_num) &&
((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 ||
(port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0))
rc = 0;
else
rc = -EOPNOTSUPP;
return rc;
}
EXPORT_SYMBOL(ib_modify_port);
/**
* ib_find_gid - Returns the port number and GID table index where
* a specified GID value occurs. Its searches only for IB link layer.
* @device: The device to query.
* @gid: The GID value to search for.
* @port_num: The port number of the device where the GID value was found.
* @index: The index into the GID table where the GID was found. This
* parameter may be NULL.
*/
int ib_find_gid(struct ib_device *device, union ib_gid *gid,
u8 *port_num, u16 *index)
{
union ib_gid tmp_gid;
unsigned int port;
int ret, i;
rdma_for_each_port (device, port) {
if (!rdma_protocol_ib(device, port))
continue;
for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
++i) {
ret = rdma_query_gid(device, port, i, &tmp_gid);
if (ret)
return ret;
if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
*port_num = port;
if (index)
*index = i;
return 0;
}
}
}
return -ENOENT;
}
EXPORT_SYMBOL(ib_find_gid);
/**
* ib_find_pkey - Returns the PKey table index where a specified
* PKey value occurs.
* @device: The device to query.
* @port_num: The port number of the device to search for the PKey.
* @pkey: The PKey value to search for.
* @index: The index into the PKey table where the PKey was found.
*/
int ib_find_pkey(struct ib_device *device,
u8 port_num, u16 pkey, u16 *index)
{
int ret, i;
u16 tmp_pkey;
int partial_ix = -1;
for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
++i) {
ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
if (ret)
return ret;
if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
/* if there is full-member pkey take it.*/
if (tmp_pkey & 0x8000) {
*index = i;
return 0;
}
if (partial_ix < 0)
partial_ix = i;
}
}
/*no full-member, if exists take the limited*/
if (partial_ix >= 0) {
*index = partial_ix;
return 0;
}
return -ENOENT;
}
EXPORT_SYMBOL(ib_find_pkey);
/**
* ib_get_net_dev_by_params() - Return the appropriate net_dev
* for a received CM request
* @dev: An RDMA device on which the request has been received.
* @port: Port number on the RDMA device.
* @pkey: The Pkey the request came on.
* @gid: A GID that the net_dev uses to communicate.
* @addr: Contains the IP address that the request specified as its
* destination.
*
*/
struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
u8 port,
u16 pkey,
const union ib_gid *gid,
const struct sockaddr *addr)
{
struct net_device *net_dev = NULL;
unsigned long index;
void *client_data;
if (!rdma_protocol_ib(dev, port))
return NULL;
/*
* Holding the read side guarantees that the client will not become
* unregistered while we are calling get_net_dev_by_params()
*/
down_read(&dev->client_data_rwsem);
xan_for_each_marked (&dev->client_data, index, client_data,
CLIENT_DATA_REGISTERED) {
struct ib_client *client = xa_load(&clients, index);
if (!client || !client->get_net_dev_by_params)
continue;
net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
addr, client_data);
if (net_dev)
break;
}
up_read(&dev->client_data_rwsem);
return net_dev;
}
EXPORT_SYMBOL(ib_get_net_dev_by_params);
void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
{
struct ib_device_ops *dev_ops = &dev->ops;
#define SET_DEVICE_OP(ptr, name) \
do { \
if (ops->name) \
if (!((ptr)->name)) \
(ptr)->name = ops->name; \
} while (0)
#define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
dev_ops->driver_id != ops->driver_id);
dev_ops->driver_id = ops->driver_id;
}
if (ops->owner) {
WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
dev_ops->owner = ops->owner;
}
if (ops->uverbs_abi_ver)
dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
dev_ops->uverbs_no_driver_id_binding |=
ops->uverbs_no_driver_id_binding;
SET_DEVICE_OP(dev_ops, add_gid);
SET_DEVICE_OP(dev_ops, advise_mr);
SET_DEVICE_OP(dev_ops, alloc_dm);
SET_DEVICE_OP(dev_ops, alloc_hw_stats);
SET_DEVICE_OP(dev_ops, alloc_mr);
SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
SET_DEVICE_OP(dev_ops, alloc_mw);
SET_DEVICE_OP(dev_ops, alloc_pd);
SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
SET_DEVICE_OP(dev_ops, alloc_ucontext);
SET_DEVICE_OP(dev_ops, alloc_xrcd);
SET_DEVICE_OP(dev_ops, attach_mcast);
SET_DEVICE_OP(dev_ops, check_mr_status);
SET_DEVICE_OP(dev_ops, counter_alloc_stats);
SET_DEVICE_OP(dev_ops, counter_bind_qp);
SET_DEVICE_OP(dev_ops, counter_dealloc);
SET_DEVICE_OP(dev_ops, counter_unbind_qp);
SET_DEVICE_OP(dev_ops, counter_update_stats);
SET_DEVICE_OP(dev_ops, create_ah);
SET_DEVICE_OP(dev_ops, create_counters);
SET_DEVICE_OP(dev_ops, create_cq);
SET_DEVICE_OP(dev_ops, create_flow);
SET_DEVICE_OP(dev_ops, create_flow_action_esp);
SET_DEVICE_OP(dev_ops, create_qp);
SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
SET_DEVICE_OP(dev_ops, create_srq);
SET_DEVICE_OP(dev_ops, create_wq);
SET_DEVICE_OP(dev_ops, dealloc_dm);
SET_DEVICE_OP(dev_ops, dealloc_driver);
SET_DEVICE_OP(dev_ops, dealloc_mw);
SET_DEVICE_OP(dev_ops, dealloc_pd);
SET_DEVICE_OP(dev_ops, dealloc_ucontext);
SET_DEVICE_OP(dev_ops, dealloc_xrcd);
SET_DEVICE_OP(dev_ops, del_gid);
SET_DEVICE_OP(dev_ops, dereg_mr);
SET_DEVICE_OP(dev_ops, destroy_ah);
SET_DEVICE_OP(dev_ops, destroy_counters);
SET_DEVICE_OP(dev_ops, destroy_cq);
SET_DEVICE_OP(dev_ops, destroy_flow);
SET_DEVICE_OP(dev_ops, destroy_flow_action);
SET_DEVICE_OP(dev_ops, destroy_qp);
SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
SET_DEVICE_OP(dev_ops, destroy_srq);
SET_DEVICE_OP(dev_ops, destroy_wq);
SET_DEVICE_OP(dev_ops, detach_mcast);
SET_DEVICE_OP(dev_ops, disassociate_ucontext);
SET_DEVICE_OP(dev_ops, drain_rq);
SET_DEVICE_OP(dev_ops, drain_sq);
SET_DEVICE_OP(dev_ops, enable_driver);
SET_DEVICE_OP(dev_ops, fill_res_cm_id_entry);
SET_DEVICE_OP(dev_ops, fill_res_cq_entry);
SET_DEVICE_OP(dev_ops, fill_res_cq_entry_raw);
SET_DEVICE_OP(dev_ops, fill_res_mr_entry);
SET_DEVICE_OP(dev_ops, fill_res_mr_entry_raw);
SET_DEVICE_OP(dev_ops, fill_res_qp_entry);
SET_DEVICE_OP(dev_ops, fill_res_qp_entry_raw);
SET_DEVICE_OP(dev_ops, fill_stat_mr_entry);
SET_DEVICE_OP(dev_ops, get_dev_fw_str);
SET_DEVICE_OP(dev_ops, get_dma_mr);
SET_DEVICE_OP(dev_ops, get_hw_stats);
SET_DEVICE_OP(dev_ops, get_link_layer);
SET_DEVICE_OP(dev_ops, get_netdev);
SET_DEVICE_OP(dev_ops, get_port_immutable);
SET_DEVICE_OP(dev_ops, get_vector_affinity);
SET_DEVICE_OP(dev_ops, get_vf_config);
SET_DEVICE_OP(dev_ops, get_vf_guid);
SET_DEVICE_OP(dev_ops, get_vf_stats);
SET_DEVICE_OP(dev_ops, init_port);
SET_DEVICE_OP(dev_ops, iw_accept);
SET_DEVICE_OP(dev_ops, iw_add_ref);
SET_DEVICE_OP(dev_ops, iw_connect);
SET_DEVICE_OP(dev_ops, iw_create_listen);
SET_DEVICE_OP(dev_ops, iw_destroy_listen);
SET_DEVICE_OP(dev_ops, iw_get_qp);
SET_DEVICE_OP(dev_ops, iw_reject);
SET_DEVICE_OP(dev_ops, iw_rem_ref);
SET_DEVICE_OP(dev_ops, map_mr_sg);
SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
SET_DEVICE_OP(dev_ops, mmap);
SET_DEVICE_OP(dev_ops, mmap_free);
SET_DEVICE_OP(dev_ops, modify_ah);
SET_DEVICE_OP(dev_ops, modify_cq);
SET_DEVICE_OP(dev_ops, modify_device);
SET_DEVICE_OP(dev_ops, modify_flow_action_esp);
SET_DEVICE_OP(dev_ops, modify_port);
SET_DEVICE_OP(dev_ops, modify_qp);
SET_DEVICE_OP(dev_ops, modify_srq);
SET_DEVICE_OP(dev_ops, modify_wq);
SET_DEVICE_OP(dev_ops, peek_cq);
SET_DEVICE_OP(dev_ops, poll_cq);
SET_DEVICE_OP(dev_ops, post_recv);
SET_DEVICE_OP(dev_ops, post_send);
SET_DEVICE_OP(dev_ops, post_srq_recv);
SET_DEVICE_OP(dev_ops, process_mad);
SET_DEVICE_OP(dev_ops, query_ah);
SET_DEVICE_OP(dev_ops, query_device);
SET_DEVICE_OP(dev_ops, query_gid);
SET_DEVICE_OP(dev_ops, query_pkey);
SET_DEVICE_OP(dev_ops, query_port);
SET_DEVICE_OP(dev_ops, query_qp);
SET_DEVICE_OP(dev_ops, query_srq);
SET_DEVICE_OP(dev_ops, query_ucontext);
SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
SET_DEVICE_OP(dev_ops, read_counters);
SET_DEVICE_OP(dev_ops, reg_dm_mr);
SET_DEVICE_OP(dev_ops, reg_user_mr);
SET_DEVICE_OP(dev_ops, req_ncomp_notif);
SET_DEVICE_OP(dev_ops, req_notify_cq);
SET_DEVICE_OP(dev_ops, rereg_user_mr);
SET_DEVICE_OP(dev_ops, resize_cq);
SET_DEVICE_OP(dev_ops, set_vf_guid);
SET_DEVICE_OP(dev_ops, set_vf_link_state);
SET_OBJ_SIZE(dev_ops, ib_ah);
SET_OBJ_SIZE(dev_ops, ib_counters);
SET_OBJ_SIZE(dev_ops, ib_cq);
SET_OBJ_SIZE(dev_ops, ib_pd);
SET_OBJ_SIZE(dev_ops, ib_srq);
SET_OBJ_SIZE(dev_ops, ib_ucontext);
SET_OBJ_SIZE(dev_ops, ib_xrcd);
}
EXPORT_SYMBOL(ib_set_device_ops);
static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
[RDMA_NL_LS_OP_RESOLVE] = {
.doit = ib_nl_handle_resolve_resp,
.flags = RDMA_NL_ADMIN_PERM,
},
[RDMA_NL_LS_OP_SET_TIMEOUT] = {
.doit = ib_nl_handle_set_timeout,
.flags = RDMA_NL_ADMIN_PERM,
},
[RDMA_NL_LS_OP_IP_RESOLVE] = {
.doit = ib_nl_handle_ip_res_resp,
.flags = RDMA_NL_ADMIN_PERM,
},
};
static int __init ib_core_init(void)
{
int ret;
ib_wq = alloc_workqueue("infiniband", 0, 0);
if (!ib_wq)
return -ENOMEM;
ib_comp_wq = alloc_workqueue("ib-comp-wq",
WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
if (!ib_comp_wq) {
ret = -ENOMEM;
goto err;
}
ib_comp_unbound_wq =
alloc_workqueue("ib-comp-unb-wq",
WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
if (!ib_comp_unbound_wq) {
ret = -ENOMEM;
goto err_comp;
}
ret = class_register(&ib_class);
if (ret) {
pr_warn("Couldn't create InfiniBand device class\n");
goto err_comp_unbound;
}
rdma_nl_init();
ret = addr_init();
if (ret) {
pr_warn("Couldn't init IB address resolution\n");
goto err_ibnl;
}
ret = ib_mad_init();
if (ret) {
pr_warn("Couldn't init IB MAD\n");
goto err_addr;
}
ret = ib_sa_init();
if (ret) {
pr_warn("Couldn't init SA\n");
goto err_mad;
}
ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
if (ret) {
pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
goto err_sa;
}
ret = register_pernet_device(&rdma_dev_net_ops);
if (ret) {
pr_warn("Couldn't init compat dev. ret %d\n", ret);
goto err_compat;
}
nldev_init();
rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
roce_gid_mgmt_init();
return 0;
err_compat:
unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
err_sa:
ib_sa_cleanup();
err_mad:
ib_mad_cleanup();
err_addr:
addr_cleanup();
err_ibnl:
class_unregister(&ib_class);
err_comp_unbound:
destroy_workqueue(ib_comp_unbound_wq);
err_comp:
destroy_workqueue(ib_comp_wq);
err:
destroy_workqueue(ib_wq);
return ret;
}
static void __exit ib_core_cleanup(void)
{
roce_gid_mgmt_cleanup();
nldev_exit();
rdma_nl_unregister(RDMA_NL_LS);
unregister_pernet_device(&rdma_dev_net_ops);
unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
ib_sa_cleanup();
ib_mad_cleanup();
addr_cleanup();
rdma_nl_exit();
class_unregister(&ib_class);
destroy_workqueue(ib_comp_unbound_wq);
destroy_workqueue(ib_comp_wq);
/* Make sure that any pending umem accounting work is done. */
destroy_workqueue(ib_wq);
flush_workqueue(system_unbound_wq);
WARN_ON(!xa_empty(&clients));
WARN_ON(!xa_empty(&devices));
}
MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
/* ib core relies on netdev stack to first register net_ns_type_operations
* ns kobject type before ib_core initialization.
*/
fs_initcall(ib_core_init);
module_exit(ib_core_cleanup);