linux_dsm_epyc7002/arch/x86/entry/entry_64.S
Thomas Gleixner 633260fa14 x86/irq: Convey vector as argument and not in ptregs
Device interrupts which go through do_IRQ() or the spurious interrupt
handler have their separate entry code on 64 bit for no good reason.

Both 32 and 64 bit transport the vector number through ORIG_[RE]AX in
pt_regs. Further the vector number is forced to fit into an u8 and is
complemented and offset by 0x80 so it's in the signed character
range. Otherwise GAS would expand the pushq to a 5 byte instruction for any
vector > 0x7F.

Treat the vector number like an error code and hand it to the C function as
argument. This allows to get rid of the extra entry code in a later step.

Simplify the error code push magic by implementing the pushq imm8 via a
'.byte 0x6a, vector' sequence so GAS is not able to screw it up. As the
pushq imm8 is sign extending the resulting error code needs to be truncated
to 8 bits in C code.

Originally-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202118.796915981@linutronix.de
2020-06-11 15:15:11 +02:00

1711 lines
47 KiB
ArmAsm

/* SPDX-License-Identifier: GPL-2.0 */
/*
* linux/arch/x86_64/entry.S
*
* Copyright (C) 1991, 1992 Linus Torvalds
* Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
* Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
*
* entry.S contains the system-call and fault low-level handling routines.
*
* Some of this is documented in Documentation/x86/entry_64.rst
*
* A note on terminology:
* - iret frame: Architecture defined interrupt frame from SS to RIP
* at the top of the kernel process stack.
*
* Some macro usage:
* - SYM_FUNC_START/END:Define functions in the symbol table.
* - TRACE_IRQ_*: Trace hardirq state for lock debugging.
* - idtentry: Define exception entry points.
*/
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/cache.h>
#include <asm/errno.h>
#include <asm/asm-offsets.h>
#include <asm/msr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/hw_irq.h>
#include <asm/page_types.h>
#include <asm/irqflags.h>
#include <asm/paravirt.h>
#include <asm/percpu.h>
#include <asm/asm.h>
#include <asm/smap.h>
#include <asm/pgtable_types.h>
#include <asm/export.h>
#include <asm/frame.h>
#include <asm/trapnr.h>
#include <asm/nospec-branch.h>
#include <linux/err.h>
#include "calling.h"
.code64
.section .entry.text, "ax"
#ifdef CONFIG_PARAVIRT
SYM_CODE_START(native_usergs_sysret64)
UNWIND_HINT_EMPTY
swapgs
sysretq
SYM_CODE_END(native_usergs_sysret64)
#endif /* CONFIG_PARAVIRT */
.macro TRACE_IRQS_FLAGS flags:req
#ifdef CONFIG_TRACE_IRQFLAGS
btl $9, \flags /* interrupts off? */
jnc 1f
TRACE_IRQS_ON
1:
#endif
.endm
.macro TRACE_IRQS_IRETQ
TRACE_IRQS_FLAGS EFLAGS(%rsp)
.endm
/*
* When dynamic function tracer is enabled it will add a breakpoint
* to all locations that it is about to modify, sync CPUs, update
* all the code, sync CPUs, then remove the breakpoints. In this time
* if lockdep is enabled, it might jump back into the debug handler
* outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
*
* We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
* make sure the stack pointer does not get reset back to the top
* of the debug stack, and instead just reuses the current stack.
*/
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
.macro TRACE_IRQS_OFF_DEBUG
call debug_stack_set_zero
TRACE_IRQS_OFF
call debug_stack_reset
.endm
.macro TRACE_IRQS_ON_DEBUG
call debug_stack_set_zero
TRACE_IRQS_ON
call debug_stack_reset
.endm
.macro TRACE_IRQS_IRETQ_DEBUG
btl $9, EFLAGS(%rsp) /* interrupts off? */
jnc 1f
TRACE_IRQS_ON_DEBUG
1:
.endm
#else
# define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
# define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
# define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
#endif
/*
* 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
*
* This is the only entry point used for 64-bit system calls. The
* hardware interface is reasonably well designed and the register to
* argument mapping Linux uses fits well with the registers that are
* available when SYSCALL is used.
*
* SYSCALL instructions can be found inlined in libc implementations as
* well as some other programs and libraries. There are also a handful
* of SYSCALL instructions in the vDSO used, for example, as a
* clock_gettimeofday fallback.
*
* 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
* then loads new ss, cs, and rip from previously programmed MSRs.
* rflags gets masked by a value from another MSR (so CLD and CLAC
* are not needed). SYSCALL does not save anything on the stack
* and does not change rsp.
*
* Registers on entry:
* rax system call number
* rcx return address
* r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
* rdi arg0
* rsi arg1
* rdx arg2
* r10 arg3 (needs to be moved to rcx to conform to C ABI)
* r8 arg4
* r9 arg5
* (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
*
* Only called from user space.
*
* When user can change pt_regs->foo always force IRET. That is because
* it deals with uncanonical addresses better. SYSRET has trouble
* with them due to bugs in both AMD and Intel CPUs.
*/
SYM_CODE_START(entry_SYSCALL_64)
UNWIND_HINT_EMPTY
/*
* Interrupts are off on entry.
* We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
* it is too small to ever cause noticeable irq latency.
*/
swapgs
/* tss.sp2 is scratch space. */
movq %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
/* Construct struct pt_regs on stack */
pushq $__USER_DS /* pt_regs->ss */
pushq PER_CPU_VAR(cpu_tss_rw + TSS_sp2) /* pt_regs->sp */
pushq %r11 /* pt_regs->flags */
pushq $__USER_CS /* pt_regs->cs */
pushq %rcx /* pt_regs->ip */
SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL)
pushq %rax /* pt_regs->orig_ax */
PUSH_AND_CLEAR_REGS rax=$-ENOSYS
/* IRQs are off. */
movq %rax, %rdi
movq %rsp, %rsi
call do_syscall_64 /* returns with IRQs disabled */
/*
* Try to use SYSRET instead of IRET if we're returning to
* a completely clean 64-bit userspace context. If we're not,
* go to the slow exit path.
*/
movq RCX(%rsp), %rcx
movq RIP(%rsp), %r11
cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */
jne swapgs_restore_regs_and_return_to_usermode
/*
* On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
* in kernel space. This essentially lets the user take over
* the kernel, since userspace controls RSP.
*
* If width of "canonical tail" ever becomes variable, this will need
* to be updated to remain correct on both old and new CPUs.
*
* Change top bits to match most significant bit (47th or 56th bit
* depending on paging mode) in the address.
*/
#ifdef CONFIG_X86_5LEVEL
ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
"shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
#else
shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
#endif
/* If this changed %rcx, it was not canonical */
cmpq %rcx, %r11
jne swapgs_restore_regs_and_return_to_usermode
cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
jne swapgs_restore_regs_and_return_to_usermode
movq R11(%rsp), %r11
cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
jne swapgs_restore_regs_and_return_to_usermode
/*
* SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
* restore RF properly. If the slowpath sets it for whatever reason, we
* need to restore it correctly.
*
* SYSRET can restore TF, but unlike IRET, restoring TF results in a
* trap from userspace immediately after SYSRET. This would cause an
* infinite loop whenever #DB happens with register state that satisfies
* the opportunistic SYSRET conditions. For example, single-stepping
* this user code:
*
* movq $stuck_here, %rcx
* pushfq
* popq %r11
* stuck_here:
*
* would never get past 'stuck_here'.
*/
testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
jnz swapgs_restore_regs_and_return_to_usermode
/* nothing to check for RSP */
cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
jne swapgs_restore_regs_and_return_to_usermode
/*
* We win! This label is here just for ease of understanding
* perf profiles. Nothing jumps here.
*/
syscall_return_via_sysret:
/* rcx and r11 are already restored (see code above) */
POP_REGS pop_rdi=0 skip_r11rcx=1
/*
* Now all regs are restored except RSP and RDI.
* Save old stack pointer and switch to trampoline stack.
*/
movq %rsp, %rdi
movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
UNWIND_HINT_EMPTY
pushq RSP-RDI(%rdi) /* RSP */
pushq (%rdi) /* RDI */
/*
* We are on the trampoline stack. All regs except RDI are live.
* We can do future final exit work right here.
*/
STACKLEAK_ERASE_NOCLOBBER
SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
popq %rdi
popq %rsp
USERGS_SYSRET64
SYM_CODE_END(entry_SYSCALL_64)
/*
* %rdi: prev task
* %rsi: next task
*/
.pushsection .text, "ax"
SYM_FUNC_START(__switch_to_asm)
/*
* Save callee-saved registers
* This must match the order in inactive_task_frame
*/
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
/* switch stack */
movq %rsp, TASK_threadsp(%rdi)
movq TASK_threadsp(%rsi), %rsp
#ifdef CONFIG_STACKPROTECTOR
movq TASK_stack_canary(%rsi), %rbx
movq %rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset
#endif
#ifdef CONFIG_RETPOLINE
/*
* When switching from a shallower to a deeper call stack
* the RSB may either underflow or use entries populated
* with userspace addresses. On CPUs where those concerns
* exist, overwrite the RSB with entries which capture
* speculative execution to prevent attack.
*/
FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
#endif
/* restore callee-saved registers */
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
jmp __switch_to
SYM_FUNC_END(__switch_to_asm)
.popsection
/*
* A newly forked process directly context switches into this address.
*
* rax: prev task we switched from
* rbx: kernel thread func (NULL for user thread)
* r12: kernel thread arg
*/
.pushsection .text, "ax"
SYM_CODE_START(ret_from_fork)
UNWIND_HINT_EMPTY
movq %rax, %rdi
call schedule_tail /* rdi: 'prev' task parameter */
testq %rbx, %rbx /* from kernel_thread? */
jnz 1f /* kernel threads are uncommon */
2:
UNWIND_HINT_REGS
movq %rsp, %rdi
call syscall_return_slowpath /* returns with IRQs disabled */
jmp swapgs_restore_regs_and_return_to_usermode
1:
/* kernel thread */
UNWIND_HINT_EMPTY
movq %r12, %rdi
CALL_NOSPEC rbx
/*
* A kernel thread is allowed to return here after successfully
* calling do_execve(). Exit to userspace to complete the execve()
* syscall.
*/
movq $0, RAX(%rsp)
jmp 2b
SYM_CODE_END(ret_from_fork)
.popsection
.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
#ifdef CONFIG_DEBUG_ENTRY
pushq %rax
SAVE_FLAGS(CLBR_RAX)
testl $X86_EFLAGS_IF, %eax
jz .Lokay_\@
ud2
.Lokay_\@:
popq %rax
#endif
.endm
/*
* Enters the IRQ stack if we're not already using it. NMI-safe. Clobbers
* flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
* Requires kernel GSBASE.
*
* The invariant is that, if irq_count != -1, then the IRQ stack is in use.
*/
.macro ENTER_IRQ_STACK regs=1 old_rsp save_ret=0
DEBUG_ENTRY_ASSERT_IRQS_OFF
.if \save_ret
/*
* If save_ret is set, the original stack contains one additional
* entry -- the return address. Therefore, move the address one
* entry below %rsp to \old_rsp.
*/
leaq 8(%rsp), \old_rsp
.else
movq %rsp, \old_rsp
.endif
.if \regs
UNWIND_HINT_REGS base=\old_rsp
.endif
incl PER_CPU_VAR(irq_count)
jnz .Lirq_stack_push_old_rsp_\@
/*
* Right now, if we just incremented irq_count to zero, we've
* claimed the IRQ stack but we haven't switched to it yet.
*
* If anything is added that can interrupt us here without using IST,
* it must be *extremely* careful to limit its stack usage. This
* could include kprobes and a hypothetical future IST-less #DB
* handler.
*
* The OOPS unwinder relies on the word at the top of the IRQ
* stack linking back to the previous RSP for the entire time we're
* on the IRQ stack. For this to work reliably, we need to write
* it before we actually move ourselves to the IRQ stack.
*/
movq \old_rsp, PER_CPU_VAR(irq_stack_backing_store + IRQ_STACK_SIZE - 8)
movq PER_CPU_VAR(hardirq_stack_ptr), %rsp
#ifdef CONFIG_DEBUG_ENTRY
/*
* If the first movq above becomes wrong due to IRQ stack layout
* changes, the only way we'll notice is if we try to unwind right
* here. Assert that we set up the stack right to catch this type
* of bug quickly.
*/
cmpq -8(%rsp), \old_rsp
je .Lirq_stack_okay\@
ud2
.Lirq_stack_okay\@:
#endif
.Lirq_stack_push_old_rsp_\@:
pushq \old_rsp
.if \regs
UNWIND_HINT_REGS indirect=1
.endif
.if \save_ret
/*
* Push the return address to the stack. This return address can
* be found at the "real" original RSP, which was offset by 8 at
* the beginning of this macro.
*/
pushq -8(\old_rsp)
.endif
.endm
/*
* Undoes ENTER_IRQ_STACK.
*/
.macro LEAVE_IRQ_STACK regs=1
DEBUG_ENTRY_ASSERT_IRQS_OFF
/* We need to be off the IRQ stack before decrementing irq_count. */
popq %rsp
.if \regs
UNWIND_HINT_REGS
.endif
/*
* As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
* the irq stack but we're not on it.
*/
decl PER_CPU_VAR(irq_count)
.endm
/**
* idtentry_body - Macro to emit code calling the C function
* @cfunc: C function to be called
* @has_error_code: Hardware pushed error code on stack
*/
.macro idtentry_body cfunc has_error_code:req
call error_entry
UNWIND_HINT_REGS
movq %rsp, %rdi /* pt_regs pointer into 1st argument*/
.if \has_error_code == 1
movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/
movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
.endif
call \cfunc
jmp error_return
.endm
/**
* idtentry - Macro to generate entry stubs for simple IDT entries
* @vector: Vector number
* @asmsym: ASM symbol for the entry point
* @cfunc: C function to be called
* @has_error_code: Hardware pushed error code on stack
*
* The macro emits code to set up the kernel context for straight forward
* and simple IDT entries. No IST stack, no paranoid entry checks.
*/
.macro idtentry vector asmsym cfunc has_error_code:req
SYM_CODE_START(\asmsym)
UNWIND_HINT_IRET_REGS offset=\has_error_code*8
ASM_CLAC
.if \has_error_code == 0
pushq $-1 /* ORIG_RAX: no syscall to restart */
.endif
.if \vector == X86_TRAP_BP
/*
* If coming from kernel space, create a 6-word gap to allow the
* int3 handler to emulate a call instruction.
*/
testb $3, CS-ORIG_RAX(%rsp)
jnz .Lfrom_usermode_no_gap_\@
.rept 6
pushq 5*8(%rsp)
.endr
UNWIND_HINT_IRET_REGS offset=8
.Lfrom_usermode_no_gap_\@:
.endif
idtentry_body \cfunc \has_error_code
_ASM_NOKPROBE(\asmsym)
SYM_CODE_END(\asmsym)
.endm
/*
* MCE and DB exceptions
*/
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + (x) * 8)
/**
* idtentry_mce_db - Macro to generate entry stubs for #MC and #DB
* @vector: Vector number
* @asmsym: ASM symbol for the entry point
* @cfunc: C function to be called
*
* The macro emits code to set up the kernel context for #MC and #DB
*
* If the entry comes from user space it uses the normal entry path
* including the return to user space work and preemption checks on
* exit.
*
* If hits in kernel mode then it needs to go through the paranoid
* entry as the exception can hit any random state. No preemption
* check on exit to keep the paranoid path simple.
*
* If the trap is #DB then the interrupt stack entry in the IST is
* moved to the second stack, so a potential recursion will have a
* fresh IST.
*/
.macro idtentry_mce_db vector asmsym cfunc
SYM_CODE_START(\asmsym)
UNWIND_HINT_IRET_REGS
ASM_CLAC
pushq $-1 /* ORIG_RAX: no syscall to restart */
/*
* If the entry is from userspace, switch stacks and treat it as
* a normal entry.
*/
testb $3, CS-ORIG_RAX(%rsp)
jnz .Lfrom_usermode_switch_stack_\@
/*
* paranoid_entry returns SWAPGS flag for paranoid_exit in EBX.
* EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS
*/
call paranoid_entry
UNWIND_HINT_REGS
.if \vector == X86_TRAP_DB
TRACE_IRQS_OFF_DEBUG
.else
TRACE_IRQS_OFF
.endif
movq %rsp, %rdi /* pt_regs pointer */
.if \vector == X86_TRAP_DB
subq $DB_STACK_OFFSET, CPU_TSS_IST(IST_INDEX_DB)
.endif
call \cfunc
.if \vector == X86_TRAP_DB
addq $DB_STACK_OFFSET, CPU_TSS_IST(IST_INDEX_DB)
.endif
jmp paranoid_exit
/* Switch to the regular task stack and use the noist entry point */
.Lfrom_usermode_switch_stack_\@:
idtentry_body noist_\cfunc, has_error_code=0
_ASM_NOKPROBE(\asmsym)
SYM_CODE_END(\asmsym)
.endm
/*
* Double fault entry. Straight paranoid. No checks from which context
* this comes because for the espfix induced #DF this would do the wrong
* thing.
*/
.macro idtentry_df vector asmsym cfunc
SYM_CODE_START(\asmsym)
UNWIND_HINT_IRET_REGS offset=8
ASM_CLAC
/*
* paranoid_entry returns SWAPGS flag for paranoid_exit in EBX.
* EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS
*/
call paranoid_entry
UNWIND_HINT_REGS
movq %rsp, %rdi /* pt_regs pointer into first argument */
movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/
movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
call \cfunc
jmp paranoid_exit
_ASM_NOKPROBE(\asmsym)
SYM_CODE_END(\asmsym)
.endm
/*
* Include the defines which emit the idt entries which are shared
* shared between 32 and 64 bit.
*/
#include <asm/idtentry.h>
/*
* Interrupt entry helper function.
*
* Entry runs with interrupts off. Stack layout at entry:
* +----------------------------------------------------+
* | regs->ss |
* | regs->rsp |
* | regs->eflags |
* | regs->cs |
* | regs->ip |
* +----------------------------------------------------+
* | regs->orig_ax = ~(interrupt number) |
* +----------------------------------------------------+
* | return address |
* +----------------------------------------------------+
*/
SYM_CODE_START(interrupt_entry)
UNWIND_HINT_IRET_REGS offset=16
ASM_CLAC
cld
testb $3, CS-ORIG_RAX+8(%rsp)
jz 1f
SWAPGS
FENCE_SWAPGS_USER_ENTRY
/*
* Switch to the thread stack. The IRET frame and orig_ax are
* on the stack, as well as the return address. RDI..R12 are
* not (yet) on the stack and space has not (yet) been
* allocated for them.
*/
pushq %rdi
/* Need to switch before accessing the thread stack. */
SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
movq %rsp, %rdi
movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
/*
* We have RDI, return address, and orig_ax on the stack on
* top of the IRET frame. That means offset=24
*/
UNWIND_HINT_IRET_REGS base=%rdi offset=24
pushq 7*8(%rdi) /* regs->ss */
pushq 6*8(%rdi) /* regs->rsp */
pushq 5*8(%rdi) /* regs->eflags */
pushq 4*8(%rdi) /* regs->cs */
pushq 3*8(%rdi) /* regs->ip */
UNWIND_HINT_IRET_REGS
pushq 2*8(%rdi) /* regs->orig_ax */
pushq 8(%rdi) /* return address */
movq (%rdi), %rdi
jmp 2f
1:
FENCE_SWAPGS_KERNEL_ENTRY
2:
PUSH_AND_CLEAR_REGS save_ret=1
ENCODE_FRAME_POINTER 8
testb $3, CS+8(%rsp)
jz 1f
/*
* IRQ from user mode.
*
* We need to tell lockdep that IRQs are off. We can't do this until
* we fix gsbase, and we should do it before enter_from_user_mode
* (which can take locks). Since TRACE_IRQS_OFF is idempotent,
* the simplest way to handle it is to just call it twice if
* we enter from user mode. There's no reason to optimize this since
* TRACE_IRQS_OFF is a no-op if lockdep is off.
*/
TRACE_IRQS_OFF
CALL_enter_from_user_mode
1:
ENTER_IRQ_STACK old_rsp=%rdi save_ret=1
/* We entered an interrupt context - irqs are off: */
TRACE_IRQS_OFF
ret
SYM_CODE_END(interrupt_entry)
_ASM_NOKPROBE(interrupt_entry)
/* Interrupt entry/exit. */
/*
* The interrupt stubs push vector onto the stack and
* then jump to common_spurious/interrupt.
*/
SYM_CODE_START_LOCAL(common_spurious)
call interrupt_entry
UNWIND_HINT_REGS indirect=1
movq ORIG_RAX(%rdi), %rsi /* get vector from stack */
movq $-1, ORIG_RAX(%rdi) /* no syscall to restart */
call smp_spurious_interrupt /* rdi points to pt_regs */
jmp ret_from_intr
SYM_CODE_END(common_spurious)
_ASM_NOKPROBE(common_spurious)
/* common_interrupt is a hotpath. Align it */
.p2align CONFIG_X86_L1_CACHE_SHIFT
SYM_CODE_START_LOCAL(common_interrupt)
call interrupt_entry
UNWIND_HINT_REGS indirect=1
movq ORIG_RAX(%rdi), %rsi /* get vector from stack */
movq $-1, ORIG_RAX(%rdi) /* no syscall to restart */
call do_IRQ /* rdi points to pt_regs */
/* 0(%rsp): old RSP */
ret_from_intr:
DISABLE_INTERRUPTS(CLBR_ANY)
TRACE_IRQS_OFF
LEAVE_IRQ_STACK
testb $3, CS(%rsp)
jz retint_kernel
/* Interrupt came from user space */
.Lretint_user:
mov %rsp,%rdi
call prepare_exit_to_usermode
SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL)
#ifdef CONFIG_DEBUG_ENTRY
/* Assert that pt_regs indicates user mode. */
testb $3, CS(%rsp)
jnz 1f
ud2
1:
#endif
POP_REGS pop_rdi=0
/*
* The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
* Save old stack pointer and switch to trampoline stack.
*/
movq %rsp, %rdi
movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
UNWIND_HINT_EMPTY
/* Copy the IRET frame to the trampoline stack. */
pushq 6*8(%rdi) /* SS */
pushq 5*8(%rdi) /* RSP */
pushq 4*8(%rdi) /* EFLAGS */
pushq 3*8(%rdi) /* CS */
pushq 2*8(%rdi) /* RIP */
/* Push user RDI on the trampoline stack. */
pushq (%rdi)
/*
* We are on the trampoline stack. All regs except RDI are live.
* We can do future final exit work right here.
*/
STACKLEAK_ERASE_NOCLOBBER
SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
/* Restore RDI. */
popq %rdi
SWAPGS
INTERRUPT_RETURN
/* Returning to kernel space */
retint_kernel:
#ifdef CONFIG_PREEMPTION
/* Interrupts are off */
/* Check if we need preemption */
btl $9, EFLAGS(%rsp) /* were interrupts off? */
jnc 1f
cmpl $0, PER_CPU_VAR(__preempt_count)
jnz 1f
call preempt_schedule_irq
1:
#endif
/*
* The iretq could re-enable interrupts:
*/
TRACE_IRQS_IRETQ
SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL)
#ifdef CONFIG_DEBUG_ENTRY
/* Assert that pt_regs indicates kernel mode. */
testb $3, CS(%rsp)
jz 1f
ud2
1:
#endif
POP_REGS
addq $8, %rsp /* skip regs->orig_ax */
/*
* ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
* when returning from IPI handler.
*/
INTERRUPT_RETURN
SYM_INNER_LABEL_ALIGN(native_iret, SYM_L_GLOBAL)
UNWIND_HINT_IRET_REGS
/*
* Are we returning to a stack segment from the LDT? Note: in
* 64-bit mode SS:RSP on the exception stack is always valid.
*/
#ifdef CONFIG_X86_ESPFIX64
testb $4, (SS-RIP)(%rsp)
jnz native_irq_return_ldt
#endif
SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL)
/*
* This may fault. Non-paranoid faults on return to userspace are
* handled by fixup_bad_iret. These include #SS, #GP, and #NP.
* Double-faults due to espfix64 are handled in exc_double_fault.
* Other faults here are fatal.
*/
iretq
#ifdef CONFIG_X86_ESPFIX64
native_irq_return_ldt:
/*
* We are running with user GSBASE. All GPRs contain their user
* values. We have a percpu ESPFIX stack that is eight slots
* long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
* of the ESPFIX stack.
*
* We clobber RAX and RDI in this code. We stash RDI on the
* normal stack and RAX on the ESPFIX stack.
*
* The ESPFIX stack layout we set up looks like this:
*
* --- top of ESPFIX stack ---
* SS
* RSP
* RFLAGS
* CS
* RIP <-- RSP points here when we're done
* RAX <-- espfix_waddr points here
* --- bottom of ESPFIX stack ---
*/
pushq %rdi /* Stash user RDI */
SWAPGS /* to kernel GS */
SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */
movq PER_CPU_VAR(espfix_waddr), %rdi
movq %rax, (0*8)(%rdi) /* user RAX */
movq (1*8)(%rsp), %rax /* user RIP */
movq %rax, (1*8)(%rdi)
movq (2*8)(%rsp), %rax /* user CS */
movq %rax, (2*8)(%rdi)
movq (3*8)(%rsp), %rax /* user RFLAGS */
movq %rax, (3*8)(%rdi)
movq (5*8)(%rsp), %rax /* user SS */
movq %rax, (5*8)(%rdi)
movq (4*8)(%rsp), %rax /* user RSP */
movq %rax, (4*8)(%rdi)
/* Now RAX == RSP. */
andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
/*
* espfix_stack[31:16] == 0. The page tables are set up such that
* (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
* espfix_waddr for any X. That is, there are 65536 RO aliases of
* the same page. Set up RSP so that RSP[31:16] contains the
* respective 16 bits of the /userspace/ RSP and RSP nonetheless
* still points to an RO alias of the ESPFIX stack.
*/
orq PER_CPU_VAR(espfix_stack), %rax
SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
SWAPGS /* to user GS */
popq %rdi /* Restore user RDI */
movq %rax, %rsp
UNWIND_HINT_IRET_REGS offset=8
/*
* At this point, we cannot write to the stack any more, but we can
* still read.
*/
popq %rax /* Restore user RAX */
/*
* RSP now points to an ordinary IRET frame, except that the page
* is read-only and RSP[31:16] are preloaded with the userspace
* values. We can now IRET back to userspace.
*/
jmp native_irq_return_iret
#endif
SYM_CODE_END(common_interrupt)
_ASM_NOKPROBE(common_interrupt)
/*
* APIC interrupts.
*/
.macro apicinterrupt3 num sym do_sym
SYM_CODE_START(\sym)
UNWIND_HINT_IRET_REGS
pushq $~(\num)
call interrupt_entry
UNWIND_HINT_REGS indirect=1
call \do_sym /* rdi points to pt_regs */
jmp ret_from_intr
SYM_CODE_END(\sym)
_ASM_NOKPROBE(\sym)
.endm
/* Make sure APIC interrupt handlers end up in the irqentry section: */
#define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
#define POP_SECTION_IRQENTRY .popsection
.macro apicinterrupt num sym do_sym
PUSH_SECTION_IRQENTRY
apicinterrupt3 \num \sym \do_sym
POP_SECTION_IRQENTRY
.endm
#ifdef CONFIG_SMP
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
#endif
#ifdef CONFIG_X86_UV
apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
#endif
apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
#ifdef CONFIG_HAVE_KVM
apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
apicinterrupt3 POSTED_INTR_NESTED_VECTOR kvm_posted_intr_nested_ipi smp_kvm_posted_intr_nested_ipi
#endif
#ifdef CONFIG_X86_MCE_THRESHOLD
apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
#endif
#ifdef CONFIG_X86_MCE_AMD
apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
#endif
#ifdef CONFIG_X86_THERMAL_VECTOR
apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
#endif
#ifdef CONFIG_SMP
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
#endif
apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
apicinterrupt SPURIOUS_APIC_VECTOR spurious_apic_interrupt smp_spurious_apic_interrupt
#ifdef CONFIG_IRQ_WORK
apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
#endif
/*
* Reload gs selector with exception handling
* edi: new selector
*
* Is in entry.text as it shouldn't be instrumented.
*/
SYM_FUNC_START(asm_load_gs_index)
FRAME_BEGIN
swapgs
.Lgs_change:
movl %edi, %gs
2: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
swapgs
FRAME_END
ret
SYM_FUNC_END(asm_load_gs_index)
EXPORT_SYMBOL(asm_load_gs_index)
_ASM_EXTABLE(.Lgs_change, .Lbad_gs)
.section .fixup, "ax"
/* running with kernelgs */
SYM_CODE_START_LOCAL_NOALIGN(.Lbad_gs)
swapgs /* switch back to user gs */
.macro ZAP_GS
/* This can't be a string because the preprocessor needs to see it. */
movl $__USER_DS, %eax
movl %eax, %gs
.endm
ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
xorl %eax, %eax
movl %eax, %gs
jmp 2b
SYM_CODE_END(.Lbad_gs)
.previous
/*
* rdi: New stack pointer points to the top word of the stack
* rsi: Function pointer
* rdx: Function argument (can be NULL if none)
*/
SYM_FUNC_START(asm_call_on_stack)
/*
* Save the frame pointer unconditionally. This allows the ORC
* unwinder to handle the stack switch.
*/
pushq %rbp
mov %rsp, %rbp
/*
* The unwinder relies on the word at the top of the new stack
* page linking back to the previous RSP.
*/
mov %rsp, (%rdi)
mov %rdi, %rsp
/* Move the argument to the right place */
mov %rdx, %rdi
1:
.pushsection .discard.instr_begin
.long 1b - .
.popsection
CALL_NOSPEC rsi
2:
.pushsection .discard.instr_end
.long 2b - .
.popsection
/* Restore the previous stack pointer from RBP. */
leaveq
ret
SYM_FUNC_END(asm_call_on_stack)
#ifdef CONFIG_XEN_PV
/*
* A note on the "critical region" in our callback handler.
* We want to avoid stacking callback handlers due to events occurring
* during handling of the last event. To do this, we keep events disabled
* until we've done all processing. HOWEVER, we must enable events before
* popping the stack frame (can't be done atomically) and so it would still
* be possible to get enough handler activations to overflow the stack.
* Although unlikely, bugs of that kind are hard to track down, so we'd
* like to avoid the possibility.
* So, on entry to the handler we detect whether we interrupted an
* existing activation in its critical region -- if so, we pop the current
* activation and restart the handler using the previous one.
*
* C calling convention: exc_xen_hypervisor_callback(struct *pt_regs)
*/
SYM_CODE_START_LOCAL(exc_xen_hypervisor_callback)
/*
* Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
* see the correct pointer to the pt_regs
*/
UNWIND_HINT_FUNC
movq %rdi, %rsp /* we don't return, adjust the stack frame */
UNWIND_HINT_REGS
call xen_pv_evtchn_do_upcall
jmp error_return
SYM_CODE_END(exc_xen_hypervisor_callback)
/*
* Hypervisor uses this for application faults while it executes.
* We get here for two reasons:
* 1. Fault while reloading DS, ES, FS or GS
* 2. Fault while executing IRET
* Category 1 we do not need to fix up as Xen has already reloaded all segment
* registers that could be reloaded and zeroed the others.
* Category 2 we fix up by killing the current process. We cannot use the
* normal Linux return path in this case because if we use the IRET hypercall
* to pop the stack frame we end up in an infinite loop of failsafe callbacks.
* We distinguish between categories by comparing each saved segment register
* with its current contents: any discrepancy means we in category 1.
*/
SYM_CODE_START(xen_failsafe_callback)
UNWIND_HINT_EMPTY
movl %ds, %ecx
cmpw %cx, 0x10(%rsp)
jne 1f
movl %es, %ecx
cmpw %cx, 0x18(%rsp)
jne 1f
movl %fs, %ecx
cmpw %cx, 0x20(%rsp)
jne 1f
movl %gs, %ecx
cmpw %cx, 0x28(%rsp)
jne 1f
/* All segments match their saved values => Category 2 (Bad IRET). */
movq (%rsp), %rcx
movq 8(%rsp), %r11
addq $0x30, %rsp
pushq $0 /* RIP */
UNWIND_HINT_IRET_REGS offset=8
jmp asm_exc_general_protection
1: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
movq (%rsp), %rcx
movq 8(%rsp), %r11
addq $0x30, %rsp
UNWIND_HINT_IRET_REGS
pushq $-1 /* orig_ax = -1 => not a system call */
PUSH_AND_CLEAR_REGS
ENCODE_FRAME_POINTER
jmp error_return
SYM_CODE_END(xen_failsafe_callback)
#endif /* CONFIG_XEN_PV */
#ifdef CONFIG_XEN_PVHVM
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
xen_hvm_callback_vector xen_evtchn_do_upcall
#endif
#if IS_ENABLED(CONFIG_HYPERV)
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
hyperv_callback_vector hyperv_vector_handler
apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \
hyperv_reenlightenment_vector hyperv_reenlightenment_intr
apicinterrupt3 HYPERV_STIMER0_VECTOR \
hv_stimer0_callback_vector hv_stimer0_vector_handler
#endif /* CONFIG_HYPERV */
#if IS_ENABLED(CONFIG_ACRN_GUEST)
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
acrn_hv_callback_vector acrn_hv_vector_handler
#endif
/*
* Save all registers in pt_regs, and switch gs if needed.
* Use slow, but surefire "are we in kernel?" check.
* Return: ebx=0: need swapgs on exit, ebx=1: otherwise
*/
SYM_CODE_START_LOCAL(paranoid_entry)
UNWIND_HINT_FUNC
cld
PUSH_AND_CLEAR_REGS save_ret=1
ENCODE_FRAME_POINTER 8
movl $1, %ebx
movl $MSR_GS_BASE, %ecx
rdmsr
testl %edx, %edx
js 1f /* negative -> in kernel */
SWAPGS
xorl %ebx, %ebx
1:
/*
* Always stash CR3 in %r14. This value will be restored,
* verbatim, at exit. Needed if paranoid_entry interrupted
* another entry that already switched to the user CR3 value
* but has not yet returned to userspace.
*
* This is also why CS (stashed in the "iret frame" by the
* hardware at entry) can not be used: this may be a return
* to kernel code, but with a user CR3 value.
*/
SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
/*
* The above SAVE_AND_SWITCH_TO_KERNEL_CR3 macro doesn't do an
* unconditional CR3 write, even in the PTI case. So do an lfence
* to prevent GS speculation, regardless of whether PTI is enabled.
*/
FENCE_SWAPGS_KERNEL_ENTRY
ret
SYM_CODE_END(paranoid_entry)
/*
* "Paranoid" exit path from exception stack. This is invoked
* only on return from non-NMI IST interrupts that came
* from kernel space.
*
* We may be returning to very strange contexts (e.g. very early
* in syscall entry), so checking for preemption here would
* be complicated. Fortunately, we there's no good reason
* to try to handle preemption here.
*
* On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
*/
SYM_CODE_START_LOCAL(paranoid_exit)
UNWIND_HINT_REGS
DISABLE_INTERRUPTS(CLBR_ANY)
TRACE_IRQS_OFF_DEBUG
testl %ebx, %ebx /* swapgs needed? */
jnz .Lparanoid_exit_no_swapgs
TRACE_IRQS_IRETQ
/* Always restore stashed CR3 value (see paranoid_entry) */
RESTORE_CR3 scratch_reg=%rbx save_reg=%r14
SWAPGS_UNSAFE_STACK
jmp restore_regs_and_return_to_kernel
.Lparanoid_exit_no_swapgs:
TRACE_IRQS_IRETQ_DEBUG
/* Always restore stashed CR3 value (see paranoid_entry) */
RESTORE_CR3 scratch_reg=%rbx save_reg=%r14
jmp restore_regs_and_return_to_kernel
SYM_CODE_END(paranoid_exit)
/*
* Save all registers in pt_regs, and switch GS if needed.
*/
SYM_CODE_START_LOCAL(error_entry)
UNWIND_HINT_FUNC
cld
PUSH_AND_CLEAR_REGS save_ret=1
ENCODE_FRAME_POINTER 8
testb $3, CS+8(%rsp)
jz .Lerror_kernelspace
/*
* We entered from user mode or we're pretending to have entered
* from user mode due to an IRET fault.
*/
SWAPGS
FENCE_SWAPGS_USER_ENTRY
/* We have user CR3. Change to kernel CR3. */
SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
.Lerror_entry_from_usermode_after_swapgs:
/* Put us onto the real thread stack. */
popq %r12 /* save return addr in %12 */
movq %rsp, %rdi /* arg0 = pt_regs pointer */
call sync_regs
movq %rax, %rsp /* switch stack */
ENCODE_FRAME_POINTER
pushq %r12
ret
.Lerror_entry_done_lfence:
FENCE_SWAPGS_KERNEL_ENTRY
.Lerror_entry_done:
ret
/*
* There are two places in the kernel that can potentially fault with
* usergs. Handle them here. B stepping K8s sometimes report a
* truncated RIP for IRET exceptions returning to compat mode. Check
* for these here too.
*/
.Lerror_kernelspace:
leaq native_irq_return_iret(%rip), %rcx
cmpq %rcx, RIP+8(%rsp)
je .Lerror_bad_iret
movl %ecx, %eax /* zero extend */
cmpq %rax, RIP+8(%rsp)
je .Lbstep_iret
cmpq $.Lgs_change, RIP+8(%rsp)
jne .Lerror_entry_done_lfence
/*
* hack: .Lgs_change can fail with user gsbase. If this happens, fix up
* gsbase and proceed. We'll fix up the exception and land in
* .Lgs_change's error handler with kernel gsbase.
*/
SWAPGS
FENCE_SWAPGS_USER_ENTRY
jmp .Lerror_entry_done
.Lbstep_iret:
/* Fix truncated RIP */
movq %rcx, RIP+8(%rsp)
/* fall through */
.Lerror_bad_iret:
/*
* We came from an IRET to user mode, so we have user
* gsbase and CR3. Switch to kernel gsbase and CR3:
*/
SWAPGS
FENCE_SWAPGS_USER_ENTRY
SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
/*
* Pretend that the exception came from user mode: set up pt_regs
* as if we faulted immediately after IRET.
*/
mov %rsp, %rdi
call fixup_bad_iret
mov %rax, %rsp
jmp .Lerror_entry_from_usermode_after_swapgs
SYM_CODE_END(error_entry)
SYM_CODE_START_LOCAL(error_return)
UNWIND_HINT_REGS
DEBUG_ENTRY_ASSERT_IRQS_OFF
testb $3, CS(%rsp)
jz restore_regs_and_return_to_kernel
jmp swapgs_restore_regs_and_return_to_usermode
SYM_CODE_END(error_return)
/*
* Runs on exception stack. Xen PV does not go through this path at all,
* so we can use real assembly here.
*
* Registers:
* %r14: Used to save/restore the CR3 of the interrupted context
* when PAGE_TABLE_ISOLATION is in use. Do not clobber.
*/
SYM_CODE_START(asm_exc_nmi)
UNWIND_HINT_IRET_REGS
/*
* We allow breakpoints in NMIs. If a breakpoint occurs, then
* the iretq it performs will take us out of NMI context.
* This means that we can have nested NMIs where the next
* NMI is using the top of the stack of the previous NMI. We
* can't let it execute because the nested NMI will corrupt the
* stack of the previous NMI. NMI handlers are not re-entrant
* anyway.
*
* To handle this case we do the following:
* Check the a special location on the stack that contains
* a variable that is set when NMIs are executing.
* The interrupted task's stack is also checked to see if it
* is an NMI stack.
* If the variable is not set and the stack is not the NMI
* stack then:
* o Set the special variable on the stack
* o Copy the interrupt frame into an "outermost" location on the
* stack
* o Copy the interrupt frame into an "iret" location on the stack
* o Continue processing the NMI
* If the variable is set or the previous stack is the NMI stack:
* o Modify the "iret" location to jump to the repeat_nmi
* o return back to the first NMI
*
* Now on exit of the first NMI, we first clear the stack variable
* The NMI stack will tell any nested NMIs at that point that it is
* nested. Then we pop the stack normally with iret, and if there was
* a nested NMI that updated the copy interrupt stack frame, a
* jump will be made to the repeat_nmi code that will handle the second
* NMI.
*
* However, espfix prevents us from directly returning to userspace
* with a single IRET instruction. Similarly, IRET to user mode
* can fault. We therefore handle NMIs from user space like
* other IST entries.
*/
ASM_CLAC
/* Use %rdx as our temp variable throughout */
pushq %rdx
testb $3, CS-RIP+8(%rsp)
jz .Lnmi_from_kernel
/*
* NMI from user mode. We need to run on the thread stack, but we
* can't go through the normal entry paths: NMIs are masked, and
* we don't want to enable interrupts, because then we'll end
* up in an awkward situation in which IRQs are on but NMIs
* are off.
*
* We also must not push anything to the stack before switching
* stacks lest we corrupt the "NMI executing" variable.
*/
swapgs
cld
FENCE_SWAPGS_USER_ENTRY
SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
movq %rsp, %rdx
movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
UNWIND_HINT_IRET_REGS base=%rdx offset=8
pushq 5*8(%rdx) /* pt_regs->ss */
pushq 4*8(%rdx) /* pt_regs->rsp */
pushq 3*8(%rdx) /* pt_regs->flags */
pushq 2*8(%rdx) /* pt_regs->cs */
pushq 1*8(%rdx) /* pt_regs->rip */
UNWIND_HINT_IRET_REGS
pushq $-1 /* pt_regs->orig_ax */
PUSH_AND_CLEAR_REGS rdx=(%rdx)
ENCODE_FRAME_POINTER
/*
* At this point we no longer need to worry about stack damage
* due to nesting -- we're on the normal thread stack and we're
* done with the NMI stack.
*/
movq %rsp, %rdi
movq $-1, %rsi
call exc_nmi
/*
* Return back to user mode. We must *not* do the normal exit
* work, because we don't want to enable interrupts.
*/
jmp swapgs_restore_regs_and_return_to_usermode
.Lnmi_from_kernel:
/*
* Here's what our stack frame will look like:
* +---------------------------------------------------------+
* | original SS |
* | original Return RSP |
* | original RFLAGS |
* | original CS |
* | original RIP |
* +---------------------------------------------------------+
* | temp storage for rdx |
* +---------------------------------------------------------+
* | "NMI executing" variable |
* +---------------------------------------------------------+
* | iret SS } Copied from "outermost" frame |
* | iret Return RSP } on each loop iteration; overwritten |
* | iret RFLAGS } by a nested NMI to force another |
* | iret CS } iteration if needed. |
* | iret RIP } |
* +---------------------------------------------------------+
* | outermost SS } initialized in first_nmi; |
* | outermost Return RSP } will not be changed before |
* | outermost RFLAGS } NMI processing is done. |
* | outermost CS } Copied to "iret" frame on each |
* | outermost RIP } iteration. |
* +---------------------------------------------------------+
* | pt_regs |
* +---------------------------------------------------------+
*
* The "original" frame is used by hardware. Before re-enabling
* NMIs, we need to be done with it, and we need to leave enough
* space for the asm code here.
*
* We return by executing IRET while RSP points to the "iret" frame.
* That will either return for real or it will loop back into NMI
* processing.
*
* The "outermost" frame is copied to the "iret" frame on each
* iteration of the loop, so each iteration starts with the "iret"
* frame pointing to the final return target.
*/
/*
* Determine whether we're a nested NMI.
*
* If we interrupted kernel code between repeat_nmi and
* end_repeat_nmi, then we are a nested NMI. We must not
* modify the "iret" frame because it's being written by
* the outer NMI. That's okay; the outer NMI handler is
* about to about to call exc_nmi() anyway, so we can just
* resume the outer NMI.
*/
movq $repeat_nmi, %rdx
cmpq 8(%rsp), %rdx
ja 1f
movq $end_repeat_nmi, %rdx
cmpq 8(%rsp), %rdx
ja nested_nmi_out
1:
/*
* Now check "NMI executing". If it's set, then we're nested.
* This will not detect if we interrupted an outer NMI just
* before IRET.
*/
cmpl $1, -8(%rsp)
je nested_nmi
/*
* Now test if the previous stack was an NMI stack. This covers
* the case where we interrupt an outer NMI after it clears
* "NMI executing" but before IRET. We need to be careful, though:
* there is one case in which RSP could point to the NMI stack
* despite there being no NMI active: naughty userspace controls
* RSP at the very beginning of the SYSCALL targets. We can
* pull a fast one on naughty userspace, though: we program
* SYSCALL to mask DF, so userspace cannot cause DF to be set
* if it controls the kernel's RSP. We set DF before we clear
* "NMI executing".
*/
lea 6*8(%rsp), %rdx
/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
cmpq %rdx, 4*8(%rsp)
/* If the stack pointer is above the NMI stack, this is a normal NMI */
ja first_nmi
subq $EXCEPTION_STKSZ, %rdx
cmpq %rdx, 4*8(%rsp)
/* If it is below the NMI stack, it is a normal NMI */
jb first_nmi
/* Ah, it is within the NMI stack. */
testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
jz first_nmi /* RSP was user controlled. */
/* This is a nested NMI. */
nested_nmi:
/*
* Modify the "iret" frame to point to repeat_nmi, forcing another
* iteration of NMI handling.
*/
subq $8, %rsp
leaq -10*8(%rsp), %rdx
pushq $__KERNEL_DS
pushq %rdx
pushfq
pushq $__KERNEL_CS
pushq $repeat_nmi
/* Put stack back */
addq $(6*8), %rsp
nested_nmi_out:
popq %rdx
/* We are returning to kernel mode, so this cannot result in a fault. */
iretq
first_nmi:
/* Restore rdx. */
movq (%rsp), %rdx
/* Make room for "NMI executing". */
pushq $0
/* Leave room for the "iret" frame */
subq $(5*8), %rsp
/* Copy the "original" frame to the "outermost" frame */
.rept 5
pushq 11*8(%rsp)
.endr
UNWIND_HINT_IRET_REGS
/* Everything up to here is safe from nested NMIs */
#ifdef CONFIG_DEBUG_ENTRY
/*
* For ease of testing, unmask NMIs right away. Disabled by
* default because IRET is very expensive.
*/
pushq $0 /* SS */
pushq %rsp /* RSP (minus 8 because of the previous push) */
addq $8, (%rsp) /* Fix up RSP */
pushfq /* RFLAGS */
pushq $__KERNEL_CS /* CS */
pushq $1f /* RIP */
iretq /* continues at repeat_nmi below */
UNWIND_HINT_IRET_REGS
1:
#endif
repeat_nmi:
/*
* If there was a nested NMI, the first NMI's iret will return
* here. But NMIs are still enabled and we can take another
* nested NMI. The nested NMI checks the interrupted RIP to see
* if it is between repeat_nmi and end_repeat_nmi, and if so
* it will just return, as we are about to repeat an NMI anyway.
* This makes it safe to copy to the stack frame that a nested
* NMI will update.
*
* RSP is pointing to "outermost RIP". gsbase is unknown, but, if
* we're repeating an NMI, gsbase has the same value that it had on
* the first iteration. paranoid_entry will load the kernel
* gsbase if needed before we call exc_nmi(). "NMI executing"
* is zero.
*/
movq $1, 10*8(%rsp) /* Set "NMI executing". */
/*
* Copy the "outermost" frame to the "iret" frame. NMIs that nest
* here must not modify the "iret" frame while we're writing to
* it or it will end up containing garbage.
*/
addq $(10*8), %rsp
.rept 5
pushq -6*8(%rsp)
.endr
subq $(5*8), %rsp
end_repeat_nmi:
/*
* Everything below this point can be preempted by a nested NMI.
* If this happens, then the inner NMI will change the "iret"
* frame to point back to repeat_nmi.
*/
pushq $-1 /* ORIG_RAX: no syscall to restart */
/*
* Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
* as we should not be calling schedule in NMI context.
* Even with normal interrupts enabled. An NMI should not be
* setting NEED_RESCHED or anything that normal interrupts and
* exceptions might do.
*/
call paranoid_entry
UNWIND_HINT_REGS
/* paranoidentry exc_nmi(), 0; without TRACE_IRQS_OFF */
movq %rsp, %rdi
movq $-1, %rsi
call exc_nmi
/* Always restore stashed CR3 value (see paranoid_entry) */
RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
testl %ebx, %ebx /* swapgs needed? */
jnz nmi_restore
nmi_swapgs:
SWAPGS_UNSAFE_STACK
nmi_restore:
POP_REGS
/*
* Skip orig_ax and the "outermost" frame to point RSP at the "iret"
* at the "iret" frame.
*/
addq $6*8, %rsp
/*
* Clear "NMI executing". Set DF first so that we can easily
* distinguish the remaining code between here and IRET from
* the SYSCALL entry and exit paths.
*
* We arguably should just inspect RIP instead, but I (Andy) wrote
* this code when I had the misapprehension that Xen PV supported
* NMIs, and Xen PV would break that approach.
*/
std
movq $0, 5*8(%rsp) /* clear "NMI executing" */
/*
* iretq reads the "iret" frame and exits the NMI stack in a
* single instruction. We are returning to kernel mode, so this
* cannot result in a fault. Similarly, we don't need to worry
* about espfix64 on the way back to kernel mode.
*/
iretq
SYM_CODE_END(asm_exc_nmi)
#ifndef CONFIG_IA32_EMULATION
/*
* This handles SYSCALL from 32-bit code. There is no way to program
* MSRs to fully disable 32-bit SYSCALL.
*/
SYM_CODE_START(ignore_sysret)
UNWIND_HINT_EMPTY
mov $-ENOSYS, %eax
sysretl
SYM_CODE_END(ignore_sysret)
#endif
.pushsection .text, "ax"
SYM_CODE_START(rewind_stack_do_exit)
UNWIND_HINT_FUNC
/* Prevent any naive code from trying to unwind to our caller. */
xorl %ebp, %ebp
movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
leaq -PTREGS_SIZE(%rax), %rsp
UNWIND_HINT_REGS
call do_exit
SYM_CODE_END(rewind_stack_do_exit)
.popsection