mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-19 18:36:31 +07:00
550a7375fe
This patch adds support for MUSB and TUSB controllers integrated into omap2430 and davinci. It also adds support for external tusb6010 controller. Cc: David Brownell <dbrownell@users.sourceforge.net> Cc: Tony Lindgren <tony@atomide.com> Signed-off-by: Felipe Balbi <felipe.balbi@nokia.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2171 lines
57 KiB
C
2171 lines
57 KiB
C
/*
|
|
* MUSB OTG driver host support
|
|
*
|
|
* Copyright 2005 Mentor Graphics Corporation
|
|
* Copyright (C) 2005-2006 by Texas Instruments
|
|
* Copyright (C) 2006-2007 Nokia Corporation
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* version 2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
|
|
* 02110-1301 USA
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
|
|
* NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
|
|
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
|
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/init.h>
|
|
#include <linux/list.h>
|
|
|
|
#include "musb_core.h"
|
|
#include "musb_host.h"
|
|
|
|
|
|
/* MUSB HOST status 22-mar-2006
|
|
*
|
|
* - There's still lots of partial code duplication for fault paths, so
|
|
* they aren't handled as consistently as they need to be.
|
|
*
|
|
* - PIO mostly behaved when last tested.
|
|
* + including ep0, with all usbtest cases 9, 10
|
|
* + usbtest 14 (ep0out) doesn't seem to run at all
|
|
* + double buffered OUT/TX endpoints saw stalls(!) with certain usbtest
|
|
* configurations, but otherwise double buffering passes basic tests.
|
|
* + for 2.6.N, for N > ~10, needs API changes for hcd framework.
|
|
*
|
|
* - DMA (CPPI) ... partially behaves, not currently recommended
|
|
* + about 1/15 the speed of typical EHCI implementations (PCI)
|
|
* + RX, all too often reqpkt seems to misbehave after tx
|
|
* + TX, no known issues (other than evident silicon issue)
|
|
*
|
|
* - DMA (Mentor/OMAP) ...has at least toggle update problems
|
|
*
|
|
* - Still no traffic scheduling code to make NAKing for bulk or control
|
|
* transfers unable to starve other requests; or to make efficient use
|
|
* of hardware with periodic transfers. (Note that network drivers
|
|
* commonly post bulk reads that stay pending for a long time; these
|
|
* would make very visible trouble.)
|
|
*
|
|
* - Not tested with HNP, but some SRP paths seem to behave.
|
|
*
|
|
* NOTE 24-August-2006:
|
|
*
|
|
* - Bulk traffic finally uses both sides of hardware ep1, freeing up an
|
|
* extra endpoint for periodic use enabling hub + keybd + mouse. That
|
|
* mostly works, except that with "usbnet" it's easy to trigger cases
|
|
* with "ping" where RX loses. (a) ping to davinci, even "ping -f",
|
|
* fine; but (b) ping _from_ davinci, even "ping -c 1", ICMP RX loses
|
|
* although ARP RX wins. (That test was done with a full speed link.)
|
|
*/
|
|
|
|
|
|
/*
|
|
* NOTE on endpoint usage:
|
|
*
|
|
* CONTROL transfers all go through ep0. BULK ones go through dedicated IN
|
|
* and OUT endpoints ... hardware is dedicated for those "async" queue(s).
|
|
*
|
|
* (Yes, bulk _could_ use more of the endpoints than that, and would even
|
|
* benefit from it ... one remote device may easily be NAKing while others
|
|
* need to perform transfers in that same direction. The same thing could
|
|
* be done in software though, assuming dma cooperates.)
|
|
*
|
|
* INTERUPPT and ISOCHRONOUS transfers are scheduled to the other endpoints.
|
|
* So far that scheduling is both dumb and optimistic: the endpoint will be
|
|
* "claimed" until its software queue is no longer refilled. No multiplexing
|
|
* of transfers between endpoints, or anything clever.
|
|
*/
|
|
|
|
|
|
static void musb_ep_program(struct musb *musb, u8 epnum,
|
|
struct urb *urb, unsigned int nOut,
|
|
u8 *buf, u32 len);
|
|
|
|
/*
|
|
* Clear TX fifo. Needed to avoid BABBLE errors.
|
|
*/
|
|
static inline void musb_h_tx_flush_fifo(struct musb_hw_ep *ep)
|
|
{
|
|
void __iomem *epio = ep->regs;
|
|
u16 csr;
|
|
int retries = 1000;
|
|
|
|
csr = musb_readw(epio, MUSB_TXCSR);
|
|
while (csr & MUSB_TXCSR_FIFONOTEMPTY) {
|
|
DBG(5, "Host TX FIFONOTEMPTY csr: %02x\n", csr);
|
|
csr |= MUSB_TXCSR_FLUSHFIFO;
|
|
musb_writew(epio, MUSB_TXCSR, csr);
|
|
csr = musb_readw(epio, MUSB_TXCSR);
|
|
if (retries-- < 1) {
|
|
ERR("Could not flush host TX fifo: csr: %04x\n", csr);
|
|
return;
|
|
}
|
|
mdelay(1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Start transmit. Caller is responsible for locking shared resources.
|
|
* musb must be locked.
|
|
*/
|
|
static inline void musb_h_tx_start(struct musb_hw_ep *ep)
|
|
{
|
|
u16 txcsr;
|
|
|
|
/* NOTE: no locks here; caller should lock and select EP */
|
|
if (ep->epnum) {
|
|
txcsr = musb_readw(ep->regs, MUSB_TXCSR);
|
|
txcsr |= MUSB_TXCSR_TXPKTRDY | MUSB_TXCSR_H_WZC_BITS;
|
|
musb_writew(ep->regs, MUSB_TXCSR, txcsr);
|
|
} else {
|
|
txcsr = MUSB_CSR0_H_SETUPPKT | MUSB_CSR0_TXPKTRDY;
|
|
musb_writew(ep->regs, MUSB_CSR0, txcsr);
|
|
}
|
|
|
|
}
|
|
|
|
static inline void cppi_host_txdma_start(struct musb_hw_ep *ep)
|
|
{
|
|
u16 txcsr;
|
|
|
|
/* NOTE: no locks here; caller should lock and select EP */
|
|
txcsr = musb_readw(ep->regs, MUSB_TXCSR);
|
|
txcsr |= MUSB_TXCSR_DMAENAB | MUSB_TXCSR_H_WZC_BITS;
|
|
musb_writew(ep->regs, MUSB_TXCSR, txcsr);
|
|
}
|
|
|
|
/*
|
|
* Start the URB at the front of an endpoint's queue
|
|
* end must be claimed from the caller.
|
|
*
|
|
* Context: controller locked, irqs blocked
|
|
*/
|
|
static void
|
|
musb_start_urb(struct musb *musb, int is_in, struct musb_qh *qh)
|
|
{
|
|
u16 frame;
|
|
u32 len;
|
|
void *buf;
|
|
void __iomem *mbase = musb->mregs;
|
|
struct urb *urb = next_urb(qh);
|
|
struct musb_hw_ep *hw_ep = qh->hw_ep;
|
|
unsigned pipe = urb->pipe;
|
|
u8 address = usb_pipedevice(pipe);
|
|
int epnum = hw_ep->epnum;
|
|
|
|
/* initialize software qh state */
|
|
qh->offset = 0;
|
|
qh->segsize = 0;
|
|
|
|
/* gather right source of data */
|
|
switch (qh->type) {
|
|
case USB_ENDPOINT_XFER_CONTROL:
|
|
/* control transfers always start with SETUP */
|
|
is_in = 0;
|
|
hw_ep->out_qh = qh;
|
|
musb->ep0_stage = MUSB_EP0_START;
|
|
buf = urb->setup_packet;
|
|
len = 8;
|
|
break;
|
|
case USB_ENDPOINT_XFER_ISOC:
|
|
qh->iso_idx = 0;
|
|
qh->frame = 0;
|
|
buf = urb->transfer_buffer + urb->iso_frame_desc[0].offset;
|
|
len = urb->iso_frame_desc[0].length;
|
|
break;
|
|
default: /* bulk, interrupt */
|
|
buf = urb->transfer_buffer;
|
|
len = urb->transfer_buffer_length;
|
|
}
|
|
|
|
DBG(4, "qh %p urb %p dev%d ep%d%s%s, hw_ep %d, %p/%d\n",
|
|
qh, urb, address, qh->epnum,
|
|
is_in ? "in" : "out",
|
|
({char *s; switch (qh->type) {
|
|
case USB_ENDPOINT_XFER_CONTROL: s = ""; break;
|
|
case USB_ENDPOINT_XFER_BULK: s = "-bulk"; break;
|
|
case USB_ENDPOINT_XFER_ISOC: s = "-iso"; break;
|
|
default: s = "-intr"; break;
|
|
}; s; }),
|
|
epnum, buf, len);
|
|
|
|
/* Configure endpoint */
|
|
if (is_in || hw_ep->is_shared_fifo)
|
|
hw_ep->in_qh = qh;
|
|
else
|
|
hw_ep->out_qh = qh;
|
|
musb_ep_program(musb, epnum, urb, !is_in, buf, len);
|
|
|
|
/* transmit may have more work: start it when it is time */
|
|
if (is_in)
|
|
return;
|
|
|
|
/* determine if the time is right for a periodic transfer */
|
|
switch (qh->type) {
|
|
case USB_ENDPOINT_XFER_ISOC:
|
|
case USB_ENDPOINT_XFER_INT:
|
|
DBG(3, "check whether there's still time for periodic Tx\n");
|
|
qh->iso_idx = 0;
|
|
frame = musb_readw(mbase, MUSB_FRAME);
|
|
/* FIXME this doesn't implement that scheduling policy ...
|
|
* or handle framecounter wrapping
|
|
*/
|
|
if ((urb->transfer_flags & URB_ISO_ASAP)
|
|
|| (frame >= urb->start_frame)) {
|
|
/* REVISIT the SOF irq handler shouldn't duplicate
|
|
* this code; and we don't init urb->start_frame...
|
|
*/
|
|
qh->frame = 0;
|
|
goto start;
|
|
} else {
|
|
qh->frame = urb->start_frame;
|
|
/* enable SOF interrupt so we can count down */
|
|
DBG(1, "SOF for %d\n", epnum);
|
|
#if 1 /* ifndef CONFIG_ARCH_DAVINCI */
|
|
musb_writeb(mbase, MUSB_INTRUSBE, 0xff);
|
|
#endif
|
|
}
|
|
break;
|
|
default:
|
|
start:
|
|
DBG(4, "Start TX%d %s\n", epnum,
|
|
hw_ep->tx_channel ? "dma" : "pio");
|
|
|
|
if (!hw_ep->tx_channel)
|
|
musb_h_tx_start(hw_ep);
|
|
else if (is_cppi_enabled() || tusb_dma_omap())
|
|
cppi_host_txdma_start(hw_ep);
|
|
}
|
|
}
|
|
|
|
/* caller owns controller lock, irqs are blocked */
|
|
static void
|
|
__musb_giveback(struct musb *musb, struct urb *urb, int status)
|
|
__releases(musb->lock)
|
|
__acquires(musb->lock)
|
|
{
|
|
DBG(({ int level; switch (urb->status) {
|
|
case 0:
|
|
level = 4;
|
|
break;
|
|
/* common/boring faults */
|
|
case -EREMOTEIO:
|
|
case -ESHUTDOWN:
|
|
case -ECONNRESET:
|
|
case -EPIPE:
|
|
level = 3;
|
|
break;
|
|
default:
|
|
level = 2;
|
|
break;
|
|
}; level; }),
|
|
"complete %p (%d), dev%d ep%d%s, %d/%d\n",
|
|
urb, urb->status,
|
|
usb_pipedevice(urb->pipe),
|
|
usb_pipeendpoint(urb->pipe),
|
|
usb_pipein(urb->pipe) ? "in" : "out",
|
|
urb->actual_length, urb->transfer_buffer_length
|
|
);
|
|
|
|
spin_unlock(&musb->lock);
|
|
usb_hcd_giveback_urb(musb_to_hcd(musb), urb, status);
|
|
spin_lock(&musb->lock);
|
|
}
|
|
|
|
/* for bulk/interrupt endpoints only */
|
|
static inline void
|
|
musb_save_toggle(struct musb_hw_ep *ep, int is_in, struct urb *urb)
|
|
{
|
|
struct usb_device *udev = urb->dev;
|
|
u16 csr;
|
|
void __iomem *epio = ep->regs;
|
|
struct musb_qh *qh;
|
|
|
|
/* FIXME: the current Mentor DMA code seems to have
|
|
* problems getting toggle correct.
|
|
*/
|
|
|
|
if (is_in || ep->is_shared_fifo)
|
|
qh = ep->in_qh;
|
|
else
|
|
qh = ep->out_qh;
|
|
|
|
if (!is_in) {
|
|
csr = musb_readw(epio, MUSB_TXCSR);
|
|
usb_settoggle(udev, qh->epnum, 1,
|
|
(csr & MUSB_TXCSR_H_DATATOGGLE)
|
|
? 1 : 0);
|
|
} else {
|
|
csr = musb_readw(epio, MUSB_RXCSR);
|
|
usb_settoggle(udev, qh->epnum, 0,
|
|
(csr & MUSB_RXCSR_H_DATATOGGLE)
|
|
? 1 : 0);
|
|
}
|
|
}
|
|
|
|
/* caller owns controller lock, irqs are blocked */
|
|
static struct musb_qh *
|
|
musb_giveback(struct musb_qh *qh, struct urb *urb, int status)
|
|
{
|
|
int is_in;
|
|
struct musb_hw_ep *ep = qh->hw_ep;
|
|
struct musb *musb = ep->musb;
|
|
int ready = qh->is_ready;
|
|
|
|
if (ep->is_shared_fifo)
|
|
is_in = 1;
|
|
else
|
|
is_in = usb_pipein(urb->pipe);
|
|
|
|
/* save toggle eagerly, for paranoia */
|
|
switch (qh->type) {
|
|
case USB_ENDPOINT_XFER_BULK:
|
|
case USB_ENDPOINT_XFER_INT:
|
|
musb_save_toggle(ep, is_in, urb);
|
|
break;
|
|
case USB_ENDPOINT_XFER_ISOC:
|
|
if (status == 0 && urb->error_count)
|
|
status = -EXDEV;
|
|
break;
|
|
}
|
|
|
|
usb_hcd_unlink_urb_from_ep(musb_to_hcd(musb), urb);
|
|
|
|
qh->is_ready = 0;
|
|
__musb_giveback(musb, urb, status);
|
|
qh->is_ready = ready;
|
|
|
|
/* reclaim resources (and bandwidth) ASAP; deschedule it, and
|
|
* invalidate qh as soon as list_empty(&hep->urb_list)
|
|
*/
|
|
if (list_empty(&qh->hep->urb_list)) {
|
|
struct list_head *head;
|
|
|
|
if (is_in)
|
|
ep->rx_reinit = 1;
|
|
else
|
|
ep->tx_reinit = 1;
|
|
|
|
/* clobber old pointers to this qh */
|
|
if (is_in || ep->is_shared_fifo)
|
|
ep->in_qh = NULL;
|
|
else
|
|
ep->out_qh = NULL;
|
|
qh->hep->hcpriv = NULL;
|
|
|
|
switch (qh->type) {
|
|
|
|
case USB_ENDPOINT_XFER_ISOC:
|
|
case USB_ENDPOINT_XFER_INT:
|
|
/* this is where periodic bandwidth should be
|
|
* de-allocated if it's tracked and allocated;
|
|
* and where we'd update the schedule tree...
|
|
*/
|
|
musb->periodic[ep->epnum] = NULL;
|
|
kfree(qh);
|
|
qh = NULL;
|
|
break;
|
|
|
|
case USB_ENDPOINT_XFER_CONTROL:
|
|
case USB_ENDPOINT_XFER_BULK:
|
|
/* fifo policy for these lists, except that NAKing
|
|
* should rotate a qh to the end (for fairness).
|
|
*/
|
|
head = qh->ring.prev;
|
|
list_del(&qh->ring);
|
|
kfree(qh);
|
|
qh = first_qh(head);
|
|
break;
|
|
}
|
|
}
|
|
return qh;
|
|
}
|
|
|
|
/*
|
|
* Advance this hardware endpoint's queue, completing the specified urb and
|
|
* advancing to either the next urb queued to that qh, or else invalidating
|
|
* that qh and advancing to the next qh scheduled after the current one.
|
|
*
|
|
* Context: caller owns controller lock, irqs are blocked
|
|
*/
|
|
static void
|
|
musb_advance_schedule(struct musb *musb, struct urb *urb,
|
|
struct musb_hw_ep *hw_ep, int is_in)
|
|
{
|
|
struct musb_qh *qh;
|
|
|
|
if (is_in || hw_ep->is_shared_fifo)
|
|
qh = hw_ep->in_qh;
|
|
else
|
|
qh = hw_ep->out_qh;
|
|
|
|
if (urb->status == -EINPROGRESS)
|
|
qh = musb_giveback(qh, urb, 0);
|
|
else
|
|
qh = musb_giveback(qh, urb, urb->status);
|
|
|
|
if (qh && qh->is_ready && !list_empty(&qh->hep->urb_list)) {
|
|
DBG(4, "... next ep%d %cX urb %p\n",
|
|
hw_ep->epnum, is_in ? 'R' : 'T',
|
|
next_urb(qh));
|
|
musb_start_urb(musb, is_in, qh);
|
|
}
|
|
}
|
|
|
|
static inline u16 musb_h_flush_rxfifo(struct musb_hw_ep *hw_ep, u16 csr)
|
|
{
|
|
/* we don't want fifo to fill itself again;
|
|
* ignore dma (various models),
|
|
* leave toggle alone (may not have been saved yet)
|
|
*/
|
|
csr |= MUSB_RXCSR_FLUSHFIFO | MUSB_RXCSR_RXPKTRDY;
|
|
csr &= ~(MUSB_RXCSR_H_REQPKT
|
|
| MUSB_RXCSR_H_AUTOREQ
|
|
| MUSB_RXCSR_AUTOCLEAR);
|
|
|
|
/* write 2x to allow double buffering */
|
|
musb_writew(hw_ep->regs, MUSB_RXCSR, csr);
|
|
musb_writew(hw_ep->regs, MUSB_RXCSR, csr);
|
|
|
|
/* flush writebuffer */
|
|
return musb_readw(hw_ep->regs, MUSB_RXCSR);
|
|
}
|
|
|
|
/*
|
|
* PIO RX for a packet (or part of it).
|
|
*/
|
|
static bool
|
|
musb_host_packet_rx(struct musb *musb, struct urb *urb, u8 epnum, u8 iso_err)
|
|
{
|
|
u16 rx_count;
|
|
u8 *buf;
|
|
u16 csr;
|
|
bool done = false;
|
|
u32 length;
|
|
int do_flush = 0;
|
|
struct musb_hw_ep *hw_ep = musb->endpoints + epnum;
|
|
void __iomem *epio = hw_ep->regs;
|
|
struct musb_qh *qh = hw_ep->in_qh;
|
|
int pipe = urb->pipe;
|
|
void *buffer = urb->transfer_buffer;
|
|
|
|
/* musb_ep_select(mbase, epnum); */
|
|
rx_count = musb_readw(epio, MUSB_RXCOUNT);
|
|
DBG(3, "RX%d count %d, buffer %p len %d/%d\n", epnum, rx_count,
|
|
urb->transfer_buffer, qh->offset,
|
|
urb->transfer_buffer_length);
|
|
|
|
/* unload FIFO */
|
|
if (usb_pipeisoc(pipe)) {
|
|
int status = 0;
|
|
struct usb_iso_packet_descriptor *d;
|
|
|
|
if (iso_err) {
|
|
status = -EILSEQ;
|
|
urb->error_count++;
|
|
}
|
|
|
|
d = urb->iso_frame_desc + qh->iso_idx;
|
|
buf = buffer + d->offset;
|
|
length = d->length;
|
|
if (rx_count > length) {
|
|
if (status == 0) {
|
|
status = -EOVERFLOW;
|
|
urb->error_count++;
|
|
}
|
|
DBG(2, "** OVERFLOW %d into %d\n", rx_count, length);
|
|
do_flush = 1;
|
|
} else
|
|
length = rx_count;
|
|
urb->actual_length += length;
|
|
d->actual_length = length;
|
|
|
|
d->status = status;
|
|
|
|
/* see if we are done */
|
|
done = (++qh->iso_idx >= urb->number_of_packets);
|
|
} else {
|
|
/* non-isoch */
|
|
buf = buffer + qh->offset;
|
|
length = urb->transfer_buffer_length - qh->offset;
|
|
if (rx_count > length) {
|
|
if (urb->status == -EINPROGRESS)
|
|
urb->status = -EOVERFLOW;
|
|
DBG(2, "** OVERFLOW %d into %d\n", rx_count, length);
|
|
do_flush = 1;
|
|
} else
|
|
length = rx_count;
|
|
urb->actual_length += length;
|
|
qh->offset += length;
|
|
|
|
/* see if we are done */
|
|
done = (urb->actual_length == urb->transfer_buffer_length)
|
|
|| (rx_count < qh->maxpacket)
|
|
|| (urb->status != -EINPROGRESS);
|
|
if (done
|
|
&& (urb->status == -EINPROGRESS)
|
|
&& (urb->transfer_flags & URB_SHORT_NOT_OK)
|
|
&& (urb->actual_length
|
|
< urb->transfer_buffer_length))
|
|
urb->status = -EREMOTEIO;
|
|
}
|
|
|
|
musb_read_fifo(hw_ep, length, buf);
|
|
|
|
csr = musb_readw(epio, MUSB_RXCSR);
|
|
csr |= MUSB_RXCSR_H_WZC_BITS;
|
|
if (unlikely(do_flush))
|
|
musb_h_flush_rxfifo(hw_ep, csr);
|
|
else {
|
|
/* REVISIT this assumes AUTOCLEAR is never set */
|
|
csr &= ~(MUSB_RXCSR_RXPKTRDY | MUSB_RXCSR_H_REQPKT);
|
|
if (!done)
|
|
csr |= MUSB_RXCSR_H_REQPKT;
|
|
musb_writew(epio, MUSB_RXCSR, csr);
|
|
}
|
|
|
|
return done;
|
|
}
|
|
|
|
/* we don't always need to reinit a given side of an endpoint...
|
|
* when we do, use tx/rx reinit routine and then construct a new CSR
|
|
* to address data toggle, NYET, and DMA or PIO.
|
|
*
|
|
* it's possible that driver bugs (especially for DMA) or aborting a
|
|
* transfer might have left the endpoint busier than it should be.
|
|
* the busy/not-empty tests are basically paranoia.
|
|
*/
|
|
static void
|
|
musb_rx_reinit(struct musb *musb, struct musb_qh *qh, struct musb_hw_ep *ep)
|
|
{
|
|
u16 csr;
|
|
|
|
/* NOTE: we know the "rx" fifo reinit never triggers for ep0.
|
|
* That always uses tx_reinit since ep0 repurposes TX register
|
|
* offsets; the initial SETUP packet is also a kind of OUT.
|
|
*/
|
|
|
|
/* if programmed for Tx, put it in RX mode */
|
|
if (ep->is_shared_fifo) {
|
|
csr = musb_readw(ep->regs, MUSB_TXCSR);
|
|
if (csr & MUSB_TXCSR_MODE) {
|
|
musb_h_tx_flush_fifo(ep);
|
|
musb_writew(ep->regs, MUSB_TXCSR,
|
|
MUSB_TXCSR_FRCDATATOG);
|
|
}
|
|
/* clear mode (and everything else) to enable Rx */
|
|
musb_writew(ep->regs, MUSB_TXCSR, 0);
|
|
|
|
/* scrub all previous state, clearing toggle */
|
|
} else {
|
|
csr = musb_readw(ep->regs, MUSB_RXCSR);
|
|
if (csr & MUSB_RXCSR_RXPKTRDY)
|
|
WARNING("rx%d, packet/%d ready?\n", ep->epnum,
|
|
musb_readw(ep->regs, MUSB_RXCOUNT));
|
|
|
|
musb_h_flush_rxfifo(ep, MUSB_RXCSR_CLRDATATOG);
|
|
}
|
|
|
|
/* target addr and (for multipoint) hub addr/port */
|
|
if (musb->is_multipoint) {
|
|
musb_writeb(ep->target_regs, MUSB_RXFUNCADDR,
|
|
qh->addr_reg);
|
|
musb_writeb(ep->target_regs, MUSB_RXHUBADDR,
|
|
qh->h_addr_reg);
|
|
musb_writeb(ep->target_regs, MUSB_RXHUBPORT,
|
|
qh->h_port_reg);
|
|
} else
|
|
musb_writeb(musb->mregs, MUSB_FADDR, qh->addr_reg);
|
|
|
|
/* protocol/endpoint, interval/NAKlimit, i/o size */
|
|
musb_writeb(ep->regs, MUSB_RXTYPE, qh->type_reg);
|
|
musb_writeb(ep->regs, MUSB_RXINTERVAL, qh->intv_reg);
|
|
/* NOTE: bulk combining rewrites high bits of maxpacket */
|
|
musb_writew(ep->regs, MUSB_RXMAXP, qh->maxpacket);
|
|
|
|
ep->rx_reinit = 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Program an HDRC endpoint as per the given URB
|
|
* Context: irqs blocked, controller lock held
|
|
*/
|
|
static void musb_ep_program(struct musb *musb, u8 epnum,
|
|
struct urb *urb, unsigned int is_out,
|
|
u8 *buf, u32 len)
|
|
{
|
|
struct dma_controller *dma_controller;
|
|
struct dma_channel *dma_channel;
|
|
u8 dma_ok;
|
|
void __iomem *mbase = musb->mregs;
|
|
struct musb_hw_ep *hw_ep = musb->endpoints + epnum;
|
|
void __iomem *epio = hw_ep->regs;
|
|
struct musb_qh *qh;
|
|
u16 packet_sz;
|
|
|
|
if (!is_out || hw_ep->is_shared_fifo)
|
|
qh = hw_ep->in_qh;
|
|
else
|
|
qh = hw_ep->out_qh;
|
|
|
|
packet_sz = qh->maxpacket;
|
|
|
|
DBG(3, "%s hw%d urb %p spd%d dev%d ep%d%s "
|
|
"h_addr%02x h_port%02x bytes %d\n",
|
|
is_out ? "-->" : "<--",
|
|
epnum, urb, urb->dev->speed,
|
|
qh->addr_reg, qh->epnum, is_out ? "out" : "in",
|
|
qh->h_addr_reg, qh->h_port_reg,
|
|
len);
|
|
|
|
musb_ep_select(mbase, epnum);
|
|
|
|
/* candidate for DMA? */
|
|
dma_controller = musb->dma_controller;
|
|
if (is_dma_capable() && epnum && dma_controller) {
|
|
dma_channel = is_out ? hw_ep->tx_channel : hw_ep->rx_channel;
|
|
if (!dma_channel) {
|
|
dma_channel = dma_controller->channel_alloc(
|
|
dma_controller, hw_ep, is_out);
|
|
if (is_out)
|
|
hw_ep->tx_channel = dma_channel;
|
|
else
|
|
hw_ep->rx_channel = dma_channel;
|
|
}
|
|
} else
|
|
dma_channel = NULL;
|
|
|
|
/* make sure we clear DMAEnab, autoSet bits from previous run */
|
|
|
|
/* OUT/transmit/EP0 or IN/receive? */
|
|
if (is_out) {
|
|
u16 csr;
|
|
u16 int_txe;
|
|
u16 load_count;
|
|
|
|
csr = musb_readw(epio, MUSB_TXCSR);
|
|
|
|
/* disable interrupt in case we flush */
|
|
int_txe = musb_readw(mbase, MUSB_INTRTXE);
|
|
musb_writew(mbase, MUSB_INTRTXE, int_txe & ~(1 << epnum));
|
|
|
|
/* general endpoint setup */
|
|
if (epnum) {
|
|
/* ASSERT: TXCSR_DMAENAB was already cleared */
|
|
|
|
/* flush all old state, set default */
|
|
musb_h_tx_flush_fifo(hw_ep);
|
|
csr &= ~(MUSB_TXCSR_H_NAKTIMEOUT
|
|
| MUSB_TXCSR_DMAMODE
|
|
| MUSB_TXCSR_FRCDATATOG
|
|
| MUSB_TXCSR_H_RXSTALL
|
|
| MUSB_TXCSR_H_ERROR
|
|
| MUSB_TXCSR_TXPKTRDY
|
|
);
|
|
csr |= MUSB_TXCSR_MODE;
|
|
|
|
if (usb_gettoggle(urb->dev,
|
|
qh->epnum, 1))
|
|
csr |= MUSB_TXCSR_H_WR_DATATOGGLE
|
|
| MUSB_TXCSR_H_DATATOGGLE;
|
|
else
|
|
csr |= MUSB_TXCSR_CLRDATATOG;
|
|
|
|
/* twice in case of double packet buffering */
|
|
musb_writew(epio, MUSB_TXCSR, csr);
|
|
/* REVISIT may need to clear FLUSHFIFO ... */
|
|
musb_writew(epio, MUSB_TXCSR, csr);
|
|
csr = musb_readw(epio, MUSB_TXCSR);
|
|
} else {
|
|
/* endpoint 0: just flush */
|
|
musb_writew(epio, MUSB_CSR0,
|
|
csr | MUSB_CSR0_FLUSHFIFO);
|
|
musb_writew(epio, MUSB_CSR0,
|
|
csr | MUSB_CSR0_FLUSHFIFO);
|
|
}
|
|
|
|
/* target addr and (for multipoint) hub addr/port */
|
|
if (musb->is_multipoint) {
|
|
musb_writeb(mbase,
|
|
MUSB_BUSCTL_OFFSET(epnum, MUSB_TXFUNCADDR),
|
|
qh->addr_reg);
|
|
musb_writeb(mbase,
|
|
MUSB_BUSCTL_OFFSET(epnum, MUSB_TXHUBADDR),
|
|
qh->h_addr_reg);
|
|
musb_writeb(mbase,
|
|
MUSB_BUSCTL_OFFSET(epnum, MUSB_TXHUBPORT),
|
|
qh->h_port_reg);
|
|
/* FIXME if !epnum, do the same for RX ... */
|
|
} else
|
|
musb_writeb(mbase, MUSB_FADDR, qh->addr_reg);
|
|
|
|
/* protocol/endpoint/interval/NAKlimit */
|
|
if (epnum) {
|
|
musb_writeb(epio, MUSB_TXTYPE, qh->type_reg);
|
|
if (can_bulk_split(musb, qh->type))
|
|
musb_writew(epio, MUSB_TXMAXP,
|
|
packet_sz
|
|
| ((hw_ep->max_packet_sz_tx /
|
|
packet_sz) - 1) << 11);
|
|
else
|
|
musb_writew(epio, MUSB_TXMAXP,
|
|
packet_sz);
|
|
musb_writeb(epio, MUSB_TXINTERVAL, qh->intv_reg);
|
|
} else {
|
|
musb_writeb(epio, MUSB_NAKLIMIT0, qh->intv_reg);
|
|
if (musb->is_multipoint)
|
|
musb_writeb(epio, MUSB_TYPE0,
|
|
qh->type_reg);
|
|
}
|
|
|
|
if (can_bulk_split(musb, qh->type))
|
|
load_count = min((u32) hw_ep->max_packet_sz_tx,
|
|
len);
|
|
else
|
|
load_count = min((u32) packet_sz, len);
|
|
|
|
#ifdef CONFIG_USB_INVENTRA_DMA
|
|
if (dma_channel) {
|
|
|
|
/* clear previous state */
|
|
csr = musb_readw(epio, MUSB_TXCSR);
|
|
csr &= ~(MUSB_TXCSR_AUTOSET
|
|
| MUSB_TXCSR_DMAMODE
|
|
| MUSB_TXCSR_DMAENAB);
|
|
csr |= MUSB_TXCSR_MODE;
|
|
musb_writew(epio, MUSB_TXCSR,
|
|
csr | MUSB_TXCSR_MODE);
|
|
|
|
qh->segsize = min(len, dma_channel->max_len);
|
|
|
|
if (qh->segsize <= packet_sz)
|
|
dma_channel->desired_mode = 0;
|
|
else
|
|
dma_channel->desired_mode = 1;
|
|
|
|
|
|
if (dma_channel->desired_mode == 0) {
|
|
csr &= ~(MUSB_TXCSR_AUTOSET
|
|
| MUSB_TXCSR_DMAMODE);
|
|
csr |= (MUSB_TXCSR_DMAENAB);
|
|
/* against programming guide */
|
|
} else
|
|
csr |= (MUSB_TXCSR_AUTOSET
|
|
| MUSB_TXCSR_DMAENAB
|
|
| MUSB_TXCSR_DMAMODE);
|
|
|
|
musb_writew(epio, MUSB_TXCSR, csr);
|
|
|
|
dma_ok = dma_controller->channel_program(
|
|
dma_channel, packet_sz,
|
|
dma_channel->desired_mode,
|
|
urb->transfer_dma,
|
|
qh->segsize);
|
|
if (dma_ok) {
|
|
load_count = 0;
|
|
} else {
|
|
dma_controller->channel_release(dma_channel);
|
|
if (is_out)
|
|
hw_ep->tx_channel = NULL;
|
|
else
|
|
hw_ep->rx_channel = NULL;
|
|
dma_channel = NULL;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* candidate for DMA */
|
|
if ((is_cppi_enabled() || tusb_dma_omap()) && dma_channel) {
|
|
|
|
/* program endpoint CSRs first, then setup DMA.
|
|
* assume CPPI setup succeeds.
|
|
* defer enabling dma.
|
|
*/
|
|
csr = musb_readw(epio, MUSB_TXCSR);
|
|
csr &= ~(MUSB_TXCSR_AUTOSET
|
|
| MUSB_TXCSR_DMAMODE
|
|
| MUSB_TXCSR_DMAENAB);
|
|
csr |= MUSB_TXCSR_MODE;
|
|
musb_writew(epio, MUSB_TXCSR,
|
|
csr | MUSB_TXCSR_MODE);
|
|
|
|
dma_channel->actual_len = 0L;
|
|
qh->segsize = len;
|
|
|
|
/* TX uses "rndis" mode automatically, but needs help
|
|
* to identify the zero-length-final-packet case.
|
|
*/
|
|
dma_ok = dma_controller->channel_program(
|
|
dma_channel, packet_sz,
|
|
(urb->transfer_flags
|
|
& URB_ZERO_PACKET)
|
|
== URB_ZERO_PACKET,
|
|
urb->transfer_dma,
|
|
qh->segsize);
|
|
if (dma_ok) {
|
|
load_count = 0;
|
|
} else {
|
|
dma_controller->channel_release(dma_channel);
|
|
hw_ep->tx_channel = NULL;
|
|
dma_channel = NULL;
|
|
|
|
/* REVISIT there's an error path here that
|
|
* needs handling: can't do dma, but
|
|
* there's no pio buffer address...
|
|
*/
|
|
}
|
|
}
|
|
|
|
if (load_count) {
|
|
/* ASSERT: TXCSR_DMAENAB was already cleared */
|
|
|
|
/* PIO to load FIFO */
|
|
qh->segsize = load_count;
|
|
musb_write_fifo(hw_ep, load_count, buf);
|
|
csr = musb_readw(epio, MUSB_TXCSR);
|
|
csr &= ~(MUSB_TXCSR_DMAENAB
|
|
| MUSB_TXCSR_DMAMODE
|
|
| MUSB_TXCSR_AUTOSET);
|
|
/* write CSR */
|
|
csr |= MUSB_TXCSR_MODE;
|
|
|
|
if (epnum)
|
|
musb_writew(epio, MUSB_TXCSR, csr);
|
|
}
|
|
|
|
/* re-enable interrupt */
|
|
musb_writew(mbase, MUSB_INTRTXE, int_txe);
|
|
|
|
/* IN/receive */
|
|
} else {
|
|
u16 csr;
|
|
|
|
if (hw_ep->rx_reinit) {
|
|
musb_rx_reinit(musb, qh, hw_ep);
|
|
|
|
/* init new state: toggle and NYET, maybe DMA later */
|
|
if (usb_gettoggle(urb->dev, qh->epnum, 0))
|
|
csr = MUSB_RXCSR_H_WR_DATATOGGLE
|
|
| MUSB_RXCSR_H_DATATOGGLE;
|
|
else
|
|
csr = 0;
|
|
if (qh->type == USB_ENDPOINT_XFER_INT)
|
|
csr |= MUSB_RXCSR_DISNYET;
|
|
|
|
} else {
|
|
csr = musb_readw(hw_ep->regs, MUSB_RXCSR);
|
|
|
|
if (csr & (MUSB_RXCSR_RXPKTRDY
|
|
| MUSB_RXCSR_DMAENAB
|
|
| MUSB_RXCSR_H_REQPKT))
|
|
ERR("broken !rx_reinit, ep%d csr %04x\n",
|
|
hw_ep->epnum, csr);
|
|
|
|
/* scrub any stale state, leaving toggle alone */
|
|
csr &= MUSB_RXCSR_DISNYET;
|
|
}
|
|
|
|
/* kick things off */
|
|
|
|
if ((is_cppi_enabled() || tusb_dma_omap()) && dma_channel) {
|
|
/* candidate for DMA */
|
|
if (dma_channel) {
|
|
dma_channel->actual_len = 0L;
|
|
qh->segsize = len;
|
|
|
|
/* AUTOREQ is in a DMA register */
|
|
musb_writew(hw_ep->regs, MUSB_RXCSR, csr);
|
|
csr = musb_readw(hw_ep->regs,
|
|
MUSB_RXCSR);
|
|
|
|
/* unless caller treats short rx transfers as
|
|
* errors, we dare not queue multiple transfers.
|
|
*/
|
|
dma_ok = dma_controller->channel_program(
|
|
dma_channel, packet_sz,
|
|
!(urb->transfer_flags
|
|
& URB_SHORT_NOT_OK),
|
|
urb->transfer_dma,
|
|
qh->segsize);
|
|
if (!dma_ok) {
|
|
dma_controller->channel_release(
|
|
dma_channel);
|
|
hw_ep->rx_channel = NULL;
|
|
dma_channel = NULL;
|
|
} else
|
|
csr |= MUSB_RXCSR_DMAENAB;
|
|
}
|
|
}
|
|
|
|
csr |= MUSB_RXCSR_H_REQPKT;
|
|
DBG(7, "RXCSR%d := %04x\n", epnum, csr);
|
|
musb_writew(hw_ep->regs, MUSB_RXCSR, csr);
|
|
csr = musb_readw(hw_ep->regs, MUSB_RXCSR);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Service the default endpoint (ep0) as host.
|
|
* Return true until it's time to start the status stage.
|
|
*/
|
|
static bool musb_h_ep0_continue(struct musb *musb, u16 len, struct urb *urb)
|
|
{
|
|
bool more = false;
|
|
u8 *fifo_dest = NULL;
|
|
u16 fifo_count = 0;
|
|
struct musb_hw_ep *hw_ep = musb->control_ep;
|
|
struct musb_qh *qh = hw_ep->in_qh;
|
|
struct usb_ctrlrequest *request;
|
|
|
|
switch (musb->ep0_stage) {
|
|
case MUSB_EP0_IN:
|
|
fifo_dest = urb->transfer_buffer + urb->actual_length;
|
|
fifo_count = min(len, ((u16) (urb->transfer_buffer_length
|
|
- urb->actual_length)));
|
|
if (fifo_count < len)
|
|
urb->status = -EOVERFLOW;
|
|
|
|
musb_read_fifo(hw_ep, fifo_count, fifo_dest);
|
|
|
|
urb->actual_length += fifo_count;
|
|
if (len < qh->maxpacket) {
|
|
/* always terminate on short read; it's
|
|
* rarely reported as an error.
|
|
*/
|
|
} else if (urb->actual_length <
|
|
urb->transfer_buffer_length)
|
|
more = true;
|
|
break;
|
|
case MUSB_EP0_START:
|
|
request = (struct usb_ctrlrequest *) urb->setup_packet;
|
|
|
|
if (!request->wLength) {
|
|
DBG(4, "start no-DATA\n");
|
|
break;
|
|
} else if (request->bRequestType & USB_DIR_IN) {
|
|
DBG(4, "start IN-DATA\n");
|
|
musb->ep0_stage = MUSB_EP0_IN;
|
|
more = true;
|
|
break;
|
|
} else {
|
|
DBG(4, "start OUT-DATA\n");
|
|
musb->ep0_stage = MUSB_EP0_OUT;
|
|
more = true;
|
|
}
|
|
/* FALLTHROUGH */
|
|
case MUSB_EP0_OUT:
|
|
fifo_count = min(qh->maxpacket, ((u16)
|
|
(urb->transfer_buffer_length
|
|
- urb->actual_length)));
|
|
|
|
if (fifo_count) {
|
|
fifo_dest = (u8 *) (urb->transfer_buffer
|
|
+ urb->actual_length);
|
|
DBG(3, "Sending %d bytes to %p\n",
|
|
fifo_count, fifo_dest);
|
|
musb_write_fifo(hw_ep, fifo_count, fifo_dest);
|
|
|
|
urb->actual_length += fifo_count;
|
|
more = true;
|
|
}
|
|
break;
|
|
default:
|
|
ERR("bogus ep0 stage %d\n", musb->ep0_stage);
|
|
break;
|
|
}
|
|
|
|
return more;
|
|
}
|
|
|
|
/*
|
|
* Handle default endpoint interrupt as host. Only called in IRQ time
|
|
* from the LinuxIsr() interrupt service routine.
|
|
*
|
|
* called with controller irqlocked
|
|
*/
|
|
irqreturn_t musb_h_ep0_irq(struct musb *musb)
|
|
{
|
|
struct urb *urb;
|
|
u16 csr, len;
|
|
int status = 0;
|
|
void __iomem *mbase = musb->mregs;
|
|
struct musb_hw_ep *hw_ep = musb->control_ep;
|
|
void __iomem *epio = hw_ep->regs;
|
|
struct musb_qh *qh = hw_ep->in_qh;
|
|
bool complete = false;
|
|
irqreturn_t retval = IRQ_NONE;
|
|
|
|
/* ep0 only has one queue, "in" */
|
|
urb = next_urb(qh);
|
|
|
|
musb_ep_select(mbase, 0);
|
|
csr = musb_readw(epio, MUSB_CSR0);
|
|
len = (csr & MUSB_CSR0_RXPKTRDY)
|
|
? musb_readb(epio, MUSB_COUNT0)
|
|
: 0;
|
|
|
|
DBG(4, "<== csr0 %04x, qh %p, count %d, urb %p, stage %d\n",
|
|
csr, qh, len, urb, musb->ep0_stage);
|
|
|
|
/* if we just did status stage, we are done */
|
|
if (MUSB_EP0_STATUS == musb->ep0_stage) {
|
|
retval = IRQ_HANDLED;
|
|
complete = true;
|
|
}
|
|
|
|
/* prepare status */
|
|
if (csr & MUSB_CSR0_H_RXSTALL) {
|
|
DBG(6, "STALLING ENDPOINT\n");
|
|
status = -EPIPE;
|
|
|
|
} else if (csr & MUSB_CSR0_H_ERROR) {
|
|
DBG(2, "no response, csr0 %04x\n", csr);
|
|
status = -EPROTO;
|
|
|
|
} else if (csr & MUSB_CSR0_H_NAKTIMEOUT) {
|
|
DBG(2, "control NAK timeout\n");
|
|
|
|
/* NOTE: this code path would be a good place to PAUSE a
|
|
* control transfer, if another one is queued, so that
|
|
* ep0 is more likely to stay busy.
|
|
*
|
|
* if (qh->ring.next != &musb->control), then
|
|
* we have a candidate... NAKing is *NOT* an error
|
|
*/
|
|
musb_writew(epio, MUSB_CSR0, 0);
|
|
retval = IRQ_HANDLED;
|
|
}
|
|
|
|
if (status) {
|
|
DBG(6, "aborting\n");
|
|
retval = IRQ_HANDLED;
|
|
if (urb)
|
|
urb->status = status;
|
|
complete = true;
|
|
|
|
/* use the proper sequence to abort the transfer */
|
|
if (csr & MUSB_CSR0_H_REQPKT) {
|
|
csr &= ~MUSB_CSR0_H_REQPKT;
|
|
musb_writew(epio, MUSB_CSR0, csr);
|
|
csr &= ~MUSB_CSR0_H_NAKTIMEOUT;
|
|
musb_writew(epio, MUSB_CSR0, csr);
|
|
} else {
|
|
csr |= MUSB_CSR0_FLUSHFIFO;
|
|
musb_writew(epio, MUSB_CSR0, csr);
|
|
musb_writew(epio, MUSB_CSR0, csr);
|
|
csr &= ~MUSB_CSR0_H_NAKTIMEOUT;
|
|
musb_writew(epio, MUSB_CSR0, csr);
|
|
}
|
|
|
|
musb_writeb(epio, MUSB_NAKLIMIT0, 0);
|
|
|
|
/* clear it */
|
|
musb_writew(epio, MUSB_CSR0, 0);
|
|
}
|
|
|
|
if (unlikely(!urb)) {
|
|
/* stop endpoint since we have no place for its data, this
|
|
* SHOULD NEVER HAPPEN! */
|
|
ERR("no URB for end 0\n");
|
|
|
|
musb_writew(epio, MUSB_CSR0, MUSB_CSR0_FLUSHFIFO);
|
|
musb_writew(epio, MUSB_CSR0, MUSB_CSR0_FLUSHFIFO);
|
|
musb_writew(epio, MUSB_CSR0, 0);
|
|
|
|
goto done;
|
|
}
|
|
|
|
if (!complete) {
|
|
/* call common logic and prepare response */
|
|
if (musb_h_ep0_continue(musb, len, urb)) {
|
|
/* more packets required */
|
|
csr = (MUSB_EP0_IN == musb->ep0_stage)
|
|
? MUSB_CSR0_H_REQPKT : MUSB_CSR0_TXPKTRDY;
|
|
} else {
|
|
/* data transfer complete; perform status phase */
|
|
if (usb_pipeout(urb->pipe)
|
|
|| !urb->transfer_buffer_length)
|
|
csr = MUSB_CSR0_H_STATUSPKT
|
|
| MUSB_CSR0_H_REQPKT;
|
|
else
|
|
csr = MUSB_CSR0_H_STATUSPKT
|
|
| MUSB_CSR0_TXPKTRDY;
|
|
|
|
/* flag status stage */
|
|
musb->ep0_stage = MUSB_EP0_STATUS;
|
|
|
|
DBG(5, "ep0 STATUS, csr %04x\n", csr);
|
|
|
|
}
|
|
musb_writew(epio, MUSB_CSR0, csr);
|
|
retval = IRQ_HANDLED;
|
|
} else
|
|
musb->ep0_stage = MUSB_EP0_IDLE;
|
|
|
|
/* call completion handler if done */
|
|
if (complete)
|
|
musb_advance_schedule(musb, urb, hw_ep, 1);
|
|
done:
|
|
return retval;
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_USB_INVENTRA_DMA
|
|
|
|
/* Host side TX (OUT) using Mentor DMA works as follows:
|
|
submit_urb ->
|
|
- if queue was empty, Program Endpoint
|
|
- ... which starts DMA to fifo in mode 1 or 0
|
|
|
|
DMA Isr (transfer complete) -> TxAvail()
|
|
- Stop DMA (~DmaEnab) (<--- Alert ... currently happens
|
|
only in musb_cleanup_urb)
|
|
- TxPktRdy has to be set in mode 0 or for
|
|
short packets in mode 1.
|
|
*/
|
|
|
|
#endif
|
|
|
|
/* Service a Tx-Available or dma completion irq for the endpoint */
|
|
void musb_host_tx(struct musb *musb, u8 epnum)
|
|
{
|
|
int pipe;
|
|
bool done = false;
|
|
u16 tx_csr;
|
|
size_t wLength = 0;
|
|
u8 *buf = NULL;
|
|
struct urb *urb;
|
|
struct musb_hw_ep *hw_ep = musb->endpoints + epnum;
|
|
void __iomem *epio = hw_ep->regs;
|
|
struct musb_qh *qh = hw_ep->out_qh;
|
|
u32 status = 0;
|
|
void __iomem *mbase = musb->mregs;
|
|
struct dma_channel *dma;
|
|
|
|
urb = next_urb(qh);
|
|
|
|
musb_ep_select(mbase, epnum);
|
|
tx_csr = musb_readw(epio, MUSB_TXCSR);
|
|
|
|
/* with CPPI, DMA sometimes triggers "extra" irqs */
|
|
if (!urb) {
|
|
DBG(4, "extra TX%d ready, csr %04x\n", epnum, tx_csr);
|
|
goto finish;
|
|
}
|
|
|
|
pipe = urb->pipe;
|
|
dma = is_dma_capable() ? hw_ep->tx_channel : NULL;
|
|
DBG(4, "OUT/TX%d end, csr %04x%s\n", epnum, tx_csr,
|
|
dma ? ", dma" : "");
|
|
|
|
/* check for errors */
|
|
if (tx_csr & MUSB_TXCSR_H_RXSTALL) {
|
|
/* dma was disabled, fifo flushed */
|
|
DBG(3, "TX end %d stall\n", epnum);
|
|
|
|
/* stall; record URB status */
|
|
status = -EPIPE;
|
|
|
|
} else if (tx_csr & MUSB_TXCSR_H_ERROR) {
|
|
/* (NON-ISO) dma was disabled, fifo flushed */
|
|
DBG(3, "TX 3strikes on ep=%d\n", epnum);
|
|
|
|
status = -ETIMEDOUT;
|
|
|
|
} else if (tx_csr & MUSB_TXCSR_H_NAKTIMEOUT) {
|
|
DBG(6, "TX end=%d device not responding\n", epnum);
|
|
|
|
/* NOTE: this code path would be a good place to PAUSE a
|
|
* transfer, if there's some other (nonperiodic) tx urb
|
|
* that could use this fifo. (dma complicates it...)
|
|
*
|
|
* if (bulk && qh->ring.next != &musb->out_bulk), then
|
|
* we have a candidate... NAKing is *NOT* an error
|
|
*/
|
|
musb_ep_select(mbase, epnum);
|
|
musb_writew(epio, MUSB_TXCSR,
|
|
MUSB_TXCSR_H_WZC_BITS
|
|
| MUSB_TXCSR_TXPKTRDY);
|
|
goto finish;
|
|
}
|
|
|
|
if (status) {
|
|
if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) {
|
|
dma->status = MUSB_DMA_STATUS_CORE_ABORT;
|
|
(void) musb->dma_controller->channel_abort(dma);
|
|
}
|
|
|
|
/* do the proper sequence to abort the transfer in the
|
|
* usb core; the dma engine should already be stopped.
|
|
*/
|
|
musb_h_tx_flush_fifo(hw_ep);
|
|
tx_csr &= ~(MUSB_TXCSR_AUTOSET
|
|
| MUSB_TXCSR_DMAENAB
|
|
| MUSB_TXCSR_H_ERROR
|
|
| MUSB_TXCSR_H_RXSTALL
|
|
| MUSB_TXCSR_H_NAKTIMEOUT
|
|
);
|
|
|
|
musb_ep_select(mbase, epnum);
|
|
musb_writew(epio, MUSB_TXCSR, tx_csr);
|
|
/* REVISIT may need to clear FLUSHFIFO ... */
|
|
musb_writew(epio, MUSB_TXCSR, tx_csr);
|
|
musb_writeb(epio, MUSB_TXINTERVAL, 0);
|
|
|
|
done = true;
|
|
}
|
|
|
|
/* second cppi case */
|
|
if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) {
|
|
DBG(4, "extra TX%d ready, csr %04x\n", epnum, tx_csr);
|
|
goto finish;
|
|
|
|
}
|
|
|
|
/* REVISIT this looks wrong... */
|
|
if (!status || dma || usb_pipeisoc(pipe)) {
|
|
if (dma)
|
|
wLength = dma->actual_len;
|
|
else
|
|
wLength = qh->segsize;
|
|
qh->offset += wLength;
|
|
|
|
if (usb_pipeisoc(pipe)) {
|
|
struct usb_iso_packet_descriptor *d;
|
|
|
|
d = urb->iso_frame_desc + qh->iso_idx;
|
|
d->actual_length = qh->segsize;
|
|
if (++qh->iso_idx >= urb->number_of_packets) {
|
|
done = true;
|
|
} else {
|
|
d++;
|
|
buf = urb->transfer_buffer + d->offset;
|
|
wLength = d->length;
|
|
}
|
|
} else if (dma) {
|
|
done = true;
|
|
} else {
|
|
/* see if we need to send more data, or ZLP */
|
|
if (qh->segsize < qh->maxpacket)
|
|
done = true;
|
|
else if (qh->offset == urb->transfer_buffer_length
|
|
&& !(urb->transfer_flags
|
|
& URB_ZERO_PACKET))
|
|
done = true;
|
|
if (!done) {
|
|
buf = urb->transfer_buffer
|
|
+ qh->offset;
|
|
wLength = urb->transfer_buffer_length
|
|
- qh->offset;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* urb->status != -EINPROGRESS means request has been faulted,
|
|
* so we must abort this transfer after cleanup
|
|
*/
|
|
if (urb->status != -EINPROGRESS) {
|
|
done = true;
|
|
if (status == 0)
|
|
status = urb->status;
|
|
}
|
|
|
|
if (done) {
|
|
/* set status */
|
|
urb->status = status;
|
|
urb->actual_length = qh->offset;
|
|
musb_advance_schedule(musb, urb, hw_ep, USB_DIR_OUT);
|
|
|
|
} else if (!(tx_csr & MUSB_TXCSR_DMAENAB)) {
|
|
/* WARN_ON(!buf); */
|
|
|
|
/* REVISIT: some docs say that when hw_ep->tx_double_buffered,
|
|
* (and presumably, fifo is not half-full) we should write TWO
|
|
* packets before updating TXCSR ... other docs disagree ...
|
|
*/
|
|
/* PIO: start next packet in this URB */
|
|
wLength = min(qh->maxpacket, (u16) wLength);
|
|
musb_write_fifo(hw_ep, wLength, buf);
|
|
qh->segsize = wLength;
|
|
|
|
musb_ep_select(mbase, epnum);
|
|
musb_writew(epio, MUSB_TXCSR,
|
|
MUSB_TXCSR_H_WZC_BITS | MUSB_TXCSR_TXPKTRDY);
|
|
} else
|
|
DBG(1, "not complete, but dma enabled?\n");
|
|
|
|
finish:
|
|
return;
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_USB_INVENTRA_DMA
|
|
|
|
/* Host side RX (IN) using Mentor DMA works as follows:
|
|
submit_urb ->
|
|
- if queue was empty, ProgramEndpoint
|
|
- first IN token is sent out (by setting ReqPkt)
|
|
LinuxIsr -> RxReady()
|
|
/\ => first packet is received
|
|
| - Set in mode 0 (DmaEnab, ~ReqPkt)
|
|
| -> DMA Isr (transfer complete) -> RxReady()
|
|
| - Ack receive (~RxPktRdy), turn off DMA (~DmaEnab)
|
|
| - if urb not complete, send next IN token (ReqPkt)
|
|
| | else complete urb.
|
|
| |
|
|
---------------------------
|
|
*
|
|
* Nuances of mode 1:
|
|
* For short packets, no ack (+RxPktRdy) is sent automatically
|
|
* (even if AutoClear is ON)
|
|
* For full packets, ack (~RxPktRdy) and next IN token (+ReqPkt) is sent
|
|
* automatically => major problem, as collecting the next packet becomes
|
|
* difficult. Hence mode 1 is not used.
|
|
*
|
|
* REVISIT
|
|
* All we care about at this driver level is that
|
|
* (a) all URBs terminate with REQPKT cleared and fifo(s) empty;
|
|
* (b) termination conditions are: short RX, or buffer full;
|
|
* (c) fault modes include
|
|
* - iff URB_SHORT_NOT_OK, short RX status is -EREMOTEIO.
|
|
* (and that endpoint's dma queue stops immediately)
|
|
* - overflow (full, PLUS more bytes in the terminal packet)
|
|
*
|
|
* So for example, usb-storage sets URB_SHORT_NOT_OK, and would
|
|
* thus be a great candidate for using mode 1 ... for all but the
|
|
* last packet of one URB's transfer.
|
|
*/
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Service an RX interrupt for the given IN endpoint; docs cover bulk, iso,
|
|
* and high-bandwidth IN transfer cases.
|
|
*/
|
|
void musb_host_rx(struct musb *musb, u8 epnum)
|
|
{
|
|
struct urb *urb;
|
|
struct musb_hw_ep *hw_ep = musb->endpoints + epnum;
|
|
void __iomem *epio = hw_ep->regs;
|
|
struct musb_qh *qh = hw_ep->in_qh;
|
|
size_t xfer_len;
|
|
void __iomem *mbase = musb->mregs;
|
|
int pipe;
|
|
u16 rx_csr, val;
|
|
bool iso_err = false;
|
|
bool done = false;
|
|
u32 status;
|
|
struct dma_channel *dma;
|
|
|
|
musb_ep_select(mbase, epnum);
|
|
|
|
urb = next_urb(qh);
|
|
dma = is_dma_capable() ? hw_ep->rx_channel : NULL;
|
|
status = 0;
|
|
xfer_len = 0;
|
|
|
|
rx_csr = musb_readw(epio, MUSB_RXCSR);
|
|
val = rx_csr;
|
|
|
|
if (unlikely(!urb)) {
|
|
/* REVISIT -- THIS SHOULD NEVER HAPPEN ... but, at least
|
|
* usbtest #11 (unlinks) triggers it regularly, sometimes
|
|
* with fifo full. (Only with DMA??)
|
|
*/
|
|
DBG(3, "BOGUS RX%d ready, csr %04x, count %d\n", epnum, val,
|
|
musb_readw(epio, MUSB_RXCOUNT));
|
|
musb_h_flush_rxfifo(hw_ep, MUSB_RXCSR_CLRDATATOG);
|
|
return;
|
|
}
|
|
|
|
pipe = urb->pipe;
|
|
|
|
DBG(5, "<== hw %d rxcsr %04x, urb actual %d (+dma %zu)\n",
|
|
epnum, rx_csr, urb->actual_length,
|
|
dma ? dma->actual_len : 0);
|
|
|
|
/* check for errors, concurrent stall & unlink is not really
|
|
* handled yet! */
|
|
if (rx_csr & MUSB_RXCSR_H_RXSTALL) {
|
|
DBG(3, "RX end %d STALL\n", epnum);
|
|
|
|
/* stall; record URB status */
|
|
status = -EPIPE;
|
|
|
|
} else if (rx_csr & MUSB_RXCSR_H_ERROR) {
|
|
DBG(3, "end %d RX proto error\n", epnum);
|
|
|
|
status = -EPROTO;
|
|
musb_writeb(epio, MUSB_RXINTERVAL, 0);
|
|
|
|
} else if (rx_csr & MUSB_RXCSR_DATAERROR) {
|
|
|
|
if (USB_ENDPOINT_XFER_ISOC != qh->type) {
|
|
/* NOTE this code path would be a good place to PAUSE a
|
|
* transfer, if there's some other (nonperiodic) rx urb
|
|
* that could use this fifo. (dma complicates it...)
|
|
*
|
|
* if (bulk && qh->ring.next != &musb->in_bulk), then
|
|
* we have a candidate... NAKing is *NOT* an error
|
|
*/
|
|
DBG(6, "RX end %d NAK timeout\n", epnum);
|
|
musb_ep_select(mbase, epnum);
|
|
musb_writew(epio, MUSB_RXCSR,
|
|
MUSB_RXCSR_H_WZC_BITS
|
|
| MUSB_RXCSR_H_REQPKT);
|
|
|
|
goto finish;
|
|
} else {
|
|
DBG(4, "RX end %d ISO data error\n", epnum);
|
|
/* packet error reported later */
|
|
iso_err = true;
|
|
}
|
|
}
|
|
|
|
/* faults abort the transfer */
|
|
if (status) {
|
|
/* clean up dma and collect transfer count */
|
|
if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) {
|
|
dma->status = MUSB_DMA_STATUS_CORE_ABORT;
|
|
(void) musb->dma_controller->channel_abort(dma);
|
|
xfer_len = dma->actual_len;
|
|
}
|
|
musb_h_flush_rxfifo(hw_ep, MUSB_RXCSR_CLRDATATOG);
|
|
musb_writeb(epio, MUSB_RXINTERVAL, 0);
|
|
done = true;
|
|
goto finish;
|
|
}
|
|
|
|
if (unlikely(dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY)) {
|
|
/* SHOULD NEVER HAPPEN ... but at least DaVinci has done it */
|
|
ERR("RX%d dma busy, csr %04x\n", epnum, rx_csr);
|
|
goto finish;
|
|
}
|
|
|
|
/* thorough shutdown for now ... given more precise fault handling
|
|
* and better queueing support, we might keep a DMA pipeline going
|
|
* while processing this irq for earlier completions.
|
|
*/
|
|
|
|
/* FIXME this is _way_ too much in-line logic for Mentor DMA */
|
|
|
|
#ifndef CONFIG_USB_INVENTRA_DMA
|
|
if (rx_csr & MUSB_RXCSR_H_REQPKT) {
|
|
/* REVISIT this happened for a while on some short reads...
|
|
* the cleanup still needs investigation... looks bad...
|
|
* and also duplicates dma cleanup code above ... plus,
|
|
* shouldn't this be the "half full" double buffer case?
|
|
*/
|
|
if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) {
|
|
dma->status = MUSB_DMA_STATUS_CORE_ABORT;
|
|
(void) musb->dma_controller->channel_abort(dma);
|
|
xfer_len = dma->actual_len;
|
|
done = true;
|
|
}
|
|
|
|
DBG(2, "RXCSR%d %04x, reqpkt, len %zu%s\n", epnum, rx_csr,
|
|
xfer_len, dma ? ", dma" : "");
|
|
rx_csr &= ~MUSB_RXCSR_H_REQPKT;
|
|
|
|
musb_ep_select(mbase, epnum);
|
|
musb_writew(epio, MUSB_RXCSR,
|
|
MUSB_RXCSR_H_WZC_BITS | rx_csr);
|
|
}
|
|
#endif
|
|
if (dma && (rx_csr & MUSB_RXCSR_DMAENAB)) {
|
|
xfer_len = dma->actual_len;
|
|
|
|
val &= ~(MUSB_RXCSR_DMAENAB
|
|
| MUSB_RXCSR_H_AUTOREQ
|
|
| MUSB_RXCSR_AUTOCLEAR
|
|
| MUSB_RXCSR_RXPKTRDY);
|
|
musb_writew(hw_ep->regs, MUSB_RXCSR, val);
|
|
|
|
#ifdef CONFIG_USB_INVENTRA_DMA
|
|
/* done if urb buffer is full or short packet is recd */
|
|
done = (urb->actual_length + xfer_len >=
|
|
urb->transfer_buffer_length
|
|
|| dma->actual_len < qh->maxpacket);
|
|
|
|
/* send IN token for next packet, without AUTOREQ */
|
|
if (!done) {
|
|
val |= MUSB_RXCSR_H_REQPKT;
|
|
musb_writew(epio, MUSB_RXCSR,
|
|
MUSB_RXCSR_H_WZC_BITS | val);
|
|
}
|
|
|
|
DBG(4, "ep %d dma %s, rxcsr %04x, rxcount %d\n", epnum,
|
|
done ? "off" : "reset",
|
|
musb_readw(epio, MUSB_RXCSR),
|
|
musb_readw(epio, MUSB_RXCOUNT));
|
|
#else
|
|
done = true;
|
|
#endif
|
|
} else if (urb->status == -EINPROGRESS) {
|
|
/* if no errors, be sure a packet is ready for unloading */
|
|
if (unlikely(!(rx_csr & MUSB_RXCSR_RXPKTRDY))) {
|
|
status = -EPROTO;
|
|
ERR("Rx interrupt with no errors or packet!\n");
|
|
|
|
/* FIXME this is another "SHOULD NEVER HAPPEN" */
|
|
|
|
/* SCRUB (RX) */
|
|
/* do the proper sequence to abort the transfer */
|
|
musb_ep_select(mbase, epnum);
|
|
val &= ~MUSB_RXCSR_H_REQPKT;
|
|
musb_writew(epio, MUSB_RXCSR, val);
|
|
goto finish;
|
|
}
|
|
|
|
/* we are expecting IN packets */
|
|
#ifdef CONFIG_USB_INVENTRA_DMA
|
|
if (dma) {
|
|
struct dma_controller *c;
|
|
u16 rx_count;
|
|
int ret;
|
|
|
|
rx_count = musb_readw(epio, MUSB_RXCOUNT);
|
|
|
|
DBG(2, "RX%d count %d, buffer 0x%x len %d/%d\n",
|
|
epnum, rx_count,
|
|
urb->transfer_dma
|
|
+ urb->actual_length,
|
|
qh->offset,
|
|
urb->transfer_buffer_length);
|
|
|
|
c = musb->dma_controller;
|
|
|
|
dma->desired_mode = 0;
|
|
#ifdef USE_MODE1
|
|
/* because of the issue below, mode 1 will
|
|
* only rarely behave with correct semantics.
|
|
*/
|
|
if ((urb->transfer_flags &
|
|
URB_SHORT_NOT_OK)
|
|
&& (urb->transfer_buffer_length -
|
|
urb->actual_length)
|
|
> qh->maxpacket)
|
|
dma->desired_mode = 1;
|
|
#endif
|
|
|
|
/* Disadvantage of using mode 1:
|
|
* It's basically usable only for mass storage class; essentially all
|
|
* other protocols also terminate transfers on short packets.
|
|
*
|
|
* Details:
|
|
* An extra IN token is sent at the end of the transfer (due to AUTOREQ)
|
|
* If you try to use mode 1 for (transfer_buffer_length - 512), and try
|
|
* to use the extra IN token to grab the last packet using mode 0, then
|
|
* the problem is that you cannot be sure when the device will send the
|
|
* last packet and RxPktRdy set. Sometimes the packet is recd too soon
|
|
* such that it gets lost when RxCSR is re-set at the end of the mode 1
|
|
* transfer, while sometimes it is recd just a little late so that if you
|
|
* try to configure for mode 0 soon after the mode 1 transfer is
|
|
* completed, you will find rxcount 0. Okay, so you might think why not
|
|
* wait for an interrupt when the pkt is recd. Well, you won't get any!
|
|
*/
|
|
|
|
val = musb_readw(epio, MUSB_RXCSR);
|
|
val &= ~MUSB_RXCSR_H_REQPKT;
|
|
|
|
if (dma->desired_mode == 0)
|
|
val &= ~MUSB_RXCSR_H_AUTOREQ;
|
|
else
|
|
val |= MUSB_RXCSR_H_AUTOREQ;
|
|
val |= MUSB_RXCSR_AUTOCLEAR | MUSB_RXCSR_DMAENAB;
|
|
|
|
musb_writew(epio, MUSB_RXCSR,
|
|
MUSB_RXCSR_H_WZC_BITS | val);
|
|
|
|
/* REVISIT if when actual_length != 0,
|
|
* transfer_buffer_length needs to be
|
|
* adjusted first...
|
|
*/
|
|
ret = c->channel_program(
|
|
dma, qh->maxpacket,
|
|
dma->desired_mode,
|
|
urb->transfer_dma
|
|
+ urb->actual_length,
|
|
(dma->desired_mode == 0)
|
|
? rx_count
|
|
: urb->transfer_buffer_length);
|
|
|
|
if (!ret) {
|
|
c->channel_release(dma);
|
|
hw_ep->rx_channel = NULL;
|
|
dma = NULL;
|
|
/* REVISIT reset CSR */
|
|
}
|
|
}
|
|
#endif /* Mentor DMA */
|
|
|
|
if (!dma) {
|
|
done = musb_host_packet_rx(musb, urb,
|
|
epnum, iso_err);
|
|
DBG(6, "read %spacket\n", done ? "last " : "");
|
|
}
|
|
}
|
|
|
|
if (dma && usb_pipeisoc(pipe)) {
|
|
struct usb_iso_packet_descriptor *d;
|
|
int iso_stat = status;
|
|
|
|
d = urb->iso_frame_desc + qh->iso_idx;
|
|
d->actual_length += xfer_len;
|
|
if (iso_err) {
|
|
iso_stat = -EILSEQ;
|
|
urb->error_count++;
|
|
}
|
|
d->status = iso_stat;
|
|
}
|
|
|
|
finish:
|
|
urb->actual_length += xfer_len;
|
|
qh->offset += xfer_len;
|
|
if (done) {
|
|
if (urb->status == -EINPROGRESS)
|
|
urb->status = status;
|
|
musb_advance_schedule(musb, urb, hw_ep, USB_DIR_IN);
|
|
}
|
|
}
|
|
|
|
/* schedule nodes correspond to peripheral endpoints, like an OHCI QH.
|
|
* the software schedule associates multiple such nodes with a given
|
|
* host side hardware endpoint + direction; scheduling may activate
|
|
* that hardware endpoint.
|
|
*/
|
|
static int musb_schedule(
|
|
struct musb *musb,
|
|
struct musb_qh *qh,
|
|
int is_in)
|
|
{
|
|
int idle;
|
|
int best_diff;
|
|
int best_end, epnum;
|
|
struct musb_hw_ep *hw_ep = NULL;
|
|
struct list_head *head = NULL;
|
|
|
|
/* use fixed hardware for control and bulk */
|
|
switch (qh->type) {
|
|
case USB_ENDPOINT_XFER_CONTROL:
|
|
head = &musb->control;
|
|
hw_ep = musb->control_ep;
|
|
break;
|
|
case USB_ENDPOINT_XFER_BULK:
|
|
hw_ep = musb->bulk_ep;
|
|
if (is_in)
|
|
head = &musb->in_bulk;
|
|
else
|
|
head = &musb->out_bulk;
|
|
break;
|
|
}
|
|
if (head) {
|
|
idle = list_empty(head);
|
|
list_add_tail(&qh->ring, head);
|
|
goto success;
|
|
}
|
|
|
|
/* else, periodic transfers get muxed to other endpoints */
|
|
|
|
/* FIXME this doesn't consider direction, so it can only
|
|
* work for one half of the endpoint hardware, and assumes
|
|
* the previous cases handled all non-shared endpoints...
|
|
*/
|
|
|
|
/* we know this qh hasn't been scheduled, so all we need to do
|
|
* is choose which hardware endpoint to put it on ...
|
|
*
|
|
* REVISIT what we really want here is a regular schedule tree
|
|
* like e.g. OHCI uses, but for now musb->periodic is just an
|
|
* array of the _single_ logical endpoint associated with a
|
|
* given physical one (identity mapping logical->physical).
|
|
*
|
|
* that simplistic approach makes TT scheduling a lot simpler;
|
|
* there is none, and thus none of its complexity...
|
|
*/
|
|
best_diff = 4096;
|
|
best_end = -1;
|
|
|
|
for (epnum = 1; epnum < musb->nr_endpoints; epnum++) {
|
|
int diff;
|
|
|
|
if (musb->periodic[epnum])
|
|
continue;
|
|
hw_ep = &musb->endpoints[epnum];
|
|
if (hw_ep == musb->bulk_ep)
|
|
continue;
|
|
|
|
if (is_in)
|
|
diff = hw_ep->max_packet_sz_rx - qh->maxpacket;
|
|
else
|
|
diff = hw_ep->max_packet_sz_tx - qh->maxpacket;
|
|
|
|
if (diff > 0 && best_diff > diff) {
|
|
best_diff = diff;
|
|
best_end = epnum;
|
|
}
|
|
}
|
|
if (best_end < 0)
|
|
return -ENOSPC;
|
|
|
|
idle = 1;
|
|
hw_ep = musb->endpoints + best_end;
|
|
musb->periodic[best_end] = qh;
|
|
DBG(4, "qh %p periodic slot %d\n", qh, best_end);
|
|
success:
|
|
qh->hw_ep = hw_ep;
|
|
qh->hep->hcpriv = qh;
|
|
if (idle)
|
|
musb_start_urb(musb, is_in, qh);
|
|
return 0;
|
|
}
|
|
|
|
static int musb_urb_enqueue(
|
|
struct usb_hcd *hcd,
|
|
struct urb *urb,
|
|
gfp_t mem_flags)
|
|
{
|
|
unsigned long flags;
|
|
struct musb *musb = hcd_to_musb(hcd);
|
|
struct usb_host_endpoint *hep = urb->ep;
|
|
struct musb_qh *qh = hep->hcpriv;
|
|
struct usb_endpoint_descriptor *epd = &hep->desc;
|
|
int ret;
|
|
unsigned type_reg;
|
|
unsigned interval;
|
|
|
|
/* host role must be active */
|
|
if (!is_host_active(musb) || !musb->is_active)
|
|
return -ENODEV;
|
|
|
|
spin_lock_irqsave(&musb->lock, flags);
|
|
ret = usb_hcd_link_urb_to_ep(hcd, urb);
|
|
spin_unlock_irqrestore(&musb->lock, flags);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* DMA mapping was already done, if needed, and this urb is on
|
|
* hep->urb_list ... so there's little to do unless hep wasn't
|
|
* yet scheduled onto a live qh.
|
|
*
|
|
* REVISIT best to keep hep->hcpriv valid until the endpoint gets
|
|
* disabled, testing for empty qh->ring and avoiding qh setup costs
|
|
* except for the first urb queued after a config change.
|
|
*/
|
|
if (qh) {
|
|
urb->hcpriv = qh;
|
|
return 0;
|
|
}
|
|
|
|
/* Allocate and initialize qh, minimizing the work done each time
|
|
* hw_ep gets reprogrammed, or with irqs blocked. Then schedule it.
|
|
*
|
|
* REVISIT consider a dedicated qh kmem_cache, so it's harder
|
|
* for bugs in other kernel code to break this driver...
|
|
*/
|
|
qh = kzalloc(sizeof *qh, mem_flags);
|
|
if (!qh) {
|
|
usb_hcd_unlink_urb_from_ep(hcd, urb);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
qh->hep = hep;
|
|
qh->dev = urb->dev;
|
|
INIT_LIST_HEAD(&qh->ring);
|
|
qh->is_ready = 1;
|
|
|
|
qh->maxpacket = le16_to_cpu(epd->wMaxPacketSize);
|
|
|
|
/* no high bandwidth support yet */
|
|
if (qh->maxpacket & ~0x7ff) {
|
|
ret = -EMSGSIZE;
|
|
goto done;
|
|
}
|
|
|
|
qh->epnum = epd->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
|
|
qh->type = epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
|
|
|
|
/* NOTE: urb->dev->devnum is wrong during SET_ADDRESS */
|
|
qh->addr_reg = (u8) usb_pipedevice(urb->pipe);
|
|
|
|
/* precompute rxtype/txtype/type0 register */
|
|
type_reg = (qh->type << 4) | qh->epnum;
|
|
switch (urb->dev->speed) {
|
|
case USB_SPEED_LOW:
|
|
type_reg |= 0xc0;
|
|
break;
|
|
case USB_SPEED_FULL:
|
|
type_reg |= 0x80;
|
|
break;
|
|
default:
|
|
type_reg |= 0x40;
|
|
}
|
|
qh->type_reg = type_reg;
|
|
|
|
/* precompute rxinterval/txinterval register */
|
|
interval = min((u8)16, epd->bInterval); /* log encoding */
|
|
switch (qh->type) {
|
|
case USB_ENDPOINT_XFER_INT:
|
|
/* fullspeed uses linear encoding */
|
|
if (USB_SPEED_FULL == urb->dev->speed) {
|
|
interval = epd->bInterval;
|
|
if (!interval)
|
|
interval = 1;
|
|
}
|
|
/* FALLTHROUGH */
|
|
case USB_ENDPOINT_XFER_ISOC:
|
|
/* iso always uses log encoding */
|
|
break;
|
|
default:
|
|
/* REVISIT we actually want to use NAK limits, hinting to the
|
|
* transfer scheduling logic to try some other qh, e.g. try
|
|
* for 2 msec first:
|
|
*
|
|
* interval = (USB_SPEED_HIGH == urb->dev->speed) ? 16 : 2;
|
|
*
|
|
* The downside of disabling this is that transfer scheduling
|
|
* gets VERY unfair for nonperiodic transfers; a misbehaving
|
|
* peripheral could make that hurt. Or for reads, one that's
|
|
* perfectly normal: network and other drivers keep reads
|
|
* posted at all times, having one pending for a week should
|
|
* be perfectly safe.
|
|
*
|
|
* The upside of disabling it is avoidng transfer scheduling
|
|
* code to put this aside for while.
|
|
*/
|
|
interval = 0;
|
|
}
|
|
qh->intv_reg = interval;
|
|
|
|
/* precompute addressing for external hub/tt ports */
|
|
if (musb->is_multipoint) {
|
|
struct usb_device *parent = urb->dev->parent;
|
|
|
|
if (parent != hcd->self.root_hub) {
|
|
qh->h_addr_reg = (u8) parent->devnum;
|
|
|
|
/* set up tt info if needed */
|
|
if (urb->dev->tt) {
|
|
qh->h_port_reg = (u8) urb->dev->ttport;
|
|
qh->h_addr_reg |= 0x80;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* invariant: hep->hcpriv is null OR the qh that's already scheduled.
|
|
* until we get real dma queues (with an entry for each urb/buffer),
|
|
* we only have work to do in the former case.
|
|
*/
|
|
spin_lock_irqsave(&musb->lock, flags);
|
|
if (hep->hcpriv) {
|
|
/* some concurrent activity submitted another urb to hep...
|
|
* odd, rare, error prone, but legal.
|
|
*/
|
|
kfree(qh);
|
|
ret = 0;
|
|
} else
|
|
ret = musb_schedule(musb, qh,
|
|
epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK);
|
|
|
|
if (ret == 0) {
|
|
urb->hcpriv = qh;
|
|
/* FIXME set urb->start_frame for iso/intr, it's tested in
|
|
* musb_start_urb(), but otherwise only konicawc cares ...
|
|
*/
|
|
}
|
|
spin_unlock_irqrestore(&musb->lock, flags);
|
|
|
|
done:
|
|
if (ret != 0) {
|
|
usb_hcd_unlink_urb_from_ep(hcd, urb);
|
|
kfree(qh);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
/*
|
|
* abort a transfer that's at the head of a hardware queue.
|
|
* called with controller locked, irqs blocked
|
|
* that hardware queue advances to the next transfer, unless prevented
|
|
*/
|
|
static int musb_cleanup_urb(struct urb *urb, struct musb_qh *qh, int is_in)
|
|
{
|
|
struct musb_hw_ep *ep = qh->hw_ep;
|
|
void __iomem *epio = ep->regs;
|
|
unsigned hw_end = ep->epnum;
|
|
void __iomem *regs = ep->musb->mregs;
|
|
u16 csr;
|
|
int status = 0;
|
|
|
|
musb_ep_select(regs, hw_end);
|
|
|
|
if (is_dma_capable()) {
|
|
struct dma_channel *dma;
|
|
|
|
dma = is_in ? ep->rx_channel : ep->tx_channel;
|
|
if (dma) {
|
|
status = ep->musb->dma_controller->channel_abort(dma);
|
|
DBG(status ? 1 : 3,
|
|
"abort %cX%d DMA for urb %p --> %d\n",
|
|
is_in ? 'R' : 'T', ep->epnum,
|
|
urb, status);
|
|
urb->actual_length += dma->actual_len;
|
|
}
|
|
}
|
|
|
|
/* turn off DMA requests, discard state, stop polling ... */
|
|
if (is_in) {
|
|
/* giveback saves bulk toggle */
|
|
csr = musb_h_flush_rxfifo(ep, 0);
|
|
|
|
/* REVISIT we still get an irq; should likely clear the
|
|
* endpoint's irq status here to avoid bogus irqs.
|
|
* clearing that status is platform-specific...
|
|
*/
|
|
} else {
|
|
musb_h_tx_flush_fifo(ep);
|
|
csr = musb_readw(epio, MUSB_TXCSR);
|
|
csr &= ~(MUSB_TXCSR_AUTOSET
|
|
| MUSB_TXCSR_DMAENAB
|
|
| MUSB_TXCSR_H_RXSTALL
|
|
| MUSB_TXCSR_H_NAKTIMEOUT
|
|
| MUSB_TXCSR_H_ERROR
|
|
| MUSB_TXCSR_TXPKTRDY);
|
|
musb_writew(epio, MUSB_TXCSR, csr);
|
|
/* REVISIT may need to clear FLUSHFIFO ... */
|
|
musb_writew(epio, MUSB_TXCSR, csr);
|
|
/* flush cpu writebuffer */
|
|
csr = musb_readw(epio, MUSB_TXCSR);
|
|
}
|
|
if (status == 0)
|
|
musb_advance_schedule(ep->musb, urb, ep, is_in);
|
|
return status;
|
|
}
|
|
|
|
static int musb_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
|
|
{
|
|
struct musb *musb = hcd_to_musb(hcd);
|
|
struct musb_qh *qh;
|
|
struct list_head *sched;
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
DBG(4, "urb=%p, dev%d ep%d%s\n", urb,
|
|
usb_pipedevice(urb->pipe),
|
|
usb_pipeendpoint(urb->pipe),
|
|
usb_pipein(urb->pipe) ? "in" : "out");
|
|
|
|
spin_lock_irqsave(&musb->lock, flags);
|
|
ret = usb_hcd_check_unlink_urb(hcd, urb, status);
|
|
if (ret)
|
|
goto done;
|
|
|
|
qh = urb->hcpriv;
|
|
if (!qh)
|
|
goto done;
|
|
|
|
/* Any URB not actively programmed into endpoint hardware can be
|
|
* immediately given back. Such an URB must be at the head of its
|
|
* endpoint queue, unless someday we get real DMA queues. And even
|
|
* then, it might not be known to the hardware...
|
|
*
|
|
* Otherwise abort current transfer, pending dma, etc.; urb->status
|
|
* has already been updated. This is a synchronous abort; it'd be
|
|
* OK to hold off until after some IRQ, though.
|
|
*/
|
|
if (!qh->is_ready || urb->urb_list.prev != &qh->hep->urb_list)
|
|
ret = -EINPROGRESS;
|
|
else {
|
|
switch (qh->type) {
|
|
case USB_ENDPOINT_XFER_CONTROL:
|
|
sched = &musb->control;
|
|
break;
|
|
case USB_ENDPOINT_XFER_BULK:
|
|
if (usb_pipein(urb->pipe))
|
|
sched = &musb->in_bulk;
|
|
else
|
|
sched = &musb->out_bulk;
|
|
break;
|
|
default:
|
|
/* REVISIT when we get a schedule tree, periodic
|
|
* transfers won't always be at the head of a
|
|
* singleton queue...
|
|
*/
|
|
sched = NULL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* NOTE: qh is invalid unless !list_empty(&hep->urb_list) */
|
|
if (ret < 0 || (sched && qh != first_qh(sched))) {
|
|
int ready = qh->is_ready;
|
|
|
|
ret = 0;
|
|
qh->is_ready = 0;
|
|
__musb_giveback(musb, urb, 0);
|
|
qh->is_ready = ready;
|
|
} else
|
|
ret = musb_cleanup_urb(urb, qh, urb->pipe & USB_DIR_IN);
|
|
done:
|
|
spin_unlock_irqrestore(&musb->lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
/* disable an endpoint */
|
|
static void
|
|
musb_h_disable(struct usb_hcd *hcd, struct usb_host_endpoint *hep)
|
|
{
|
|
u8 epnum = hep->desc.bEndpointAddress;
|
|
unsigned long flags;
|
|
struct musb *musb = hcd_to_musb(hcd);
|
|
u8 is_in = epnum & USB_DIR_IN;
|
|
struct musb_qh *qh = hep->hcpriv;
|
|
struct urb *urb, *tmp;
|
|
struct list_head *sched;
|
|
|
|
if (!qh)
|
|
return;
|
|
|
|
spin_lock_irqsave(&musb->lock, flags);
|
|
|
|
switch (qh->type) {
|
|
case USB_ENDPOINT_XFER_CONTROL:
|
|
sched = &musb->control;
|
|
break;
|
|
case USB_ENDPOINT_XFER_BULK:
|
|
if (is_in)
|
|
sched = &musb->in_bulk;
|
|
else
|
|
sched = &musb->out_bulk;
|
|
break;
|
|
default:
|
|
/* REVISIT when we get a schedule tree, periodic transfers
|
|
* won't always be at the head of a singleton queue...
|
|
*/
|
|
sched = NULL;
|
|
break;
|
|
}
|
|
|
|
/* NOTE: qh is invalid unless !list_empty(&hep->urb_list) */
|
|
|
|
/* kick first urb off the hardware, if needed */
|
|
qh->is_ready = 0;
|
|
if (!sched || qh == first_qh(sched)) {
|
|
urb = next_urb(qh);
|
|
|
|
/* make software (then hardware) stop ASAP */
|
|
if (!urb->unlinked)
|
|
urb->status = -ESHUTDOWN;
|
|
|
|
/* cleanup */
|
|
musb_cleanup_urb(urb, qh, urb->pipe & USB_DIR_IN);
|
|
} else
|
|
urb = NULL;
|
|
|
|
/* then just nuke all the others */
|
|
list_for_each_entry_safe_from(urb, tmp, &hep->urb_list, urb_list)
|
|
musb_giveback(qh, urb, -ESHUTDOWN);
|
|
|
|
spin_unlock_irqrestore(&musb->lock, flags);
|
|
}
|
|
|
|
static int musb_h_get_frame_number(struct usb_hcd *hcd)
|
|
{
|
|
struct musb *musb = hcd_to_musb(hcd);
|
|
|
|
return musb_readw(musb->mregs, MUSB_FRAME);
|
|
}
|
|
|
|
static int musb_h_start(struct usb_hcd *hcd)
|
|
{
|
|
struct musb *musb = hcd_to_musb(hcd);
|
|
|
|
/* NOTE: musb_start() is called when the hub driver turns
|
|
* on port power, or when (OTG) peripheral starts.
|
|
*/
|
|
hcd->state = HC_STATE_RUNNING;
|
|
musb->port1_status = 0;
|
|
return 0;
|
|
}
|
|
|
|
static void musb_h_stop(struct usb_hcd *hcd)
|
|
{
|
|
musb_stop(hcd_to_musb(hcd));
|
|
hcd->state = HC_STATE_HALT;
|
|
}
|
|
|
|
static int musb_bus_suspend(struct usb_hcd *hcd)
|
|
{
|
|
struct musb *musb = hcd_to_musb(hcd);
|
|
|
|
if (musb->xceiv.state == OTG_STATE_A_SUSPEND)
|
|
return 0;
|
|
|
|
if (is_host_active(musb) && musb->is_active) {
|
|
WARNING("trying to suspend as %s is_active=%i\n",
|
|
otg_state_string(musb), musb->is_active);
|
|
return -EBUSY;
|
|
} else
|
|
return 0;
|
|
}
|
|
|
|
static int musb_bus_resume(struct usb_hcd *hcd)
|
|
{
|
|
/* resuming child port does the work */
|
|
return 0;
|
|
}
|
|
|
|
const struct hc_driver musb_hc_driver = {
|
|
.description = "musb-hcd",
|
|
.product_desc = "MUSB HDRC host driver",
|
|
.hcd_priv_size = sizeof(struct musb),
|
|
.flags = HCD_USB2 | HCD_MEMORY,
|
|
|
|
/* not using irq handler or reset hooks from usbcore, since
|
|
* those must be shared with peripheral code for OTG configs
|
|
*/
|
|
|
|
.start = musb_h_start,
|
|
.stop = musb_h_stop,
|
|
|
|
.get_frame_number = musb_h_get_frame_number,
|
|
|
|
.urb_enqueue = musb_urb_enqueue,
|
|
.urb_dequeue = musb_urb_dequeue,
|
|
.endpoint_disable = musb_h_disable,
|
|
|
|
.hub_status_data = musb_hub_status_data,
|
|
.hub_control = musb_hub_control,
|
|
.bus_suspend = musb_bus_suspend,
|
|
.bus_resume = musb_bus_resume,
|
|
/* .start_port_reset = NULL, */
|
|
/* .hub_irq_enable = NULL, */
|
|
};
|