linux_dsm_epyc7002/drivers/net/ethernet/davicom/dm9000.c
Zubair Lutfullah Kakakhel 7994fe55a4 dm9000: Add regulator and reset support to dm9000
In boards, the dm9000 chip's power and reset can be controlled by gpio.

It makes sense to add them to the dm9000 driver and let dt be used to
enable power and reset the phy.

Signed-off-by: Zubair Lutfullah Kakakhel <Zubair.Kakakhel@imgtec.com>
Signed-off-by: Paul Burton <paul.burton@imgtec.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-15 14:08:07 -05:00

1805 lines
42 KiB
C

/*
* Davicom DM9000 Fast Ethernet driver for Linux.
* Copyright (C) 1997 Sten Wang
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
*
* Additional updates, Copyright:
* Ben Dooks <ben@simtec.co.uk>
* Sascha Hauer <s.hauer@pengutronix.de>
*/
#include <linux/module.h>
#include <linux/ioport.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/interrupt.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/crc32.h>
#include <linux/mii.h>
#include <linux/of.h>
#include <linux/of_net.h>
#include <linux/ethtool.h>
#include <linux/dm9000.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/irq.h>
#include <linux/slab.h>
#include <linux/regulator/consumer.h>
#include <linux/gpio.h>
#include <linux/of_gpio.h>
#include <asm/delay.h>
#include <asm/irq.h>
#include <asm/io.h>
#include "dm9000.h"
/* Board/System/Debug information/definition ---------------- */
#define DM9000_PHY 0x40 /* PHY address 0x01 */
#define CARDNAME "dm9000"
#define DRV_VERSION "1.31"
/*
* Transmit timeout, default 5 seconds.
*/
static int watchdog = 5000;
module_param(watchdog, int, 0400);
MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
/*
* Debug messages level
*/
static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "dm9000 debug level (0-4)");
/* DM9000 register address locking.
*
* The DM9000 uses an address register to control where data written
* to the data register goes. This means that the address register
* must be preserved over interrupts or similar calls.
*
* During interrupt and other critical calls, a spinlock is used to
* protect the system, but the calls themselves save the address
* in the address register in case they are interrupting another
* access to the device.
*
* For general accesses a lock is provided so that calls which are
* allowed to sleep are serialised so that the address register does
* not need to be saved. This lock also serves to serialise access
* to the EEPROM and PHY access registers which are shared between
* these two devices.
*/
/* The driver supports the original DM9000E, and now the two newer
* devices, DM9000A and DM9000B.
*/
enum dm9000_type {
TYPE_DM9000E, /* original DM9000 */
TYPE_DM9000A,
TYPE_DM9000B
};
/* Structure/enum declaration ------------------------------- */
struct board_info {
void __iomem *io_addr; /* Register I/O base address */
void __iomem *io_data; /* Data I/O address */
u16 irq; /* IRQ */
u16 tx_pkt_cnt;
u16 queue_pkt_len;
u16 queue_start_addr;
u16 queue_ip_summed;
u16 dbug_cnt;
u8 io_mode; /* 0:word, 2:byte */
u8 phy_addr;
u8 imr_all;
unsigned int flags;
unsigned int in_timeout:1;
unsigned int in_suspend:1;
unsigned int wake_supported:1;
enum dm9000_type type;
void (*inblk)(void __iomem *port, void *data, int length);
void (*outblk)(void __iomem *port, void *data, int length);
void (*dumpblk)(void __iomem *port, int length);
struct device *dev; /* parent device */
struct resource *addr_res; /* resources found */
struct resource *data_res;
struct resource *addr_req; /* resources requested */
struct resource *data_req;
struct resource *irq_res;
int irq_wake;
struct mutex addr_lock; /* phy and eeprom access lock */
struct delayed_work phy_poll;
struct net_device *ndev;
spinlock_t lock;
struct mii_if_info mii;
u32 msg_enable;
u32 wake_state;
int ip_summed;
};
/* debug code */
#define dm9000_dbg(db, lev, msg...) do { \
if ((lev) < debug) { \
dev_dbg(db->dev, msg); \
} \
} while (0)
static inline struct board_info *to_dm9000_board(struct net_device *dev)
{
return netdev_priv(dev);
}
/* DM9000 network board routine ---------------------------- */
/*
* Read a byte from I/O port
*/
static u8
ior(struct board_info *db, int reg)
{
writeb(reg, db->io_addr);
return readb(db->io_data);
}
/*
* Write a byte to I/O port
*/
static void
iow(struct board_info *db, int reg, int value)
{
writeb(reg, db->io_addr);
writeb(value, db->io_data);
}
static void
dm9000_reset(struct board_info *db)
{
dev_dbg(db->dev, "resetting device\n");
/* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29
* The essential point is that we have to do a double reset, and the
* instruction is to set LBK into MAC internal loopback mode.
*/
iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
udelay(100); /* Application note says at least 20 us */
if (ior(db, DM9000_NCR) & 1)
dev_err(db->dev, "dm9000 did not respond to first reset\n");
iow(db, DM9000_NCR, 0);
iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
udelay(100);
if (ior(db, DM9000_NCR) & 1)
dev_err(db->dev, "dm9000 did not respond to second reset\n");
}
/* routines for sending block to chip */
static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
{
iowrite8_rep(reg, data, count);
}
static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
{
iowrite16_rep(reg, data, (count+1) >> 1);
}
static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
{
iowrite32_rep(reg, data, (count+3) >> 2);
}
/* input block from chip to memory */
static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
{
ioread8_rep(reg, data, count);
}
static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
{
ioread16_rep(reg, data, (count+1) >> 1);
}
static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
{
ioread32_rep(reg, data, (count+3) >> 2);
}
/* dump block from chip to null */
static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
{
int i;
int tmp;
for (i = 0; i < count; i++)
tmp = readb(reg);
}
static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
{
int i;
int tmp;
count = (count + 1) >> 1;
for (i = 0; i < count; i++)
tmp = readw(reg);
}
static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
{
int i;
int tmp;
count = (count + 3) >> 2;
for (i = 0; i < count; i++)
tmp = readl(reg);
}
/*
* Sleep, either by using msleep() or if we are suspending, then
* use mdelay() to sleep.
*/
static void dm9000_msleep(struct board_info *db, unsigned int ms)
{
if (db->in_suspend || db->in_timeout)
mdelay(ms);
else
msleep(ms);
}
/* Read a word from phyxcer */
static int
dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
{
struct board_info *db = netdev_priv(dev);
unsigned long flags;
unsigned int reg_save;
int ret;
mutex_lock(&db->addr_lock);
spin_lock_irqsave(&db->lock, flags);
/* Save previous register address */
reg_save = readb(db->io_addr);
/* Fill the phyxcer register into REG_0C */
iow(db, DM9000_EPAR, DM9000_PHY | reg);
/* Issue phyxcer read command */
iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);
writeb(reg_save, db->io_addr);
spin_unlock_irqrestore(&db->lock, flags);
dm9000_msleep(db, 1); /* Wait read complete */
spin_lock_irqsave(&db->lock, flags);
reg_save = readb(db->io_addr);
iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer read command */
/* The read data keeps on REG_0D & REG_0E */
ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
/* restore the previous address */
writeb(reg_save, db->io_addr);
spin_unlock_irqrestore(&db->lock, flags);
mutex_unlock(&db->addr_lock);
dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
return ret;
}
/* Write a word to phyxcer */
static void
dm9000_phy_write(struct net_device *dev,
int phyaddr_unused, int reg, int value)
{
struct board_info *db = netdev_priv(dev);
unsigned long flags;
unsigned long reg_save;
dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
if (!db->in_timeout)
mutex_lock(&db->addr_lock);
spin_lock_irqsave(&db->lock, flags);
/* Save previous register address */
reg_save = readb(db->io_addr);
/* Fill the phyxcer register into REG_0C */
iow(db, DM9000_EPAR, DM9000_PHY | reg);
/* Fill the written data into REG_0D & REG_0E */
iow(db, DM9000_EPDRL, value);
iow(db, DM9000_EPDRH, value >> 8);
/* Issue phyxcer write command */
iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);
writeb(reg_save, db->io_addr);
spin_unlock_irqrestore(&db->lock, flags);
dm9000_msleep(db, 1); /* Wait write complete */
spin_lock_irqsave(&db->lock, flags);
reg_save = readb(db->io_addr);
iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer write command */
/* restore the previous address */
writeb(reg_save, db->io_addr);
spin_unlock_irqrestore(&db->lock, flags);
if (!db->in_timeout)
mutex_unlock(&db->addr_lock);
}
/* dm9000_set_io
*
* select the specified set of io routines to use with the
* device
*/
static void dm9000_set_io(struct board_info *db, int byte_width)
{
/* use the size of the data resource to work out what IO
* routines we want to use
*/
switch (byte_width) {
case 1:
db->dumpblk = dm9000_dumpblk_8bit;
db->outblk = dm9000_outblk_8bit;
db->inblk = dm9000_inblk_8bit;
break;
case 3:
dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
case 2:
db->dumpblk = dm9000_dumpblk_16bit;
db->outblk = dm9000_outblk_16bit;
db->inblk = dm9000_inblk_16bit;
break;
case 4:
default:
db->dumpblk = dm9000_dumpblk_32bit;
db->outblk = dm9000_outblk_32bit;
db->inblk = dm9000_inblk_32bit;
break;
}
}
static void dm9000_schedule_poll(struct board_info *db)
{
if (db->type == TYPE_DM9000E)
schedule_delayed_work(&db->phy_poll, HZ * 2);
}
static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
struct board_info *dm = to_dm9000_board(dev);
if (!netif_running(dev))
return -EINVAL;
return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
}
static unsigned int
dm9000_read_locked(struct board_info *db, int reg)
{
unsigned long flags;
unsigned int ret;
spin_lock_irqsave(&db->lock, flags);
ret = ior(db, reg);
spin_unlock_irqrestore(&db->lock, flags);
return ret;
}
static int dm9000_wait_eeprom(struct board_info *db)
{
unsigned int status;
int timeout = 8; /* wait max 8msec */
/* The DM9000 data sheets say we should be able to
* poll the ERRE bit in EPCR to wait for the EEPROM
* operation. From testing several chips, this bit
* does not seem to work.
*
* We attempt to use the bit, but fall back to the
* timeout (which is why we do not return an error
* on expiry) to say that the EEPROM operation has
* completed.
*/
while (1) {
status = dm9000_read_locked(db, DM9000_EPCR);
if ((status & EPCR_ERRE) == 0)
break;
msleep(1);
if (timeout-- < 0) {
dev_dbg(db->dev, "timeout waiting EEPROM\n");
break;
}
}
return 0;
}
/*
* Read a word data from EEPROM
*/
static void
dm9000_read_eeprom(struct board_info *db, int offset, u8 *to)
{
unsigned long flags;
if (db->flags & DM9000_PLATF_NO_EEPROM) {
to[0] = 0xff;
to[1] = 0xff;
return;
}
mutex_lock(&db->addr_lock);
spin_lock_irqsave(&db->lock, flags);
iow(db, DM9000_EPAR, offset);
iow(db, DM9000_EPCR, EPCR_ERPRR);
spin_unlock_irqrestore(&db->lock, flags);
dm9000_wait_eeprom(db);
/* delay for at-least 150uS */
msleep(1);
spin_lock_irqsave(&db->lock, flags);
iow(db, DM9000_EPCR, 0x0);
to[0] = ior(db, DM9000_EPDRL);
to[1] = ior(db, DM9000_EPDRH);
spin_unlock_irqrestore(&db->lock, flags);
mutex_unlock(&db->addr_lock);
}
/*
* Write a word data to SROM
*/
static void
dm9000_write_eeprom(struct board_info *db, int offset, u8 *data)
{
unsigned long flags;
if (db->flags & DM9000_PLATF_NO_EEPROM)
return;
mutex_lock(&db->addr_lock);
spin_lock_irqsave(&db->lock, flags);
iow(db, DM9000_EPAR, offset);
iow(db, DM9000_EPDRH, data[1]);
iow(db, DM9000_EPDRL, data[0]);
iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
spin_unlock_irqrestore(&db->lock, flags);
dm9000_wait_eeprom(db);
mdelay(1); /* wait at least 150uS to clear */
spin_lock_irqsave(&db->lock, flags);
iow(db, DM9000_EPCR, 0);
spin_unlock_irqrestore(&db->lock, flags);
mutex_unlock(&db->addr_lock);
}
/* ethtool ops */
static void dm9000_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct board_info *dm = to_dm9000_board(dev);
strlcpy(info->driver, CARDNAME, sizeof(info->driver));
strlcpy(info->version, DRV_VERSION, sizeof(info->version));
strlcpy(info->bus_info, to_platform_device(dm->dev)->name,
sizeof(info->bus_info));
}
static u32 dm9000_get_msglevel(struct net_device *dev)
{
struct board_info *dm = to_dm9000_board(dev);
return dm->msg_enable;
}
static void dm9000_set_msglevel(struct net_device *dev, u32 value)
{
struct board_info *dm = to_dm9000_board(dev);
dm->msg_enable = value;
}
static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct board_info *dm = to_dm9000_board(dev);
mii_ethtool_gset(&dm->mii, cmd);
return 0;
}
static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct board_info *dm = to_dm9000_board(dev);
return mii_ethtool_sset(&dm->mii, cmd);
}
static int dm9000_nway_reset(struct net_device *dev)
{
struct board_info *dm = to_dm9000_board(dev);
return mii_nway_restart(&dm->mii);
}
static int dm9000_set_features(struct net_device *dev,
netdev_features_t features)
{
struct board_info *dm = to_dm9000_board(dev);
netdev_features_t changed = dev->features ^ features;
unsigned long flags;
if (!(changed & NETIF_F_RXCSUM))
return 0;
spin_lock_irqsave(&dm->lock, flags);
iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
spin_unlock_irqrestore(&dm->lock, flags);
return 0;
}
static u32 dm9000_get_link(struct net_device *dev)
{
struct board_info *dm = to_dm9000_board(dev);
u32 ret;
if (dm->flags & DM9000_PLATF_EXT_PHY)
ret = mii_link_ok(&dm->mii);
else
ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
return ret;
}
#define DM_EEPROM_MAGIC (0x444D394B)
static int dm9000_get_eeprom_len(struct net_device *dev)
{
return 128;
}
static int dm9000_get_eeprom(struct net_device *dev,
struct ethtool_eeprom *ee, u8 *data)
{
struct board_info *dm = to_dm9000_board(dev);
int offset = ee->offset;
int len = ee->len;
int i;
/* EEPROM access is aligned to two bytes */
if ((len & 1) != 0 || (offset & 1) != 0)
return -EINVAL;
if (dm->flags & DM9000_PLATF_NO_EEPROM)
return -ENOENT;
ee->magic = DM_EEPROM_MAGIC;
for (i = 0; i < len; i += 2)
dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
return 0;
}
static int dm9000_set_eeprom(struct net_device *dev,
struct ethtool_eeprom *ee, u8 *data)
{
struct board_info *dm = to_dm9000_board(dev);
int offset = ee->offset;
int len = ee->len;
int done;
/* EEPROM access is aligned to two bytes */
if (dm->flags & DM9000_PLATF_NO_EEPROM)
return -ENOENT;
if (ee->magic != DM_EEPROM_MAGIC)
return -EINVAL;
while (len > 0) {
if (len & 1 || offset & 1) {
int which = offset & 1;
u8 tmp[2];
dm9000_read_eeprom(dm, offset / 2, tmp);
tmp[which] = *data;
dm9000_write_eeprom(dm, offset / 2, tmp);
done = 1;
} else {
dm9000_write_eeprom(dm, offset / 2, data);
done = 2;
}
data += done;
offset += done;
len -= done;
}
return 0;
}
static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
{
struct board_info *dm = to_dm9000_board(dev);
memset(w, 0, sizeof(struct ethtool_wolinfo));
/* note, we could probably support wake-phy too */
w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
w->wolopts = dm->wake_state;
}
static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
{
struct board_info *dm = to_dm9000_board(dev);
unsigned long flags;
u32 opts = w->wolopts;
u32 wcr = 0;
if (!dm->wake_supported)
return -EOPNOTSUPP;
if (opts & ~WAKE_MAGIC)
return -EINVAL;
if (opts & WAKE_MAGIC)
wcr |= WCR_MAGICEN;
mutex_lock(&dm->addr_lock);
spin_lock_irqsave(&dm->lock, flags);
iow(dm, DM9000_WCR, wcr);
spin_unlock_irqrestore(&dm->lock, flags);
mutex_unlock(&dm->addr_lock);
if (dm->wake_state != opts) {
/* change in wol state, update IRQ state */
if (!dm->wake_state)
irq_set_irq_wake(dm->irq_wake, 1);
else if (dm->wake_state && !opts)
irq_set_irq_wake(dm->irq_wake, 0);
}
dm->wake_state = opts;
return 0;
}
static const struct ethtool_ops dm9000_ethtool_ops = {
.get_drvinfo = dm9000_get_drvinfo,
.get_settings = dm9000_get_settings,
.set_settings = dm9000_set_settings,
.get_msglevel = dm9000_get_msglevel,
.set_msglevel = dm9000_set_msglevel,
.nway_reset = dm9000_nway_reset,
.get_link = dm9000_get_link,
.get_wol = dm9000_get_wol,
.set_wol = dm9000_set_wol,
.get_eeprom_len = dm9000_get_eeprom_len,
.get_eeprom = dm9000_get_eeprom,
.set_eeprom = dm9000_set_eeprom,
};
static void dm9000_show_carrier(struct board_info *db,
unsigned carrier, unsigned nsr)
{
int lpa;
struct net_device *ndev = db->ndev;
struct mii_if_info *mii = &db->mii;
unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
if (carrier) {
lpa = mii->mdio_read(mii->dev, mii->phy_id, MII_LPA);
dev_info(db->dev,
"%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n",
ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
(ncr & NCR_FDX) ? "full" : "half", lpa);
} else {
dev_info(db->dev, "%s: link down\n", ndev->name);
}
}
static void
dm9000_poll_work(struct work_struct *w)
{
struct delayed_work *dw = to_delayed_work(w);
struct board_info *db = container_of(dw, struct board_info, phy_poll);
struct net_device *ndev = db->ndev;
if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
!(db->flags & DM9000_PLATF_EXT_PHY)) {
unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
unsigned new_carrier;
new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
if (old_carrier != new_carrier) {
if (netif_msg_link(db))
dm9000_show_carrier(db, new_carrier, nsr);
if (!new_carrier)
netif_carrier_off(ndev);
else
netif_carrier_on(ndev);
}
} else
mii_check_media(&db->mii, netif_msg_link(db), 0);
if (netif_running(ndev))
dm9000_schedule_poll(db);
}
/* dm9000_release_board
*
* release a board, and any mapped resources
*/
static void
dm9000_release_board(struct platform_device *pdev, struct board_info *db)
{
/* unmap our resources */
iounmap(db->io_addr);
iounmap(db->io_data);
/* release the resources */
if (db->data_req)
release_resource(db->data_req);
kfree(db->data_req);
if (db->addr_req)
release_resource(db->addr_req);
kfree(db->addr_req);
}
static unsigned char dm9000_type_to_char(enum dm9000_type type)
{
switch (type) {
case TYPE_DM9000E: return 'e';
case TYPE_DM9000A: return 'a';
case TYPE_DM9000B: return 'b';
}
return '?';
}
/*
* Set DM9000 multicast address
*/
static void
dm9000_hash_table_unlocked(struct net_device *dev)
{
struct board_info *db = netdev_priv(dev);
struct netdev_hw_addr *ha;
int i, oft;
u32 hash_val;
u16 hash_table[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */
u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
dm9000_dbg(db, 1, "entering %s\n", __func__);
for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
iow(db, oft, dev->dev_addr[i]);
if (dev->flags & IFF_PROMISC)
rcr |= RCR_PRMSC;
if (dev->flags & IFF_ALLMULTI)
rcr |= RCR_ALL;
/* the multicast address in Hash Table : 64 bits */
netdev_for_each_mc_addr(ha, dev) {
hash_val = ether_crc_le(6, ha->addr) & 0x3f;
hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
}
/* Write the hash table to MAC MD table */
for (i = 0, oft = DM9000_MAR; i < 4; i++) {
iow(db, oft++, hash_table[i]);
iow(db, oft++, hash_table[i] >> 8);
}
iow(db, DM9000_RCR, rcr);
}
static void
dm9000_hash_table(struct net_device *dev)
{
struct board_info *db = netdev_priv(dev);
unsigned long flags;
spin_lock_irqsave(&db->lock, flags);
dm9000_hash_table_unlocked(dev);
spin_unlock_irqrestore(&db->lock, flags);
}
static void
dm9000_mask_interrupts(struct board_info *db)
{
iow(db, DM9000_IMR, IMR_PAR);
}
static void
dm9000_unmask_interrupts(struct board_info *db)
{
iow(db, DM9000_IMR, db->imr_all);
}
/*
* Initialize dm9000 board
*/
static void
dm9000_init_dm9000(struct net_device *dev)
{
struct board_info *db = netdev_priv(dev);
unsigned int imr;
unsigned int ncr;
dm9000_dbg(db, 1, "entering %s\n", __func__);
dm9000_reset(db);
dm9000_mask_interrupts(db);
/* I/O mode */
db->io_mode = ior(db, DM9000_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */
/* Checksum mode */
if (dev->hw_features & NETIF_F_RXCSUM)
iow(db, DM9000_RCSR,
(dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
iow(db, DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */
iow(db, DM9000_GPR, 0);
/* If we are dealing with DM9000B, some extra steps are required: a
* manual phy reset, and setting init params.
*/
if (db->type == TYPE_DM9000B) {
dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);
dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM);
}
ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
/* if wol is needed, then always set NCR_WAKEEN otherwise we end
* up dumping the wake events if we disable this. There is already
* a wake-mask in DM9000_WCR */
if (db->wake_supported)
ncr |= NCR_WAKEEN;
iow(db, DM9000_NCR, ncr);
/* Program operating register */
iow(db, DM9000_TCR, 0); /* TX Polling clear */
iow(db, DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */
iow(db, DM9000_FCR, 0xff); /* Flow Control */
iow(db, DM9000_SMCR, 0); /* Special Mode */
/* clear TX status */
iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
/* Set address filter table */
dm9000_hash_table_unlocked(dev);
imr = IMR_PAR | IMR_PTM | IMR_PRM;
if (db->type != TYPE_DM9000E)
imr |= IMR_LNKCHNG;
db->imr_all = imr;
/* Init Driver variable */
db->tx_pkt_cnt = 0;
db->queue_pkt_len = 0;
dev->trans_start = jiffies;
}
/* Our watchdog timed out. Called by the networking layer */
static void dm9000_timeout(struct net_device *dev)
{
struct board_info *db = netdev_priv(dev);
u8 reg_save;
unsigned long flags;
/* Save previous register address */
spin_lock_irqsave(&db->lock, flags);
db->in_timeout = 1;
reg_save = readb(db->io_addr);
netif_stop_queue(dev);
dm9000_init_dm9000(dev);
dm9000_unmask_interrupts(db);
/* We can accept TX packets again */
dev->trans_start = jiffies; /* prevent tx timeout */
netif_wake_queue(dev);
/* Restore previous register address */
writeb(reg_save, db->io_addr);
db->in_timeout = 0;
spin_unlock_irqrestore(&db->lock, flags);
}
static void dm9000_send_packet(struct net_device *dev,
int ip_summed,
u16 pkt_len)
{
struct board_info *dm = to_dm9000_board(dev);
/* The DM9000 is not smart enough to leave fragmented packets alone. */
if (dm->ip_summed != ip_summed) {
if (ip_summed == CHECKSUM_NONE)
iow(dm, DM9000_TCCR, 0);
else
iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
dm->ip_summed = ip_summed;
}
/* Set TX length to DM9000 */
iow(dm, DM9000_TXPLL, pkt_len);
iow(dm, DM9000_TXPLH, pkt_len >> 8);
/* Issue TX polling command */
iow(dm, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
}
/*
* Hardware start transmission.
* Send a packet to media from the upper layer.
*/
static int
dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
unsigned long flags;
struct board_info *db = netdev_priv(dev);
dm9000_dbg(db, 3, "%s:\n", __func__);
if (db->tx_pkt_cnt > 1)
return NETDEV_TX_BUSY;
spin_lock_irqsave(&db->lock, flags);
/* Move data to DM9000 TX RAM */
writeb(DM9000_MWCMD, db->io_addr);
(db->outblk)(db->io_data, skb->data, skb->len);
dev->stats.tx_bytes += skb->len;
db->tx_pkt_cnt++;
/* TX control: First packet immediately send, second packet queue */
if (db->tx_pkt_cnt == 1) {
dm9000_send_packet(dev, skb->ip_summed, skb->len);
} else {
/* Second packet */
db->queue_pkt_len = skb->len;
db->queue_ip_summed = skb->ip_summed;
netif_stop_queue(dev);
}
spin_unlock_irqrestore(&db->lock, flags);
/* free this SKB */
dev_consume_skb_any(skb);
return NETDEV_TX_OK;
}
/*
* DM9000 interrupt handler
* receive the packet to upper layer, free the transmitted packet
*/
static void dm9000_tx_done(struct net_device *dev, struct board_info *db)
{
int tx_status = ior(db, DM9000_NSR); /* Got TX status */
if (tx_status & (NSR_TX2END | NSR_TX1END)) {
/* One packet sent complete */
db->tx_pkt_cnt--;
dev->stats.tx_packets++;
if (netif_msg_tx_done(db))
dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
/* Queue packet check & send */
if (db->tx_pkt_cnt > 0)
dm9000_send_packet(dev, db->queue_ip_summed,
db->queue_pkt_len);
netif_wake_queue(dev);
}
}
struct dm9000_rxhdr {
u8 RxPktReady;
u8 RxStatus;
__le16 RxLen;
} __packed;
/*
* Received a packet and pass to upper layer
*/
static void
dm9000_rx(struct net_device *dev)
{
struct board_info *db = netdev_priv(dev);
struct dm9000_rxhdr rxhdr;
struct sk_buff *skb;
u8 rxbyte, *rdptr;
bool GoodPacket;
int RxLen;
/* Check packet ready or not */
do {
ior(db, DM9000_MRCMDX); /* Dummy read */
/* Get most updated data */
rxbyte = readb(db->io_data);
/* Status check: this byte must be 0 or 1 */
if (rxbyte & DM9000_PKT_ERR) {
dev_warn(db->dev, "status check fail: %d\n", rxbyte);
iow(db, DM9000_RCR, 0x00); /* Stop Device */
return;
}
if (!(rxbyte & DM9000_PKT_RDY))
return;
/* A packet ready now & Get status/length */
GoodPacket = true;
writeb(DM9000_MRCMD, db->io_addr);
(db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
RxLen = le16_to_cpu(rxhdr.RxLen);
if (netif_msg_rx_status(db))
dev_dbg(db->dev, "RX: status %02x, length %04x\n",
rxhdr.RxStatus, RxLen);
/* Packet Status check */
if (RxLen < 0x40) {
GoodPacket = false;
if (netif_msg_rx_err(db))
dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
}
if (RxLen > DM9000_PKT_MAX) {
dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
}
/* rxhdr.RxStatus is identical to RSR register. */
if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
RSR_PLE | RSR_RWTO |
RSR_LCS | RSR_RF)) {
GoodPacket = false;
if (rxhdr.RxStatus & RSR_FOE) {
if (netif_msg_rx_err(db))
dev_dbg(db->dev, "fifo error\n");
dev->stats.rx_fifo_errors++;
}
if (rxhdr.RxStatus & RSR_CE) {
if (netif_msg_rx_err(db))
dev_dbg(db->dev, "crc error\n");
dev->stats.rx_crc_errors++;
}
if (rxhdr.RxStatus & RSR_RF) {
if (netif_msg_rx_err(db))
dev_dbg(db->dev, "length error\n");
dev->stats.rx_length_errors++;
}
}
/* Move data from DM9000 */
if (GoodPacket &&
((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) {
skb_reserve(skb, 2);
rdptr = (u8 *) skb_put(skb, RxLen - 4);
/* Read received packet from RX SRAM */
(db->inblk)(db->io_data, rdptr, RxLen);
dev->stats.rx_bytes += RxLen;
/* Pass to upper layer */
skb->protocol = eth_type_trans(skb, dev);
if (dev->features & NETIF_F_RXCSUM) {
if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb_checksum_none_assert(skb);
}
netif_rx(skb);
dev->stats.rx_packets++;
} else {
/* need to dump the packet's data */
(db->dumpblk)(db->io_data, RxLen);
}
} while (rxbyte & DM9000_PKT_RDY);
}
static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct board_info *db = netdev_priv(dev);
int int_status;
unsigned long flags;
u8 reg_save;
dm9000_dbg(db, 3, "entering %s\n", __func__);
/* A real interrupt coming */
/* holders of db->lock must always block IRQs */
spin_lock_irqsave(&db->lock, flags);
/* Save previous register address */
reg_save = readb(db->io_addr);
dm9000_mask_interrupts(db);
/* Got DM9000 interrupt status */
int_status = ior(db, DM9000_ISR); /* Got ISR */
iow(db, DM9000_ISR, int_status); /* Clear ISR status */
if (netif_msg_intr(db))
dev_dbg(db->dev, "interrupt status %02x\n", int_status);
/* Received the coming packet */
if (int_status & ISR_PRS)
dm9000_rx(dev);
/* Trnasmit Interrupt check */
if (int_status & ISR_PTS)
dm9000_tx_done(dev, db);
if (db->type != TYPE_DM9000E) {
if (int_status & ISR_LNKCHNG) {
/* fire a link-change request */
schedule_delayed_work(&db->phy_poll, 1);
}
}
dm9000_unmask_interrupts(db);
/* Restore previous register address */
writeb(reg_save, db->io_addr);
spin_unlock_irqrestore(&db->lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct board_info *db = netdev_priv(dev);
unsigned long flags;
unsigned nsr, wcr;
spin_lock_irqsave(&db->lock, flags);
nsr = ior(db, DM9000_NSR);
wcr = ior(db, DM9000_WCR);
dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
if (nsr & NSR_WAKEST) {
/* clear, so we can avoid */
iow(db, DM9000_NSR, NSR_WAKEST);
if (wcr & WCR_LINKST)
dev_info(db->dev, "wake by link status change\n");
if (wcr & WCR_SAMPLEST)
dev_info(db->dev, "wake by sample packet\n");
if (wcr & WCR_MAGICST)
dev_info(db->dev, "wake by magic packet\n");
if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
dev_err(db->dev, "wake signalled with no reason? "
"NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
}
spin_unlock_irqrestore(&db->lock, flags);
return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
/*
*Used by netconsole
*/
static void dm9000_poll_controller(struct net_device *dev)
{
disable_irq(dev->irq);
dm9000_interrupt(dev->irq, dev);
enable_irq(dev->irq);
}
#endif
/*
* Open the interface.
* The interface is opened whenever "ifconfig" actives it.
*/
static int
dm9000_open(struct net_device *dev)
{
struct board_info *db = netdev_priv(dev);
unsigned long irqflags = db->irq_res->flags & IRQF_TRIGGER_MASK;
if (netif_msg_ifup(db))
dev_dbg(db->dev, "enabling %s\n", dev->name);
/* If there is no IRQ type specified, default to something that
* may work, and tell the user that this is a problem */
if (irqflags == IRQF_TRIGGER_NONE)
irqflags = irq_get_trigger_type(dev->irq);
if (irqflags == IRQF_TRIGGER_NONE)
dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
irqflags |= IRQF_SHARED;
/* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
iow(db, DM9000_GPR, 0); /* REG_1F bit0 activate phyxcer */
mdelay(1); /* delay needs by DM9000B */
/* Initialize DM9000 board */
dm9000_init_dm9000(dev);
if (request_irq(dev->irq, dm9000_interrupt, irqflags, dev->name, dev))
return -EAGAIN;
/* Now that we have an interrupt handler hooked up we can unmask
* our interrupts
*/
dm9000_unmask_interrupts(db);
/* Init driver variable */
db->dbug_cnt = 0;
mii_check_media(&db->mii, netif_msg_link(db), 1);
netif_start_queue(dev);
/* Poll initial link status */
schedule_delayed_work(&db->phy_poll, 1);
return 0;
}
static void
dm9000_shutdown(struct net_device *dev)
{
struct board_info *db = netdev_priv(dev);
/* RESET device */
dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */
iow(db, DM9000_GPR, 0x01); /* Power-Down PHY */
dm9000_mask_interrupts(db);
iow(db, DM9000_RCR, 0x00); /* Disable RX */
}
/*
* Stop the interface.
* The interface is stopped when it is brought.
*/
static int
dm9000_stop(struct net_device *ndev)
{
struct board_info *db = netdev_priv(ndev);
if (netif_msg_ifdown(db))
dev_dbg(db->dev, "shutting down %s\n", ndev->name);
cancel_delayed_work_sync(&db->phy_poll);
netif_stop_queue(ndev);
netif_carrier_off(ndev);
/* free interrupt */
free_irq(ndev->irq, ndev);
dm9000_shutdown(ndev);
return 0;
}
static const struct net_device_ops dm9000_netdev_ops = {
.ndo_open = dm9000_open,
.ndo_stop = dm9000_stop,
.ndo_start_xmit = dm9000_start_xmit,
.ndo_tx_timeout = dm9000_timeout,
.ndo_set_rx_mode = dm9000_hash_table,
.ndo_do_ioctl = dm9000_ioctl,
.ndo_change_mtu = eth_change_mtu,
.ndo_set_features = dm9000_set_features,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = eth_mac_addr,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = dm9000_poll_controller,
#endif
};
static struct dm9000_plat_data *dm9000_parse_dt(struct device *dev)
{
struct dm9000_plat_data *pdata;
struct device_node *np = dev->of_node;
const void *mac_addr;
if (!IS_ENABLED(CONFIG_OF) || !np)
return ERR_PTR(-ENXIO);
pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return ERR_PTR(-ENOMEM);
if (of_find_property(np, "davicom,ext-phy", NULL))
pdata->flags |= DM9000_PLATF_EXT_PHY;
if (of_find_property(np, "davicom,no-eeprom", NULL))
pdata->flags |= DM9000_PLATF_NO_EEPROM;
mac_addr = of_get_mac_address(np);
if (mac_addr)
memcpy(pdata->dev_addr, mac_addr, sizeof(pdata->dev_addr));
return pdata;
}
/*
* Search DM9000 board, allocate space and register it
*/
static int
dm9000_probe(struct platform_device *pdev)
{
struct dm9000_plat_data *pdata = dev_get_platdata(&pdev->dev);
struct board_info *db; /* Point a board information structure */
struct net_device *ndev;
struct device *dev = &pdev->dev;
const unsigned char *mac_src;
int ret = 0;
int iosize;
int i;
u32 id_val;
int reset_gpios;
enum of_gpio_flags flags;
struct regulator *power;
power = devm_regulator_get(dev, "vcc");
if (IS_ERR(power)) {
if (PTR_ERR(power) == -EPROBE_DEFER)
return -EPROBE_DEFER;
dev_dbg(dev, "no regulator provided\n");
} else {
ret = regulator_enable(power);
if (ret != 0) {
dev_err(dev,
"Failed to enable power regulator: %d\n", ret);
return ret;
}
dev_dbg(dev, "regulator enabled\n");
}
reset_gpios = of_get_named_gpio_flags(dev->of_node, "reset-gpios", 0,
&flags);
if (gpio_is_valid(reset_gpios)) {
ret = devm_gpio_request_one(dev, reset_gpios, flags,
"dm9000_reset");
if (ret) {
dev_err(dev, "failed to request reset gpio %d: %d\n",
reset_gpios, ret);
return -ENODEV;
}
/* According to manual PWRST# Low Period Min 1ms */
msleep(2);
gpio_set_value(reset_gpios, 1);
/* Needs 3ms to read eeprom when PWRST is deasserted */
msleep(4);
}
if (!pdata) {
pdata = dm9000_parse_dt(&pdev->dev);
if (IS_ERR(pdata))
return PTR_ERR(pdata);
}
/* Init network device */
ndev = alloc_etherdev(sizeof(struct board_info));
if (!ndev)
return -ENOMEM;
SET_NETDEV_DEV(ndev, &pdev->dev);
dev_dbg(&pdev->dev, "dm9000_probe()\n");
/* setup board info structure */
db = netdev_priv(ndev);
db->dev = &pdev->dev;
db->ndev = ndev;
spin_lock_init(&db->lock);
mutex_init(&db->addr_lock);
INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
db->irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (db->addr_res == NULL || db->data_res == NULL ||
db->irq_res == NULL) {
dev_err(db->dev, "insufficient resources\n");
ret = -ENOENT;
goto out;
}
db->irq_wake = platform_get_irq(pdev, 1);
if (db->irq_wake >= 0) {
dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
IRQF_SHARED, dev_name(db->dev), ndev);
if (ret) {
dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
} else {
/* test to see if irq is really wakeup capable */
ret = irq_set_irq_wake(db->irq_wake, 1);
if (ret) {
dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
db->irq_wake, ret);
ret = 0;
} else {
irq_set_irq_wake(db->irq_wake, 0);
db->wake_supported = 1;
}
}
}
iosize = resource_size(db->addr_res);
db->addr_req = request_mem_region(db->addr_res->start, iosize,
pdev->name);
if (db->addr_req == NULL) {
dev_err(db->dev, "cannot claim address reg area\n");
ret = -EIO;
goto out;
}
db->io_addr = ioremap(db->addr_res->start, iosize);
if (db->io_addr == NULL) {
dev_err(db->dev, "failed to ioremap address reg\n");
ret = -EINVAL;
goto out;
}
iosize = resource_size(db->data_res);
db->data_req = request_mem_region(db->data_res->start, iosize,
pdev->name);
if (db->data_req == NULL) {
dev_err(db->dev, "cannot claim data reg area\n");
ret = -EIO;
goto out;
}
db->io_data = ioremap(db->data_res->start, iosize);
if (db->io_data == NULL) {
dev_err(db->dev, "failed to ioremap data reg\n");
ret = -EINVAL;
goto out;
}
/* fill in parameters for net-dev structure */
ndev->base_addr = (unsigned long)db->io_addr;
ndev->irq = db->irq_res->start;
/* ensure at least we have a default set of IO routines */
dm9000_set_io(db, iosize);
/* check to see if anything is being over-ridden */
if (pdata != NULL) {
/* check to see if the driver wants to over-ride the
* default IO width */
if (pdata->flags & DM9000_PLATF_8BITONLY)
dm9000_set_io(db, 1);
if (pdata->flags & DM9000_PLATF_16BITONLY)
dm9000_set_io(db, 2);
if (pdata->flags & DM9000_PLATF_32BITONLY)
dm9000_set_io(db, 4);
/* check to see if there are any IO routine
* over-rides */
if (pdata->inblk != NULL)
db->inblk = pdata->inblk;
if (pdata->outblk != NULL)
db->outblk = pdata->outblk;
if (pdata->dumpblk != NULL)
db->dumpblk = pdata->dumpblk;
db->flags = pdata->flags;
}
#ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
db->flags |= DM9000_PLATF_SIMPLE_PHY;
#endif
dm9000_reset(db);
/* try multiple times, DM9000 sometimes gets the read wrong */
for (i = 0; i < 8; i++) {
id_val = ior(db, DM9000_VIDL);
id_val |= (u32)ior(db, DM9000_VIDH) << 8;
id_val |= (u32)ior(db, DM9000_PIDL) << 16;
id_val |= (u32)ior(db, DM9000_PIDH) << 24;
if (id_val == DM9000_ID)
break;
dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
}
if (id_val != DM9000_ID) {
dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
ret = -ENODEV;
goto out;
}
/* Identify what type of DM9000 we are working on */
id_val = ior(db, DM9000_CHIPR);
dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
switch (id_val) {
case CHIPR_DM9000A:
db->type = TYPE_DM9000A;
break;
case CHIPR_DM9000B:
db->type = TYPE_DM9000B;
break;
default:
dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
db->type = TYPE_DM9000E;
}
/* dm9000a/b are capable of hardware checksum offload */
if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
ndev->features |= ndev->hw_features;
}
/* from this point we assume that we have found a DM9000 */
ndev->netdev_ops = &dm9000_netdev_ops;
ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
ndev->ethtool_ops = &dm9000_ethtool_ops;
db->msg_enable = NETIF_MSG_LINK;
db->mii.phy_id_mask = 0x1f;
db->mii.reg_num_mask = 0x1f;
db->mii.force_media = 0;
db->mii.full_duplex = 0;
db->mii.dev = ndev;
db->mii.mdio_read = dm9000_phy_read;
db->mii.mdio_write = dm9000_phy_write;
mac_src = "eeprom";
/* try reading the node address from the attached EEPROM */
for (i = 0; i < 6; i += 2)
dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
mac_src = "platform data";
memcpy(ndev->dev_addr, pdata->dev_addr, ETH_ALEN);
}
if (!is_valid_ether_addr(ndev->dev_addr)) {
/* try reading from mac */
mac_src = "chip";
for (i = 0; i < 6; i++)
ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
}
if (!is_valid_ether_addr(ndev->dev_addr)) {
dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please "
"set using ifconfig\n", ndev->name);
eth_hw_addr_random(ndev);
mac_src = "random";
}
platform_set_drvdata(pdev, ndev);
ret = register_netdev(ndev);
if (ret == 0)
printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
ndev->name, dm9000_type_to_char(db->type),
db->io_addr, db->io_data, ndev->irq,
ndev->dev_addr, mac_src);
return 0;
out:
dev_err(db->dev, "not found (%d).\n", ret);
dm9000_release_board(pdev, db);
free_netdev(ndev);
return ret;
}
static int
dm9000_drv_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct net_device *ndev = platform_get_drvdata(pdev);
struct board_info *db;
if (ndev) {
db = netdev_priv(ndev);
db->in_suspend = 1;
if (!netif_running(ndev))
return 0;
netif_device_detach(ndev);
/* only shutdown if not using WoL */
if (!db->wake_state)
dm9000_shutdown(ndev);
}
return 0;
}
static int
dm9000_drv_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct net_device *ndev = platform_get_drvdata(pdev);
struct board_info *db = netdev_priv(ndev);
if (ndev) {
if (netif_running(ndev)) {
/* reset if we were not in wake mode to ensure if
* the device was powered off it is in a known state */
if (!db->wake_state) {
dm9000_init_dm9000(ndev);
dm9000_unmask_interrupts(db);
}
netif_device_attach(ndev);
}
db->in_suspend = 0;
}
return 0;
}
static const struct dev_pm_ops dm9000_drv_pm_ops = {
.suspend = dm9000_drv_suspend,
.resume = dm9000_drv_resume,
};
static int
dm9000_drv_remove(struct platform_device *pdev)
{
struct net_device *ndev = platform_get_drvdata(pdev);
unregister_netdev(ndev);
dm9000_release_board(pdev, netdev_priv(ndev));
free_netdev(ndev); /* free device structure */
dev_dbg(&pdev->dev, "released and freed device\n");
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id dm9000_of_matches[] = {
{ .compatible = "davicom,dm9000", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, dm9000_of_matches);
#endif
static struct platform_driver dm9000_driver = {
.driver = {
.name = "dm9000",
.pm = &dm9000_drv_pm_ops,
.of_match_table = of_match_ptr(dm9000_of_matches),
},
.probe = dm9000_probe,
.remove = dm9000_drv_remove,
};
module_platform_driver(dm9000_driver);
MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
MODULE_DESCRIPTION("Davicom DM9000 network driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:dm9000");