linux_dsm_epyc7002/fs/cifs/cifsencrypt.c
shirishpargaonkar@gmail.com 2d20ca8358 Eliminate sparse warning - bad constant expression
Eliminiate sparse warning during usage of crypto_shash_* APIs
       error: bad constant expression

Allocate memory for shash descriptors once, so that we do not kmalloc/kfree it
for every signature generation (shash descriptor for md5 hash).

From ed7538619817777decc44b5660b52268077b74f3 Mon Sep 17 00:00:00 2001
From: Shirish Pargaonkar <shirishpargaonkar@gmail.com>
Date: Tue, 24 Aug 2010 11:47:43 -0500
Subject: [PATCH] eliminate sparse warnings during crypto_shash_* APis usage

Signed-off-by: Shirish Pargaonkar <shirishpargaonkar@gmail.com>
Signed-off-by: Steve French <sfrench@us.ibm.com>
2010-08-24 18:12:52 +00:00

651 lines
18 KiB
C

/*
* fs/cifs/cifsencrypt.c
*
* Copyright (C) International Business Machines Corp., 2005,2006
* Author(s): Steve French (sfrench@us.ibm.com)
*
* This library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation; either version 2.1 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/fs.h>
#include <linux/slab.h>
#include "cifspdu.h"
#include "cifsglob.h"
#include "cifs_debug.h"
#include "md5.h"
#include "cifs_unicode.h"
#include "cifsproto.h"
#include "ntlmssp.h"
#include <linux/ctype.h>
#include <linux/random.h>
/* Calculate and return the CIFS signature based on the mac key and SMB PDU */
/* the 16 byte signature must be allocated by the caller */
/* Note we only use the 1st eight bytes */
/* Note that the smb header signature field on input contains the
sequence number before this function is called */
extern void mdfour(unsigned char *out, unsigned char *in, int n);
extern void E_md4hash(const unsigned char *passwd, unsigned char *p16);
extern void SMBencrypt(unsigned char *passwd, const unsigned char *c8,
unsigned char *p24);
static int cifs_calculate_signature(const struct smb_hdr *cifs_pdu,
struct TCP_Server_Info *server, char *signature)
{
int rc;
if (cifs_pdu == NULL || server == NULL || signature == NULL)
return -EINVAL;
if (!server->ntlmssp.sdescmd5) {
cERROR(1,
"cifs_calculate_signature: can't generate signature\n");
return -1;
}
rc = crypto_shash_init(&server->ntlmssp.sdescmd5->shash);
if (rc) {
cERROR(1, "cifs_calculate_signature: oould not init md5\n");
return rc;
}
if (server->secType == RawNTLMSSP)
crypto_shash_update(&server->ntlmssp.sdescmd5->shash,
server->session_key.data.ntlmv2.key,
CIFS_NTLMV2_SESSKEY_SIZE);
else
crypto_shash_update(&server->ntlmssp.sdescmd5->shash,
(char *)&server->session_key.data,
server->session_key.len);
crypto_shash_update(&server->ntlmssp.sdescmd5->shash,
cifs_pdu->Protocol, cifs_pdu->smb_buf_length);
rc = crypto_shash_final(&server->ntlmssp.sdescmd5->shash, signature);
return rc;
}
int cifs_sign_smb(struct smb_hdr *cifs_pdu, struct TCP_Server_Info *server,
__u32 *pexpected_response_sequence_number)
{
int rc = 0;
char smb_signature[20];
if ((cifs_pdu == NULL) || (server == NULL))
return -EINVAL;
if ((cifs_pdu->Flags2 & SMBFLG2_SECURITY_SIGNATURE) == 0)
return rc;
spin_lock(&GlobalMid_Lock);
cifs_pdu->Signature.Sequence.SequenceNumber =
cpu_to_le32(server->sequence_number);
cifs_pdu->Signature.Sequence.Reserved = 0;
*pexpected_response_sequence_number = server->sequence_number++;
server->sequence_number++;
spin_unlock(&GlobalMid_Lock);
rc = cifs_calculate_signature(cifs_pdu, server, smb_signature);
if (rc)
memset(cifs_pdu->Signature.SecuritySignature, 0, 8);
else
memcpy(cifs_pdu->Signature.SecuritySignature, smb_signature, 8);
return rc;
}
static int cifs_calc_signature2(const struct kvec *iov, int n_vec,
struct TCP_Server_Info *server, char *signature)
{
int i;
int rc;
if (iov == NULL || server == NULL || signature == NULL)
return -EINVAL;
if (!server->ntlmssp.sdescmd5) {
cERROR(1, "cifs_calc_signature2: can't generate signature\n");
return -1;
}
rc = crypto_shash_init(&server->ntlmssp.sdescmd5->shash);
if (rc) {
cERROR(1, "cifs_calc_signature2: oould not init md5\n");
return rc;
}
if (server->secType == RawNTLMSSP)
crypto_shash_update(&server->ntlmssp.sdescmd5->shash,
server->session_key.data.ntlmv2.key,
CIFS_NTLMV2_SESSKEY_SIZE);
else
crypto_shash_update(&server->ntlmssp.sdescmd5->shash,
(char *)&server->session_key.data,
server->session_key.len);
for (i = 0; i < n_vec; i++) {
if (iov[i].iov_len == 0)
continue;
if (iov[i].iov_base == NULL) {
cERROR(1, "cifs_calc_signature2: null iovec entry");
return -EIO;
}
/* The first entry includes a length field (which does not get
signed that occupies the first 4 bytes before the header */
if (i == 0) {
if (iov[0].iov_len <= 8) /* cmd field at offset 9 */
break; /* nothing to sign or corrupt header */
crypto_shash_update(&server->ntlmssp.sdescmd5->shash,
iov[i].iov_base + 4, iov[i].iov_len - 4);
} else
crypto_shash_update(&server->ntlmssp.sdescmd5->shash,
iov[i].iov_base, iov[i].iov_len);
}
rc = crypto_shash_final(&server->ntlmssp.sdescmd5->shash, signature);
return rc;
}
int cifs_sign_smb2(struct kvec *iov, int n_vec, struct TCP_Server_Info *server,
__u32 *pexpected_response_sequence_number)
{
int rc = 0;
char smb_signature[20];
struct smb_hdr *cifs_pdu = iov[0].iov_base;
if ((cifs_pdu == NULL) || (server == NULL))
return -EINVAL;
if ((cifs_pdu->Flags2 & SMBFLG2_SECURITY_SIGNATURE) == 0)
return rc;
spin_lock(&GlobalMid_Lock);
cifs_pdu->Signature.Sequence.SequenceNumber =
cpu_to_le32(server->sequence_number);
cifs_pdu->Signature.Sequence.Reserved = 0;
*pexpected_response_sequence_number = server->sequence_number++;
server->sequence_number++;
spin_unlock(&GlobalMid_Lock);
rc = cifs_calc_signature2(iov, n_vec, server, smb_signature);
if (rc)
memset(cifs_pdu->Signature.SecuritySignature, 0, 8);
else
memcpy(cifs_pdu->Signature.SecuritySignature, smb_signature, 8);
return rc;
}
int cifs_verify_signature(struct smb_hdr *cifs_pdu,
struct TCP_Server_Info *server,
__u32 expected_sequence_number)
{
int rc;
char server_response_sig[8];
char what_we_think_sig_should_be[20];
if (cifs_pdu == NULL || server == NULL)
return -EINVAL;
if (cifs_pdu->Command == SMB_COM_NEGOTIATE)
return 0;
if (cifs_pdu->Command == SMB_COM_LOCKING_ANDX) {
struct smb_com_lock_req *pSMB =
(struct smb_com_lock_req *)cifs_pdu;
if (pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE)
return 0;
}
/* BB what if signatures are supposed to be on for session but
server does not send one? BB */
/* Do not need to verify session setups with signature "BSRSPYL " */
if (memcmp(cifs_pdu->Signature.SecuritySignature, "BSRSPYL ", 8) == 0)
cFYI(1, "dummy signature received for smb command 0x%x",
cifs_pdu->Command);
/* save off the origiginal signature so we can modify the smb and check
its signature against what the server sent */
memcpy(server_response_sig, cifs_pdu->Signature.SecuritySignature, 8);
cifs_pdu->Signature.Sequence.SequenceNumber =
cpu_to_le32(expected_sequence_number);
cifs_pdu->Signature.Sequence.Reserved = 0;
rc = cifs_calculate_signature(cifs_pdu, server,
what_we_think_sig_should_be);
if (rc)
return rc;
/* cifs_dump_mem("what we think it should be: ",
what_we_think_sig_should_be, 16); */
if (memcmp(server_response_sig, what_we_think_sig_should_be, 8))
return -EACCES;
else
return 0;
}
/* We fill in key by putting in 40 byte array which was allocated by caller */
int cifs_calculate_session_key(struct session_key *key, const char *rn,
const char *password)
{
char temp_key[16];
if ((key == NULL) || (rn == NULL))
return -EINVAL;
E_md4hash(password, temp_key);
mdfour(key->data.ntlm, temp_key, 16);
memcpy(key->data.ntlm+16, rn, CIFS_SESS_KEY_SIZE);
key->len = 40;
return 0;
}
#ifdef CONFIG_CIFS_WEAK_PW_HASH
void calc_lanman_hash(const char *password, const char *cryptkey, bool encrypt,
char *lnm_session_key)
{
int i;
char password_with_pad[CIFS_ENCPWD_SIZE];
memset(password_with_pad, 0, CIFS_ENCPWD_SIZE);
if (password)
strncpy(password_with_pad, password, CIFS_ENCPWD_SIZE);
if (!encrypt && global_secflags & CIFSSEC_MAY_PLNTXT) {
memset(lnm_session_key, 0, CIFS_SESS_KEY_SIZE);
memcpy(lnm_session_key, password_with_pad,
CIFS_ENCPWD_SIZE);
return;
}
/* calculate old style session key */
/* calling toupper is less broken than repeatedly
calling nls_toupper would be since that will never
work for UTF8, but neither handles multibyte code pages
but the only alternative would be converting to UCS-16 (Unicode)
(using a routine something like UniStrupr) then
uppercasing and then converting back from Unicode - which
would only worth doing it if we knew it were utf8. Basically
utf8 and other multibyte codepages each need their own strupper
function since a byte at a time will ont work. */
for (i = 0; i < CIFS_ENCPWD_SIZE; i++)
password_with_pad[i] = toupper(password_with_pad[i]);
SMBencrypt(password_with_pad, cryptkey, lnm_session_key);
/* clear password before we return/free memory */
memset(password_with_pad, 0, CIFS_ENCPWD_SIZE);
}
#endif /* CIFS_WEAK_PW_HASH */
static int calc_ntlmv2_hash(struct cifsSesInfo *ses,
const struct nls_table *nls_cp)
{
int rc = 0;
int len;
char nt_hash[CIFS_NTHASH_SIZE];
wchar_t *user;
wchar_t *domain;
wchar_t *server;
if (!ses->server->ntlmssp.sdeschmacmd5) {
cERROR(1, "calc_ntlmv2_hash: can't generate ntlmv2 hash\n");
return -1;
}
/* calculate md4 hash of password */
E_md4hash(ses->password, nt_hash);
crypto_shash_setkey(ses->server->ntlmssp.hmacmd5, nt_hash,
CIFS_NTHASH_SIZE);
rc = crypto_shash_init(&ses->server->ntlmssp.sdeschmacmd5->shash);
if (rc) {
cERROR(1, "calc_ntlmv2_hash: could not init hmacmd5\n");
return rc;
}
/* convert ses->userName to unicode and uppercase */
len = strlen(ses->userName);
user = kmalloc(2 + (len * 2), GFP_KERNEL);
if (user == NULL) {
cERROR(1, "calc_ntlmv2_hash: user mem alloc failure\n");
rc = -ENOMEM;
goto calc_exit_2;
}
len = cifs_strtoUCS((__le16 *)user, ses->userName, len, nls_cp);
UniStrupr(user);
crypto_shash_update(&ses->server->ntlmssp.sdeschmacmd5->shash,
(char *)user, 2 * len);
/* convert ses->domainName to unicode and uppercase */
if (ses->domainName) {
len = strlen(ses->domainName);
domain = kmalloc(2 + (len * 2), GFP_KERNEL);
if (domain == NULL) {
cERROR(1, "calc_ntlmv2_hash: domain mem alloc failure");
rc = -ENOMEM;
goto calc_exit_1;
}
len = cifs_strtoUCS((__le16 *)domain, ses->domainName, len,
nls_cp);
/* the following line was removed since it didn't work well
with lower cased domain name that passed as an option.
Maybe converting the domain name earlier makes sense */
/* UniStrupr(domain); */
crypto_shash_update(&ses->server->ntlmssp.sdeschmacmd5->shash,
(char *)domain, 2 * len);
kfree(domain);
} else if (ses->serverName) {
len = strlen(ses->serverName);
server = kmalloc(2 + (len * 2), GFP_KERNEL);
if (server == NULL) {
cERROR(1, "calc_ntlmv2_hash: server mem alloc failure");
rc = -ENOMEM;
goto calc_exit_1;
}
len = cifs_strtoUCS((__le16 *)server, ses->serverName, len,
nls_cp);
/* the following line was removed since it didn't work well
with lower cased domain name that passed as an option.
Maybe converting the domain name earlier makes sense */
/* UniStrupr(domain); */
crypto_shash_update(&ses->server->ntlmssp.sdeschmacmd5->shash,
(char *)server, 2 * len);
kfree(server);
}
rc = crypto_shash_final(&ses->server->ntlmssp.sdeschmacmd5->shash,
ses->server->ntlmv2_hash);
calc_exit_1:
kfree(user);
calc_exit_2:
/* BB FIXME what about bytes 24 through 40 of the signing key?
compare with the NTLM example */
return rc;
}
static int
find_domain_name(struct cifsSesInfo *ses)
{
int rc = 0;
unsigned int attrsize;
unsigned int type;
unsigned char *blobptr;
struct ntlmssp2_name *attrptr;
if (ses->server->tiblob) {
blobptr = ses->server->tiblob;
attrptr = (struct ntlmssp2_name *) blobptr;
while ((type = attrptr->type) != 0) {
blobptr += 2; /* advance attr type */
attrsize = attrptr->length;
blobptr += 2; /* advance attr size */
if (type == NTLMSSP_AV_NB_DOMAIN_NAME) {
if (!ses->domainName) {
ses->domainName =
kmalloc(attrptr->length + 1,
GFP_KERNEL);
if (!ses->domainName)
return -ENOMEM;
cifs_from_ucs2(ses->domainName,
(__le16 *)blobptr,
attrptr->length,
attrptr->length,
load_nls_default(), false);
}
}
blobptr += attrsize; /* advance attr value */
attrptr = (struct ntlmssp2_name *) blobptr;
}
} else {
ses->server->tilen = 2 * sizeof(struct ntlmssp2_name);
ses->server->tiblob = kmalloc(ses->server->tilen, GFP_KERNEL);
if (!ses->server->tiblob) {
ses->server->tilen = 0;
cERROR(1, "Challenge target info allocation failure");
return -ENOMEM;
}
memset(ses->server->tiblob, 0x0, ses->server->tilen);
attrptr = (struct ntlmssp2_name *) ses->server->tiblob;
attrptr->type = cpu_to_le16(NTLMSSP_DOMAIN_TYPE);
}
return rc;
}
static int
CalcNTLMv2_response(const struct TCP_Server_Info *server,
char *v2_session_response)
{
int rc;
if (!server->ntlmssp.sdeschmacmd5) {
cERROR(1, "calc_ntlmv2_hash: can't generate ntlmv2 hash\n");
return -1;
}
crypto_shash_setkey(server->ntlmssp.hmacmd5, server->ntlmv2_hash,
CIFS_HMAC_MD5_HASH_SIZE);
rc = crypto_shash_init(&server->ntlmssp.sdeschmacmd5->shash);
if (rc) {
cERROR(1, "CalcNTLMv2_response: could not init hmacmd5");
return rc;
}
memcpy(v2_session_response + CIFS_SERVER_CHALLENGE_SIZE,
server->cryptKey, CIFS_SERVER_CHALLENGE_SIZE);
crypto_shash_update(&server->ntlmssp.sdeschmacmd5->shash,
v2_session_response + CIFS_SERVER_CHALLENGE_SIZE,
sizeof(struct ntlmv2_resp) - CIFS_SERVER_CHALLENGE_SIZE);
if (server->tilen)
crypto_shash_update(&server->ntlmssp.sdeschmacmd5->shash,
server->tiblob, server->tilen);
rc = crypto_shash_final(&server->ntlmssp.sdeschmacmd5->shash,
v2_session_response);
return rc;
}
int
setup_ntlmv2_rsp(struct cifsSesInfo *ses, char *resp_buf,
const struct nls_table *nls_cp)
{
int rc = 0;
struct ntlmv2_resp *buf = (struct ntlmv2_resp *)resp_buf;
buf->blob_signature = cpu_to_le32(0x00000101);
buf->reserved = 0;
buf->time = cpu_to_le64(cifs_UnixTimeToNT(CURRENT_TIME));
get_random_bytes(&buf->client_chal, sizeof(buf->client_chal));
buf->reserved2 = 0;
if (!ses->domainName) {
rc = find_domain_name(ses);
if (rc) {
cERROR(1, "could not get domain/server name rc %d", rc);
return rc;
}
}
/* calculate buf->ntlmv2_hash */
rc = calc_ntlmv2_hash(ses, nls_cp);
if (rc) {
cERROR(1, "could not get v2 hash rc %d", rc);
return rc;
}
rc = CalcNTLMv2_response(ses->server, resp_buf);
if (rc) {
cERROR(1, "could not get v2 hash rc %d", rc);
return rc;
}
if (!ses->server->ntlmssp.sdeschmacmd5) {
cERROR(1, "calc_ntlmv2_hash: can't generate ntlmv2 hash\n");
return -1;
}
crypto_shash_setkey(ses->server->ntlmssp.hmacmd5,
ses->server->ntlmv2_hash, CIFS_HMAC_MD5_HASH_SIZE);
rc = crypto_shash_init(&ses->server->ntlmssp.sdeschmacmd5->shash);
if (rc) {
cERROR(1, "setup_ntlmv2_rsp: could not init hmacmd5\n");
return rc;
}
crypto_shash_update(&ses->server->ntlmssp.sdeschmacmd5->shash,
resp_buf, CIFS_HMAC_MD5_HASH_SIZE);
rc = crypto_shash_final(&ses->server->ntlmssp.sdeschmacmd5->shash,
ses->server->session_key.data.ntlmv2.key);
memcpy(&ses->server->session_key.data.ntlmv2.resp, resp_buf,
sizeof(struct ntlmv2_resp));
ses->server->session_key.len = 16 + sizeof(struct ntlmv2_resp);
return rc;
}
int
calc_seckey(struct TCP_Server_Info *server)
{
int rc;
unsigned char sec_key[CIFS_NTLMV2_SESSKEY_SIZE];
struct crypto_blkcipher *tfm_arc4;
struct scatterlist sgin, sgout;
struct blkcipher_desc desc;
get_random_bytes(sec_key, CIFS_NTLMV2_SESSKEY_SIZE);
tfm_arc4 = crypto_alloc_blkcipher("ecb(arc4)",
0, CRYPTO_ALG_ASYNC);
if (!tfm_arc4 || IS_ERR(tfm_arc4)) {
cERROR(1, "could not allocate " "master crypto API arc4\n");
return 1;
}
desc.tfm = tfm_arc4;
crypto_blkcipher_setkey(tfm_arc4,
server->session_key.data.ntlmv2.key, CIFS_CPHTXT_SIZE);
sg_init_one(&sgin, sec_key, CIFS_CPHTXT_SIZE);
sg_init_one(&sgout, server->ntlmssp.ciphertext, CIFS_CPHTXT_SIZE);
rc = crypto_blkcipher_encrypt(&desc, &sgout, &sgin, CIFS_CPHTXT_SIZE);
if (!rc)
memcpy(server->session_key.data.ntlmv2.key,
sec_key, CIFS_NTLMV2_SESSKEY_SIZE);
crypto_free_blkcipher(tfm_arc4);
return 0;
}
void
cifs_crypto_shash_release(struct TCP_Server_Info *server)
{
if (server->ntlmssp.md5)
crypto_free_shash(server->ntlmssp.md5);
if (server->ntlmssp.hmacmd5)
crypto_free_shash(server->ntlmssp.hmacmd5);
kfree(server->ntlmssp.sdeschmacmd5);
kfree(server->ntlmssp.sdescmd5);
}
int
cifs_crypto_shash_allocate(struct TCP_Server_Info *server)
{
int rc;
unsigned int size;
server->ntlmssp.hmacmd5 = crypto_alloc_shash("hmac(md5)", 0, 0);
if (!server->ntlmssp.hmacmd5 ||
IS_ERR(server->ntlmssp.hmacmd5)) {
cERROR(1, "could not allocate crypto hmacmd5\n");
return 1;
}
server->ntlmssp.md5 = crypto_alloc_shash("md5", 0, 0);
if (!server->ntlmssp.md5 || IS_ERR(server->ntlmssp.md5)) {
cERROR(1, "could not allocate crypto md5\n");
rc = 1;
goto cifs_crypto_shash_allocate_ret1;
}
size = sizeof(struct shash_desc) +
crypto_shash_descsize(server->ntlmssp.hmacmd5);
server->ntlmssp.sdeschmacmd5 = kmalloc(size, GFP_KERNEL);
if (!server->ntlmssp.sdeschmacmd5) {
cERROR(1, "cifs_crypto_shash_allocate: can't alloc hmacmd5\n");
rc = -ENOMEM;
goto cifs_crypto_shash_allocate_ret2;
}
server->ntlmssp.sdeschmacmd5->shash.tfm = server->ntlmssp.hmacmd5;
server->ntlmssp.sdeschmacmd5->shash.flags = 0x0;
size = sizeof(struct shash_desc) +
crypto_shash_descsize(server->ntlmssp.md5);
server->ntlmssp.sdescmd5 = kmalloc(size, GFP_KERNEL);
if (!server->ntlmssp.sdescmd5) {
cERROR(1, "cifs_crypto_shash_allocate: can't alloc md5\n");
rc = -ENOMEM;
goto cifs_crypto_shash_allocate_ret3;
}
server->ntlmssp.sdescmd5->shash.tfm = server->ntlmssp.md5;
server->ntlmssp.sdescmd5->shash.flags = 0x0;
return 0;
cifs_crypto_shash_allocate_ret3:
kfree(server->ntlmssp.sdeschmacmd5);
cifs_crypto_shash_allocate_ret2:
crypto_free_shash(server->ntlmssp.md5);
cifs_crypto_shash_allocate_ret1:
crypto_free_shash(server->ntlmssp.hmacmd5);
return rc;
}