mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-25 10:43:41 +07:00
e7c4805924
Add a new has_gicv4 field in the global VGIC state that indicates whether the HW is GICv4 capable, as a per-VM predicate indicating if there is a possibility for a VM to support direct injection (the above being true and the VM having an ITS). Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
901 lines
25 KiB
C
901 lines
25 KiB
C
/*
|
|
* VGICv3 MMIO handling functions
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <linux/irqchip/arm-gic-v3.h>
|
|
#include <linux/kvm.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <kvm/iodev.h>
|
|
#include <kvm/arm_vgic.h>
|
|
|
|
#include <asm/kvm_emulate.h>
|
|
#include <asm/kvm_arm.h>
|
|
#include <asm/kvm_mmu.h>
|
|
|
|
#include "vgic.h"
|
|
#include "vgic-mmio.h"
|
|
|
|
/* extract @num bytes at @offset bytes offset in data */
|
|
unsigned long extract_bytes(u64 data, unsigned int offset,
|
|
unsigned int num)
|
|
{
|
|
return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
|
|
}
|
|
|
|
/* allows updates of any half of a 64-bit register (or the whole thing) */
|
|
u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
|
|
unsigned long val)
|
|
{
|
|
int lower = (offset & 4) * 8;
|
|
int upper = lower + 8 * len - 1;
|
|
|
|
reg &= ~GENMASK_ULL(upper, lower);
|
|
val &= GENMASK_ULL(len * 8 - 1, 0);
|
|
|
|
return reg | ((u64)val << lower);
|
|
}
|
|
|
|
bool vgic_has_its(struct kvm *kvm)
|
|
{
|
|
struct vgic_dist *dist = &kvm->arch.vgic;
|
|
|
|
if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
|
|
return false;
|
|
|
|
return dist->has_its;
|
|
}
|
|
|
|
bool vgic_supports_direct_msis(struct kvm *kvm)
|
|
{
|
|
return kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm);
|
|
}
|
|
|
|
static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
u32 value = 0;
|
|
|
|
switch (addr & 0x0c) {
|
|
case GICD_CTLR:
|
|
if (vcpu->kvm->arch.vgic.enabled)
|
|
value |= GICD_CTLR_ENABLE_SS_G1;
|
|
value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
|
|
break;
|
|
case GICD_TYPER:
|
|
value = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
|
|
value = (value >> 5) - 1;
|
|
if (vgic_has_its(vcpu->kvm)) {
|
|
value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
|
|
value |= GICD_TYPER_LPIS;
|
|
} else {
|
|
value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
|
|
}
|
|
break;
|
|
case GICD_IIDR:
|
|
value = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len,
|
|
unsigned long val)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
bool was_enabled = dist->enabled;
|
|
|
|
switch (addr & 0x0c) {
|
|
case GICD_CTLR:
|
|
dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
|
|
|
|
if (!was_enabled && dist->enabled)
|
|
vgic_kick_vcpus(vcpu->kvm);
|
|
break;
|
|
case GICD_TYPER:
|
|
case GICD_IIDR:
|
|
return;
|
|
}
|
|
}
|
|
|
|
static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
int intid = VGIC_ADDR_TO_INTID(addr, 64);
|
|
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
|
|
unsigned long ret = 0;
|
|
|
|
if (!irq)
|
|
return 0;
|
|
|
|
/* The upper word is RAZ for us. */
|
|
if (!(addr & 4))
|
|
ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
|
|
|
|
vgic_put_irq(vcpu->kvm, irq);
|
|
return ret;
|
|
}
|
|
|
|
static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len,
|
|
unsigned long val)
|
|
{
|
|
int intid = VGIC_ADDR_TO_INTID(addr, 64);
|
|
struct vgic_irq *irq;
|
|
unsigned long flags;
|
|
|
|
/* The upper word is WI for us since we don't implement Aff3. */
|
|
if (addr & 4)
|
|
return;
|
|
|
|
irq = vgic_get_irq(vcpu->kvm, NULL, intid);
|
|
|
|
if (!irq)
|
|
return;
|
|
|
|
spin_lock_irqsave(&irq->irq_lock, flags);
|
|
|
|
/* We only care about and preserve Aff0, Aff1 and Aff2. */
|
|
irq->mpidr = val & GENMASK(23, 0);
|
|
irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
|
|
|
|
spin_unlock_irqrestore(&irq->irq_lock, flags);
|
|
vgic_put_irq(vcpu->kvm, irq);
|
|
}
|
|
|
|
static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
|
|
return vgic_cpu->lpis_enabled ? GICR_CTLR_ENABLE_LPIS : 0;
|
|
}
|
|
|
|
|
|
static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len,
|
|
unsigned long val)
|
|
{
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
bool was_enabled = vgic_cpu->lpis_enabled;
|
|
|
|
if (!vgic_has_its(vcpu->kvm))
|
|
return;
|
|
|
|
vgic_cpu->lpis_enabled = val & GICR_CTLR_ENABLE_LPIS;
|
|
|
|
if (!was_enabled && vgic_cpu->lpis_enabled)
|
|
vgic_enable_lpis(vcpu);
|
|
}
|
|
|
|
static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
|
|
int target_vcpu_id = vcpu->vcpu_id;
|
|
u64 value;
|
|
|
|
value = (u64)(mpidr & GENMASK(23, 0)) << 32;
|
|
value |= ((target_vcpu_id & 0xffff) << 8);
|
|
if (target_vcpu_id == atomic_read(&vcpu->kvm->online_vcpus) - 1)
|
|
value |= GICR_TYPER_LAST;
|
|
if (vgic_has_its(vcpu->kvm))
|
|
value |= GICR_TYPER_PLPIS;
|
|
|
|
return extract_bytes(value, addr & 7, len);
|
|
}
|
|
|
|
static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
|
|
}
|
|
|
|
static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
switch (addr & 0xffff) {
|
|
case GICD_PIDR2:
|
|
/* report a GICv3 compliant implementation */
|
|
return 0x3b;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long vgic_v3_uaccess_read_pending(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
|
|
u32 value = 0;
|
|
int i;
|
|
|
|
/*
|
|
* pending state of interrupt is latched in pending_latch variable.
|
|
* Userspace will save and restore pending state and line_level
|
|
* separately.
|
|
* Refer to Documentation/virtual/kvm/devices/arm-vgic-v3.txt
|
|
* for handling of ISPENDR and ICPENDR.
|
|
*/
|
|
for (i = 0; i < len * 8; i++) {
|
|
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
|
|
|
|
if (irq->pending_latch)
|
|
value |= (1U << i);
|
|
|
|
vgic_put_irq(vcpu->kvm, irq);
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
static void vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len,
|
|
unsigned long val)
|
|
{
|
|
u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
|
|
int i;
|
|
unsigned long flags;
|
|
|
|
for (i = 0; i < len * 8; i++) {
|
|
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
|
|
|
|
spin_lock_irqsave(&irq->irq_lock, flags);
|
|
if (test_bit(i, &val)) {
|
|
/*
|
|
* pending_latch is set irrespective of irq type
|
|
* (level or edge) to avoid dependency that VM should
|
|
* restore irq config before pending info.
|
|
*/
|
|
irq->pending_latch = true;
|
|
vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
|
|
} else {
|
|
irq->pending_latch = false;
|
|
spin_unlock_irqrestore(&irq->irq_lock, flags);
|
|
}
|
|
|
|
vgic_put_irq(vcpu->kvm, irq);
|
|
}
|
|
}
|
|
|
|
/* We want to avoid outer shareable. */
|
|
u64 vgic_sanitise_shareability(u64 field)
|
|
{
|
|
switch (field) {
|
|
case GIC_BASER_OuterShareable:
|
|
return GIC_BASER_InnerShareable;
|
|
default:
|
|
return field;
|
|
}
|
|
}
|
|
|
|
/* Avoid any inner non-cacheable mapping. */
|
|
u64 vgic_sanitise_inner_cacheability(u64 field)
|
|
{
|
|
switch (field) {
|
|
case GIC_BASER_CACHE_nCnB:
|
|
case GIC_BASER_CACHE_nC:
|
|
return GIC_BASER_CACHE_RaWb;
|
|
default:
|
|
return field;
|
|
}
|
|
}
|
|
|
|
/* Non-cacheable or same-as-inner are OK. */
|
|
u64 vgic_sanitise_outer_cacheability(u64 field)
|
|
{
|
|
switch (field) {
|
|
case GIC_BASER_CACHE_SameAsInner:
|
|
case GIC_BASER_CACHE_nC:
|
|
return field;
|
|
default:
|
|
return GIC_BASER_CACHE_nC;
|
|
}
|
|
}
|
|
|
|
u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
|
|
u64 (*sanitise_fn)(u64))
|
|
{
|
|
u64 field = (reg & field_mask) >> field_shift;
|
|
|
|
field = sanitise_fn(field) << field_shift;
|
|
return (reg & ~field_mask) | field;
|
|
}
|
|
|
|
#define PROPBASER_RES0_MASK \
|
|
(GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
|
|
#define PENDBASER_RES0_MASK \
|
|
(BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) | \
|
|
GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
|
|
|
|
static u64 vgic_sanitise_pendbaser(u64 reg)
|
|
{
|
|
reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
|
|
GICR_PENDBASER_SHAREABILITY_SHIFT,
|
|
vgic_sanitise_shareability);
|
|
reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
|
|
GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
|
|
vgic_sanitise_inner_cacheability);
|
|
reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
|
|
GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
|
|
vgic_sanitise_outer_cacheability);
|
|
|
|
reg &= ~PENDBASER_RES0_MASK;
|
|
reg &= ~GENMASK_ULL(51, 48);
|
|
|
|
return reg;
|
|
}
|
|
|
|
static u64 vgic_sanitise_propbaser(u64 reg)
|
|
{
|
|
reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
|
|
GICR_PROPBASER_SHAREABILITY_SHIFT,
|
|
vgic_sanitise_shareability);
|
|
reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
|
|
GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
|
|
vgic_sanitise_inner_cacheability);
|
|
reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
|
|
GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
|
|
vgic_sanitise_outer_cacheability);
|
|
|
|
reg &= ~PROPBASER_RES0_MASK;
|
|
reg &= ~GENMASK_ULL(51, 48);
|
|
return reg;
|
|
}
|
|
|
|
static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
return extract_bytes(dist->propbaser, addr & 7, len);
|
|
}
|
|
|
|
static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len,
|
|
unsigned long val)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
u64 old_propbaser, propbaser;
|
|
|
|
/* Storing a value with LPIs already enabled is undefined */
|
|
if (vgic_cpu->lpis_enabled)
|
|
return;
|
|
|
|
do {
|
|
old_propbaser = READ_ONCE(dist->propbaser);
|
|
propbaser = old_propbaser;
|
|
propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
|
|
propbaser = vgic_sanitise_propbaser(propbaser);
|
|
} while (cmpxchg64(&dist->propbaser, old_propbaser,
|
|
propbaser) != old_propbaser);
|
|
}
|
|
|
|
static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
|
|
return extract_bytes(vgic_cpu->pendbaser, addr & 7, len);
|
|
}
|
|
|
|
static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len,
|
|
unsigned long val)
|
|
{
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
u64 old_pendbaser, pendbaser;
|
|
|
|
/* Storing a value with LPIs already enabled is undefined */
|
|
if (vgic_cpu->lpis_enabled)
|
|
return;
|
|
|
|
do {
|
|
old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
|
|
pendbaser = old_pendbaser;
|
|
pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
|
|
pendbaser = vgic_sanitise_pendbaser(pendbaser);
|
|
} while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
|
|
pendbaser) != old_pendbaser);
|
|
}
|
|
|
|
/*
|
|
* The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
|
|
* redistributors, while SPIs are covered by registers in the distributor
|
|
* block. Trying to set private IRQs in this block gets ignored.
|
|
* We take some special care here to fix the calculation of the register
|
|
* offset.
|
|
*/
|
|
#define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
|
|
{ \
|
|
.reg_offset = off, \
|
|
.bits_per_irq = bpi, \
|
|
.len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
|
|
.access_flags = acc, \
|
|
.read = vgic_mmio_read_raz, \
|
|
.write = vgic_mmio_write_wi, \
|
|
}, { \
|
|
.reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
|
|
.bits_per_irq = bpi, \
|
|
.len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8, \
|
|
.access_flags = acc, \
|
|
.read = rd, \
|
|
.write = wr, \
|
|
.uaccess_read = ur, \
|
|
.uaccess_write = uw, \
|
|
}
|
|
|
|
static const struct vgic_register_region vgic_v3_dist_registers[] = {
|
|
REGISTER_DESC_WITH_LENGTH(GICD_CTLR,
|
|
vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc, 16,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
|
|
vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
|
|
vgic_mmio_read_rao, vgic_mmio_write_wi, NULL, NULL, 1,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
|
|
vgic_mmio_read_enable, vgic_mmio_write_senable, NULL, NULL, 1,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
|
|
vgic_mmio_read_enable, vgic_mmio_write_cenable, NULL, NULL, 1,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
|
|
vgic_mmio_read_pending, vgic_mmio_write_spending,
|
|
vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
|
|
vgic_mmio_read_pending, vgic_mmio_write_cpending,
|
|
vgic_mmio_read_raz, vgic_mmio_write_wi, 1,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
|
|
vgic_mmio_read_active, vgic_mmio_write_sactive,
|
|
NULL, vgic_mmio_uaccess_write_sactive, 1,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
|
|
vgic_mmio_read_active, vgic_mmio_write_cactive,
|
|
NULL, vgic_mmio_uaccess_write_cactive,
|
|
1, VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
|
|
vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
|
|
8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
|
|
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
|
|
vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
|
|
VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
|
|
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
|
|
vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
|
|
vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
|
|
vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
|
|
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
|
|
vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
|
|
VGIC_ACCESS_32bit),
|
|
};
|
|
|
|
static const struct vgic_register_region vgic_v3_rdbase_registers[] = {
|
|
REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
|
|
vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
|
|
vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
|
|
vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_LENGTH(GICR_TYPER,
|
|
vgic_mmio_read_v3r_typer, vgic_mmio_write_wi, 8,
|
|
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
|
|
vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
|
|
vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
|
|
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
|
|
vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
|
|
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
|
|
vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
|
|
VGIC_ACCESS_32bit),
|
|
};
|
|
|
|
static const struct vgic_register_region vgic_v3_sgibase_registers[] = {
|
|
REGISTER_DESC_WITH_LENGTH(GICR_IGROUPR0,
|
|
vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_LENGTH(GICR_ISENABLER0,
|
|
vgic_mmio_read_enable, vgic_mmio_write_senable, 4,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_LENGTH(GICR_ICENABLER0,
|
|
vgic_mmio_read_enable, vgic_mmio_write_cenable, 4,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ISPENDR0,
|
|
vgic_mmio_read_pending, vgic_mmio_write_spending,
|
|
vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ICPENDR0,
|
|
vgic_mmio_read_pending, vgic_mmio_write_cpending,
|
|
vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ISACTIVER0,
|
|
vgic_mmio_read_active, vgic_mmio_write_sactive,
|
|
NULL, vgic_mmio_uaccess_write_sactive,
|
|
4, VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ICACTIVER0,
|
|
vgic_mmio_read_active, vgic_mmio_write_cactive,
|
|
NULL, vgic_mmio_uaccess_write_cactive,
|
|
4, VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_LENGTH(GICR_IPRIORITYR0,
|
|
vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
|
|
VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
|
|
REGISTER_DESC_WITH_LENGTH(GICR_ICFGR0,
|
|
vgic_mmio_read_config, vgic_mmio_write_config, 8,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_LENGTH(GICR_IGRPMODR0,
|
|
vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_LENGTH(GICR_NSACR,
|
|
vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
|
|
VGIC_ACCESS_32bit),
|
|
};
|
|
|
|
unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
|
|
{
|
|
dev->regions = vgic_v3_dist_registers;
|
|
dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
|
|
|
|
kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
|
|
|
|
return SZ_64K;
|
|
}
|
|
|
|
/**
|
|
* vgic_register_redist_iodev - register a single redist iodev
|
|
* @vcpu: The VCPU to which the redistributor belongs
|
|
*
|
|
* Register a KVM iodev for this VCPU's redistributor using the address
|
|
* provided.
|
|
*
|
|
* Return 0 on success, -ERRNO otherwise.
|
|
*/
|
|
int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct vgic_dist *vgic = &kvm->arch.vgic;
|
|
struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
|
|
struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
|
|
gpa_t rd_base, sgi_base;
|
|
int ret;
|
|
|
|
/*
|
|
* We may be creating VCPUs before having set the base address for the
|
|
* redistributor region, in which case we will come back to this
|
|
* function for all VCPUs when the base address is set. Just return
|
|
* without doing any work for now.
|
|
*/
|
|
if (IS_VGIC_ADDR_UNDEF(vgic->vgic_redist_base))
|
|
return 0;
|
|
|
|
if (!vgic_v3_check_base(kvm))
|
|
return -EINVAL;
|
|
|
|
rd_base = vgic->vgic_redist_base + vgic->vgic_redist_free_offset;
|
|
sgi_base = rd_base + SZ_64K;
|
|
|
|
kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
|
|
rd_dev->base_addr = rd_base;
|
|
rd_dev->iodev_type = IODEV_REDIST;
|
|
rd_dev->regions = vgic_v3_rdbase_registers;
|
|
rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
|
|
rd_dev->redist_vcpu = vcpu;
|
|
|
|
mutex_lock(&kvm->slots_lock);
|
|
ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
|
|
SZ_64K, &rd_dev->dev);
|
|
mutex_unlock(&kvm->slots_lock);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
kvm_iodevice_init(&sgi_dev->dev, &kvm_io_gic_ops);
|
|
sgi_dev->base_addr = sgi_base;
|
|
sgi_dev->iodev_type = IODEV_REDIST;
|
|
sgi_dev->regions = vgic_v3_sgibase_registers;
|
|
sgi_dev->nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers);
|
|
sgi_dev->redist_vcpu = vcpu;
|
|
|
|
mutex_lock(&kvm->slots_lock);
|
|
ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, sgi_base,
|
|
SZ_64K, &sgi_dev->dev);
|
|
if (ret) {
|
|
kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
|
|
&rd_dev->dev);
|
|
goto out;
|
|
}
|
|
|
|
vgic->vgic_redist_free_offset += 2 * SZ_64K;
|
|
out:
|
|
mutex_unlock(&kvm->slots_lock);
|
|
return ret;
|
|
}
|
|
|
|
static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
|
|
struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
|
|
|
|
kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
|
|
kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &sgi_dev->dev);
|
|
}
|
|
|
|
static int vgic_register_all_redist_iodevs(struct kvm *kvm)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
int c, ret = 0;
|
|
|
|
kvm_for_each_vcpu(c, vcpu, kvm) {
|
|
ret = vgic_register_redist_iodev(vcpu);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
if (ret) {
|
|
/* The current c failed, so we start with the previous one. */
|
|
mutex_lock(&kvm->slots_lock);
|
|
for (c--; c >= 0; c--) {
|
|
vcpu = kvm_get_vcpu(kvm, c);
|
|
vgic_unregister_redist_iodev(vcpu);
|
|
}
|
|
mutex_unlock(&kvm->slots_lock);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int vgic_v3_set_redist_base(struct kvm *kvm, u64 addr)
|
|
{
|
|
struct vgic_dist *vgic = &kvm->arch.vgic;
|
|
int ret;
|
|
|
|
/* vgic_check_ioaddr makes sure we don't do this twice */
|
|
ret = vgic_check_ioaddr(kvm, &vgic->vgic_redist_base, addr, SZ_64K);
|
|
if (ret)
|
|
return ret;
|
|
|
|
vgic->vgic_redist_base = addr;
|
|
if (!vgic_v3_check_base(kvm)) {
|
|
vgic->vgic_redist_base = VGIC_ADDR_UNDEF;
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Register iodevs for each existing VCPU. Adding more VCPUs
|
|
* afterwards will register the iodevs when needed.
|
|
*/
|
|
ret = vgic_register_all_redist_iodevs(kvm);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
|
|
{
|
|
const struct vgic_register_region *region;
|
|
struct vgic_io_device iodev;
|
|
struct vgic_reg_attr reg_attr;
|
|
struct kvm_vcpu *vcpu;
|
|
gpa_t addr;
|
|
int ret;
|
|
|
|
ret = vgic_v3_parse_attr(dev, attr, ®_attr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
vcpu = reg_attr.vcpu;
|
|
addr = reg_attr.addr;
|
|
|
|
switch (attr->group) {
|
|
case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
|
|
iodev.regions = vgic_v3_dist_registers;
|
|
iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
|
|
iodev.base_addr = 0;
|
|
break;
|
|
case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
|
|
iodev.regions = vgic_v3_rdbase_registers;
|
|
iodev.nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
|
|
iodev.base_addr = 0;
|
|
break;
|
|
}
|
|
case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: {
|
|
u64 reg, id;
|
|
|
|
id = (attr->attr & KVM_DEV_ARM_VGIC_SYSREG_INSTR_MASK);
|
|
return vgic_v3_has_cpu_sysregs_attr(vcpu, 0, id, ®);
|
|
}
|
|
default:
|
|
return -ENXIO;
|
|
}
|
|
|
|
/* We only support aligned 32-bit accesses. */
|
|
if (addr & 3)
|
|
return -ENXIO;
|
|
|
|
region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
|
|
if (!region)
|
|
return -ENXIO;
|
|
|
|
return 0;
|
|
}
|
|
/*
|
|
* Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
|
|
* generation register ICC_SGI1R_EL1) with a given VCPU.
|
|
* If the VCPU's MPIDR matches, return the level0 affinity, otherwise
|
|
* return -1.
|
|
*/
|
|
static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long affinity;
|
|
int level0;
|
|
|
|
/*
|
|
* Split the current VCPU's MPIDR into affinity level 0 and the
|
|
* rest as this is what we have to compare against.
|
|
*/
|
|
affinity = kvm_vcpu_get_mpidr_aff(vcpu);
|
|
level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
|
|
affinity &= ~MPIDR_LEVEL_MASK;
|
|
|
|
/* bail out if the upper three levels don't match */
|
|
if (sgi_aff != affinity)
|
|
return -1;
|
|
|
|
/* Is this VCPU's bit set in the mask ? */
|
|
if (!(sgi_cpu_mask & BIT(level0)))
|
|
return -1;
|
|
|
|
return level0;
|
|
}
|
|
|
|
/*
|
|
* The ICC_SGI* registers encode the affinity differently from the MPIDR,
|
|
* so provide a wrapper to use the existing defines to isolate a certain
|
|
* affinity level.
|
|
*/
|
|
#define SGI_AFFINITY_LEVEL(reg, level) \
|
|
((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
|
|
>> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
|
|
|
|
/**
|
|
* vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
|
|
* @vcpu: The VCPU requesting a SGI
|
|
* @reg: The value written into the ICC_SGI1R_EL1 register by that VCPU
|
|
*
|
|
* With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
|
|
* This will trap in sys_regs.c and call this function.
|
|
* This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
|
|
* target processors as well as a bitmask of 16 Aff0 CPUs.
|
|
* If the interrupt routing mode bit is not set, we iterate over all VCPUs to
|
|
* check for matching ones. If this bit is set, we signal all, but not the
|
|
* calling VCPU.
|
|
*/
|
|
void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct kvm_vcpu *c_vcpu;
|
|
u16 target_cpus;
|
|
u64 mpidr;
|
|
int sgi, c;
|
|
int vcpu_id = vcpu->vcpu_id;
|
|
bool broadcast;
|
|
unsigned long flags;
|
|
|
|
sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
|
|
broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
|
|
target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
|
|
mpidr = SGI_AFFINITY_LEVEL(reg, 3);
|
|
mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
|
|
mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
|
|
|
|
/*
|
|
* We iterate over all VCPUs to find the MPIDRs matching the request.
|
|
* If we have handled one CPU, we clear its bit to detect early
|
|
* if we are already finished. This avoids iterating through all
|
|
* VCPUs when most of the times we just signal a single VCPU.
|
|
*/
|
|
kvm_for_each_vcpu(c, c_vcpu, kvm) {
|
|
struct vgic_irq *irq;
|
|
|
|
/* Exit early if we have dealt with all requested CPUs */
|
|
if (!broadcast && target_cpus == 0)
|
|
break;
|
|
|
|
/* Don't signal the calling VCPU */
|
|
if (broadcast && c == vcpu_id)
|
|
continue;
|
|
|
|
if (!broadcast) {
|
|
int level0;
|
|
|
|
level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
|
|
if (level0 == -1)
|
|
continue;
|
|
|
|
/* remove this matching VCPU from the mask */
|
|
target_cpus &= ~BIT(level0);
|
|
}
|
|
|
|
irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
|
|
|
|
spin_lock_irqsave(&irq->irq_lock, flags);
|
|
irq->pending_latch = true;
|
|
|
|
vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
|
|
vgic_put_irq(vcpu->kvm, irq);
|
|
}
|
|
}
|
|
|
|
int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
|
|
int offset, u32 *val)
|
|
{
|
|
struct vgic_io_device dev = {
|
|
.regions = vgic_v3_dist_registers,
|
|
.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
|
|
};
|
|
|
|
return vgic_uaccess(vcpu, &dev, is_write, offset, val);
|
|
}
|
|
|
|
int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
|
|
int offset, u32 *val)
|
|
{
|
|
struct vgic_io_device rd_dev = {
|
|
.regions = vgic_v3_rdbase_registers,
|
|
.nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers),
|
|
};
|
|
|
|
struct vgic_io_device sgi_dev = {
|
|
.regions = vgic_v3_sgibase_registers,
|
|
.nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers),
|
|
};
|
|
|
|
/* SGI_base is the next 64K frame after RD_base */
|
|
if (offset >= SZ_64K)
|
|
return vgic_uaccess(vcpu, &sgi_dev, is_write, offset - SZ_64K,
|
|
val);
|
|
else
|
|
return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
|
|
}
|
|
|
|
int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
|
|
u32 intid, u64 *val)
|
|
{
|
|
if (intid % 32)
|
|
return -EINVAL;
|
|
|
|
if (is_write)
|
|
vgic_write_irq_line_level_info(vcpu, intid, *val);
|
|
else
|
|
*val = vgic_read_irq_line_level_info(vcpu, intid);
|
|
|
|
return 0;
|
|
}
|