linux_dsm_epyc7002/mm/memcontrol.c
Naoya Horiguchi 12724850e8 memcg: avoid THP split in task migration
Currently we can't do task migration among memory cgroups without THP
split, which means processes heavily using THP experience large overhead
in task migration.  This patch introduces the code for moving charge of
THP and makes THP more valuable.

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:55:02 -07:00

5658 lines
146 KiB
C

/* memcontrol.c - Memory Controller
*
* Copyright IBM Corporation, 2007
* Author Balbir Singh <balbir@linux.vnet.ibm.com>
*
* Copyright 2007 OpenVZ SWsoft Inc
* Author: Pavel Emelianov <xemul@openvz.org>
*
* Memory thresholds
* Copyright (C) 2009 Nokia Corporation
* Author: Kirill A. Shutemov
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/pagemap.h>
#include <linux/smp.h>
#include <linux/page-flags.h>
#include <linux/backing-dev.h>
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
#include <linux/limits.h>
#include <linux/export.h>
#include <linux/mutex.h>
#include <linux/rbtree.h>
#include <linux/slab.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/spinlock.h>
#include <linux/eventfd.h>
#include <linux/sort.h>
#include <linux/fs.h>
#include <linux/seq_file.h>
#include <linux/vmalloc.h>
#include <linux/mm_inline.h>
#include <linux/page_cgroup.h>
#include <linux/cpu.h>
#include <linux/oom.h>
#include "internal.h"
#include <net/sock.h>
#include <net/tcp_memcontrol.h>
#include <asm/uaccess.h>
#include <trace/events/vmscan.h>
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES 5
struct mem_cgroup *root_mem_cgroup __read_mostly;
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
int do_swap_account __read_mostly;
/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif
#else
#define do_swap_account (0)
#endif
/*
* Statistics for memory cgroup.
*/
enum mem_cgroup_stat_index {
/*
* For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
*/
MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
MEM_CGROUP_STAT_NSTATS,
};
enum mem_cgroup_events_index {
MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
MEM_CGROUP_EVENTS_NSTATS,
};
/*
* Per memcg event counter is incremented at every pagein/pageout. With THP,
* it will be incremated by the number of pages. This counter is used for
* for trigger some periodic events. This is straightforward and better
* than using jiffies etc. to handle periodic memcg event.
*/
enum mem_cgroup_events_target {
MEM_CGROUP_TARGET_THRESH,
MEM_CGROUP_TARGET_SOFTLIMIT,
MEM_CGROUP_TARGET_NUMAINFO,
MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
#define NUMAINFO_EVENTS_TARGET (1024)
struct mem_cgroup_stat_cpu {
long count[MEM_CGROUP_STAT_NSTATS];
unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
unsigned long targets[MEM_CGROUP_NTARGETS];
};
struct mem_cgroup_reclaim_iter {
/* css_id of the last scanned hierarchy member */
int position;
/* scan generation, increased every round-trip */
unsigned int generation;
};
/*
* per-zone information in memory controller.
*/
struct mem_cgroup_per_zone {
struct lruvec lruvec;
unsigned long lru_size[NR_LRU_LISTS];
struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
struct zone_reclaim_stat reclaim_stat;
struct rb_node tree_node; /* RB tree node */
unsigned long long usage_in_excess;/* Set to the value by which */
/* the soft limit is exceeded*/
bool on_tree;
struct mem_cgroup *memcg; /* Back pointer, we cannot */
/* use container_of */
};
struct mem_cgroup_per_node {
struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};
struct mem_cgroup_lru_info {
struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};
/*
* Cgroups above their limits are maintained in a RB-Tree, independent of
* their hierarchy representation
*/
struct mem_cgroup_tree_per_zone {
struct rb_root rb_root;
spinlock_t lock;
};
struct mem_cgroup_tree_per_node {
struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};
struct mem_cgroup_tree {
struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};
static struct mem_cgroup_tree soft_limit_tree __read_mostly;
struct mem_cgroup_threshold {
struct eventfd_ctx *eventfd;
u64 threshold;
};
/* For threshold */
struct mem_cgroup_threshold_ary {
/* An array index points to threshold just below usage. */
int current_threshold;
/* Size of entries[] */
unsigned int size;
/* Array of thresholds */
struct mem_cgroup_threshold entries[0];
};
struct mem_cgroup_thresholds {
/* Primary thresholds array */
struct mem_cgroup_threshold_ary *primary;
/*
* Spare threshold array.
* This is needed to make mem_cgroup_unregister_event() "never fail".
* It must be able to store at least primary->size - 1 entries.
*/
struct mem_cgroup_threshold_ary *spare;
};
/* for OOM */
struct mem_cgroup_eventfd_list {
struct list_head list;
struct eventfd_ctx *eventfd;
};
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
/*
* The memory controller data structure. The memory controller controls both
* page cache and RSS per cgroup. We would eventually like to provide
* statistics based on the statistics developed by Rik Van Riel for clock-pro,
* to help the administrator determine what knobs to tune.
*
* TODO: Add a water mark for the memory controller. Reclaim will begin when
* we hit the water mark. May be even add a low water mark, such that
* no reclaim occurs from a cgroup at it's low water mark, this is
* a feature that will be implemented much later in the future.
*/
struct mem_cgroup {
struct cgroup_subsys_state css;
/*
* the counter to account for memory usage
*/
struct res_counter res;
union {
/*
* the counter to account for mem+swap usage.
*/
struct res_counter memsw;
/*
* rcu_freeing is used only when freeing struct mem_cgroup,
* so put it into a union to avoid wasting more memory.
* It must be disjoint from the css field. It could be
* in a union with the res field, but res plays a much
* larger part in mem_cgroup life than memsw, and might
* be of interest, even at time of free, when debugging.
* So share rcu_head with the less interesting memsw.
*/
struct rcu_head rcu_freeing;
/*
* But when using vfree(), that cannot be done at
* interrupt time, so we must then queue the work.
*/
struct work_struct work_freeing;
};
/*
* Per cgroup active and inactive list, similar to the
* per zone LRU lists.
*/
struct mem_cgroup_lru_info info;
int last_scanned_node;
#if MAX_NUMNODES > 1
nodemask_t scan_nodes;
atomic_t numainfo_events;
atomic_t numainfo_updating;
#endif
/*
* Should the accounting and control be hierarchical, per subtree?
*/
bool use_hierarchy;
bool oom_lock;
atomic_t under_oom;
atomic_t refcnt;
int swappiness;
/* OOM-Killer disable */
int oom_kill_disable;
/* set when res.limit == memsw.limit */
bool memsw_is_minimum;
/* protect arrays of thresholds */
struct mutex thresholds_lock;
/* thresholds for memory usage. RCU-protected */
struct mem_cgroup_thresholds thresholds;
/* thresholds for mem+swap usage. RCU-protected */
struct mem_cgroup_thresholds memsw_thresholds;
/* For oom notifier event fd */
struct list_head oom_notify;
/*
* Should we move charges of a task when a task is moved into this
* mem_cgroup ? And what type of charges should we move ?
*/
unsigned long move_charge_at_immigrate;
/*
* set > 0 if pages under this cgroup are moving to other cgroup.
*/
atomic_t moving_account;
/* taken only while moving_account > 0 */
spinlock_t move_lock;
/*
* percpu counter.
*/
struct mem_cgroup_stat_cpu *stat;
/*
* used when a cpu is offlined or other synchronizations
* See mem_cgroup_read_stat().
*/
struct mem_cgroup_stat_cpu nocpu_base;
spinlock_t pcp_counter_lock;
#ifdef CONFIG_INET
struct tcp_memcontrol tcp_mem;
#endif
};
/* Stuffs for move charges at task migration. */
/*
* Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
* left-shifted bitmap of these types.
*/
enum move_type {
MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
NR_MOVE_TYPE,
};
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
spinlock_t lock; /* for from, to */
struct mem_cgroup *from;
struct mem_cgroup *to;
unsigned long precharge;
unsigned long moved_charge;
unsigned long moved_swap;
struct task_struct *moving_task; /* a task moving charges */
wait_queue_head_t waitq; /* a waitq for other context */
} mc = {
.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
static bool move_anon(void)
{
return test_bit(MOVE_CHARGE_TYPE_ANON,
&mc.to->move_charge_at_immigrate);
}
static bool move_file(void)
{
return test_bit(MOVE_CHARGE_TYPE_FILE,
&mc.to->move_charge_at_immigrate);
}
/*
* Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
* limit reclaim to prevent infinite loops, if they ever occur.
*/
#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
enum charge_type {
MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
MEM_CGROUP_CHARGE_TYPE_MAPPED,
MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
NR_CHARGE_TYPE,
};
/* for encoding cft->private value on file */
#define _MEM (0)
#define _MEMSWAP (1)
#define _OOM_TYPE (2)
#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val) ((val) & 0xffff)
/* Used for OOM nofiier */
#define OOM_CONTROL (0)
/*
* Reclaim flags for mem_cgroup_hierarchical_reclaim
*/
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
/* Writing them here to avoid exposing memcg's inner layout */
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
#include <net/sock.h>
#include <net/ip.h>
static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
void sock_update_memcg(struct sock *sk)
{
if (mem_cgroup_sockets_enabled) {
struct mem_cgroup *memcg;
BUG_ON(!sk->sk_prot->proto_cgroup);
/* Socket cloning can throw us here with sk_cgrp already
* filled. It won't however, necessarily happen from
* process context. So the test for root memcg given
* the current task's memcg won't help us in this case.
*
* Respecting the original socket's memcg is a better
* decision in this case.
*/
if (sk->sk_cgrp) {
BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
mem_cgroup_get(sk->sk_cgrp->memcg);
return;
}
rcu_read_lock();
memcg = mem_cgroup_from_task(current);
if (!mem_cgroup_is_root(memcg)) {
mem_cgroup_get(memcg);
sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
}
rcu_read_unlock();
}
}
EXPORT_SYMBOL(sock_update_memcg);
void sock_release_memcg(struct sock *sk)
{
if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
struct mem_cgroup *memcg;
WARN_ON(!sk->sk_cgrp->memcg);
memcg = sk->sk_cgrp->memcg;
mem_cgroup_put(memcg);
}
}
#ifdef CONFIG_INET
struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
if (!memcg || mem_cgroup_is_root(memcg))
return NULL;
return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
#endif /* CONFIG_INET */
#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
static void drain_all_stock_async(struct mem_cgroup *memcg);
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
{
return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
}
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
{
return &memcg->css;
}
static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
{
int nid = page_to_nid(page);
int zid = page_zonenum(page);
return mem_cgroup_zoneinfo(memcg, nid, zid);
}
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
int nid = page_to_nid(page);
int zid = page_zonenum(page);
return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}
static void
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
struct mem_cgroup_per_zone *mz,
struct mem_cgroup_tree_per_zone *mctz,
unsigned long long new_usage_in_excess)
{
struct rb_node **p = &mctz->rb_root.rb_node;
struct rb_node *parent = NULL;
struct mem_cgroup_per_zone *mz_node;
if (mz->on_tree)
return;
mz->usage_in_excess = new_usage_in_excess;
if (!mz->usage_in_excess)
return;
while (*p) {
parent = *p;
mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
tree_node);
if (mz->usage_in_excess < mz_node->usage_in_excess)
p = &(*p)->rb_left;
/*
* We can't avoid mem cgroups that are over their soft
* limit by the same amount
*/
else if (mz->usage_in_excess >= mz_node->usage_in_excess)
p = &(*p)->rb_right;
}
rb_link_node(&mz->tree_node, parent, p);
rb_insert_color(&mz->tree_node, &mctz->rb_root);
mz->on_tree = true;
}
static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
struct mem_cgroup_per_zone *mz,
struct mem_cgroup_tree_per_zone *mctz)
{
if (!mz->on_tree)
return;
rb_erase(&mz->tree_node, &mctz->rb_root);
mz->on_tree = false;
}
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
struct mem_cgroup_per_zone *mz,
struct mem_cgroup_tree_per_zone *mctz)
{
spin_lock(&mctz->lock);
__mem_cgroup_remove_exceeded(memcg, mz, mctz);
spin_unlock(&mctz->lock);
}
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
unsigned long long excess;
struct mem_cgroup_per_zone *mz;
struct mem_cgroup_tree_per_zone *mctz;
int nid = page_to_nid(page);
int zid = page_zonenum(page);
mctz = soft_limit_tree_from_page(page);
/*
* Necessary to update all ancestors when hierarchy is used.
* because their event counter is not touched.
*/
for (; memcg; memcg = parent_mem_cgroup(memcg)) {
mz = mem_cgroup_zoneinfo(memcg, nid, zid);
excess = res_counter_soft_limit_excess(&memcg->res);
/*
* We have to update the tree if mz is on RB-tree or
* mem is over its softlimit.
*/
if (excess || mz->on_tree) {
spin_lock(&mctz->lock);
/* if on-tree, remove it */
if (mz->on_tree)
__mem_cgroup_remove_exceeded(memcg, mz, mctz);
/*
* Insert again. mz->usage_in_excess will be updated.
* If excess is 0, no tree ops.
*/
__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
spin_unlock(&mctz->lock);
}
}
}
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
int node, zone;
struct mem_cgroup_per_zone *mz;
struct mem_cgroup_tree_per_zone *mctz;
for_each_node(node) {
for (zone = 0; zone < MAX_NR_ZONES; zone++) {
mz = mem_cgroup_zoneinfo(memcg, node, zone);
mctz = soft_limit_tree_node_zone(node, zone);
mem_cgroup_remove_exceeded(memcg, mz, mctz);
}
}
}
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
struct rb_node *rightmost = NULL;
struct mem_cgroup_per_zone *mz;
retry:
mz = NULL;
rightmost = rb_last(&mctz->rb_root);
if (!rightmost)
goto done; /* Nothing to reclaim from */
mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
/*
* Remove the node now but someone else can add it back,
* we will to add it back at the end of reclaim to its correct
* position in the tree.
*/
__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
!css_tryget(&mz->memcg->css))
goto retry;
done:
return mz;
}
static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
struct mem_cgroup_per_zone *mz;
spin_lock(&mctz->lock);
mz = __mem_cgroup_largest_soft_limit_node(mctz);
spin_unlock(&mctz->lock);
return mz;
}
/*
* Implementation Note: reading percpu statistics for memcg.
*
* Both of vmstat[] and percpu_counter has threshold and do periodic
* synchronization to implement "quick" read. There are trade-off between
* reading cost and precision of value. Then, we may have a chance to implement
* a periodic synchronizion of counter in memcg's counter.
*
* But this _read() function is used for user interface now. The user accounts
* memory usage by memory cgroup and he _always_ requires exact value because
* he accounts memory. Even if we provide quick-and-fuzzy read, we always
* have to visit all online cpus and make sum. So, for now, unnecessary
* synchronization is not implemented. (just implemented for cpu hotplug)
*
* If there are kernel internal actions which can make use of some not-exact
* value, and reading all cpu value can be performance bottleneck in some
* common workload, threashold and synchonization as vmstat[] should be
* implemented.
*/
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
enum mem_cgroup_stat_index idx)
{
long val = 0;
int cpu;
get_online_cpus();
for_each_online_cpu(cpu)
val += per_cpu(memcg->stat->count[idx], cpu);
#ifdef CONFIG_HOTPLUG_CPU
spin_lock(&memcg->pcp_counter_lock);
val += memcg->nocpu_base.count[idx];
spin_unlock(&memcg->pcp_counter_lock);
#endif
put_online_cpus();
return val;
}
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
bool charge)
{
int val = (charge) ? 1 : -1;
this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
}
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
enum mem_cgroup_events_index idx)
{
unsigned long val = 0;
int cpu;
for_each_online_cpu(cpu)
val += per_cpu(memcg->stat->events[idx], cpu);
#ifdef CONFIG_HOTPLUG_CPU
spin_lock(&memcg->pcp_counter_lock);
val += memcg->nocpu_base.events[idx];
spin_unlock(&memcg->pcp_counter_lock);
#endif
return val;
}
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
bool anon, int nr_pages)
{
preempt_disable();
/*
* Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
* counted as CACHE even if it's on ANON LRU.
*/
if (anon)
__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
nr_pages);
else
__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
nr_pages);
/* pagein of a big page is an event. So, ignore page size */
if (nr_pages > 0)
__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
else {
__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
nr_pages = -nr_pages; /* for event */
}
__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
preempt_enable();
}
unsigned long
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
unsigned int lru_mask)
{
struct mem_cgroup_per_zone *mz;
enum lru_list lru;
unsigned long ret = 0;
mz = mem_cgroup_zoneinfo(memcg, nid, zid);
for_each_lru(lru) {
if (BIT(lru) & lru_mask)
ret += mz->lru_size[lru];
}
return ret;
}
static unsigned long
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
int nid, unsigned int lru_mask)
{
u64 total = 0;
int zid;
for (zid = 0; zid < MAX_NR_ZONES; zid++)
total += mem_cgroup_zone_nr_lru_pages(memcg,
nid, zid, lru_mask);
return total;
}
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
unsigned int lru_mask)
{
int nid;
u64 total = 0;
for_each_node_state(nid, N_HIGH_MEMORY)
total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
return total;
}
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
enum mem_cgroup_events_target target)
{
unsigned long val, next;
val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
next = __this_cpu_read(memcg->stat->targets[target]);
/* from time_after() in jiffies.h */
if ((long)next - (long)val < 0) {
switch (target) {
case MEM_CGROUP_TARGET_THRESH:
next = val + THRESHOLDS_EVENTS_TARGET;
break;
case MEM_CGROUP_TARGET_SOFTLIMIT:
next = val + SOFTLIMIT_EVENTS_TARGET;
break;
case MEM_CGROUP_TARGET_NUMAINFO:
next = val + NUMAINFO_EVENTS_TARGET;
break;
default:
break;
}
__this_cpu_write(memcg->stat->targets[target], next);
return true;
}
return false;
}
/*
* Check events in order.
*
*/
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
{
preempt_disable();
/* threshold event is triggered in finer grain than soft limit */
if (unlikely(mem_cgroup_event_ratelimit(memcg,
MEM_CGROUP_TARGET_THRESH))) {
bool do_softlimit;
bool do_numainfo __maybe_unused;
do_softlimit = mem_cgroup_event_ratelimit(memcg,
MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
do_numainfo = mem_cgroup_event_ratelimit(memcg,
MEM_CGROUP_TARGET_NUMAINFO);
#endif
preempt_enable();
mem_cgroup_threshold(memcg);
if (unlikely(do_softlimit))
mem_cgroup_update_tree(memcg, page);
#if MAX_NUMNODES > 1
if (unlikely(do_numainfo))
atomic_inc(&memcg->numainfo_events);
#endif
} else
preempt_enable();
}
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
{
return container_of(cgroup_subsys_state(cont,
mem_cgroup_subsys_id), struct mem_cgroup,
css);
}
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
{
/*
* mm_update_next_owner() may clear mm->owner to NULL
* if it races with swapoff, page migration, etc.
* So this can be called with p == NULL.
*/
if (unlikely(!p))
return NULL;
return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
struct mem_cgroup, css);
}
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
struct mem_cgroup *memcg = NULL;
if (!mm)
return NULL;
/*
* Because we have no locks, mm->owner's may be being moved to other
* cgroup. We use css_tryget() here even if this looks
* pessimistic (rather than adding locks here).
*/
rcu_read_lock();
do {
memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
if (unlikely(!memcg))
break;
} while (!css_tryget(&memcg->css));
rcu_read_unlock();
return memcg;
}
/**
* mem_cgroup_iter - iterate over memory cgroup hierarchy
* @root: hierarchy root
* @prev: previously returned memcg, NULL on first invocation
* @reclaim: cookie for shared reclaim walks, NULL for full walks
*
* Returns references to children of the hierarchy below @root, or
* @root itself, or %NULL after a full round-trip.
*
* Caller must pass the return value in @prev on subsequent
* invocations for reference counting, or use mem_cgroup_iter_break()
* to cancel a hierarchy walk before the round-trip is complete.
*
* Reclaimers can specify a zone and a priority level in @reclaim to
* divide up the memcgs in the hierarchy among all concurrent
* reclaimers operating on the same zone and priority.
*/
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
struct mem_cgroup *prev,
struct mem_cgroup_reclaim_cookie *reclaim)
{
struct mem_cgroup *memcg = NULL;
int id = 0;
if (mem_cgroup_disabled())
return NULL;
if (!root)
root = root_mem_cgroup;
if (prev && !reclaim)
id = css_id(&prev->css);
if (prev && prev != root)
css_put(&prev->css);
if (!root->use_hierarchy && root != root_mem_cgroup) {
if (prev)
return NULL;
return root;
}
while (!memcg) {
struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
struct cgroup_subsys_state *css;
if (reclaim) {
int nid = zone_to_nid(reclaim->zone);
int zid = zone_idx(reclaim->zone);
struct mem_cgroup_per_zone *mz;
mz = mem_cgroup_zoneinfo(root, nid, zid);
iter = &mz->reclaim_iter[reclaim->priority];
if (prev && reclaim->generation != iter->generation)
return NULL;
id = iter->position;
}
rcu_read_lock();
css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
if (css) {
if (css == &root->css || css_tryget(css))
memcg = container_of(css,
struct mem_cgroup, css);
} else
id = 0;
rcu_read_unlock();
if (reclaim) {
iter->position = id;
if (!css)
iter->generation++;
else if (!prev && memcg)
reclaim->generation = iter->generation;
}
if (prev && !css)
return NULL;
}
return memcg;
}
/**
* mem_cgroup_iter_break - abort a hierarchy walk prematurely
* @root: hierarchy root
* @prev: last visited hierarchy member as returned by mem_cgroup_iter()
*/
void mem_cgroup_iter_break(struct mem_cgroup *root,
struct mem_cgroup *prev)
{
if (!root)
root = root_mem_cgroup;
if (prev && prev != root)
css_put(&prev->css);
}
/*
* Iteration constructs for visiting all cgroups (under a tree). If
* loops are exited prematurely (break), mem_cgroup_iter_break() must
* be used for reference counting.
*/
#define for_each_mem_cgroup_tree(iter, root) \
for (iter = mem_cgroup_iter(root, NULL, NULL); \
iter != NULL; \
iter = mem_cgroup_iter(root, iter, NULL))
#define for_each_mem_cgroup(iter) \
for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
iter != NULL; \
iter = mem_cgroup_iter(NULL, iter, NULL))
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
return (memcg == root_mem_cgroup);
}
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
struct mem_cgroup *memcg;
if (!mm)
return;
rcu_read_lock();
memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
if (unlikely(!memcg))
goto out;
switch (idx) {
case PGFAULT:
this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
break;
case PGMAJFAULT:
this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
break;
default:
BUG();
}
out:
rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);
/**
* mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
* @zone: zone of the wanted lruvec
* @mem: memcg of the wanted lruvec
*
* Returns the lru list vector holding pages for the given @zone and
* @mem. This can be the global zone lruvec, if the memory controller
* is disabled.
*/
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
struct mem_cgroup *memcg)
{
struct mem_cgroup_per_zone *mz;
if (mem_cgroup_disabled())
return &zone->lruvec;
mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
return &mz->lruvec;
}
/*
* Following LRU functions are allowed to be used without PCG_LOCK.
* Operations are called by routine of global LRU independently from memcg.
* What we have to take care of here is validness of pc->mem_cgroup.
*
* Changes to pc->mem_cgroup happens when
* 1. charge
* 2. moving account
* In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
* It is added to LRU before charge.
* If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
* When moving account, the page is not on LRU. It's isolated.
*/
/**
* mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
* @zone: zone of the page
* @page: the page
* @lru: current lru
*
* This function accounts for @page being added to @lru, and returns
* the lruvec for the given @zone and the memcg @page is charged to.
*
* The callsite is then responsible for physically linking the page to
* the returned lruvec->lists[@lru].
*/
struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
enum lru_list lru)
{
struct mem_cgroup_per_zone *mz;
struct mem_cgroup *memcg;
struct page_cgroup *pc;
if (mem_cgroup_disabled())
return &zone->lruvec;
pc = lookup_page_cgroup(page);
memcg = pc->mem_cgroup;
/*
* Surreptitiously switch any uncharged page to root:
* an uncharged page off lru does nothing to secure
* its former mem_cgroup from sudden removal.
*
* Our caller holds lru_lock, and PageCgroupUsed is updated
* under page_cgroup lock: between them, they make all uses
* of pc->mem_cgroup safe.
*/
if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
pc->mem_cgroup = memcg = root_mem_cgroup;
mz = page_cgroup_zoneinfo(memcg, page);
/* compound_order() is stabilized through lru_lock */
mz->lru_size[lru] += 1 << compound_order(page);
return &mz->lruvec;
}
/**
* mem_cgroup_lru_del_list - account for removing an lru page
* @page: the page
* @lru: target lru
*
* This function accounts for @page being removed from @lru.
*
* The callsite is then responsible for physically unlinking
* @page->lru.
*/
void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
{
struct mem_cgroup_per_zone *mz;
struct mem_cgroup *memcg;
struct page_cgroup *pc;
if (mem_cgroup_disabled())
return;
pc = lookup_page_cgroup(page);
memcg = pc->mem_cgroup;
VM_BUG_ON(!memcg);
mz = page_cgroup_zoneinfo(memcg, page);
/* huge page split is done under lru_lock. so, we have no races. */
VM_BUG_ON(mz->lru_size[lru] < (1 << compound_order(page)));
mz->lru_size[lru] -= 1 << compound_order(page);
}
void mem_cgroup_lru_del(struct page *page)
{
mem_cgroup_lru_del_list(page, page_lru(page));
}
/**
* mem_cgroup_lru_move_lists - account for moving a page between lrus
* @zone: zone of the page
* @page: the page
* @from: current lru
* @to: target lru
*
* This function accounts for @page being moved between the lrus @from
* and @to, and returns the lruvec for the given @zone and the memcg
* @page is charged to.
*
* The callsite is then responsible for physically relinking
* @page->lru to the returned lruvec->lists[@to].
*/
struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
struct page *page,
enum lru_list from,
enum lru_list to)
{
/* XXX: Optimize this, especially for @from == @to */
mem_cgroup_lru_del_list(page, from);
return mem_cgroup_lru_add_list(zone, page, to);
}
/*
* Checks whether given mem is same or in the root_mem_cgroup's
* hierarchy subtree
*/
static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
struct mem_cgroup *memcg)
{
if (root_memcg != memcg) {
return (root_memcg->use_hierarchy &&
css_is_ancestor(&memcg->css, &root_memcg->css));
}
return true;
}
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
{
int ret;
struct mem_cgroup *curr = NULL;
struct task_struct *p;
p = find_lock_task_mm(task);
if (p) {
curr = try_get_mem_cgroup_from_mm(p->mm);
task_unlock(p);
} else {
/*
* All threads may have already detached their mm's, but the oom
* killer still needs to detect if they have already been oom
* killed to prevent needlessly killing additional tasks.
*/
task_lock(task);
curr = mem_cgroup_from_task(task);
if (curr)
css_get(&curr->css);
task_unlock(task);
}
if (!curr)
return 0;
/*
* We should check use_hierarchy of "memcg" not "curr". Because checking
* use_hierarchy of "curr" here make this function true if hierarchy is
* enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
* hierarchy(even if use_hierarchy is disabled in "memcg").
*/
ret = mem_cgroup_same_or_subtree(memcg, curr);
css_put(&curr->css);
return ret;
}
int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
{
unsigned long inactive_ratio;
int nid = zone_to_nid(zone);
int zid = zone_idx(zone);
unsigned long inactive;
unsigned long active;
unsigned long gb;
inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
BIT(LRU_INACTIVE_ANON));
active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
BIT(LRU_ACTIVE_ANON));
gb = (inactive + active) >> (30 - PAGE_SHIFT);
if (gb)
inactive_ratio = int_sqrt(10 * gb);
else
inactive_ratio = 1;
return inactive * inactive_ratio < active;
}
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
{
unsigned long active;
unsigned long inactive;
int zid = zone_idx(zone);
int nid = zone_to_nid(zone);
inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
BIT(LRU_INACTIVE_FILE));
active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
BIT(LRU_ACTIVE_FILE));
return (active > inactive);
}
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
struct zone *zone)
{
int nid = zone_to_nid(zone);
int zid = zone_idx(zone);
struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
return &mz->reclaim_stat;
}
struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
struct page_cgroup *pc;
struct mem_cgroup_per_zone *mz;
if (mem_cgroup_disabled())
return NULL;
pc = lookup_page_cgroup(page);
if (!PageCgroupUsed(pc))
return NULL;
/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
smp_rmb();
mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
return &mz->reclaim_stat;
}
#define mem_cgroup_from_res_counter(counter, member) \
container_of(counter, struct mem_cgroup, member)
/**
* mem_cgroup_margin - calculate chargeable space of a memory cgroup
* @mem: the memory cgroup
*
* Returns the maximum amount of memory @mem can be charged with, in
* pages.
*/
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
{
unsigned long long margin;
margin = res_counter_margin(&memcg->res);
if (do_swap_account)
margin = min(margin, res_counter_margin(&memcg->memsw));
return margin >> PAGE_SHIFT;
}
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
{
struct cgroup *cgrp = memcg->css.cgroup;
/* root ? */
if (cgrp->parent == NULL)
return vm_swappiness;
return memcg->swappiness;
}
/*
* memcg->moving_account is used for checking possibility that some thread is
* calling move_account(). When a thread on CPU-A starts moving pages under
* a memcg, other threads should check memcg->moving_account under
* rcu_read_lock(), like this:
*
* CPU-A CPU-B
* rcu_read_lock()
* memcg->moving_account+1 if (memcg->mocing_account)
* take heavy locks.
* synchronize_rcu() update something.
* rcu_read_unlock()
* start move here.
*/
/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
{
atomic_inc(&memcg_moving);
atomic_inc(&memcg->moving_account);
synchronize_rcu();
}
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
{
/*
* Now, mem_cgroup_clear_mc() may call this function with NULL.
* We check NULL in callee rather than caller.
*/
if (memcg) {
atomic_dec(&memcg_moving);
atomic_dec(&memcg->moving_account);
}
}
/*
* 2 routines for checking "mem" is under move_account() or not.
*
* mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
* is used for avoiding races in accounting. If true,
* pc->mem_cgroup may be overwritten.
*
* mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
* under hierarchy of moving cgroups. This is for
* waiting at hith-memory prressure caused by "move".
*/
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
{
VM_BUG_ON(!rcu_read_lock_held());
return atomic_read(&memcg->moving_account) > 0;
}
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
{
struct mem_cgroup *from;
struct mem_cgroup *to;
bool ret = false;
/*
* Unlike task_move routines, we access mc.to, mc.from not under
* mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
*/
spin_lock(&mc.lock);
from = mc.from;
to = mc.to;
if (!from)
goto unlock;
ret = mem_cgroup_same_or_subtree(memcg, from)
|| mem_cgroup_same_or_subtree(memcg, to);
unlock:
spin_unlock(&mc.lock);
return ret;
}
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
{
if (mc.moving_task && current != mc.moving_task) {
if (mem_cgroup_under_move(memcg)) {
DEFINE_WAIT(wait);
prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
/* moving charge context might have finished. */
if (mc.moving_task)
schedule();
finish_wait(&mc.waitq, &wait);
return true;
}
}
return false;
}
/*
* Take this lock when
* - a code tries to modify page's memcg while it's USED.
* - a code tries to modify page state accounting in a memcg.
* see mem_cgroup_stolen(), too.
*/
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
unsigned long *flags)
{
spin_lock_irqsave(&memcg->move_lock, *flags);
}
static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
unsigned long *flags)
{
spin_unlock_irqrestore(&memcg->move_lock, *flags);
}
/**
* mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
* @memcg: The memory cgroup that went over limit
* @p: Task that is going to be killed
*
* NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
* enabled
*/
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
struct cgroup *task_cgrp;
struct cgroup *mem_cgrp;
/*
* Need a buffer in BSS, can't rely on allocations. The code relies
* on the assumption that OOM is serialized for memory controller.
* If this assumption is broken, revisit this code.
*/
static char memcg_name[PATH_MAX];
int ret;
if (!memcg || !p)
return;
rcu_read_lock();
mem_cgrp = memcg->css.cgroup;
task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
if (ret < 0) {
/*
* Unfortunately, we are unable to convert to a useful name
* But we'll still print out the usage information
*/
rcu_read_unlock();
goto done;
}
rcu_read_unlock();
printk(KERN_INFO "Task in %s killed", memcg_name);
rcu_read_lock();
ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
if (ret < 0) {
rcu_read_unlock();
goto done;
}
rcu_read_unlock();
/*
* Continues from above, so we don't need an KERN_ level
*/
printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:
printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
res_counter_read_u64(&memcg->res, RES_FAILCNT));
printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
"failcnt %llu\n",
res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}
/*
* This function returns the number of memcg under hierarchy tree. Returns
* 1(self count) if no children.
*/
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
{
int num = 0;
struct mem_cgroup *iter;
for_each_mem_cgroup_tree(iter, memcg)
num++;
return num;
}
/*
* Return the memory (and swap, if configured) limit for a memcg.
*/
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
u64 limit;
u64 memsw;
limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
limit += total_swap_pages << PAGE_SHIFT;
memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
/*
* If memsw is finite and limits the amount of swap space available
* to this memcg, return that limit.
*/
return min(limit, memsw);
}
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
gfp_t gfp_mask,
unsigned long flags)
{
unsigned long total = 0;
bool noswap = false;
int loop;
if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
noswap = true;
if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
noswap = true;
for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
if (loop)
drain_all_stock_async(memcg);
total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
/*
* Allow limit shrinkers, which are triggered directly
* by userspace, to catch signals and stop reclaim
* after minimal progress, regardless of the margin.
*/
if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
break;
if (mem_cgroup_margin(memcg))
break;
/*
* If nothing was reclaimed after two attempts, there
* may be no reclaimable pages in this hierarchy.
*/
if (loop && !total)
break;
}
return total;
}
/**
* test_mem_cgroup_node_reclaimable
* @mem: the target memcg
* @nid: the node ID to be checked.
* @noswap : specify true here if the user wants flle only information.
*
* This function returns whether the specified memcg contains any
* reclaimable pages on a node. Returns true if there are any reclaimable
* pages in the node.
*/
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
int nid, bool noswap)
{
if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
return true;
if (noswap || !total_swap_pages)
return false;
if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
return true;
return false;
}
#if MAX_NUMNODES > 1
/*
* Always updating the nodemask is not very good - even if we have an empty
* list or the wrong list here, we can start from some node and traverse all
* nodes based on the zonelist. So update the list loosely once per 10 secs.
*
*/
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
{
int nid;
/*
* numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
* pagein/pageout changes since the last update.
*/
if (!atomic_read(&memcg->numainfo_events))
return;
if (atomic_inc_return(&memcg->numainfo_updating) > 1)
return;
/* make a nodemask where this memcg uses memory from */
memcg->scan_nodes = node_states[N_HIGH_MEMORY];
for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
node_clear(nid, memcg->scan_nodes);
}
atomic_set(&memcg->numainfo_events, 0);
atomic_set(&memcg->numainfo_updating, 0);
}
/*
* Selecting a node where we start reclaim from. Because what we need is just
* reducing usage counter, start from anywhere is O,K. Considering
* memory reclaim from current node, there are pros. and cons.
*
* Freeing memory from current node means freeing memory from a node which
* we'll use or we've used. So, it may make LRU bad. And if several threads
* hit limits, it will see a contention on a node. But freeing from remote
* node means more costs for memory reclaim because of memory latency.
*
* Now, we use round-robin. Better algorithm is welcomed.
*/
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
{
int node;
mem_cgroup_may_update_nodemask(memcg);
node = memcg->last_scanned_node;
node = next_node(node, memcg->scan_nodes);
if (node == MAX_NUMNODES)
node = first_node(memcg->scan_nodes);
/*
* We call this when we hit limit, not when pages are added to LRU.
* No LRU may hold pages because all pages are UNEVICTABLE or
* memcg is too small and all pages are not on LRU. In that case,
* we use curret node.
*/
if (unlikely(node == MAX_NUMNODES))
node = numa_node_id();
memcg->last_scanned_node = node;
return node;
}
/*
* Check all nodes whether it contains reclaimable pages or not.
* For quick scan, we make use of scan_nodes. This will allow us to skip
* unused nodes. But scan_nodes is lazily updated and may not cotain
* enough new information. We need to do double check.
*/
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
int nid;
/*
* quick check...making use of scan_node.
* We can skip unused nodes.
*/
if (!nodes_empty(memcg->scan_nodes)) {
for (nid = first_node(memcg->scan_nodes);
nid < MAX_NUMNODES;
nid = next_node(nid, memcg->scan_nodes)) {
if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
return true;
}
}
/*
* Check rest of nodes.
*/
for_each_node_state(nid, N_HIGH_MEMORY) {
if (node_isset(nid, memcg->scan_nodes))
continue;
if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
return true;
}
return false;
}
#else
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
{
return 0;
}
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
}
#endif
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
struct zone *zone,
gfp_t gfp_mask,
unsigned long *total_scanned)
{
struct mem_cgroup *victim = NULL;
int total = 0;
int loop = 0;
unsigned long excess;
unsigned long nr_scanned;
struct mem_cgroup_reclaim_cookie reclaim = {
.zone = zone,
.priority = 0,
};
excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
while (1) {
victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
if (!victim) {
loop++;
if (loop >= 2) {
/*
* If we have not been able to reclaim
* anything, it might because there are
* no reclaimable pages under this hierarchy
*/
if (!total)
break;
/*
* We want to do more targeted reclaim.
* excess >> 2 is not to excessive so as to
* reclaim too much, nor too less that we keep
* coming back to reclaim from this cgroup
*/
if (total >= (excess >> 2) ||
(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
break;
}
continue;
}
if (!mem_cgroup_reclaimable(victim, false))
continue;
total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
zone, &nr_scanned);
*total_scanned += nr_scanned;
if (!res_counter_soft_limit_excess(&root_memcg->res))
break;
}
mem_cgroup_iter_break(root_memcg, victim);
return total;
}
/*
* Check OOM-Killer is already running under our hierarchy.
* If someone is running, return false.
* Has to be called with memcg_oom_lock
*/
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
{
struct mem_cgroup *iter, *failed = NULL;
for_each_mem_cgroup_tree(iter, memcg) {
if (iter->oom_lock) {
/*
* this subtree of our hierarchy is already locked
* so we cannot give a lock.
*/
failed = iter;
mem_cgroup_iter_break(memcg, iter);
break;
} else
iter->oom_lock = true;
}
if (!failed)
return true;
/*
* OK, we failed to lock the whole subtree so we have to clean up
* what we set up to the failing subtree
*/
for_each_mem_cgroup_tree(iter, memcg) {
if (iter == failed) {
mem_cgroup_iter_break(memcg, iter);
break;
}
iter->oom_lock = false;
}
return false;
}
/*
* Has to be called with memcg_oom_lock
*/
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
{
struct mem_cgroup *iter;
for_each_mem_cgroup_tree(iter, memcg)
iter->oom_lock = false;
return 0;
}
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
{
struct mem_cgroup *iter;
for_each_mem_cgroup_tree(iter, memcg)
atomic_inc(&iter->under_oom);
}
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
{
struct mem_cgroup *iter;
/*
* When a new child is created while the hierarchy is under oom,
* mem_cgroup_oom_lock() may not be called. We have to use
* atomic_add_unless() here.
*/
for_each_mem_cgroup_tree(iter, memcg)
atomic_add_unless(&iter->under_oom, -1, 0);
}
static DEFINE_SPINLOCK(memcg_oom_lock);
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
struct oom_wait_info {
struct mem_cgroup *memcg;
wait_queue_t wait;
};
static int memcg_oom_wake_function(wait_queue_t *wait,
unsigned mode, int sync, void *arg)
{
struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
struct mem_cgroup *oom_wait_memcg;
struct oom_wait_info *oom_wait_info;
oom_wait_info = container_of(wait, struct oom_wait_info, wait);
oom_wait_memcg = oom_wait_info->memcg;
/*
* Both of oom_wait_info->memcg and wake_memcg are stable under us.
* Then we can use css_is_ancestor without taking care of RCU.
*/
if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
return 0;
return autoremove_wake_function(wait, mode, sync, arg);
}
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
{
/* for filtering, pass "memcg" as argument. */
__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
}
static void memcg_oom_recover(struct mem_cgroup *memcg)
{
if (memcg && atomic_read(&memcg->under_oom))
memcg_wakeup_oom(memcg);
}
/*
* try to call OOM killer. returns false if we should exit memory-reclaim loop.
*/
bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
{
struct oom_wait_info owait;
bool locked, need_to_kill;
owait.memcg = memcg;
owait.wait.flags = 0;
owait.wait.func = memcg_oom_wake_function;
owait.wait.private = current;
INIT_LIST_HEAD(&owait.wait.task_list);
need_to_kill = true;
mem_cgroup_mark_under_oom(memcg);
/* At first, try to OOM lock hierarchy under memcg.*/
spin_lock(&memcg_oom_lock);
locked = mem_cgroup_oom_lock(memcg);
/*
* Even if signal_pending(), we can't quit charge() loop without
* accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
* under OOM is always welcomed, use TASK_KILLABLE here.
*/
prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
if (!locked || memcg->oom_kill_disable)
need_to_kill = false;
if (locked)
mem_cgroup_oom_notify(memcg);
spin_unlock(&memcg_oom_lock);
if (need_to_kill) {
finish_wait(&memcg_oom_waitq, &owait.wait);
mem_cgroup_out_of_memory(memcg, mask, order);
} else {
schedule();
finish_wait(&memcg_oom_waitq, &owait.wait);
}
spin_lock(&memcg_oom_lock);
if (locked)
mem_cgroup_oom_unlock(memcg);
memcg_wakeup_oom(memcg);
spin_unlock(&memcg_oom_lock);
mem_cgroup_unmark_under_oom(memcg);
if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
return false;
/* Give chance to dying process */
schedule_timeout_uninterruptible(1);
return true;
}
/*
* Currently used to update mapped file statistics, but the routine can be
* generalized to update other statistics as well.
*
* Notes: Race condition
*
* We usually use page_cgroup_lock() for accessing page_cgroup member but
* it tends to be costly. But considering some conditions, we doesn't need
* to do so _always_.
*
* Considering "charge", lock_page_cgroup() is not required because all
* file-stat operations happen after a page is attached to radix-tree. There
* are no race with "charge".
*
* Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
* at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
* if there are race with "uncharge". Statistics itself is properly handled
* by flags.
*
* Considering "move", this is an only case we see a race. To make the race
* small, we check mm->moving_account and detect there are possibility of race
* If there is, we take a lock.
*/
void __mem_cgroup_begin_update_page_stat(struct page *page,
bool *locked, unsigned long *flags)
{
struct mem_cgroup *memcg;
struct page_cgroup *pc;
pc = lookup_page_cgroup(page);
again:
memcg = pc->mem_cgroup;
if (unlikely(!memcg || !PageCgroupUsed(pc)))
return;
/*
* If this memory cgroup is not under account moving, we don't
* need to take move_lock_page_cgroup(). Because we already hold
* rcu_read_lock(), any calls to move_account will be delayed until
* rcu_read_unlock() if mem_cgroup_stolen() == true.
*/
if (!mem_cgroup_stolen(memcg))
return;
move_lock_mem_cgroup(memcg, flags);
if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
move_unlock_mem_cgroup(memcg, flags);
goto again;
}
*locked = true;
}
void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
struct page_cgroup *pc = lookup_page_cgroup(page);
/*
* It's guaranteed that pc->mem_cgroup never changes while
* lock is held because a routine modifies pc->mem_cgroup
* should take move_lock_page_cgroup().
*/
move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}
void mem_cgroup_update_page_stat(struct page *page,
enum mem_cgroup_page_stat_item idx, int val)
{
struct mem_cgroup *memcg;
struct page_cgroup *pc = lookup_page_cgroup(page);
unsigned long uninitialized_var(flags);
if (mem_cgroup_disabled())
return;
memcg = pc->mem_cgroup;
if (unlikely(!memcg || !PageCgroupUsed(pc)))
return;
switch (idx) {
case MEMCG_NR_FILE_MAPPED:
idx = MEM_CGROUP_STAT_FILE_MAPPED;
break;
default:
BUG();
}
this_cpu_add(memcg->stat->count[idx], val);
}
/*
* size of first charge trial. "32" comes from vmscan.c's magic value.
* TODO: maybe necessary to use big numbers in big irons.
*/
#define CHARGE_BATCH 32U
struct memcg_stock_pcp {
struct mem_cgroup *cached; /* this never be root cgroup */
unsigned int nr_pages;
struct work_struct work;
unsigned long flags;
#define FLUSHING_CACHED_CHARGE (0)
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
static DEFINE_MUTEX(percpu_charge_mutex);
/*
* Try to consume stocked charge on this cpu. If success, one page is consumed
* from local stock and true is returned. If the stock is 0 or charges from a
* cgroup which is not current target, returns false. This stock will be
* refilled.
*/
static bool consume_stock(struct mem_cgroup *memcg)
{
struct memcg_stock_pcp *stock;
bool ret = true;
stock = &get_cpu_var(memcg_stock);
if (memcg == stock->cached && stock->nr_pages)
stock->nr_pages--;
else /* need to call res_counter_charge */
ret = false;
put_cpu_var(memcg_stock);
return ret;
}
/*
* Returns stocks cached in percpu to res_counter and reset cached information.
*/
static void drain_stock(struct memcg_stock_pcp *stock)
{
struct mem_cgroup *old = stock->cached;
if (stock->nr_pages) {
unsigned long bytes = stock->nr_pages * PAGE_SIZE;
res_counter_uncharge(&old->res, bytes);
if (do_swap_account)
res_counter_uncharge(&old->memsw, bytes);
stock->nr_pages = 0;
}
stock->cached = NULL;
}
/*
* This must be called under preempt disabled or must be called by
* a thread which is pinned to local cpu.
*/
static void drain_local_stock(struct work_struct *dummy)
{
struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
drain_stock(stock);
clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
}
/*
* Cache charges(val) which is from res_counter, to local per_cpu area.
* This will be consumed by consume_stock() function, later.
*/
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
{
struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
if (stock->cached != memcg) { /* reset if necessary */
drain_stock(stock);
stock->cached = memcg;
}
stock->nr_pages += nr_pages;
put_cpu_var(memcg_stock);
}
/*
* Drains all per-CPU charge caches for given root_memcg resp. subtree
* of the hierarchy under it. sync flag says whether we should block
* until the work is done.
*/
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
{
int cpu, curcpu;
/* Notify other cpus that system-wide "drain" is running */
get_online_cpus();
curcpu = get_cpu();
for_each_online_cpu(cpu) {
struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
struct mem_cgroup *memcg;
memcg = stock->cached;
if (!memcg || !stock->nr_pages)
continue;
if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
continue;
if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
if (cpu == curcpu)
drain_local_stock(&stock->work);
else
schedule_work_on(cpu, &stock->work);
}
}
put_cpu();
if (!sync)
goto out;
for_each_online_cpu(cpu) {
struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
flush_work(&stock->work);
}
out:
put_online_cpus();
}
/*
* Tries to drain stocked charges in other cpus. This function is asynchronous
* and just put a work per cpu for draining localy on each cpu. Caller can
* expects some charges will be back to res_counter later but cannot wait for
* it.
*/
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
{
/*
* If someone calls draining, avoid adding more kworker runs.
*/
if (!mutex_trylock(&percpu_charge_mutex))
return;
drain_all_stock(root_memcg, false);
mutex_unlock(&percpu_charge_mutex);
}
/* This is a synchronous drain interface. */
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
{
/* called when force_empty is called */
mutex_lock(&percpu_charge_mutex);
drain_all_stock(root_memcg, true);
mutex_unlock(&percpu_charge_mutex);
}
/*
* This function drains percpu counter value from DEAD cpu and
* move it to local cpu. Note that this function can be preempted.
*/
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
{
int i;
spin_lock(&memcg->pcp_counter_lock);
for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
long x = per_cpu(memcg->stat->count[i], cpu);
per_cpu(memcg->stat->count[i], cpu) = 0;
memcg->nocpu_base.count[i] += x;
}
for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
unsigned long x = per_cpu(memcg->stat->events[i], cpu);
per_cpu(memcg->stat->events[i], cpu) = 0;
memcg->nocpu_base.events[i] += x;
}
spin_unlock(&memcg->pcp_counter_lock);
}
static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
unsigned long action,
void *hcpu)
{
int cpu = (unsigned long)hcpu;
struct memcg_stock_pcp *stock;
struct mem_cgroup *iter;
if (action == CPU_ONLINE)
return NOTIFY_OK;
if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
return NOTIFY_OK;
for_each_mem_cgroup(iter)
mem_cgroup_drain_pcp_counter(iter, cpu);
stock = &per_cpu(memcg_stock, cpu);
drain_stock(stock);
return NOTIFY_OK;
}
/* See __mem_cgroup_try_charge() for details */
enum {
CHARGE_OK, /* success */
CHARGE_RETRY, /* need to retry but retry is not bad */
CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
CHARGE_OOM_DIE, /* the current is killed because of OOM */
};
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
unsigned int nr_pages, bool oom_check)
{
unsigned long csize = nr_pages * PAGE_SIZE;
struct mem_cgroup *mem_over_limit;
struct res_counter *fail_res;
unsigned long flags = 0;
int ret;
ret = res_counter_charge(&memcg->res, csize, &fail_res);
if (likely(!ret)) {
if (!do_swap_account)
return CHARGE_OK;
ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
if (likely(!ret))
return CHARGE_OK;
res_counter_uncharge(&memcg->res, csize);
mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
flags |= MEM_CGROUP_RECLAIM_NOSWAP;
} else
mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
/*
* nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
* of regular pages (CHARGE_BATCH), or a single regular page (1).
*
* Never reclaim on behalf of optional batching, retry with a
* single page instead.
*/
if (nr_pages == CHARGE_BATCH)
return CHARGE_RETRY;
if (!(gfp_mask & __GFP_WAIT))
return CHARGE_WOULDBLOCK;
ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
return CHARGE_RETRY;
/*
* Even though the limit is exceeded at this point, reclaim
* may have been able to free some pages. Retry the charge
* before killing the task.
*
* Only for regular pages, though: huge pages are rather
* unlikely to succeed so close to the limit, and we fall back
* to regular pages anyway in case of failure.
*/
if (nr_pages == 1 && ret)
return CHARGE_RETRY;
/*
* At task move, charge accounts can be doubly counted. So, it's
* better to wait until the end of task_move if something is going on.
*/
if (mem_cgroup_wait_acct_move(mem_over_limit))
return CHARGE_RETRY;
/* If we don't need to call oom-killer at el, return immediately */
if (!oom_check)
return CHARGE_NOMEM;
/* check OOM */
if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
return CHARGE_OOM_DIE;
return CHARGE_RETRY;
}
/*
* __mem_cgroup_try_charge() does
* 1. detect memcg to be charged against from passed *mm and *ptr,
* 2. update res_counter
* 3. call memory reclaim if necessary.
*
* In some special case, if the task is fatal, fatal_signal_pending() or
* has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
* to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
* as possible without any hazards. 2: all pages should have a valid
* pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
* pointer, that is treated as a charge to root_mem_cgroup.
*
* So __mem_cgroup_try_charge() will return
* 0 ... on success, filling *ptr with a valid memcg pointer.
* -ENOMEM ... charge failure because of resource limits.
* -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
*
* Unlike the exported interface, an "oom" parameter is added. if oom==true,
* the oom-killer can be invoked.
*/
static int __mem_cgroup_try_charge(struct mm_struct *mm,
gfp_t gfp_mask,
unsigned int nr_pages,
struct mem_cgroup **ptr,
bool oom)
{
unsigned int batch = max(CHARGE_BATCH, nr_pages);
int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
struct mem_cgroup *memcg = NULL;
int ret;
/*
* Unlike gloval-vm's OOM-kill, we're not in memory shortage
* in system level. So, allow to go ahead dying process in addition to
* MEMDIE process.
*/
if (unlikely(test_thread_flag(TIF_MEMDIE)
|| fatal_signal_pending(current)))
goto bypass;
/*
* We always charge the cgroup the mm_struct belongs to.
* The mm_struct's mem_cgroup changes on task migration if the
* thread group leader migrates. It's possible that mm is not
* set, if so charge the init_mm (happens for pagecache usage).
*/
if (!*ptr && !mm)
*ptr = root_mem_cgroup;
again:
if (*ptr) { /* css should be a valid one */
memcg = *ptr;
VM_BUG_ON(css_is_removed(&memcg->css));
if (mem_cgroup_is_root(memcg))
goto done;
if (nr_pages == 1 && consume_stock(memcg))
goto done;
css_get(&memcg->css);
} else {
struct task_struct *p;
rcu_read_lock();
p = rcu_dereference(mm->owner);
/*
* Because we don't have task_lock(), "p" can exit.
* In that case, "memcg" can point to root or p can be NULL with
* race with swapoff. Then, we have small risk of mis-accouning.
* But such kind of mis-account by race always happens because
* we don't have cgroup_mutex(). It's overkill and we allo that
* small race, here.
* (*) swapoff at el will charge against mm-struct not against
* task-struct. So, mm->owner can be NULL.
*/
memcg = mem_cgroup_from_task(p);
if (!memcg)
memcg = root_mem_cgroup;
if (mem_cgroup_is_root(memcg)) {
rcu_read_unlock();
goto done;
}
if (nr_pages == 1 && consume_stock(memcg)) {
/*
* It seems dagerous to access memcg without css_get().
* But considering how consume_stok works, it's not
* necessary. If consume_stock success, some charges
* from this memcg are cached on this cpu. So, we
* don't need to call css_get()/css_tryget() before
* calling consume_stock().
*/
rcu_read_unlock();
goto done;
}
/* after here, we may be blocked. we need to get refcnt */
if (!css_tryget(&memcg->css)) {
rcu_read_unlock();
goto again;
}
rcu_read_unlock();
}
do {
bool oom_check;
/* If killed, bypass charge */
if (fatal_signal_pending(current)) {
css_put(&memcg->css);
goto bypass;
}
oom_check = false;
if (oom && !nr_oom_retries) {
oom_check = true;
nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
}
ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
switch (ret) {
case CHARGE_OK:
break;
case CHARGE_RETRY: /* not in OOM situation but retry */
batch = nr_pages;
css_put(&memcg->css);
memcg = NULL;
goto again;
case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
css_put(&memcg->css);
goto nomem;
case CHARGE_NOMEM: /* OOM routine works */
if (!oom) {
css_put(&memcg->css);
goto nomem;
}
/* If oom, we never return -ENOMEM */
nr_oom_retries--;
break;
case CHARGE_OOM_DIE: /* Killed by OOM Killer */
css_put(&memcg->css);
goto bypass;
}
} while (ret != CHARGE_OK);
if (batch > nr_pages)
refill_stock(memcg, batch - nr_pages);
css_put(&memcg->css);
done:
*ptr = memcg;
return 0;
nomem:
*ptr = NULL;
return -ENOMEM;
bypass:
*ptr = root_mem_cgroup;
return -EINTR;
}
/*
* Somemtimes we have to undo a charge we got by try_charge().
* This function is for that and do uncharge, put css's refcnt.
* gotten by try_charge().
*/
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
unsigned int nr_pages)
{
if (!mem_cgroup_is_root(memcg)) {
unsigned long bytes = nr_pages * PAGE_SIZE;
res_counter_uncharge(&memcg->res, bytes);
if (do_swap_account)
res_counter_uncharge(&memcg->memsw, bytes);
}
}
/*
* A helper function to get mem_cgroup from ID. must be called under
* rcu_read_lock(). The caller must check css_is_removed() or some if
* it's concern. (dropping refcnt from swap can be called against removed
* memcg.)
*/
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
struct cgroup_subsys_state *css;
/* ID 0 is unused ID */
if (!id)
return NULL;
css = css_lookup(&mem_cgroup_subsys, id);
if (!css)
return NULL;
return container_of(css, struct mem_cgroup, css);
}
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
{
struct mem_cgroup *memcg = NULL;
struct page_cgroup *pc;
unsigned short id;
swp_entry_t ent;
VM_BUG_ON(!PageLocked(page));
pc = lookup_page_cgroup(page);
lock_page_cgroup(pc);
if (PageCgroupUsed(pc)) {
memcg = pc->mem_cgroup;
if (memcg && !css_tryget(&memcg->css))
memcg = NULL;
} else if (PageSwapCache(page)) {
ent.val = page_private(page);
id = lookup_swap_cgroup_id(ent);
rcu_read_lock();
memcg = mem_cgroup_lookup(id);
if (memcg && !css_tryget(&memcg->css))
memcg = NULL;
rcu_read_unlock();
}
unlock_page_cgroup(pc);
return memcg;
}
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
struct page *page,
unsigned int nr_pages,
struct page_cgroup *pc,
enum charge_type ctype,
bool lrucare)
{
struct zone *uninitialized_var(zone);
bool was_on_lru = false;
bool anon;
lock_page_cgroup(pc);
if (unlikely(PageCgroupUsed(pc))) {
unlock_page_cgroup(pc);
__mem_cgroup_cancel_charge(memcg, nr_pages);
return;
}
/*
* we don't need page_cgroup_lock about tail pages, becase they are not
* accessed by any other context at this point.
*/
/*
* In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
* may already be on some other mem_cgroup's LRU. Take care of it.
*/
if (lrucare) {
zone = page_zone(page);
spin_lock_irq(&zone->lru_lock);
if (PageLRU(page)) {
ClearPageLRU(page);
del_page_from_lru_list(zone, page, page_lru(page));
was_on_lru = true;
}
}
pc->mem_cgroup = memcg;
/*
* We access a page_cgroup asynchronously without lock_page_cgroup().
* Especially when a page_cgroup is taken from a page, pc->mem_cgroup
* is accessed after testing USED bit. To make pc->mem_cgroup visible
* before USED bit, we need memory barrier here.
* See mem_cgroup_add_lru_list(), etc.
*/
smp_wmb();
SetPageCgroupUsed(pc);
if (lrucare) {
if (was_on_lru) {
VM_BUG_ON(PageLRU(page));
SetPageLRU(page);
add_page_to_lru_list(zone, page, page_lru(page));
}
spin_unlock_irq(&zone->lru_lock);
}
if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
anon = true;
else
anon = false;
mem_cgroup_charge_statistics(memcg, anon, nr_pages);
unlock_page_cgroup(pc);
/*
* "charge_statistics" updated event counter. Then, check it.
* Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
* if they exceeds softlimit.
*/
memcg_check_events(memcg, page);
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MIGRATION))
/*
* Because tail pages are not marked as "used", set it. We're under
* zone->lru_lock, 'splitting on pmd' and compound_lock.
* charge/uncharge will be never happen and move_account() is done under
* compound_lock(), so we don't have to take care of races.
*/
void mem_cgroup_split_huge_fixup(struct page *head)
{
struct page_cgroup *head_pc = lookup_page_cgroup(head);
struct page_cgroup *pc;
int i;
if (mem_cgroup_disabled())
return;
for (i = 1; i < HPAGE_PMD_NR; i++) {
pc = head_pc + i;
pc->mem_cgroup = head_pc->mem_cgroup;
smp_wmb();/* see __commit_charge() */
pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
}
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
/**
* mem_cgroup_move_account - move account of the page
* @page: the page
* @nr_pages: number of regular pages (>1 for huge pages)
* @pc: page_cgroup of the page.
* @from: mem_cgroup which the page is moved from.
* @to: mem_cgroup which the page is moved to. @from != @to.
* @uncharge: whether we should call uncharge and css_put against @from.
*
* The caller must confirm following.
* - page is not on LRU (isolate_page() is useful.)
* - compound_lock is held when nr_pages > 1
*
* This function doesn't do "charge" nor css_get to new cgroup. It should be
* done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
* true, this function does "uncharge" from old cgroup, but it doesn't if
* @uncharge is false, so a caller should do "uncharge".
*/
static int mem_cgroup_move_account(struct page *page,
unsigned int nr_pages,
struct page_cgroup *pc,
struct mem_cgroup *from,
struct mem_cgroup *to,
bool uncharge)
{
unsigned long flags;
int ret;
bool anon = PageAnon(page);
VM_BUG_ON(from == to);
VM_BUG_ON(PageLRU(page));
/*
* The page is isolated from LRU. So, collapse function
* will not handle this page. But page splitting can happen.
* Do this check under compound_page_lock(). The caller should
* hold it.
*/
ret = -EBUSY;
if (nr_pages > 1 && !PageTransHuge(page))
goto out;
lock_page_cgroup(pc);
ret = -EINVAL;
if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
goto unlock;
move_lock_mem_cgroup(from, &flags);
if (!anon && page_mapped(page)) {
/* Update mapped_file data for mem_cgroup */
preempt_disable();
__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
preempt_enable();
}
mem_cgroup_charge_statistics(from, anon, -nr_pages);
if (uncharge)
/* This is not "cancel", but cancel_charge does all we need. */
__mem_cgroup_cancel_charge(from, nr_pages);
/* caller should have done css_get */
pc->mem_cgroup = to;
mem_cgroup_charge_statistics(to, anon, nr_pages);
/*
* We charges against "to" which may not have any tasks. Then, "to"
* can be under rmdir(). But in current implementation, caller of
* this function is just force_empty() and move charge, so it's
* guaranteed that "to" is never removed. So, we don't check rmdir
* status here.
*/
move_unlock_mem_cgroup(from, &flags);
ret = 0;
unlock:
unlock_page_cgroup(pc);
/*
* check events
*/
memcg_check_events(to, page);
memcg_check_events(from, page);
out:
return ret;
}
/*
* move charges to its parent.
*/
static int mem_cgroup_move_parent(struct page *page,
struct page_cgroup *pc,
struct mem_cgroup *child,
gfp_t gfp_mask)
{
struct cgroup *cg = child->css.cgroup;
struct cgroup *pcg = cg->parent;
struct mem_cgroup *parent;
unsigned int nr_pages;
unsigned long uninitialized_var(flags);
int ret;
/* Is ROOT ? */
if (!pcg)
return -EINVAL;
ret = -EBUSY;
if (!get_page_unless_zero(page))
goto out;
if (isolate_lru_page(page))
goto put;
nr_pages = hpage_nr_pages(page);
parent = mem_cgroup_from_cont(pcg);
ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
if (ret)
goto put_back;
if (nr_pages > 1)
flags = compound_lock_irqsave(page);
ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
if (ret)
__mem_cgroup_cancel_charge(parent, nr_pages);
if (nr_pages > 1)
compound_unlock_irqrestore(page, flags);
put_back:
putback_lru_page(page);
put:
put_page(page);
out:
return ret;
}
/*
* Charge the memory controller for page usage.
* Return
* 0 if the charge was successful
* < 0 if the cgroup is over its limit
*/
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
gfp_t gfp_mask, enum charge_type ctype)
{
struct mem_cgroup *memcg = NULL;
unsigned int nr_pages = 1;
struct page_cgroup *pc;
bool oom = true;
int ret;
if (PageTransHuge(page)) {
nr_pages <<= compound_order(page);
VM_BUG_ON(!PageTransHuge(page));
/*
* Never OOM-kill a process for a huge page. The
* fault handler will fall back to regular pages.
*/
oom = false;
}
pc = lookup_page_cgroup(page);
ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
if (ret == -ENOMEM)
return ret;
__mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype, false);
return 0;
}
int mem_cgroup_newpage_charge(struct page *page,
struct mm_struct *mm, gfp_t gfp_mask)
{
if (mem_cgroup_disabled())
return 0;
VM_BUG_ON(page_mapped(page));
VM_BUG_ON(page->mapping && !PageAnon(page));
VM_BUG_ON(!mm);
return mem_cgroup_charge_common(page, mm, gfp_mask,
MEM_CGROUP_CHARGE_TYPE_MAPPED);
}
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
enum charge_type ctype);
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
gfp_t gfp_mask)
{
struct mem_cgroup *memcg = NULL;
enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
int ret;
if (mem_cgroup_disabled())
return 0;
if (PageCompound(page))
return 0;
if (unlikely(!mm))
mm = &init_mm;
if (!page_is_file_cache(page))
type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
if (!PageSwapCache(page))
ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
else { /* page is swapcache/shmem */
ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
if (!ret)
__mem_cgroup_commit_charge_swapin(page, memcg, type);
}
return ret;
}
/*
* While swap-in, try_charge -> commit or cancel, the page is locked.
* And when try_charge() successfully returns, one refcnt to memcg without
* struct page_cgroup is acquired. This refcnt will be consumed by
* "commit()" or removed by "cancel()"
*/
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
struct page *page,
gfp_t mask, struct mem_cgroup **memcgp)
{
struct mem_cgroup *memcg;
int ret;
*memcgp = NULL;
if (mem_cgroup_disabled())
return 0;
if (!do_swap_account)
goto charge_cur_mm;
/*
* A racing thread's fault, or swapoff, may have already updated
* the pte, and even removed page from swap cache: in those cases
* do_swap_page()'s pte_same() test will fail; but there's also a
* KSM case which does need to charge the page.
*/
if (!PageSwapCache(page))
goto charge_cur_mm;
memcg = try_get_mem_cgroup_from_page(page);
if (!memcg)
goto charge_cur_mm;
*memcgp = memcg;
ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
css_put(&memcg->css);
if (ret == -EINTR)
ret = 0;
return ret;
charge_cur_mm:
if (unlikely(!mm))
mm = &init_mm;
ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
if (ret == -EINTR)
ret = 0;
return ret;
}
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
enum charge_type ctype)
{
struct page_cgroup *pc;
if (mem_cgroup_disabled())
return;
if (!memcg)
return;
cgroup_exclude_rmdir(&memcg->css);
pc = lookup_page_cgroup(page);
__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype, true);
/*
* Now swap is on-memory. This means this page may be
* counted both as mem and swap....double count.
* Fix it by uncharging from memsw. Basically, this SwapCache is stable
* under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
* may call delete_from_swap_cache() before reach here.
*/
if (do_swap_account && PageSwapCache(page)) {
swp_entry_t ent = {.val = page_private(page)};
struct mem_cgroup *swap_memcg;
unsigned short id;
id = swap_cgroup_record(ent, 0);
rcu_read_lock();
swap_memcg = mem_cgroup_lookup(id);
if (swap_memcg) {
/*
* This recorded memcg can be obsolete one. So, avoid
* calling css_tryget
*/
if (!mem_cgroup_is_root(swap_memcg))
res_counter_uncharge(&swap_memcg->memsw,
PAGE_SIZE);
mem_cgroup_swap_statistics(swap_memcg, false);
mem_cgroup_put(swap_memcg);
}
rcu_read_unlock();
}
/*
* At swapin, we may charge account against cgroup which has no tasks.
* So, rmdir()->pre_destroy() can be called while we do this charge.
* In that case, we need to call pre_destroy() again. check it here.
*/
cgroup_release_and_wakeup_rmdir(&memcg->css);
}
void mem_cgroup_commit_charge_swapin(struct page *page,
struct mem_cgroup *memcg)
{
__mem_cgroup_commit_charge_swapin(page, memcg,
MEM_CGROUP_CHARGE_TYPE_MAPPED);
}
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
if (mem_cgroup_disabled())
return;
if (!memcg)
return;
__mem_cgroup_cancel_charge(memcg, 1);
}
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
unsigned int nr_pages,
const enum charge_type ctype)
{
struct memcg_batch_info *batch = NULL;
bool uncharge_memsw = true;
/* If swapout, usage of swap doesn't decrease */
if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
uncharge_memsw = false;
batch = &current->memcg_batch;
/*
* In usual, we do css_get() when we remember memcg pointer.
* But in this case, we keep res->usage until end of a series of
* uncharges. Then, it's ok to ignore memcg's refcnt.
*/
if (!batch->memcg)
batch->memcg = memcg;
/*
* do_batch > 0 when unmapping pages or inode invalidate/truncate.
* In those cases, all pages freed continuously can be expected to be in
* the same cgroup and we have chance to coalesce uncharges.
* But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
* because we want to do uncharge as soon as possible.
*/
if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
goto direct_uncharge;
if (nr_pages > 1)
goto direct_uncharge;
/*
* In typical case, batch->memcg == mem. This means we can
* merge a series of uncharges to an uncharge of res_counter.
* If not, we uncharge res_counter ony by one.
*/
if (batch->memcg != memcg)
goto direct_uncharge;
/* remember freed charge and uncharge it later */
batch->nr_pages++;
if (uncharge_memsw)
batch->memsw_nr_pages++;
return;
direct_uncharge:
res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
if (uncharge_memsw)
res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
if (unlikely(batch->memcg != memcg))
memcg_oom_recover(memcg);
}
/*
* uncharge if !page_mapped(page)
*/
static struct mem_cgroup *
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
{
struct mem_cgroup *memcg = NULL;
unsigned int nr_pages = 1;
struct page_cgroup *pc;
bool anon;
if (mem_cgroup_disabled())
return NULL;
if (PageSwapCache(page))
return NULL;
if (PageTransHuge(page)) {
nr_pages <<= compound_order(page);
VM_BUG_ON(!PageTransHuge(page));
}
/*
* Check if our page_cgroup is valid
*/
pc = lookup_page_cgroup(page);
if (unlikely(!PageCgroupUsed(pc)))
return NULL;
lock_page_cgroup(pc);
memcg = pc->mem_cgroup;
if (!PageCgroupUsed(pc))
goto unlock_out;
anon = PageAnon(page);
switch (ctype) {
case MEM_CGROUP_CHARGE_TYPE_MAPPED:
/*
* Generally PageAnon tells if it's the anon statistics to be
* updated; but sometimes e.g. mem_cgroup_uncharge_page() is
* used before page reached the stage of being marked PageAnon.
*/
anon = true;
/* fallthrough */
case MEM_CGROUP_CHARGE_TYPE_DROP:
/* See mem_cgroup_prepare_migration() */
if (page_mapped(page) || PageCgroupMigration(pc))
goto unlock_out;
break;
case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
if (!PageAnon(page)) { /* Shared memory */
if (page->mapping && !page_is_file_cache(page))
goto unlock_out;
} else if (page_mapped(page)) /* Anon */
goto unlock_out;
break;
default:
break;
}
mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
ClearPageCgroupUsed(pc);
/*
* pc->mem_cgroup is not cleared here. It will be accessed when it's
* freed from LRU. This is safe because uncharged page is expected not
* to be reused (freed soon). Exception is SwapCache, it's handled by
* special functions.
*/
unlock_page_cgroup(pc);
/*
* even after unlock, we have memcg->res.usage here and this memcg
* will never be freed.
*/
memcg_check_events(memcg, page);
if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
mem_cgroup_swap_statistics(memcg, true);
mem_cgroup_get(memcg);
}
if (!mem_cgroup_is_root(memcg))
mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
return memcg;
unlock_out:
unlock_page_cgroup(pc);
return NULL;
}
void mem_cgroup_uncharge_page(struct page *page)
{
/* early check. */
if (page_mapped(page))
return;
VM_BUG_ON(page->mapping && !PageAnon(page));
__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}
void mem_cgroup_uncharge_cache_page(struct page *page)
{
VM_BUG_ON(page_mapped(page));
VM_BUG_ON(page->mapping);
__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}
/*
* Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
* In that cases, pages are freed continuously and we can expect pages
* are in the same memcg. All these calls itself limits the number of
* pages freed at once, then uncharge_start/end() is called properly.
* This may be called prural(2) times in a context,
*/
void mem_cgroup_uncharge_start(void)
{
current->memcg_batch.do_batch++;
/* We can do nest. */
if (current->memcg_batch.do_batch == 1) {
current->memcg_batch.memcg = NULL;
current->memcg_batch.nr_pages = 0;
current->memcg_batch.memsw_nr_pages = 0;
}
}
void mem_cgroup_uncharge_end(void)
{
struct memcg_batch_info *batch = &current->memcg_batch;
if (!batch->do_batch)
return;
batch->do_batch--;
if (batch->do_batch) /* If stacked, do nothing. */
return;
if (!batch->memcg)
return;
/*
* This "batch->memcg" is valid without any css_get/put etc...
* bacause we hide charges behind us.
*/
if (batch->nr_pages)
res_counter_uncharge(&batch->memcg->res,
batch->nr_pages * PAGE_SIZE);
if (batch->memsw_nr_pages)
res_counter_uncharge(&batch->memcg->memsw,
batch->memsw_nr_pages * PAGE_SIZE);
memcg_oom_recover(batch->memcg);
/* forget this pointer (for sanity check) */
batch->memcg = NULL;
}
#ifdef CONFIG_SWAP
/*
* called after __delete_from_swap_cache() and drop "page" account.
* memcg information is recorded to swap_cgroup of "ent"
*/
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
{
struct mem_cgroup *memcg;
int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
if (!swapout) /* this was a swap cache but the swap is unused ! */
ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
memcg = __mem_cgroup_uncharge_common(page, ctype);
/*
* record memcg information, if swapout && memcg != NULL,
* mem_cgroup_get() was called in uncharge().
*/
if (do_swap_account && swapout && memcg)
swap_cgroup_record(ent, css_id(&memcg->css));
}
#endif
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
* called from swap_entry_free(). remove record in swap_cgroup and
* uncharge "memsw" account.
*/
void mem_cgroup_uncharge_swap(swp_entry_t ent)
{
struct mem_cgroup *memcg;
unsigned short id;
if (!do_swap_account)
return;
id = swap_cgroup_record(ent, 0);
rcu_read_lock();
memcg = mem_cgroup_lookup(id);
if (memcg) {
/*
* We uncharge this because swap is freed.
* This memcg can be obsolete one. We avoid calling css_tryget
*/
if (!mem_cgroup_is_root(memcg))
res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
mem_cgroup_swap_statistics(memcg, false);
mem_cgroup_put(memcg);
}
rcu_read_unlock();
}
/**
* mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
* @entry: swap entry to be moved
* @from: mem_cgroup which the entry is moved from
* @to: mem_cgroup which the entry is moved to
* @need_fixup: whether we should fixup res_counters and refcounts.
*
* It succeeds only when the swap_cgroup's record for this entry is the same
* as the mem_cgroup's id of @from.
*
* Returns 0 on success, -EINVAL on failure.
*
* The caller must have charged to @to, IOW, called res_counter_charge() about
* both res and memsw, and called css_get().
*/
static int mem_cgroup_move_swap_account(swp_entry_t entry,
struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
{
unsigned short old_id, new_id;
old_id = css_id(&from->css);
new_id = css_id(&to->css);
if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
mem_cgroup_swap_statistics(from, false);
mem_cgroup_swap_statistics(to, true);
/*
* This function is only called from task migration context now.
* It postpones res_counter and refcount handling till the end
* of task migration(mem_cgroup_clear_mc()) for performance
* improvement. But we cannot postpone mem_cgroup_get(to)
* because if the process that has been moved to @to does
* swap-in, the refcount of @to might be decreased to 0.
*/
mem_cgroup_get(to);
if (need_fixup) {
if (!mem_cgroup_is_root(from))
res_counter_uncharge(&from->memsw, PAGE_SIZE);
mem_cgroup_put(from);
/*
* we charged both to->res and to->memsw, so we should
* uncharge to->res.
*/
if (!mem_cgroup_is_root(to))
res_counter_uncharge(&to->res, PAGE_SIZE);
}
return 0;
}
return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
{
return -EINVAL;
}
#endif
/*
* Before starting migration, account PAGE_SIZE to mem_cgroup that the old
* page belongs to.
*/
int mem_cgroup_prepare_migration(struct page *page,
struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
{
struct mem_cgroup *memcg = NULL;
struct page_cgroup *pc;
enum charge_type ctype;
int ret = 0;
*memcgp = NULL;
VM_BUG_ON(PageTransHuge(page));
if (mem_cgroup_disabled())
return 0;
pc = lookup_page_cgroup(page);
lock_page_cgroup(pc);
if (PageCgroupUsed(pc)) {
memcg = pc->mem_cgroup;
css_get(&memcg->css);
/*
* At migrating an anonymous page, its mapcount goes down
* to 0 and uncharge() will be called. But, even if it's fully
* unmapped, migration may fail and this page has to be
* charged again. We set MIGRATION flag here and delay uncharge
* until end_migration() is called
*
* Corner Case Thinking
* A)
* When the old page was mapped as Anon and it's unmap-and-freed
* while migration was ongoing.
* If unmap finds the old page, uncharge() of it will be delayed
* until end_migration(). If unmap finds a new page, it's
* uncharged when it make mapcount to be 1->0. If unmap code
* finds swap_migration_entry, the new page will not be mapped
* and end_migration() will find it(mapcount==0).
*
* B)
* When the old page was mapped but migraion fails, the kernel
* remaps it. A charge for it is kept by MIGRATION flag even
* if mapcount goes down to 0. We can do remap successfully
* without charging it again.
*
* C)
* The "old" page is under lock_page() until the end of
* migration, so, the old page itself will not be swapped-out.
* If the new page is swapped out before end_migraton, our
* hook to usual swap-out path will catch the event.
*/
if (PageAnon(page))
SetPageCgroupMigration(pc);
}
unlock_page_cgroup(pc);
/*
* If the page is not charged at this point,
* we return here.
*/
if (!memcg)
return 0;
*memcgp = memcg;
ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
css_put(&memcg->css);/* drop extra refcnt */
if (ret) {
if (PageAnon(page)) {
lock_page_cgroup(pc);
ClearPageCgroupMigration(pc);
unlock_page_cgroup(pc);
/*
* The old page may be fully unmapped while we kept it.
*/
mem_cgroup_uncharge_page(page);
}
/* we'll need to revisit this error code (we have -EINTR) */
return -ENOMEM;
}
/*
* We charge new page before it's used/mapped. So, even if unlock_page()
* is called before end_migration, we can catch all events on this new
* page. In the case new page is migrated but not remapped, new page's
* mapcount will be finally 0 and we call uncharge in end_migration().
*/
pc = lookup_page_cgroup(newpage);
if (PageAnon(page))
ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
else if (page_is_file_cache(page))
ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
else
ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
__mem_cgroup_commit_charge(memcg, newpage, 1, pc, ctype, false);
return ret;
}
/* remove redundant charge if migration failed*/
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
struct page *oldpage, struct page *newpage, bool migration_ok)
{
struct page *used, *unused;
struct page_cgroup *pc;
bool anon;
if (!memcg)
return;
/* blocks rmdir() */
cgroup_exclude_rmdir(&memcg->css);
if (!migration_ok) {
used = oldpage;
unused = newpage;
} else {
used = newpage;
unused = oldpage;
}
/*
* We disallowed uncharge of pages under migration because mapcount
* of the page goes down to zero, temporarly.
* Clear the flag and check the page should be charged.
*/
pc = lookup_page_cgroup(oldpage);
lock_page_cgroup(pc);
ClearPageCgroupMigration(pc);
unlock_page_cgroup(pc);
anon = PageAnon(used);
__mem_cgroup_uncharge_common(unused,
anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
: MEM_CGROUP_CHARGE_TYPE_CACHE);
/*
* If a page is a file cache, radix-tree replacement is very atomic
* and we can skip this check. When it was an Anon page, its mapcount
* goes down to 0. But because we added MIGRATION flage, it's not
* uncharged yet. There are several case but page->mapcount check
* and USED bit check in mem_cgroup_uncharge_page() will do enough
* check. (see prepare_charge() also)
*/
if (anon)
mem_cgroup_uncharge_page(used);
/*
* At migration, we may charge account against cgroup which has no
* tasks.
* So, rmdir()->pre_destroy() can be called while we do this charge.
* In that case, we need to call pre_destroy() again. check it here.
*/
cgroup_release_and_wakeup_rmdir(&memcg->css);
}
/*
* At replace page cache, newpage is not under any memcg but it's on
* LRU. So, this function doesn't touch res_counter but handles LRU
* in correct way. Both pages are locked so we cannot race with uncharge.
*/
void mem_cgroup_replace_page_cache(struct page *oldpage,
struct page *newpage)
{
struct mem_cgroup *memcg;
struct page_cgroup *pc;
enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
if (mem_cgroup_disabled())
return;
pc = lookup_page_cgroup(oldpage);
/* fix accounting on old pages */
lock_page_cgroup(pc);
memcg = pc->mem_cgroup;
mem_cgroup_charge_statistics(memcg, false, -1);
ClearPageCgroupUsed(pc);
unlock_page_cgroup(pc);
if (PageSwapBacked(oldpage))
type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
/*
* Even if newpage->mapping was NULL before starting replacement,
* the newpage may be on LRU(or pagevec for LRU) already. We lock
* LRU while we overwrite pc->mem_cgroup.
*/
__mem_cgroup_commit_charge(memcg, newpage, 1, pc, type, true);
}
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
struct page_cgroup *pc;
pc = lookup_page_cgroup(page);
/*
* Can be NULL while feeding pages into the page allocator for
* the first time, i.e. during boot or memory hotplug;
* or when mem_cgroup_disabled().
*/
if (likely(pc) && PageCgroupUsed(pc))
return pc;
return NULL;
}
bool mem_cgroup_bad_page_check(struct page *page)
{
if (mem_cgroup_disabled())
return false;
return lookup_page_cgroup_used(page) != NULL;
}
void mem_cgroup_print_bad_page(struct page *page)
{
struct page_cgroup *pc;
pc = lookup_page_cgroup_used(page);
if (pc) {
printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
pc, pc->flags, pc->mem_cgroup);
}
}
#endif
static DEFINE_MUTEX(set_limit_mutex);
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
unsigned long long val)
{
int retry_count;
u64 memswlimit, memlimit;
int ret = 0;
int children = mem_cgroup_count_children(memcg);
u64 curusage, oldusage;
int enlarge;
/*
* For keeping hierarchical_reclaim simple, how long we should retry
* is depends on callers. We set our retry-count to be function
* of # of children which we should visit in this loop.
*/
retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
enlarge = 0;
while (retry_count) {
if (signal_pending(current)) {
ret = -EINTR;
break;
}
/*
* Rather than hide all in some function, I do this in
* open coded manner. You see what this really does.
* We have to guarantee memcg->res.limit < memcg->memsw.limit.
*/
mutex_lock(&set_limit_mutex);
memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
if (memswlimit < val) {
ret = -EINVAL;
mutex_unlock(&set_limit_mutex);
break;
}
memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
if (memlimit < val)
enlarge = 1;
ret = res_counter_set_limit(&memcg->res, val);
if (!ret) {
if (memswlimit == val)
memcg->memsw_is_minimum = true;
else
memcg->memsw_is_minimum = false;
}
mutex_unlock(&set_limit_mutex);
if (!ret)
break;
mem_cgroup_reclaim(memcg, GFP_KERNEL,
MEM_CGROUP_RECLAIM_SHRINK);
curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
/* Usage is reduced ? */
if (curusage >= oldusage)
retry_count--;
else
oldusage = curusage;
}
if (!ret && enlarge)
memcg_oom_recover(memcg);
return ret;
}
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
unsigned long long val)
{
int retry_count;
u64 memlimit, memswlimit, oldusage, curusage;
int children = mem_cgroup_count_children(memcg);
int ret = -EBUSY;
int enlarge = 0;
/* see mem_cgroup_resize_res_limit */
retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
while (retry_count) {
if (signal_pending(current)) {
ret = -EINTR;
break;
}
/*
* Rather than hide all in some function, I do this in
* open coded manner. You see what this really does.
* We have to guarantee memcg->res.limit < memcg->memsw.limit.
*/
mutex_lock(&set_limit_mutex);
memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
if (memlimit > val) {
ret = -EINVAL;
mutex_unlock(&set_limit_mutex);
break;
}
memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
if (memswlimit < val)
enlarge = 1;
ret = res_counter_set_limit(&memcg->memsw, val);
if (!ret) {
if (memlimit == val)
memcg->memsw_is_minimum = true;
else
memcg->memsw_is_minimum = false;
}
mutex_unlock(&set_limit_mutex);
if (!ret)
break;
mem_cgroup_reclaim(memcg, GFP_KERNEL,
MEM_CGROUP_RECLAIM_NOSWAP |
MEM_CGROUP_RECLAIM_SHRINK);
curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
/* Usage is reduced ? */
if (curusage >= oldusage)
retry_count--;
else
oldusage = curusage;
}
if (!ret && enlarge)
memcg_oom_recover(memcg);
return ret;
}
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
gfp_t gfp_mask,
unsigned long *total_scanned)
{
unsigned long nr_reclaimed = 0;
struct mem_cgroup_per_zone *mz, *next_mz = NULL;
unsigned long reclaimed;
int loop = 0;
struct mem_cgroup_tree_per_zone *mctz;
unsigned long long excess;
unsigned long nr_scanned;
if (order > 0)
return 0;
mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
/*
* This loop can run a while, specially if mem_cgroup's continuously
* keep exceeding their soft limit and putting the system under
* pressure
*/
do {
if (next_mz)
mz = next_mz;
else
mz = mem_cgroup_largest_soft_limit_node(mctz);
if (!mz)
break;
nr_scanned = 0;
reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
gfp_mask, &nr_scanned);
nr_reclaimed += reclaimed;
*total_scanned += nr_scanned;
spin_lock(&mctz->lock);
/*
* If we failed to reclaim anything from this memory cgroup
* it is time to move on to the next cgroup
*/
next_mz = NULL;
if (!reclaimed) {
do {
/*
* Loop until we find yet another one.
*
* By the time we get the soft_limit lock
* again, someone might have aded the
* group back on the RB tree. Iterate to
* make sure we get a different mem.
* mem_cgroup_largest_soft_limit_node returns
* NULL if no other cgroup is present on
* the tree
*/
next_mz =
__mem_cgroup_largest_soft_limit_node(mctz);
if (next_mz == mz)
css_put(&next_mz->memcg->css);
else /* next_mz == NULL or other memcg */
break;
} while (1);
}
__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
excess = res_counter_soft_limit_excess(&mz->memcg->res);
/*
* One school of thought says that we should not add
* back the node to the tree if reclaim returns 0.
* But our reclaim could return 0, simply because due
* to priority we are exposing a smaller subset of
* memory to reclaim from. Consider this as a longer
* term TODO.
*/
/* If excess == 0, no tree ops */
__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
spin_unlock(&mctz->lock);
css_put(&mz->memcg->css);
loop++;
/*
* Could not reclaim anything and there are no more
* mem cgroups to try or we seem to be looping without
* reclaiming anything.
*/
if (!nr_reclaimed &&
(next_mz == NULL ||
loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
break;
} while (!nr_reclaimed);
if (next_mz)
css_put(&next_mz->memcg->css);
return nr_reclaimed;
}
/*
* This routine traverse page_cgroup in given list and drop them all.
* *And* this routine doesn't reclaim page itself, just removes page_cgroup.
*/
static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
int node, int zid, enum lru_list lru)
{
struct mem_cgroup_per_zone *mz;
unsigned long flags, loop;
struct list_head *list;
struct page *busy;
struct zone *zone;
int ret = 0;
zone = &NODE_DATA(node)->node_zones[zid];
mz = mem_cgroup_zoneinfo(memcg, node, zid);
list = &mz->lruvec.lists[lru];
loop = mz->lru_size[lru];
/* give some margin against EBUSY etc...*/
loop += 256;
busy = NULL;
while (loop--) {
struct page_cgroup *pc;
struct page *page;
ret = 0;
spin_lock_irqsave(&zone->lru_lock, flags);
if (list_empty(list)) {
spin_unlock_irqrestore(&zone->lru_lock, flags);
break;
}
page = list_entry(list->prev, struct page, lru);
if (busy == page) {
list_move(&page->lru, list);
busy = NULL;
spin_unlock_irqrestore(&zone->lru_lock, flags);
continue;
}
spin_unlock_irqrestore(&zone->lru_lock, flags);
pc = lookup_page_cgroup(page);
ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
if (ret == -ENOMEM || ret == -EINTR)
break;
if (ret == -EBUSY || ret == -EINVAL) {
/* found lock contention or "pc" is obsolete. */
busy = page;
cond_resched();
} else
busy = NULL;
}
if (!ret && !list_empty(list))
return -EBUSY;
return ret;
}
/*
* make mem_cgroup's charge to be 0 if there is no task.
* This enables deleting this mem_cgroup.
*/
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
{
int ret;
int node, zid, shrink;
int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
struct cgroup *cgrp = memcg->css.cgroup;
css_get(&memcg->css);
shrink = 0;
/* should free all ? */
if (free_all)
goto try_to_free;
move_account:
do {
ret = -EBUSY;
if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
goto out;
ret = -EINTR;
if (signal_pending(current))
goto out;
/* This is for making all *used* pages to be on LRU. */
lru_add_drain_all();
drain_all_stock_sync(memcg);
ret = 0;
mem_cgroup_start_move(memcg);
for_each_node_state(node, N_HIGH_MEMORY) {
for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
enum lru_list lru;
for_each_lru(lru) {
ret = mem_cgroup_force_empty_list(memcg,
node, zid, lru);
if (ret)
break;
}
}
if (ret)
break;
}
mem_cgroup_end_move(memcg);
memcg_oom_recover(memcg);
/* it seems parent cgroup doesn't have enough mem */
if (ret == -ENOMEM)
goto try_to_free;
cond_resched();
/* "ret" should also be checked to ensure all lists are empty. */
} while (memcg->res.usage > 0 || ret);
out:
css_put(&memcg->css);
return ret;
try_to_free:
/* returns EBUSY if there is a task or if we come here twice. */
if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
ret = -EBUSY;
goto out;
}
/* we call try-to-free pages for make this cgroup empty */
lru_add_drain_all();
/* try to free all pages in this cgroup */
shrink = 1;
while (nr_retries && memcg->res.usage > 0) {
int progress;
if (signal_pending(current)) {
ret = -EINTR;
goto out;
}
progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
false);
if (!progress) {
nr_retries--;
/* maybe some writeback is necessary */
congestion_wait(BLK_RW_ASYNC, HZ/10);
}
}
lru_add_drain();
/* try move_account...there may be some *locked* pages. */
goto move_account;
}
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
return mem_cgroup_from_cont(cont)->use_hierarchy;
}
static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
u64 val)
{
int retval = 0;
struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
struct cgroup *parent = cont->parent;
struct mem_cgroup *parent_memcg = NULL;
if (parent)
parent_memcg = mem_cgroup_from_cont(parent);
cgroup_lock();
/*
* If parent's use_hierarchy is set, we can't make any modifications
* in the child subtrees. If it is unset, then the change can
* occur, provided the current cgroup has no children.
*
* For the root cgroup, parent_mem is NULL, we allow value to be
* set if there are no children.
*/
if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
(val == 1 || val == 0)) {
if (list_empty(&cont->children))
memcg->use_hierarchy = val;
else
retval = -EBUSY;
} else
retval = -EINVAL;
cgroup_unlock();
return retval;
}
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
enum mem_cgroup_stat_index idx)
{
struct mem_cgroup *iter;
long val = 0;
/* Per-cpu values can be negative, use a signed accumulator */
for_each_mem_cgroup_tree(iter, memcg)
val += mem_cgroup_read_stat(iter, idx);
if (val < 0) /* race ? */
val = 0;
return val;
}
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
{
u64 val;
if (!mem_cgroup_is_root(memcg)) {
if (!swap)
return res_counter_read_u64(&memcg->res, RES_USAGE);
else
return res_counter_read_u64(&memcg->memsw, RES_USAGE);
}
val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
if (swap)
val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
return val << PAGE_SHIFT;
}
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
{
struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
u64 val;
int type, name;
type = MEMFILE_TYPE(cft->private);
name = MEMFILE_ATTR(cft->private);
switch (type) {
case _MEM:
if (name == RES_USAGE)
val = mem_cgroup_usage(memcg, false);
else
val = res_counter_read_u64(&memcg->res, name);
break;
case _MEMSWAP:
if (name == RES_USAGE)
val = mem_cgroup_usage(memcg, true);
else
val = res_counter_read_u64(&memcg->memsw, name);
break;
default:
BUG();
}
return val;
}
/*
* The user of this function is...
* RES_LIMIT.
*/
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
const char *buffer)
{
struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
int type, name;
unsigned long long val;
int ret;
type = MEMFILE_TYPE(cft->private);
name = MEMFILE_ATTR(cft->private);
switch (name) {
case RES_LIMIT:
if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
ret = -EINVAL;
break;
}
/* This function does all necessary parse...reuse it */
ret = res_counter_memparse_write_strategy(buffer, &val);
if (ret)
break;
if (type == _MEM)
ret = mem_cgroup_resize_limit(memcg, val);
else
ret = mem_cgroup_resize_memsw_limit(memcg, val);
break;
case RES_SOFT_LIMIT:
ret = res_counter_memparse_write_strategy(buffer, &val);
if (ret)
break;
/*
* For memsw, soft limits are hard to implement in terms
* of semantics, for now, we support soft limits for
* control without swap
*/
if (type == _MEM)
ret = res_counter_set_soft_limit(&memcg->res, val);
else
ret = -EINVAL;
break;
default:
ret = -EINVAL; /* should be BUG() ? */
break;
}
return ret;
}
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
struct cgroup *cgroup;
unsigned long long min_limit, min_memsw_limit, tmp;
min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
cgroup = memcg->css.cgroup;
if (!memcg->use_hierarchy)
goto out;
while (cgroup->parent) {
cgroup = cgroup->parent;
memcg = mem_cgroup_from_cont(cgroup);
if (!memcg->use_hierarchy)
break;
tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
min_limit = min(min_limit, tmp);
tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
min_memsw_limit = min(min_memsw_limit, tmp);
}
out:
*mem_limit = min_limit;
*memsw_limit = min_memsw_limit;
}
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
{
struct mem_cgroup *memcg;
int type, name;
memcg = mem_cgroup_from_cont(cont);
type = MEMFILE_TYPE(event);
name = MEMFILE_ATTR(event);
switch (name) {
case RES_MAX_USAGE:
if (type == _MEM)
res_counter_reset_max(&memcg->res);
else
res_counter_reset_max(&memcg->memsw);
break;
case RES_FAILCNT:
if (type == _MEM)
res_counter_reset_failcnt(&memcg->res);
else
res_counter_reset_failcnt(&memcg->memsw);
break;
}
return 0;
}
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
struct cftype *cft)
{
return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}
#ifdef CONFIG_MMU
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
struct cftype *cft, u64 val)
{
struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
if (val >= (1 << NR_MOVE_TYPE))
return -EINVAL;
/*
* We check this value several times in both in can_attach() and
* attach(), so we need cgroup lock to prevent this value from being
* inconsistent.
*/
cgroup_lock();
memcg->move_charge_at_immigrate = val;
cgroup_unlock();
return 0;
}
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
struct cftype *cft, u64 val)
{
return -ENOSYS;
}
#endif
/* For read statistics */
enum {
MCS_CACHE,
MCS_RSS,
MCS_FILE_MAPPED,
MCS_PGPGIN,
MCS_PGPGOUT,
MCS_SWAP,
MCS_PGFAULT,
MCS_PGMAJFAULT,
MCS_INACTIVE_ANON,
MCS_ACTIVE_ANON,
MCS_INACTIVE_FILE,
MCS_ACTIVE_FILE,
MCS_UNEVICTABLE,
NR_MCS_STAT,
};
struct mcs_total_stat {
s64 stat[NR_MCS_STAT];
};
struct {
char *local_name;
char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
{"cache", "total_cache"},
{"rss", "total_rss"},
{"mapped_file", "total_mapped_file"},
{"pgpgin", "total_pgpgin"},
{"pgpgout", "total_pgpgout"},
{"swap", "total_swap"},
{"pgfault", "total_pgfault"},
{"pgmajfault", "total_pgmajfault"},
{"inactive_anon", "total_inactive_anon"},
{"active_anon", "total_active_anon"},
{"inactive_file", "total_inactive_file"},
{"active_file", "total_active_file"},
{"unevictable", "total_unevictable"}
};
static void
mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
{
s64 val;
/* per cpu stat */
val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
s->stat[MCS_CACHE] += val * PAGE_SIZE;
val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
s->stat[MCS_RSS] += val * PAGE_SIZE;
val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
s->stat[MCS_PGPGIN] += val;
val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
s->stat[MCS_PGPGOUT] += val;
if (do_swap_account) {
val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
s->stat[MCS_SWAP] += val * PAGE_SIZE;
}
val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
s->stat[MCS_PGFAULT] += val;
val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
s->stat[MCS_PGMAJFAULT] += val;
/* per zone stat */
val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}
static void
mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
{
struct mem_cgroup *iter;
for_each_mem_cgroup_tree(iter, memcg)
mem_cgroup_get_local_stat(iter, s);
}
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
int nid;
unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
unsigned long node_nr;
struct cgroup *cont = m->private;
struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
seq_printf(m, "total=%lu", total_nr);
for_each_node_state(nid, N_HIGH_MEMORY) {
node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
seq_printf(m, " N%d=%lu", nid, node_nr);
}
seq_putc(m, '\n');
file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
seq_printf(m, "file=%lu", file_nr);
for_each_node_state(nid, N_HIGH_MEMORY) {
node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
LRU_ALL_FILE);
seq_printf(m, " N%d=%lu", nid, node_nr);
}
seq_putc(m, '\n');
anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
seq_printf(m, "anon=%lu", anon_nr);
for_each_node_state(nid, N_HIGH_MEMORY) {
node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
LRU_ALL_ANON);
seq_printf(m, " N%d=%lu", nid, node_nr);
}
seq_putc(m, '\n');
unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
seq_printf(m, "unevictable=%lu", unevictable_nr);
for_each_node_state(nid, N_HIGH_MEMORY) {
node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
BIT(LRU_UNEVICTABLE));
seq_printf(m, " N%d=%lu", nid, node_nr);
}
seq_putc(m, '\n');
return 0;
}
#endif /* CONFIG_NUMA */
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
struct cgroup_map_cb *cb)
{
struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
struct mcs_total_stat mystat;
int i;
memset(&mystat, 0, sizeof(mystat));
mem_cgroup_get_local_stat(memcg, &mystat);
for (i = 0; i < NR_MCS_STAT; i++) {
if (i == MCS_SWAP && !do_swap_account)
continue;
cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
}
/* Hierarchical information */
{
unsigned long long limit, memsw_limit;
memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
cb->fill(cb, "hierarchical_memory_limit", limit);
if (do_swap_account)
cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
}
memset(&mystat, 0, sizeof(mystat));
mem_cgroup_get_total_stat(memcg, &mystat);
for (i = 0; i < NR_MCS_STAT; i++) {
if (i == MCS_SWAP && !do_swap_account)
continue;
cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
}
#ifdef CONFIG_DEBUG_VM
{
int nid, zid;
struct mem_cgroup_per_zone *mz;
unsigned long recent_rotated[2] = {0, 0};
unsigned long recent_scanned[2] = {0, 0};
for_each_online_node(nid)
for (zid = 0; zid < MAX_NR_ZONES; zid++) {
mz = mem_cgroup_zoneinfo(memcg, nid, zid);
recent_rotated[0] +=
mz->reclaim_stat.recent_rotated[0];
recent_rotated[1] +=
mz->reclaim_stat.recent_rotated[1];
recent_scanned[0] +=
mz->reclaim_stat.recent_scanned[0];
recent_scanned[1] +=
mz->reclaim_stat.recent_scanned[1];
}
cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
}
#endif
return 0;
}
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
return mem_cgroup_swappiness(memcg);
}
static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
u64 val)
{
struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
struct mem_cgroup *parent;
if (val > 100)
return -EINVAL;
if (cgrp->parent == NULL)
return -EINVAL;
parent = mem_cgroup_from_cont(cgrp->parent);
cgroup_lock();
/* If under hierarchy, only empty-root can set this value */
if ((parent->use_hierarchy) ||
(memcg->use_hierarchy && !list_empty(&cgrp->children))) {
cgroup_unlock();
return -EINVAL;
}
memcg->swappiness = val;
cgroup_unlock();
return 0;
}
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
struct mem_cgroup_threshold_ary *t;
u64 usage;
int i;
rcu_read_lock();
if (!swap)
t = rcu_dereference(memcg->thresholds.primary);
else
t = rcu_dereference(memcg->memsw_thresholds.primary);
if (!t)
goto unlock;
usage = mem_cgroup_usage(memcg, swap);
/*
* current_threshold points to threshold just below usage.
* If it's not true, a threshold was crossed after last
* call of __mem_cgroup_threshold().
*/
i = t->current_threshold;
/*
* Iterate backward over array of thresholds starting from
* current_threshold and check if a threshold is crossed.
* If none of thresholds below usage is crossed, we read
* only one element of the array here.
*/
for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
eventfd_signal(t->entries[i].eventfd, 1);
/* i = current_threshold + 1 */
i++;
/*
* Iterate forward over array of thresholds starting from
* current_threshold+1 and check if a threshold is crossed.
* If none of thresholds above usage is crossed, we read
* only one element of the array here.
*/
for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
eventfd_signal(t->entries[i].eventfd, 1);
/* Update current_threshold */
t->current_threshold = i - 1;
unlock:
rcu_read_unlock();
}
static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
while (memcg) {
__mem_cgroup_threshold(memcg, false);
if (do_swap_account)
__mem_cgroup_threshold(memcg, true);
memcg = parent_mem_cgroup(memcg);
}
}
static int compare_thresholds(const void *a, const void *b)
{
const struct mem_cgroup_threshold *_a = a;
const struct mem_cgroup_threshold *_b = b;
return _a->threshold - _b->threshold;
}
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
{
struct mem_cgroup_eventfd_list *ev;
list_for_each_entry(ev, &memcg->oom_notify, list)
eventfd_signal(ev->eventfd, 1);
return 0;
}
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
{
struct mem_cgroup *iter;
for_each_mem_cgroup_tree(iter, memcg)
mem_cgroup_oom_notify_cb(iter);
}
static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
struct mem_cgroup_thresholds *thresholds;
struct mem_cgroup_threshold_ary *new;
int type = MEMFILE_TYPE(cft->private);
u64 threshold, usage;
int i, size, ret;
ret = res_counter_memparse_write_strategy(args, &threshold);
if (ret)
return ret;
mutex_lock(&memcg->thresholds_lock);
if (type == _MEM)
thresholds = &memcg->thresholds;
else if (type == _MEMSWAP)
thresholds = &memcg->memsw_thresholds;
else
BUG();
usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
/* Check if a threshold crossed before adding a new one */
if (thresholds->primary)
__mem_cgroup_threshold(memcg, type == _MEMSWAP);
size = thresholds->primary ? thresholds->primary->size + 1 : 1;
/* Allocate memory for new array of thresholds */
new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
GFP_KERNEL);
if (!new) {
ret = -ENOMEM;
goto unlock;
}
new->size = size;
/* Copy thresholds (if any) to new array */
if (thresholds->primary) {
memcpy(new->entries, thresholds->primary->entries, (size - 1) *
sizeof(struct mem_cgroup_threshold));
}
/* Add new threshold */
new->entries[size - 1].eventfd = eventfd;
new->entries[size - 1].threshold = threshold;
/* Sort thresholds. Registering of new threshold isn't time-critical */
sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
compare_thresholds, NULL);
/* Find current threshold */
new->current_threshold = -1;
for (i = 0; i < size; i++) {
if (new->entries[i].threshold < usage) {
/*
* new->current_threshold will not be used until
* rcu_assign_pointer(), so it's safe to increment
* it here.
*/
++new->current_threshold;
}
}
/* Free old spare buffer and save old primary buffer as spare */
kfree(thresholds->spare);
thresholds->spare = thresholds->primary;
rcu_assign_pointer(thresholds->primary, new);
/* To be sure that nobody uses thresholds */
synchronize_rcu();
unlock:
mutex_unlock(&memcg->thresholds_lock);
return ret;
}
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
struct cftype *cft, struct eventfd_ctx *eventfd)
{
struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
struct mem_cgroup_thresholds *thresholds;
struct mem_cgroup_threshold_ary *new;
int type = MEMFILE_TYPE(cft->private);
u64 usage;
int i, j, size;
mutex_lock(&memcg->thresholds_lock);
if (type == _MEM)
thresholds = &memcg->thresholds;
else if (type == _MEMSWAP)
thresholds = &memcg->memsw_thresholds;
else
BUG();
if (!thresholds->primary)
goto unlock;
usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
/* Check if a threshold crossed before removing */
__mem_cgroup_threshold(memcg, type == _MEMSWAP);
/* Calculate new number of threshold */
size = 0;
for (i = 0; i < thresholds->primary->size; i++) {
if (thresholds->primary->entries[i].eventfd != eventfd)
size++;
}
new = thresholds->spare;
/* Set thresholds array to NULL if we don't have thresholds */
if (!size) {
kfree(new);
new = NULL;
goto swap_buffers;
}
new->size = size;
/* Copy thresholds and find current threshold */
new->current_threshold = -1;
for (i = 0, j = 0; i < thresholds->primary->size; i++) {
if (thresholds->primary->entries[i].eventfd == eventfd)
continue;
new->entries[j] = thresholds->primary->entries[i];
if (new->entries[j].threshold < usage) {
/*
* new->current_threshold will not be used
* until rcu_assign_pointer(), so it's safe to increment
* it here.
*/
++new->current_threshold;
}
j++;
}
swap_buffers:
/* Swap primary and spare array */
thresholds->spare = thresholds->primary;
rcu_assign_pointer(thresholds->primary, new);
/* To be sure that nobody uses thresholds */
synchronize_rcu();
unlock:
mutex_unlock(&memcg->thresholds_lock);
}
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
struct mem_cgroup_eventfd_list *event;
int type = MEMFILE_TYPE(cft->private);
BUG_ON(type != _OOM_TYPE);
event = kmalloc(sizeof(*event), GFP_KERNEL);
if (!event)
return -ENOMEM;
spin_lock(&memcg_oom_lock);
event->eventfd = eventfd;
list_add(&event->list, &memcg->oom_notify);
/* already in OOM ? */
if (atomic_read(&memcg->under_oom))
eventfd_signal(eventfd, 1);
spin_unlock(&memcg_oom_lock);
return 0;
}
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
struct cftype *cft, struct eventfd_ctx *eventfd)
{
struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
struct mem_cgroup_eventfd_list *ev, *tmp;
int type = MEMFILE_TYPE(cft->private);
BUG_ON(type != _OOM_TYPE);
spin_lock(&memcg_oom_lock);
list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
if (ev->eventfd == eventfd) {
list_del(&ev->list);
kfree(ev);
}
}
spin_unlock(&memcg_oom_lock);
}
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
struct cftype *cft, struct cgroup_map_cb *cb)
{
struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
if (atomic_read(&memcg->under_oom))
cb->fill(cb, "under_oom", 1);
else
cb->fill(cb, "under_oom", 0);
return 0;
}
static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
struct cftype *cft, u64 val)
{
struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
struct mem_cgroup *parent;
/* cannot set to root cgroup and only 0 and 1 are allowed */
if (!cgrp->parent || !((val == 0) || (val == 1)))
return -EINVAL;
parent = mem_cgroup_from_cont(cgrp->parent);
cgroup_lock();
/* oom-kill-disable is a flag for subhierarchy. */
if ((parent->use_hierarchy) ||
(memcg->use_hierarchy && !list_empty(&cgrp->children))) {
cgroup_unlock();
return -EINVAL;
}
memcg->oom_kill_disable = val;
if (!val)
memcg_oom_recover(memcg);
cgroup_unlock();
return 0;
}
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
file->f_op = &mem_control_numa_stat_file_operations;
return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
/*
* Part of this would be better living in a separate allocation
* function, leaving us with just the cgroup tree population work.
* We, however, depend on state such as network's proto_list that
* is only initialized after cgroup creation. I found the less
* cumbersome way to deal with it to defer it all to populate time
*/
return mem_cgroup_sockets_init(cont, ss);
};
static void kmem_cgroup_destroy(struct cgroup *cont)
{
mem_cgroup_sockets_destroy(cont);
}
#else
static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
return 0;
}
static void kmem_cgroup_destroy(struct cgroup *cont)
{
}
#endif
static struct cftype mem_cgroup_files[] = {
{
.name = "usage_in_bytes",
.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
.read_u64 = mem_cgroup_read,
.register_event = mem_cgroup_usage_register_event,
.unregister_event = mem_cgroup_usage_unregister_event,
},
{
.name = "max_usage_in_bytes",
.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
.trigger = mem_cgroup_reset,
.read_u64 = mem_cgroup_read,
},
{
.name = "limit_in_bytes",
.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
.write_string = mem_cgroup_write,
.read_u64 = mem_cgroup_read,
},
{
.name = "soft_limit_in_bytes",
.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
.write_string = mem_cgroup_write,
.read_u64 = mem_cgroup_read,
},
{
.name = "failcnt",
.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
.trigger = mem_cgroup_reset,
.read_u64 = mem_cgroup_read,
},
{
.name = "stat",
.read_map = mem_control_stat_show,
},
{
.name = "force_empty",
.trigger = mem_cgroup_force_empty_write,
},
{
.name = "use_hierarchy",
.write_u64 = mem_cgroup_hierarchy_write,
.read_u64 = mem_cgroup_hierarchy_read,
},
{
.name = "swappiness",
.read_u64 = mem_cgroup_swappiness_read,
.write_u64 = mem_cgroup_swappiness_write,
},
{
.name = "move_charge_at_immigrate",
.read_u64 = mem_cgroup_move_charge_read,
.write_u64 = mem_cgroup_move_charge_write,
},
{
.name = "oom_control",
.read_map = mem_cgroup_oom_control_read,
.write_u64 = mem_cgroup_oom_control_write,
.register_event = mem_cgroup_oom_register_event,
.unregister_event = mem_cgroup_oom_unregister_event,
.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
},
#ifdef CONFIG_NUMA
{
.name = "numa_stat",
.open = mem_control_numa_stat_open,
.mode = S_IRUGO,
},
#endif
};
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
{
.name = "memsw.usage_in_bytes",
.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
.read_u64 = mem_cgroup_read,
.register_event = mem_cgroup_usage_register_event,
.unregister_event = mem_cgroup_usage_unregister_event,
},
{
.name = "memsw.max_usage_in_bytes",
.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
.trigger = mem_cgroup_reset,
.read_u64 = mem_cgroup_read,
},
{
.name = "memsw.limit_in_bytes",
.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
.write_string = mem_cgroup_write,
.read_u64 = mem_cgroup_read,
},
{
.name = "memsw.failcnt",
.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
.trigger = mem_cgroup_reset,
.read_u64 = mem_cgroup_read,
},
};
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
if (!do_swap_account)
return 0;
return cgroup_add_files(cont, ss, memsw_cgroup_files,
ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
return 0;
}
#endif
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
{
struct mem_cgroup_per_node *pn;
struct mem_cgroup_per_zone *mz;
enum lru_list lru;
int zone, tmp = node;
/*
* This routine is called against possible nodes.
* But it's BUG to call kmalloc() against offline node.
*
* TODO: this routine can waste much memory for nodes which will
* never be onlined. It's better to use memory hotplug callback
* function.
*/
if (!node_state(node, N_NORMAL_MEMORY))
tmp = -1;
pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
if (!pn)
return 1;
for (zone = 0; zone < MAX_NR_ZONES; zone++) {
mz = &pn->zoneinfo[zone];
for_each_lru(lru)
INIT_LIST_HEAD(&mz->lruvec.lists[lru]);
mz->usage_in_excess = 0;
mz->on_tree = false;
mz->memcg = memcg;
}
memcg->info.nodeinfo[node] = pn;
return 0;
}
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
{
kfree(memcg->info.nodeinfo[node]);
}
static struct mem_cgroup *mem_cgroup_alloc(void)
{
struct mem_cgroup *memcg;
int size = sizeof(struct mem_cgroup);
/* Can be very big if MAX_NUMNODES is very big */
if (size < PAGE_SIZE)
memcg = kzalloc(size, GFP_KERNEL);
else
memcg = vzalloc(size);
if (!memcg)
return NULL;
memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
if (!memcg->stat)
goto out_free;
spin_lock_init(&memcg->pcp_counter_lock);
return memcg;
out_free:
if (size < PAGE_SIZE)
kfree(memcg);
else
vfree(memcg);
return NULL;
}
/*
* Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
* but in process context. The work_freeing structure is overlaid
* on the rcu_freeing structure, which itself is overlaid on memsw.
*/
static void vfree_work(struct work_struct *work)
{
struct mem_cgroup *memcg;
memcg = container_of(work, struct mem_cgroup, work_freeing);
vfree(memcg);
}
static void vfree_rcu(struct rcu_head *rcu_head)
{
struct mem_cgroup *memcg;
memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
INIT_WORK(&memcg->work_freeing, vfree_work);
schedule_work(&memcg->work_freeing);
}
/*
* At destroying mem_cgroup, references from swap_cgroup can remain.
* (scanning all at force_empty is too costly...)
*
* Instead of clearing all references at force_empty, we remember
* the number of reference from swap_cgroup and free mem_cgroup when
* it goes down to 0.
*
* Removal of cgroup itself succeeds regardless of refs from swap.
*/
static void __mem_cgroup_free(struct mem_cgroup *memcg)
{
int node;
mem_cgroup_remove_from_trees(memcg);
free_css_id(&mem_cgroup_subsys, &memcg->css);
for_each_node(node)
free_mem_cgroup_per_zone_info(memcg, node);
free_percpu(memcg->stat);
if (sizeof(struct mem_cgroup) < PAGE_SIZE)
kfree_rcu(memcg, rcu_freeing);
else
call_rcu(&memcg->rcu_freeing, vfree_rcu);
}
static void mem_cgroup_get(struct mem_cgroup *memcg)
{
atomic_inc(&memcg->refcnt);
}
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
{
if (atomic_sub_and_test(count, &memcg->refcnt)) {
struct mem_cgroup *parent = parent_mem_cgroup(memcg);
__mem_cgroup_free(memcg);
if (parent)
mem_cgroup_put(parent);
}
}
static void mem_cgroup_put(struct mem_cgroup *memcg)
{
__mem_cgroup_put(memcg, 1);
}
/*
* Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
*/
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
{
if (!memcg->res.parent)
return NULL;
return mem_cgroup_from_res_counter(memcg->res.parent, res);
}
EXPORT_SYMBOL(parent_mem_cgroup);
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
if (!mem_cgroup_disabled() && really_do_swap_account)
do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif
static int mem_cgroup_soft_limit_tree_init(void)
{
struct mem_cgroup_tree_per_node *rtpn;
struct mem_cgroup_tree_per_zone *rtpz;
int tmp, node, zone;
for_each_node(node) {
tmp = node;
if (!node_state(node, N_NORMAL_MEMORY))
tmp = -1;
rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
if (!rtpn)
goto err_cleanup;
soft_limit_tree.rb_tree_per_node[node] = rtpn;
for (zone = 0; zone < MAX_NR_ZONES; zone++) {
rtpz = &rtpn->rb_tree_per_zone[zone];
rtpz->rb_root = RB_ROOT;
spin_lock_init(&rtpz->lock);
}
}
return 0;
err_cleanup:
for_each_node(node) {
if (!soft_limit_tree.rb_tree_per_node[node])
break;
kfree(soft_limit_tree.rb_tree_per_node[node]);
soft_limit_tree.rb_tree_per_node[node] = NULL;
}
return 1;
}
static struct cgroup_subsys_state * __ref
mem_cgroup_create(struct cgroup *cont)
{
struct mem_cgroup *memcg, *parent;
long error = -ENOMEM;
int node;
memcg = mem_cgroup_alloc();
if (!memcg)
return ERR_PTR(error);
for_each_node(node)
if (alloc_mem_cgroup_per_zone_info(memcg, node))
goto free_out;
/* root ? */
if (cont->parent == NULL) {
int cpu;
enable_swap_cgroup();
parent = NULL;
if (mem_cgroup_soft_limit_tree_init())
goto free_out;
root_mem_cgroup = memcg;
for_each_possible_cpu(cpu) {
struct memcg_stock_pcp *stock =
&per_cpu(memcg_stock, cpu);
INIT_WORK(&stock->work, drain_local_stock);
}
hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
} else {
parent = mem_cgroup_from_cont(cont->parent);
memcg->use_hierarchy = parent->use_hierarchy;
memcg->oom_kill_disable = parent->oom_kill_disable;
}
if (parent && parent->use_hierarchy) {
res_counter_init(&memcg->res, &parent->res);
res_counter_init(&memcg->memsw, &parent->memsw);
/*
* We increment refcnt of the parent to ensure that we can
* safely access it on res_counter_charge/uncharge.
* This refcnt will be decremented when freeing this
* mem_cgroup(see mem_cgroup_put).
*/
mem_cgroup_get(parent);
} else {
res_counter_init(&memcg->res, NULL);
res_counter_init(&memcg->memsw, NULL);
}
memcg->last_scanned_node = MAX_NUMNODES;
INIT_LIST_HEAD(&memcg->oom_notify);
if (parent)
memcg->swappiness = mem_cgroup_swappiness(parent);
atomic_set(&memcg->refcnt, 1);
memcg->move_charge_at_immigrate = 0;
mutex_init(&memcg->thresholds_lock);
spin_lock_init(&memcg->move_lock);
return &memcg->css;
free_out:
__mem_cgroup_free(memcg);
return ERR_PTR(error);
}
static int mem_cgroup_pre_destroy(struct cgroup *cont)
{
struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
return mem_cgroup_force_empty(memcg, false);
}
static void mem_cgroup_destroy(struct cgroup *cont)
{
struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
kmem_cgroup_destroy(cont);
mem_cgroup_put(memcg);
}
static int mem_cgroup_populate(struct cgroup_subsys *ss,
struct cgroup *cont)
{
int ret;
ret = cgroup_add_files(cont, ss, mem_cgroup_files,
ARRAY_SIZE(mem_cgroup_files));
if (!ret)
ret = register_memsw_files(cont, ss);
if (!ret)
ret = register_kmem_files(cont, ss);
return ret;
}
#ifdef CONFIG_MMU
/* Handlers for move charge at task migration. */
#define PRECHARGE_COUNT_AT_ONCE 256
static int mem_cgroup_do_precharge(unsigned long count)
{
int ret = 0;
int batch_count = PRECHARGE_COUNT_AT_ONCE;
struct mem_cgroup *memcg = mc.to;
if (mem_cgroup_is_root(memcg)) {
mc.precharge += count;
/* we don't need css_get for root */
return ret;
}
/* try to charge at once */
if (count > 1) {
struct res_counter *dummy;
/*
* "memcg" cannot be under rmdir() because we've already checked
* by cgroup_lock_live_cgroup() that it is not removed and we
* are still under the same cgroup_mutex. So we can postpone
* css_get().
*/
if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
goto one_by_one;
if (do_swap_account && res_counter_charge(&memcg->memsw,
PAGE_SIZE * count, &dummy)) {
res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
goto one_by_one;
}
mc.precharge += count;
return ret;
}
one_by_one:
/* fall back to one by one charge */
while (count--) {
if (signal_pending(current)) {
ret = -EINTR;
break;
}
if (!batch_count--) {
batch_count = PRECHARGE_COUNT_AT_ONCE;
cond_resched();
}
ret = __mem_cgroup_try_charge(NULL,
GFP_KERNEL, 1, &memcg, false);
if (ret)
/* mem_cgroup_clear_mc() will do uncharge later */
return ret;
mc.precharge++;
}
return ret;
}
/**
* get_mctgt_type - get target type of moving charge
* @vma: the vma the pte to be checked belongs
* @addr: the address corresponding to the pte to be checked
* @ptent: the pte to be checked
* @target: the pointer the target page or swap ent will be stored(can be NULL)
*
* Returns
* 0(MC_TARGET_NONE): if the pte is not a target for move charge.
* 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
* move charge. if @target is not NULL, the page is stored in target->page
* with extra refcnt got(Callers should handle it).
* 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
* target for charge migration. if @target is not NULL, the entry is stored
* in target->ent.
*
* Called with pte lock held.
*/
union mc_target {
struct page *page;
swp_entry_t ent;
};
enum mc_target_type {
MC_TARGET_NONE = 0,
MC_TARGET_PAGE,
MC_TARGET_SWAP,
};
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
unsigned long addr, pte_t ptent)
{
struct page *page = vm_normal_page(vma, addr, ptent);
if (!page || !page_mapped(page))
return NULL;
if (PageAnon(page)) {
/* we don't move shared anon */
if (!move_anon() || page_mapcount(page) > 2)
return NULL;
} else if (!move_file())
/* we ignore mapcount for file pages */
return NULL;
if (!get_page_unless_zero(page))
return NULL;
return page;
}
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
int usage_count;
struct page *page = NULL;
swp_entry_t ent = pte_to_swp_entry(ptent);
if (!move_anon() || non_swap_entry(ent))
return NULL;
usage_count = mem_cgroup_count_swap_user(ent, &page);
if (usage_count > 1) { /* we don't move shared anon */
if (page)
put_page(page);
return NULL;
}
if (do_swap_account)
entry->val = ent.val;
return page;
}
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
struct page *page = NULL;
struct inode *inode;
struct address_space *mapping;
pgoff_t pgoff;
if (!vma->vm_file) /* anonymous vma */
return NULL;
if (!move_file())
return NULL;
inode = vma->vm_file->f_path.dentry->d_inode;
mapping = vma->vm_file->f_mapping;
if (pte_none(ptent))
pgoff = linear_page_index(vma, addr);
else /* pte_file(ptent) is true */
pgoff = pte_to_pgoff(ptent);
/* page is moved even if it's not RSS of this task(page-faulted). */
page = find_get_page(mapping, pgoff);
#ifdef CONFIG_SWAP
/* shmem/tmpfs may report page out on swap: account for that too. */
if (radix_tree_exceptional_entry(page)) {
swp_entry_t swap = radix_to_swp_entry(page);
if (do_swap_account)
*entry = swap;
page = find_get_page(&swapper_space, swap.val);
}
#endif
return page;
}
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
unsigned long addr, pte_t ptent, union mc_target *target)
{
struct page *page = NULL;
struct page_cgroup *pc;
enum mc_target_type ret = MC_TARGET_NONE;
swp_entry_t ent = { .val = 0 };
if (pte_present(ptent))
page = mc_handle_present_pte(vma, addr, ptent);
else if (is_swap_pte(ptent))
page = mc_handle_swap_pte(vma, addr, ptent, &ent);
else if (pte_none(ptent) || pte_file(ptent))
page = mc_handle_file_pte(vma, addr, ptent, &ent);
if (!page && !ent.val)
return ret;
if (page) {
pc = lookup_page_cgroup(page);
/*
* Do only loose check w/o page_cgroup lock.
* mem_cgroup_move_account() checks the pc is valid or not under
* the lock.
*/
if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
ret = MC_TARGET_PAGE;
if (target)
target->page = page;
}
if (!ret || !target)
put_page(page);
}
/* There is a swap entry and a page doesn't exist or isn't charged */
if (ent.val && !ret &&
css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
ret = MC_TARGET_SWAP;
if (target)
target->ent = ent;
}
return ret;
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
* We don't consider swapping or file mapped pages because THP does not
* support them for now.
* Caller should make sure that pmd_trans_huge(pmd) is true.
*/
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
unsigned long addr, pmd_t pmd, union mc_target *target)
{
struct page *page = NULL;
struct page_cgroup *pc;
enum mc_target_type ret = MC_TARGET_NONE;
page = pmd_page(pmd);
VM_BUG_ON(!page || !PageHead(page));
if (!move_anon())
return ret;
pc = lookup_page_cgroup(page);
if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
ret = MC_TARGET_PAGE;
if (target) {
get_page(page);
target->page = page;
}
}
return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
unsigned long addr, pmd_t pmd, union mc_target *target)
{
return MC_TARGET_NONE;
}
#endif
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
struct vm_area_struct *vma = walk->private;
pte_t *pte;
spinlock_t *ptl;
if (pmd_trans_huge_lock(pmd, vma) == 1) {
if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
mc.precharge += HPAGE_PMD_NR;
spin_unlock(&vma->vm_mm->page_table_lock);
return 0;
}
pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
for (; addr != end; pte++, addr += PAGE_SIZE)
if (get_mctgt_type(vma, addr, *pte, NULL))
mc.precharge++; /* increment precharge temporarily */
pte_unmap_unlock(pte - 1, ptl);
cond_resched();
return 0;
}
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
unsigned long precharge;
struct vm_area_struct *vma;
down_read(&mm->mmap_sem);
for (vma = mm->mmap; vma; vma = vma->vm_next) {
struct mm_walk mem_cgroup_count_precharge_walk = {
.pmd_entry = mem_cgroup_count_precharge_pte_range,
.mm = mm,
.private = vma,
};
if (is_vm_hugetlb_page(vma))
continue;
walk_page_range(vma->vm_start, vma->vm_end,
&mem_cgroup_count_precharge_walk);
}
up_read(&mm->mmap_sem);
precharge = mc.precharge;
mc.precharge = 0;
return precharge;
}
static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
unsigned long precharge = mem_cgroup_count_precharge(mm);
VM_BUG_ON(mc.moving_task);
mc.moving_task = current;
return mem_cgroup_do_precharge(precharge);
}
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
{
struct mem_cgroup *from = mc.from;
struct mem_cgroup *to = mc.to;
/* we must uncharge all the leftover precharges from mc.to */
if (mc.precharge) {
__mem_cgroup_cancel_charge(mc.to, mc.precharge);
mc.precharge = 0;
}
/*
* we didn't uncharge from mc.from at mem_cgroup_move_account(), so
* we must uncharge here.
*/
if (mc.moved_charge) {
__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
mc.moved_charge = 0;
}
/* we must fixup refcnts and charges */
if (mc.moved_swap) {
/* uncharge swap account from the old cgroup */
if (!mem_cgroup_is_root(mc.from))
res_counter_uncharge(&mc.from->memsw,
PAGE_SIZE * mc.moved_swap);
__mem_cgroup_put(mc.from, mc.moved_swap);
if (!mem_cgroup_is_root(mc.to)) {
/*
* we charged both to->res and to->memsw, so we should
* uncharge to->res.
*/
res_counter_uncharge(&mc.to->res,
PAGE_SIZE * mc.moved_swap);
}
/* we've already done mem_cgroup_get(mc.to) */
mc.moved_swap = 0;
}
memcg_oom_recover(from);
memcg_oom_recover(to);
wake_up_all(&mc.waitq);
}
static void mem_cgroup_clear_mc(void)
{
struct mem_cgroup *from = mc.from;
/*
* we must clear moving_task before waking up waiters at the end of
* task migration.
*/
mc.moving_task = NULL;
__mem_cgroup_clear_mc();
spin_lock(&mc.lock);
mc.from = NULL;
mc.to = NULL;
spin_unlock(&mc.lock);
mem_cgroup_end_move(from);
}
static int mem_cgroup_can_attach(struct cgroup *cgroup,
struct cgroup_taskset *tset)
{
struct task_struct *p = cgroup_taskset_first(tset);
int ret = 0;
struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
if (memcg->move_charge_at_immigrate) {
struct mm_struct *mm;
struct mem_cgroup *from = mem_cgroup_from_task(p);
VM_BUG_ON(from == memcg);
mm = get_task_mm(p);
if (!mm)
return 0;
/* We move charges only when we move a owner of the mm */
if (mm->owner == p) {
VM_BUG_ON(mc.from);
VM_BUG_ON(mc.to);
VM_BUG_ON(mc.precharge);
VM_BUG_ON(mc.moved_charge);
VM_BUG_ON(mc.moved_swap);
mem_cgroup_start_move(from);
spin_lock(&mc.lock);
mc.from = from;
mc.to = memcg;
spin_unlock(&mc.lock);
/* We set mc.moving_task later */
ret = mem_cgroup_precharge_mc(mm);
if (ret)
mem_cgroup_clear_mc();
}
mmput(mm);
}
return ret;
}
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
struct cgroup_taskset *tset)
{
mem_cgroup_clear_mc();
}
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
int ret = 0;
struct vm_area_struct *vma = walk->private;
pte_t *pte;
spinlock_t *ptl;
enum mc_target_type target_type;
union mc_target target;
struct page *page;
struct page_cgroup *pc;
/*
* We don't take compound_lock() here but no race with splitting thp
* happens because:
* - if pmd_trans_huge_lock() returns 1, the relevant thp is not
* under splitting, which means there's no concurrent thp split,
* - if another thread runs into split_huge_page() just after we
* entered this if-block, the thread must wait for page table lock
* to be unlocked in __split_huge_page_splitting(), where the main
* part of thp split is not executed yet.
*/
if (pmd_trans_huge_lock(pmd, vma) == 1) {
if (!mc.precharge) {
spin_unlock(&vma->vm_mm->page_table_lock);
return 0;
}
target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
if (target_type == MC_TARGET_PAGE) {
page = target.page;
if (!isolate_lru_page(page)) {
pc = lookup_page_cgroup(page);
if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
pc, mc.from, mc.to,
false)) {
mc.precharge -= HPAGE_PMD_NR;
mc.moved_charge += HPAGE_PMD_NR;
}
putback_lru_page(page);
}
put_page(page);
}
spin_unlock(&vma->vm_mm->page_table_lock);
return 0;
}
retry:
pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
for (; addr != end; addr += PAGE_SIZE) {
pte_t ptent = *(pte++);
swp_entry_t ent;
if (!mc.precharge)
break;
switch (get_mctgt_type(vma, addr, ptent, &target)) {
case MC_TARGET_PAGE:
page = target.page;
if (isolate_lru_page(page))
goto put;
pc = lookup_page_cgroup(page);
if (!mem_cgroup_move_account(page, 1, pc,
mc.from, mc.to, false)) {
mc.precharge--;
/* we uncharge from mc.from later. */
mc.moved_charge++;
}
putback_lru_page(page);
put: /* get_mctgt_type() gets the page */
put_page(page);
break;
case MC_TARGET_SWAP:
ent = target.ent;
if (!mem_cgroup_move_swap_account(ent,
mc.from, mc.to, false)) {
mc.precharge--;
/* we fixup refcnts and charges later. */
mc.moved_swap++;
}
break;
default:
break;
}
}
pte_unmap_unlock(pte - 1, ptl);
cond_resched();
if (addr != end) {
/*
* We have consumed all precharges we got in can_attach().
* We try charge one by one, but don't do any additional
* charges to mc.to if we have failed in charge once in attach()
* phase.
*/
ret = mem_cgroup_do_precharge(1);
if (!ret)
goto retry;
}
return ret;
}
static void mem_cgroup_move_charge(struct mm_struct *mm)
{
struct vm_area_struct *vma;
lru_add_drain_all();
retry:
if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
/*
* Someone who are holding the mmap_sem might be waiting in
* waitq. So we cancel all extra charges, wake up all waiters,
* and retry. Because we cancel precharges, we might not be able
* to move enough charges, but moving charge is a best-effort
* feature anyway, so it wouldn't be a big problem.
*/
__mem_cgroup_clear_mc();
cond_resched();
goto retry;
}
for (vma = mm->mmap; vma; vma = vma->vm_next) {
int ret;
struct mm_walk mem_cgroup_move_charge_walk = {
.pmd_entry = mem_cgroup_move_charge_pte_range,
.mm = mm,
.private = vma,
};
if (is_vm_hugetlb_page(vma))
continue;
ret = walk_page_range(vma->vm_start, vma->vm_end,
&mem_cgroup_move_charge_walk);
if (ret)
/*
* means we have consumed all precharges and failed in
* doing additional charge. Just abandon here.
*/
break;
}
up_read(&mm->mmap_sem);
}
static void mem_cgroup_move_task(struct cgroup *cont,
struct cgroup_taskset *tset)
{
struct task_struct *p = cgroup_taskset_first(tset);
struct mm_struct *mm = get_task_mm(p);
if (mm) {
if (mc.to)
mem_cgroup_move_charge(mm);
put_swap_token(mm);
mmput(mm);
}
if (mc.to)
mem_cgroup_clear_mc();
}
#else /* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup *cgroup,
struct cgroup_taskset *tset)
{
return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
struct cgroup_taskset *tset)
{
}
static void mem_cgroup_move_task(struct cgroup *cont,
struct cgroup_taskset *tset)
{
}
#endif
struct cgroup_subsys mem_cgroup_subsys = {
.name = "memory",
.subsys_id = mem_cgroup_subsys_id,
.create = mem_cgroup_create,
.pre_destroy = mem_cgroup_pre_destroy,
.destroy = mem_cgroup_destroy,
.populate = mem_cgroup_populate,
.can_attach = mem_cgroup_can_attach,
.cancel_attach = mem_cgroup_cancel_attach,
.attach = mem_cgroup_move_task,
.early_init = 0,
.use_id = 1,
};
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static int __init enable_swap_account(char *s)
{
/* consider enabled if no parameter or 1 is given */
if (!strcmp(s, "1"))
really_do_swap_account = 1;
else if (!strcmp(s, "0"))
really_do_swap_account = 0;
return 1;
}
__setup("swapaccount=", enable_swap_account);
#endif