mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-02-06 17:05:18 +07:00
ccaaaf6fe5
Unfortunately, GCC 9.1 is expected to be be released without support for MPX. This means that there was only a relatively small window where folks could have ever used MPX. It failed to gain wide adoption in the industry, and Linux was the only mainstream OS to ever support it widely. Support for the feature may also disappear on future processors. This set completes the process that we started during the 5.4 merge window. -----BEGIN PGP SIGNATURE----- iQIcBAABCAAGBQJeK1/pAAoJEGg1lTBwyZKwgC8QAIiVn1d7A9Uj/WpnpgfCChCZ 9XiV6Ak999qD9fbAcrgNfPjieaD4mtokocSRVJuRgJu5iLnIJCINlozLPe4yVl7P 7zebnxkLq0CIA8d56bEUoFlC0J+oWYlDVQePZzNQsSk5KHVGXVLpF6U4vDVzZeQy cprgvdeY+ehB7G6IIo0MWTg5ylKYAsOAyVvK8NIGpKY2k6/YqCnsptnsVE7bvlHy TrEOiUWLv+hh0bMkZdP1PwKQKEuMO/IZly0HtviFbMN7T4TB1spfg7ELoBucEq3T s4EVbYRe+nIE4tuEAveaX3CgxJek8cY5MlticskdaKSEACBwabdOF55qsZy0u+WA PYC4iUIXfbOH8OgieKWtGX4IuSkRYdQ2nP4BOpe4ZX4+zvU7zOCIyVSKRrwkX8cc ADtWI5FAtB36KCgUuWnHGHNZpOxPTbTLBuBataFY4Q2uBNJEBJpscZ5H9ObtyGFU ZjlzqFnM0nFNDKEI1EEtv9jLzgZTU1RQ46s7EFeSeEQ2/s9wJ3+s5sBlVbljsmus o658bLOEaRWC/aF15dgmEXW9GAO6uifNdmbzGnRn7oEMYyFQPTWbZvi1zGz58QaG Y6WTtigVtsSrHS4wpYd+p+n1W06VnB6J3BpBM4G1VQv1Vm0dNd1tUOfkqOzPjg7c 33Itmsz2LaW1mb67GlgZ =g4cC -----END PGP SIGNATURE----- Merge tag 'mpx-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/daveh/x86-mpx Pull x86 MPX removal from Dave Hansen: "MPX requires recompiling applications, which requires compiler support. Unfortunately, GCC 9.1 is expected to be be released without support for MPX. This means that there was only a relatively small window where folks could have ever used MPX. It failed to gain wide adoption in the industry, and Linux was the only mainstream OS to ever support it widely. Support for the feature may also disappear on future processors. This set completes the process that we started during the 5.4 merge window when the MPX prctl()s were removed. XSAVE support is left in place, which allows MPX-using KVM guests to continue to function" * tag 'mpx-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/daveh/x86-mpx: x86/mpx: remove MPX from arch/x86 mm: remove arch_bprm_mm_init() hook x86/mpx: remove bounds exception code x86/mpx: remove build infrastructure x86/alternatives: add missing insn.h include
948 lines
27 KiB
C
948 lines
27 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/string.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/clock.h>
|
|
#include <linux/thread_info.h>
|
|
#include <linux/init.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/bugs.h>
|
|
#include <asm/cpu.h>
|
|
#include <asm/intel-family.h>
|
|
#include <asm/microcode_intel.h>
|
|
#include <asm/hwcap2.h>
|
|
#include <asm/elf.h>
|
|
|
|
#ifdef CONFIG_X86_64
|
|
#include <linux/topology.h>
|
|
#endif
|
|
|
|
#include "cpu.h"
|
|
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
#include <asm/mpspec.h>
|
|
#include <asm/apic.h>
|
|
#endif
|
|
|
|
/*
|
|
* Processors which have self-snooping capability can handle conflicting
|
|
* memory type across CPUs by snooping its own cache. However, there exists
|
|
* CPU models in which having conflicting memory types still leads to
|
|
* unpredictable behavior, machine check errors, or hangs. Clear this
|
|
* feature to prevent its use on machines with known erratas.
|
|
*/
|
|
static void check_memory_type_self_snoop_errata(struct cpuinfo_x86 *c)
|
|
{
|
|
switch (c->x86_model) {
|
|
case INTEL_FAM6_CORE_YONAH:
|
|
case INTEL_FAM6_CORE2_MEROM:
|
|
case INTEL_FAM6_CORE2_MEROM_L:
|
|
case INTEL_FAM6_CORE2_PENRYN:
|
|
case INTEL_FAM6_CORE2_DUNNINGTON:
|
|
case INTEL_FAM6_NEHALEM:
|
|
case INTEL_FAM6_NEHALEM_G:
|
|
case INTEL_FAM6_NEHALEM_EP:
|
|
case INTEL_FAM6_NEHALEM_EX:
|
|
case INTEL_FAM6_WESTMERE:
|
|
case INTEL_FAM6_WESTMERE_EP:
|
|
case INTEL_FAM6_SANDYBRIDGE:
|
|
setup_clear_cpu_cap(X86_FEATURE_SELFSNOOP);
|
|
}
|
|
}
|
|
|
|
static bool ring3mwait_disabled __read_mostly;
|
|
|
|
static int __init ring3mwait_disable(char *__unused)
|
|
{
|
|
ring3mwait_disabled = true;
|
|
return 0;
|
|
}
|
|
__setup("ring3mwait=disable", ring3mwait_disable);
|
|
|
|
static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c)
|
|
{
|
|
/*
|
|
* Ring 3 MONITOR/MWAIT feature cannot be detected without
|
|
* cpu model and family comparison.
|
|
*/
|
|
if (c->x86 != 6)
|
|
return;
|
|
switch (c->x86_model) {
|
|
case INTEL_FAM6_XEON_PHI_KNL:
|
|
case INTEL_FAM6_XEON_PHI_KNM:
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
if (ring3mwait_disabled)
|
|
return;
|
|
|
|
set_cpu_cap(c, X86_FEATURE_RING3MWAIT);
|
|
this_cpu_or(msr_misc_features_shadow,
|
|
1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT);
|
|
|
|
if (c == &boot_cpu_data)
|
|
ELF_HWCAP2 |= HWCAP2_RING3MWAIT;
|
|
}
|
|
|
|
/*
|
|
* Early microcode releases for the Spectre v2 mitigation were broken.
|
|
* Information taken from;
|
|
* - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf
|
|
* - https://kb.vmware.com/s/article/52345
|
|
* - Microcode revisions observed in the wild
|
|
* - Release note from 20180108 microcode release
|
|
*/
|
|
struct sku_microcode {
|
|
u8 model;
|
|
u8 stepping;
|
|
u32 microcode;
|
|
};
|
|
static const struct sku_microcode spectre_bad_microcodes[] = {
|
|
{ INTEL_FAM6_KABYLAKE, 0x0B, 0x80 },
|
|
{ INTEL_FAM6_KABYLAKE, 0x0A, 0x80 },
|
|
{ INTEL_FAM6_KABYLAKE, 0x09, 0x80 },
|
|
{ INTEL_FAM6_KABYLAKE_L, 0x0A, 0x80 },
|
|
{ INTEL_FAM6_KABYLAKE_L, 0x09, 0x80 },
|
|
{ INTEL_FAM6_SKYLAKE_X, 0x03, 0x0100013e },
|
|
{ INTEL_FAM6_SKYLAKE_X, 0x04, 0x0200003c },
|
|
{ INTEL_FAM6_BROADWELL, 0x04, 0x28 },
|
|
{ INTEL_FAM6_BROADWELL_G, 0x01, 0x1b },
|
|
{ INTEL_FAM6_BROADWELL_D, 0x02, 0x14 },
|
|
{ INTEL_FAM6_BROADWELL_D, 0x03, 0x07000011 },
|
|
{ INTEL_FAM6_BROADWELL_X, 0x01, 0x0b000025 },
|
|
{ INTEL_FAM6_HASWELL_L, 0x01, 0x21 },
|
|
{ INTEL_FAM6_HASWELL_G, 0x01, 0x18 },
|
|
{ INTEL_FAM6_HASWELL, 0x03, 0x23 },
|
|
{ INTEL_FAM6_HASWELL_X, 0x02, 0x3b },
|
|
{ INTEL_FAM6_HASWELL_X, 0x04, 0x10 },
|
|
{ INTEL_FAM6_IVYBRIDGE_X, 0x04, 0x42a },
|
|
/* Observed in the wild */
|
|
{ INTEL_FAM6_SANDYBRIDGE_X, 0x06, 0x61b },
|
|
{ INTEL_FAM6_SANDYBRIDGE_X, 0x07, 0x712 },
|
|
};
|
|
|
|
static bool bad_spectre_microcode(struct cpuinfo_x86 *c)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* We know that the hypervisor lie to us on the microcode version so
|
|
* we may as well hope that it is running the correct version.
|
|
*/
|
|
if (cpu_has(c, X86_FEATURE_HYPERVISOR))
|
|
return false;
|
|
|
|
if (c->x86 != 6)
|
|
return false;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) {
|
|
if (c->x86_model == spectre_bad_microcodes[i].model &&
|
|
c->x86_stepping == spectre_bad_microcodes[i].stepping)
|
|
return (c->microcode <= spectre_bad_microcodes[i].microcode);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void early_init_intel(struct cpuinfo_x86 *c)
|
|
{
|
|
u64 misc_enable;
|
|
|
|
/* Unmask CPUID levels if masked: */
|
|
if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
|
|
if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
|
|
MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
|
|
c->cpuid_level = cpuid_eax(0);
|
|
get_cpu_cap(c);
|
|
}
|
|
}
|
|
|
|
if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
|
|
(c->x86 == 0x6 && c->x86_model >= 0x0e))
|
|
set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
|
|
|
|
if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
|
|
c->microcode = intel_get_microcode_revision();
|
|
|
|
/* Now if any of them are set, check the blacklist and clear the lot */
|
|
if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) ||
|
|
cpu_has(c, X86_FEATURE_INTEL_STIBP) ||
|
|
cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) ||
|
|
cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) {
|
|
pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n");
|
|
setup_clear_cpu_cap(X86_FEATURE_IBRS);
|
|
setup_clear_cpu_cap(X86_FEATURE_IBPB);
|
|
setup_clear_cpu_cap(X86_FEATURE_STIBP);
|
|
setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL);
|
|
setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL);
|
|
setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP);
|
|
setup_clear_cpu_cap(X86_FEATURE_SSBD);
|
|
setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD);
|
|
}
|
|
|
|
/*
|
|
* Atom erratum AAE44/AAF40/AAG38/AAH41:
|
|
*
|
|
* A race condition between speculative fetches and invalidating
|
|
* a large page. This is worked around in microcode, but we
|
|
* need the microcode to have already been loaded... so if it is
|
|
* not, recommend a BIOS update and disable large pages.
|
|
*/
|
|
if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_stepping <= 2 &&
|
|
c->microcode < 0x20e) {
|
|
pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
|
|
clear_cpu_cap(c, X86_FEATURE_PSE);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
set_cpu_cap(c, X86_FEATURE_SYSENTER32);
|
|
#else
|
|
/* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
|
|
if (c->x86 == 15 && c->x86_cache_alignment == 64)
|
|
c->x86_cache_alignment = 128;
|
|
#endif
|
|
|
|
/* CPUID workaround for 0F33/0F34 CPU */
|
|
if (c->x86 == 0xF && c->x86_model == 0x3
|
|
&& (c->x86_stepping == 0x3 || c->x86_stepping == 0x4))
|
|
c->x86_phys_bits = 36;
|
|
|
|
/*
|
|
* c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
|
|
* with P/T states and does not stop in deep C-states.
|
|
*
|
|
* It is also reliable across cores and sockets. (but not across
|
|
* cabinets - we turn it off in that case explicitly.)
|
|
*/
|
|
if (c->x86_power & (1 << 8)) {
|
|
set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
|
|
set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
|
|
}
|
|
|
|
/* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
|
|
if (c->x86 == 6) {
|
|
switch (c->x86_model) {
|
|
case INTEL_FAM6_ATOM_SALTWELL_MID:
|
|
case INTEL_FAM6_ATOM_SALTWELL_TABLET:
|
|
case INTEL_FAM6_ATOM_SILVERMONT_MID:
|
|
case INTEL_FAM6_ATOM_AIRMONT_NP:
|
|
set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* There is a known erratum on Pentium III and Core Solo
|
|
* and Core Duo CPUs.
|
|
* " Page with PAT set to WC while associated MTRR is UC
|
|
* may consolidate to UC "
|
|
* Because of this erratum, it is better to stick with
|
|
* setting WC in MTRR rather than using PAT on these CPUs.
|
|
*
|
|
* Enable PAT WC only on P4, Core 2 or later CPUs.
|
|
*/
|
|
if (c->x86 == 6 && c->x86_model < 15)
|
|
clear_cpu_cap(c, X86_FEATURE_PAT);
|
|
|
|
/*
|
|
* If fast string is not enabled in IA32_MISC_ENABLE for any reason,
|
|
* clear the fast string and enhanced fast string CPU capabilities.
|
|
*/
|
|
if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
|
|
rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
|
|
if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
|
|
pr_info("Disabled fast string operations\n");
|
|
setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
|
|
setup_clear_cpu_cap(X86_FEATURE_ERMS);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Intel Quark Core DevMan_001.pdf section 6.4.11
|
|
* "The operating system also is required to invalidate (i.e., flush)
|
|
* the TLB when any changes are made to any of the page table entries.
|
|
* The operating system must reload CR3 to cause the TLB to be flushed"
|
|
*
|
|
* As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
|
|
* should be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE
|
|
* to be modified.
|
|
*/
|
|
if (c->x86 == 5 && c->x86_model == 9) {
|
|
pr_info("Disabling PGE capability bit\n");
|
|
setup_clear_cpu_cap(X86_FEATURE_PGE);
|
|
}
|
|
|
|
if (c->cpuid_level >= 0x00000001) {
|
|
u32 eax, ebx, ecx, edx;
|
|
|
|
cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
|
|
/*
|
|
* If HTT (EDX[28]) is set EBX[16:23] contain the number of
|
|
* apicids which are reserved per package. Store the resulting
|
|
* shift value for the package management code.
|
|
*/
|
|
if (edx & (1U << 28))
|
|
c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff);
|
|
}
|
|
|
|
check_memory_type_self_snoop_errata(c);
|
|
|
|
/*
|
|
* Get the number of SMT siblings early from the extended topology
|
|
* leaf, if available. Otherwise try the legacy SMT detection.
|
|
*/
|
|
if (detect_extended_topology_early(c) < 0)
|
|
detect_ht_early(c);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_32
|
|
/*
|
|
* Early probe support logic for ppro memory erratum #50
|
|
*
|
|
* This is called before we do cpu ident work
|
|
*/
|
|
|
|
int ppro_with_ram_bug(void)
|
|
{
|
|
/* Uses data from early_cpu_detect now */
|
|
if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
|
|
boot_cpu_data.x86 == 6 &&
|
|
boot_cpu_data.x86_model == 1 &&
|
|
boot_cpu_data.x86_stepping < 8) {
|
|
pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void intel_smp_check(struct cpuinfo_x86 *c)
|
|
{
|
|
/* calling is from identify_secondary_cpu() ? */
|
|
if (!c->cpu_index)
|
|
return;
|
|
|
|
/*
|
|
* Mask B, Pentium, but not Pentium MMX
|
|
*/
|
|
if (c->x86 == 5 &&
|
|
c->x86_stepping >= 1 && c->x86_stepping <= 4 &&
|
|
c->x86_model <= 3) {
|
|
/*
|
|
* Remember we have B step Pentia with bugs
|
|
*/
|
|
WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
|
|
"with B stepping processors.\n");
|
|
}
|
|
}
|
|
|
|
static int forcepae;
|
|
static int __init forcepae_setup(char *__unused)
|
|
{
|
|
forcepae = 1;
|
|
return 1;
|
|
}
|
|
__setup("forcepae", forcepae_setup);
|
|
|
|
static void intel_workarounds(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_X86_F00F_BUG
|
|
/*
|
|
* All models of Pentium and Pentium with MMX technology CPUs
|
|
* have the F0 0F bug, which lets nonprivileged users lock up the
|
|
* system. Announce that the fault handler will be checking for it.
|
|
* The Quark is also family 5, but does not have the same bug.
|
|
*/
|
|
clear_cpu_bug(c, X86_BUG_F00F);
|
|
if (c->x86 == 5 && c->x86_model < 9) {
|
|
static int f00f_workaround_enabled;
|
|
|
|
set_cpu_bug(c, X86_BUG_F00F);
|
|
if (!f00f_workaround_enabled) {
|
|
pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
|
|
f00f_workaround_enabled = 1;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
|
|
* model 3 mask 3
|
|
*/
|
|
if ((c->x86<<8 | c->x86_model<<4 | c->x86_stepping) < 0x633)
|
|
clear_cpu_cap(c, X86_FEATURE_SEP);
|
|
|
|
/*
|
|
* PAE CPUID issue: many Pentium M report no PAE but may have a
|
|
* functionally usable PAE implementation.
|
|
* Forcefully enable PAE if kernel parameter "forcepae" is present.
|
|
*/
|
|
if (forcepae) {
|
|
pr_warn("PAE forced!\n");
|
|
set_cpu_cap(c, X86_FEATURE_PAE);
|
|
add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
|
|
}
|
|
|
|
/*
|
|
* P4 Xeon erratum 037 workaround.
|
|
* Hardware prefetcher may cause stale data to be loaded into the cache.
|
|
*/
|
|
if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_stepping == 1)) {
|
|
if (msr_set_bit(MSR_IA32_MISC_ENABLE,
|
|
MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
|
|
pr_info("CPU: C0 stepping P4 Xeon detected.\n");
|
|
pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* See if we have a good local APIC by checking for buggy Pentia,
|
|
* i.e. all B steppings and the C2 stepping of P54C when using their
|
|
* integrated APIC (see 11AP erratum in "Pentium Processor
|
|
* Specification Update").
|
|
*/
|
|
if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
|
|
(c->x86_stepping < 0x6 || c->x86_stepping == 0xb))
|
|
set_cpu_bug(c, X86_BUG_11AP);
|
|
|
|
|
|
#ifdef CONFIG_X86_INTEL_USERCOPY
|
|
/*
|
|
* Set up the preferred alignment for movsl bulk memory moves
|
|
*/
|
|
switch (c->x86) {
|
|
case 4: /* 486: untested */
|
|
break;
|
|
case 5: /* Old Pentia: untested */
|
|
break;
|
|
case 6: /* PII/PIII only like movsl with 8-byte alignment */
|
|
movsl_mask.mask = 7;
|
|
break;
|
|
case 15: /* P4 is OK down to 8-byte alignment */
|
|
movsl_mask.mask = 7;
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
intel_smp_check(c);
|
|
}
|
|
#else
|
|
static void intel_workarounds(struct cpuinfo_x86 *c)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static void srat_detect_node(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_NUMA
|
|
unsigned node;
|
|
int cpu = smp_processor_id();
|
|
|
|
/* Don't do the funky fallback heuristics the AMD version employs
|
|
for now. */
|
|
node = numa_cpu_node(cpu);
|
|
if (node == NUMA_NO_NODE || !node_online(node)) {
|
|
/* reuse the value from init_cpu_to_node() */
|
|
node = cpu_to_node(cpu);
|
|
}
|
|
numa_set_node(cpu, node);
|
|
#endif
|
|
}
|
|
|
|
#define MSR_IA32_TME_ACTIVATE 0x982
|
|
|
|
/* Helpers to access TME_ACTIVATE MSR */
|
|
#define TME_ACTIVATE_LOCKED(x) (x & 0x1)
|
|
#define TME_ACTIVATE_ENABLED(x) (x & 0x2)
|
|
|
|
#define TME_ACTIVATE_POLICY(x) ((x >> 4) & 0xf) /* Bits 7:4 */
|
|
#define TME_ACTIVATE_POLICY_AES_XTS_128 0
|
|
|
|
#define TME_ACTIVATE_KEYID_BITS(x) ((x >> 32) & 0xf) /* Bits 35:32 */
|
|
|
|
#define TME_ACTIVATE_CRYPTO_ALGS(x) ((x >> 48) & 0xffff) /* Bits 63:48 */
|
|
#define TME_ACTIVATE_CRYPTO_AES_XTS_128 1
|
|
|
|
/* Values for mktme_status (SW only construct) */
|
|
#define MKTME_ENABLED 0
|
|
#define MKTME_DISABLED 1
|
|
#define MKTME_UNINITIALIZED 2
|
|
static int mktme_status = MKTME_UNINITIALIZED;
|
|
|
|
static void detect_tme(struct cpuinfo_x86 *c)
|
|
{
|
|
u64 tme_activate, tme_policy, tme_crypto_algs;
|
|
int keyid_bits = 0, nr_keyids = 0;
|
|
static u64 tme_activate_cpu0 = 0;
|
|
|
|
rdmsrl(MSR_IA32_TME_ACTIVATE, tme_activate);
|
|
|
|
if (mktme_status != MKTME_UNINITIALIZED) {
|
|
if (tme_activate != tme_activate_cpu0) {
|
|
/* Broken BIOS? */
|
|
pr_err_once("x86/tme: configuration is inconsistent between CPUs\n");
|
|
pr_err_once("x86/tme: MKTME is not usable\n");
|
|
mktme_status = MKTME_DISABLED;
|
|
|
|
/* Proceed. We may need to exclude bits from x86_phys_bits. */
|
|
}
|
|
} else {
|
|
tme_activate_cpu0 = tme_activate;
|
|
}
|
|
|
|
if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) {
|
|
pr_info_once("x86/tme: not enabled by BIOS\n");
|
|
mktme_status = MKTME_DISABLED;
|
|
return;
|
|
}
|
|
|
|
if (mktme_status != MKTME_UNINITIALIZED)
|
|
goto detect_keyid_bits;
|
|
|
|
pr_info("x86/tme: enabled by BIOS\n");
|
|
|
|
tme_policy = TME_ACTIVATE_POLICY(tme_activate);
|
|
if (tme_policy != TME_ACTIVATE_POLICY_AES_XTS_128)
|
|
pr_warn("x86/tme: Unknown policy is active: %#llx\n", tme_policy);
|
|
|
|
tme_crypto_algs = TME_ACTIVATE_CRYPTO_ALGS(tme_activate);
|
|
if (!(tme_crypto_algs & TME_ACTIVATE_CRYPTO_AES_XTS_128)) {
|
|
pr_err("x86/mktme: No known encryption algorithm is supported: %#llx\n",
|
|
tme_crypto_algs);
|
|
mktme_status = MKTME_DISABLED;
|
|
}
|
|
detect_keyid_bits:
|
|
keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate);
|
|
nr_keyids = (1UL << keyid_bits) - 1;
|
|
if (nr_keyids) {
|
|
pr_info_once("x86/mktme: enabled by BIOS\n");
|
|
pr_info_once("x86/mktme: %d KeyIDs available\n", nr_keyids);
|
|
} else {
|
|
pr_info_once("x86/mktme: disabled by BIOS\n");
|
|
}
|
|
|
|
if (mktme_status == MKTME_UNINITIALIZED) {
|
|
/* MKTME is usable */
|
|
mktme_status = MKTME_ENABLED;
|
|
}
|
|
|
|
/*
|
|
* KeyID bits effectively lower the number of physical address
|
|
* bits. Update cpuinfo_x86::x86_phys_bits accordingly.
|
|
*/
|
|
c->x86_phys_bits -= keyid_bits;
|
|
}
|
|
|
|
static void init_cpuid_fault(struct cpuinfo_x86 *c)
|
|
{
|
|
u64 msr;
|
|
|
|
if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) {
|
|
if (msr & MSR_PLATFORM_INFO_CPUID_FAULT)
|
|
set_cpu_cap(c, X86_FEATURE_CPUID_FAULT);
|
|
}
|
|
}
|
|
|
|
static void init_intel_misc_features(struct cpuinfo_x86 *c)
|
|
{
|
|
u64 msr;
|
|
|
|
if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr))
|
|
return;
|
|
|
|
/* Clear all MISC features */
|
|
this_cpu_write(msr_misc_features_shadow, 0);
|
|
|
|
/* Check features and update capabilities and shadow control bits */
|
|
init_cpuid_fault(c);
|
|
probe_xeon_phi_r3mwait(c);
|
|
|
|
msr = this_cpu_read(msr_misc_features_shadow);
|
|
wrmsrl(MSR_MISC_FEATURES_ENABLES, msr);
|
|
}
|
|
|
|
static void init_intel(struct cpuinfo_x86 *c)
|
|
{
|
|
early_init_intel(c);
|
|
|
|
intel_workarounds(c);
|
|
|
|
/*
|
|
* Detect the extended topology information if available. This
|
|
* will reinitialise the initial_apicid which will be used
|
|
* in init_intel_cacheinfo()
|
|
*/
|
|
detect_extended_topology(c);
|
|
|
|
if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
|
|
/*
|
|
* let's use the legacy cpuid vector 0x1 and 0x4 for topology
|
|
* detection.
|
|
*/
|
|
detect_num_cpu_cores(c);
|
|
#ifdef CONFIG_X86_32
|
|
detect_ht(c);
|
|
#endif
|
|
}
|
|
|
|
init_intel_cacheinfo(c);
|
|
|
|
if (c->cpuid_level > 9) {
|
|
unsigned eax = cpuid_eax(10);
|
|
/* Check for version and the number of counters */
|
|
if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
|
|
set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
|
|
}
|
|
|
|
if (cpu_has(c, X86_FEATURE_XMM2))
|
|
set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
|
|
|
|
if (boot_cpu_has(X86_FEATURE_DS)) {
|
|
unsigned int l1, l2;
|
|
|
|
rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
|
|
if (!(l1 & (1<<11)))
|
|
set_cpu_cap(c, X86_FEATURE_BTS);
|
|
if (!(l1 & (1<<12)))
|
|
set_cpu_cap(c, X86_FEATURE_PEBS);
|
|
}
|
|
|
|
if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) &&
|
|
(c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
|
|
set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
|
|
|
|
if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) &&
|
|
((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT)))
|
|
set_cpu_bug(c, X86_BUG_MONITOR);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
if (c->x86 == 15)
|
|
c->x86_cache_alignment = c->x86_clflush_size * 2;
|
|
if (c->x86 == 6)
|
|
set_cpu_cap(c, X86_FEATURE_REP_GOOD);
|
|
#else
|
|
/*
|
|
* Names for the Pentium II/Celeron processors
|
|
* detectable only by also checking the cache size.
|
|
* Dixon is NOT a Celeron.
|
|
*/
|
|
if (c->x86 == 6) {
|
|
unsigned int l2 = c->x86_cache_size;
|
|
char *p = NULL;
|
|
|
|
switch (c->x86_model) {
|
|
case 5:
|
|
if (l2 == 0)
|
|
p = "Celeron (Covington)";
|
|
else if (l2 == 256)
|
|
p = "Mobile Pentium II (Dixon)";
|
|
break;
|
|
|
|
case 6:
|
|
if (l2 == 128)
|
|
p = "Celeron (Mendocino)";
|
|
else if (c->x86_stepping == 0 || c->x86_stepping == 5)
|
|
p = "Celeron-A";
|
|
break;
|
|
|
|
case 8:
|
|
if (l2 == 128)
|
|
p = "Celeron (Coppermine)";
|
|
break;
|
|
}
|
|
|
|
if (p)
|
|
strcpy(c->x86_model_id, p);
|
|
}
|
|
|
|
if (c->x86 == 15)
|
|
set_cpu_cap(c, X86_FEATURE_P4);
|
|
if (c->x86 == 6)
|
|
set_cpu_cap(c, X86_FEATURE_P3);
|
|
#endif
|
|
|
|
/* Work around errata */
|
|
srat_detect_node(c);
|
|
|
|
init_ia32_feat_ctl(c);
|
|
|
|
if (cpu_has(c, X86_FEATURE_TME))
|
|
detect_tme(c);
|
|
|
|
init_intel_misc_features(c);
|
|
|
|
if (tsx_ctrl_state == TSX_CTRL_ENABLE)
|
|
tsx_enable();
|
|
if (tsx_ctrl_state == TSX_CTRL_DISABLE)
|
|
tsx_disable();
|
|
}
|
|
|
|
#ifdef CONFIG_X86_32
|
|
static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
|
|
{
|
|
/*
|
|
* Intel PIII Tualatin. This comes in two flavours.
|
|
* One has 256kb of cache, the other 512. We have no way
|
|
* to determine which, so we use a boottime override
|
|
* for the 512kb model, and assume 256 otherwise.
|
|
*/
|
|
if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
|
|
size = 256;
|
|
|
|
/*
|
|
* Intel Quark SoC X1000 contains a 4-way set associative
|
|
* 16K cache with a 16 byte cache line and 256 lines per tag
|
|
*/
|
|
if ((c->x86 == 5) && (c->x86_model == 9))
|
|
size = 16;
|
|
return size;
|
|
}
|
|
#endif
|
|
|
|
#define TLB_INST_4K 0x01
|
|
#define TLB_INST_4M 0x02
|
|
#define TLB_INST_2M_4M 0x03
|
|
|
|
#define TLB_INST_ALL 0x05
|
|
#define TLB_INST_1G 0x06
|
|
|
|
#define TLB_DATA_4K 0x11
|
|
#define TLB_DATA_4M 0x12
|
|
#define TLB_DATA_2M_4M 0x13
|
|
#define TLB_DATA_4K_4M 0x14
|
|
|
|
#define TLB_DATA_1G 0x16
|
|
|
|
#define TLB_DATA0_4K 0x21
|
|
#define TLB_DATA0_4M 0x22
|
|
#define TLB_DATA0_2M_4M 0x23
|
|
|
|
#define STLB_4K 0x41
|
|
#define STLB_4K_2M 0x42
|
|
|
|
static const struct _tlb_table intel_tlb_table[] = {
|
|
{ 0x01, TLB_INST_4K, 32, " TLB_INST 4 KByte pages, 4-way set associative" },
|
|
{ 0x02, TLB_INST_4M, 2, " TLB_INST 4 MByte pages, full associative" },
|
|
{ 0x03, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way set associative" },
|
|
{ 0x04, TLB_DATA_4M, 8, " TLB_DATA 4 MByte pages, 4-way set associative" },
|
|
{ 0x05, TLB_DATA_4M, 32, " TLB_DATA 4 MByte pages, 4-way set associative" },
|
|
{ 0x0b, TLB_INST_4M, 4, " TLB_INST 4 MByte pages, 4-way set associative" },
|
|
{ 0x4f, TLB_INST_4K, 32, " TLB_INST 4 KByte pages" },
|
|
{ 0x50, TLB_INST_ALL, 64, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
|
|
{ 0x51, TLB_INST_ALL, 128, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
|
|
{ 0x52, TLB_INST_ALL, 256, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
|
|
{ 0x55, TLB_INST_2M_4M, 7, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
|
|
{ 0x56, TLB_DATA0_4M, 16, " TLB_DATA0 4 MByte pages, 4-way set associative" },
|
|
{ 0x57, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, 4-way associative" },
|
|
{ 0x59, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, fully associative" },
|
|
{ 0x5a, TLB_DATA0_2M_4M, 32, " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
|
|
{ 0x5b, TLB_DATA_4K_4M, 64, " TLB_DATA 4 KByte and 4 MByte pages" },
|
|
{ 0x5c, TLB_DATA_4K_4M, 128, " TLB_DATA 4 KByte and 4 MByte pages" },
|
|
{ 0x5d, TLB_DATA_4K_4M, 256, " TLB_DATA 4 KByte and 4 MByte pages" },
|
|
{ 0x61, TLB_INST_4K, 48, " TLB_INST 4 KByte pages, full associative" },
|
|
{ 0x63, TLB_DATA_1G, 4, " TLB_DATA 1 GByte pages, 4-way set associative" },
|
|
{ 0x6b, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 8-way associative" },
|
|
{ 0x6c, TLB_DATA_2M_4M, 128, " TLB_DATA 2 MByte or 4 MByte pages, 8-way associative" },
|
|
{ 0x6d, TLB_DATA_1G, 16, " TLB_DATA 1 GByte pages, fully associative" },
|
|
{ 0x76, TLB_INST_2M_4M, 8, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
|
|
{ 0xb0, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 4-way set associative" },
|
|
{ 0xb1, TLB_INST_2M_4M, 4, " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
|
|
{ 0xb2, TLB_INST_4K, 64, " TLB_INST 4KByte pages, 4-way set associative" },
|
|
{ 0xb3, TLB_DATA_4K, 128, " TLB_DATA 4 KByte pages, 4-way set associative" },
|
|
{ 0xb4, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 4-way associative" },
|
|
{ 0xb5, TLB_INST_4K, 64, " TLB_INST 4 KByte pages, 8-way set associative" },
|
|
{ 0xb6, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 8-way set associative" },
|
|
{ 0xba, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way associative" },
|
|
{ 0xc0, TLB_DATA_4K_4M, 8, " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
|
|
{ 0xc1, STLB_4K_2M, 1024, " STLB 4 KByte and 2 MByte pages, 8-way associative" },
|
|
{ 0xc2, TLB_DATA_2M_4M, 16, " TLB_DATA 2 MByte/4MByte pages, 4-way associative" },
|
|
{ 0xca, STLB_4K, 512, " STLB 4 KByte pages, 4-way associative" },
|
|
{ 0x00, 0, 0 }
|
|
};
|
|
|
|
static void intel_tlb_lookup(const unsigned char desc)
|
|
{
|
|
unsigned char k;
|
|
if (desc == 0)
|
|
return;
|
|
|
|
/* look up this descriptor in the table */
|
|
for (k = 0; intel_tlb_table[k].descriptor != desc &&
|
|
intel_tlb_table[k].descriptor != 0; k++)
|
|
;
|
|
|
|
if (intel_tlb_table[k].tlb_type == 0)
|
|
return;
|
|
|
|
switch (intel_tlb_table[k].tlb_type) {
|
|
case STLB_4K:
|
|
if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
|
|
if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
|
|
break;
|
|
case STLB_4K_2M:
|
|
if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
|
|
if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
|
|
if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
|
|
if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
|
|
if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
|
|
if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
|
|
break;
|
|
case TLB_INST_ALL:
|
|
if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
|
|
if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
|
|
if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
|
|
break;
|
|
case TLB_INST_4K:
|
|
if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
|
|
break;
|
|
case TLB_INST_4M:
|
|
if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
|
|
break;
|
|
case TLB_INST_2M_4M:
|
|
if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
|
|
if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
|
|
break;
|
|
case TLB_DATA_4K:
|
|
case TLB_DATA0_4K:
|
|
if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
|
|
break;
|
|
case TLB_DATA_4M:
|
|
case TLB_DATA0_4M:
|
|
if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
|
|
break;
|
|
case TLB_DATA_2M_4M:
|
|
case TLB_DATA0_2M_4M:
|
|
if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
|
|
if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
|
|
break;
|
|
case TLB_DATA_4K_4M:
|
|
if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
|
|
if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
|
|
break;
|
|
case TLB_DATA_1G:
|
|
if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void intel_detect_tlb(struct cpuinfo_x86 *c)
|
|
{
|
|
int i, j, n;
|
|
unsigned int regs[4];
|
|
unsigned char *desc = (unsigned char *)regs;
|
|
|
|
if (c->cpuid_level < 2)
|
|
return;
|
|
|
|
/* Number of times to iterate */
|
|
n = cpuid_eax(2) & 0xFF;
|
|
|
|
for (i = 0 ; i < n ; i++) {
|
|
cpuid(2, ®s[0], ®s[1], ®s[2], ®s[3]);
|
|
|
|
/* If bit 31 is set, this is an unknown format */
|
|
for (j = 0 ; j < 3 ; j++)
|
|
if (regs[j] & (1 << 31))
|
|
regs[j] = 0;
|
|
|
|
/* Byte 0 is level count, not a descriptor */
|
|
for (j = 1 ; j < 16 ; j++)
|
|
intel_tlb_lookup(desc[j]);
|
|
}
|
|
}
|
|
|
|
static const struct cpu_dev intel_cpu_dev = {
|
|
.c_vendor = "Intel",
|
|
.c_ident = { "GenuineIntel" },
|
|
#ifdef CONFIG_X86_32
|
|
.legacy_models = {
|
|
{ .family = 4, .model_names =
|
|
{
|
|
[0] = "486 DX-25/33",
|
|
[1] = "486 DX-50",
|
|
[2] = "486 SX",
|
|
[3] = "486 DX/2",
|
|
[4] = "486 SL",
|
|
[5] = "486 SX/2",
|
|
[7] = "486 DX/2-WB",
|
|
[8] = "486 DX/4",
|
|
[9] = "486 DX/4-WB"
|
|
}
|
|
},
|
|
{ .family = 5, .model_names =
|
|
{
|
|
[0] = "Pentium 60/66 A-step",
|
|
[1] = "Pentium 60/66",
|
|
[2] = "Pentium 75 - 200",
|
|
[3] = "OverDrive PODP5V83",
|
|
[4] = "Pentium MMX",
|
|
[7] = "Mobile Pentium 75 - 200",
|
|
[8] = "Mobile Pentium MMX",
|
|
[9] = "Quark SoC X1000",
|
|
}
|
|
},
|
|
{ .family = 6, .model_names =
|
|
{
|
|
[0] = "Pentium Pro A-step",
|
|
[1] = "Pentium Pro",
|
|
[3] = "Pentium II (Klamath)",
|
|
[4] = "Pentium II (Deschutes)",
|
|
[5] = "Pentium II (Deschutes)",
|
|
[6] = "Mobile Pentium II",
|
|
[7] = "Pentium III (Katmai)",
|
|
[8] = "Pentium III (Coppermine)",
|
|
[10] = "Pentium III (Cascades)",
|
|
[11] = "Pentium III (Tualatin)",
|
|
}
|
|
},
|
|
{ .family = 15, .model_names =
|
|
{
|
|
[0] = "Pentium 4 (Unknown)",
|
|
[1] = "Pentium 4 (Willamette)",
|
|
[2] = "Pentium 4 (Northwood)",
|
|
[4] = "Pentium 4 (Foster)",
|
|
[5] = "Pentium 4 (Foster)",
|
|
}
|
|
},
|
|
},
|
|
.legacy_cache_size = intel_size_cache,
|
|
#endif
|
|
.c_detect_tlb = intel_detect_tlb,
|
|
.c_early_init = early_init_intel,
|
|
.c_init = init_intel,
|
|
.c_x86_vendor = X86_VENDOR_INTEL,
|
|
};
|
|
|
|
cpu_dev_register(intel_cpu_dev);
|