linux_dsm_epyc7002/fs/ext4/ialloc.c
Aneesh Kumar K.V 8753e88f1b ext4: mark inode dirty after initializing the extent tree
We should mark the inode dirty only after initializing the extent
tree.  Also if we fail during extent initialization we need
to call DQUOT_FREE_INODE.

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
2008-04-29 22:00:36 -04:00

912 lines
25 KiB
C

/*
* linux/fs/ext4/ialloc.c
*
* Copyright (C) 1992, 1993, 1994, 1995
* Remy Card (card@masi.ibp.fr)
* Laboratoire MASI - Institut Blaise Pascal
* Universite Pierre et Marie Curie (Paris VI)
*
* BSD ufs-inspired inode and directory allocation by
* Stephen Tweedie (sct@redhat.com), 1993
* Big-endian to little-endian byte-swapping/bitmaps by
* David S. Miller (davem@caip.rutgers.edu), 1995
*/
#include <linux/time.h>
#include <linux/fs.h>
#include <linux/jbd2.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/quotaops.h>
#include <linux/buffer_head.h>
#include <linux/random.h>
#include <linux/bitops.h>
#include <linux/blkdev.h>
#include <asm/byteorder.h>
#include "ext4.h"
#include "ext4_jbd2.h"
#include "xattr.h"
#include "acl.h"
#include "group.h"
/*
* ialloc.c contains the inodes allocation and deallocation routines
*/
/*
* The free inodes are managed by bitmaps. A file system contains several
* blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
* block for inodes, N blocks for the inode table and data blocks.
*
* The file system contains group descriptors which are located after the
* super block. Each descriptor contains the number of the bitmap block and
* the free blocks count in the block.
*/
/*
* To avoid calling the atomic setbit hundreds or thousands of times, we only
* need to use it within a single byte (to ensure we get endianness right).
* We can use memset for the rest of the bitmap as there are no other users.
*/
void mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
{
int i;
if (start_bit >= end_bit)
return;
ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
ext4_set_bit(i, bitmap);
if (i < end_bit)
memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
}
/* Initializes an uninitialized inode bitmap */
unsigned ext4_init_inode_bitmap(struct super_block *sb, struct buffer_head *bh,
ext4_group_t block_group,
struct ext4_group_desc *gdp)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
J_ASSERT_BH(bh, buffer_locked(bh));
/* If checksum is bad mark all blocks and inodes use to prevent
* allocation, essentially implementing a per-group read-only flag. */
if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) {
ext4_error(sb, __func__, "Checksum bad for group %lu\n",
block_group);
gdp->bg_free_blocks_count = 0;
gdp->bg_free_inodes_count = 0;
gdp->bg_itable_unused = 0;
memset(bh->b_data, 0xff, sb->s_blocksize);
return 0;
}
memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), EXT4_BLOCKS_PER_GROUP(sb),
bh->b_data);
return EXT4_INODES_PER_GROUP(sb);
}
/*
* Read the inode allocation bitmap for a given block_group, reading
* into the specified slot in the superblock's bitmap cache.
*
* Return buffer_head of bitmap on success or NULL.
*/
static struct buffer_head *
read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
{
struct ext4_group_desc *desc;
struct buffer_head *bh = NULL;
desc = ext4_get_group_desc(sb, block_group, NULL);
if (!desc)
goto error_out;
if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
bh = sb_getblk(sb, ext4_inode_bitmap(sb, desc));
if (!buffer_uptodate(bh)) {
lock_buffer(bh);
if (!buffer_uptodate(bh)) {
ext4_init_inode_bitmap(sb, bh, block_group,
desc);
set_buffer_uptodate(bh);
}
unlock_buffer(bh);
}
} else {
bh = sb_bread(sb, ext4_inode_bitmap(sb, desc));
}
if (!bh)
ext4_error(sb, "read_inode_bitmap",
"Cannot read inode bitmap - "
"block_group = %lu, inode_bitmap = %llu",
block_group, ext4_inode_bitmap(sb, desc));
error_out:
return bh;
}
/*
* NOTE! When we get the inode, we're the only people
* that have access to it, and as such there are no
* race conditions we have to worry about. The inode
* is not on the hash-lists, and it cannot be reached
* through the filesystem because the directory entry
* has been deleted earlier.
*
* HOWEVER: we must make sure that we get no aliases,
* which means that we have to call "clear_inode()"
* _before_ we mark the inode not in use in the inode
* bitmaps. Otherwise a newly created file might use
* the same inode number (not actually the same pointer
* though), and then we'd have two inodes sharing the
* same inode number and space on the harddisk.
*/
void ext4_free_inode (handle_t *handle, struct inode * inode)
{
struct super_block * sb = inode->i_sb;
int is_directory;
unsigned long ino;
struct buffer_head *bitmap_bh = NULL;
struct buffer_head *bh2;
ext4_group_t block_group;
unsigned long bit;
struct ext4_group_desc * gdp;
struct ext4_super_block * es;
struct ext4_sb_info *sbi;
int fatal = 0, err;
if (atomic_read(&inode->i_count) > 1) {
printk ("ext4_free_inode: inode has count=%d\n",
atomic_read(&inode->i_count));
return;
}
if (inode->i_nlink) {
printk ("ext4_free_inode: inode has nlink=%d\n",
inode->i_nlink);
return;
}
if (!sb) {
printk("ext4_free_inode: inode on nonexistent device\n");
return;
}
sbi = EXT4_SB(sb);
ino = inode->i_ino;
ext4_debug ("freeing inode %lu\n", ino);
/*
* Note: we must free any quota before locking the superblock,
* as writing the quota to disk may need the lock as well.
*/
DQUOT_INIT(inode);
ext4_xattr_delete_inode(handle, inode);
DQUOT_FREE_INODE(inode);
DQUOT_DROP(inode);
is_directory = S_ISDIR(inode->i_mode);
/* Do this BEFORE marking the inode not in use or returning an error */
clear_inode (inode);
es = EXT4_SB(sb)->s_es;
if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
ext4_error (sb, "ext4_free_inode",
"reserved or nonexistent inode %lu", ino);
goto error_return;
}
block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
bitmap_bh = read_inode_bitmap(sb, block_group);
if (!bitmap_bh)
goto error_return;
BUFFER_TRACE(bitmap_bh, "get_write_access");
fatal = ext4_journal_get_write_access(handle, bitmap_bh);
if (fatal)
goto error_return;
/* Ok, now we can actually update the inode bitmaps.. */
if (!ext4_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
bit, bitmap_bh->b_data))
ext4_error (sb, "ext4_free_inode",
"bit already cleared for inode %lu", ino);
else {
gdp = ext4_get_group_desc (sb, block_group, &bh2);
BUFFER_TRACE(bh2, "get_write_access");
fatal = ext4_journal_get_write_access(handle, bh2);
if (fatal) goto error_return;
if (gdp) {
spin_lock(sb_bgl_lock(sbi, block_group));
le16_add_cpu(&gdp->bg_free_inodes_count, 1);
if (is_directory)
le16_add_cpu(&gdp->bg_used_dirs_count, -1);
gdp->bg_checksum = ext4_group_desc_csum(sbi,
block_group, gdp);
spin_unlock(sb_bgl_lock(sbi, block_group));
percpu_counter_inc(&sbi->s_freeinodes_counter);
if (is_directory)
percpu_counter_dec(&sbi->s_dirs_counter);
}
BUFFER_TRACE(bh2, "call ext4_journal_dirty_metadata");
err = ext4_journal_dirty_metadata(handle, bh2);
if (!fatal) fatal = err;
}
BUFFER_TRACE(bitmap_bh, "call ext4_journal_dirty_metadata");
err = ext4_journal_dirty_metadata(handle, bitmap_bh);
if (!fatal)
fatal = err;
sb->s_dirt = 1;
error_return:
brelse(bitmap_bh);
ext4_std_error(sb, fatal);
}
/*
* There are two policies for allocating an inode. If the new inode is
* a directory, then a forward search is made for a block group with both
* free space and a low directory-to-inode ratio; if that fails, then of
* the groups with above-average free space, that group with the fewest
* directories already is chosen.
*
* For other inodes, search forward from the parent directory\'s block
* group to find a free inode.
*/
static int find_group_dir(struct super_block *sb, struct inode *parent,
ext4_group_t *best_group)
{
ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
unsigned int freei, avefreei;
struct ext4_group_desc *desc, *best_desc = NULL;
ext4_group_t group;
int ret = -1;
freei = percpu_counter_read_positive(&EXT4_SB(sb)->s_freeinodes_counter);
avefreei = freei / ngroups;
for (group = 0; group < ngroups; group++) {
desc = ext4_get_group_desc (sb, group, NULL);
if (!desc || !desc->bg_free_inodes_count)
continue;
if (le16_to_cpu(desc->bg_free_inodes_count) < avefreei)
continue;
if (!best_desc ||
(le16_to_cpu(desc->bg_free_blocks_count) >
le16_to_cpu(best_desc->bg_free_blocks_count))) {
*best_group = group;
best_desc = desc;
ret = 0;
}
}
return ret;
}
/*
* Orlov's allocator for directories.
*
* We always try to spread first-level directories.
*
* If there are blockgroups with both free inodes and free blocks counts
* not worse than average we return one with smallest directory count.
* Otherwise we simply return a random group.
*
* For the rest rules look so:
*
* It's OK to put directory into a group unless
* it has too many directories already (max_dirs) or
* it has too few free inodes left (min_inodes) or
* it has too few free blocks left (min_blocks) or
* it's already running too large debt (max_debt).
* Parent's group is preferred, if it doesn't satisfy these
* conditions we search cyclically through the rest. If none
* of the groups look good we just look for a group with more
* free inodes than average (starting at parent's group).
*
* Debt is incremented each time we allocate a directory and decremented
* when we allocate an inode, within 0--255.
*/
#define INODE_COST 64
#define BLOCK_COST 256
static int find_group_orlov(struct super_block *sb, struct inode *parent,
ext4_group_t *group)
{
ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct ext4_super_block *es = sbi->s_es;
ext4_group_t ngroups = sbi->s_groups_count;
int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
unsigned int freei, avefreei;
ext4_fsblk_t freeb, avefreeb;
ext4_fsblk_t blocks_per_dir;
unsigned int ndirs;
int max_debt, max_dirs, min_inodes;
ext4_grpblk_t min_blocks;
ext4_group_t i;
struct ext4_group_desc *desc;
freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
avefreei = freei / ngroups;
freeb = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
avefreeb = freeb;
do_div(avefreeb, ngroups);
ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
if ((parent == sb->s_root->d_inode) ||
(EXT4_I(parent)->i_flags & EXT4_TOPDIR_FL)) {
int best_ndir = inodes_per_group;
ext4_group_t grp;
int ret = -1;
get_random_bytes(&grp, sizeof(grp));
parent_group = (unsigned)grp % ngroups;
for (i = 0; i < ngroups; i++) {
grp = (parent_group + i) % ngroups;
desc = ext4_get_group_desc(sb, grp, NULL);
if (!desc || !desc->bg_free_inodes_count)
continue;
if (le16_to_cpu(desc->bg_used_dirs_count) >= best_ndir)
continue;
if (le16_to_cpu(desc->bg_free_inodes_count) < avefreei)
continue;
if (le16_to_cpu(desc->bg_free_blocks_count) < avefreeb)
continue;
*group = grp;
ret = 0;
best_ndir = le16_to_cpu(desc->bg_used_dirs_count);
}
if (ret == 0)
return ret;
goto fallback;
}
blocks_per_dir = ext4_blocks_count(es) - freeb;
do_div(blocks_per_dir, ndirs);
max_dirs = ndirs / ngroups + inodes_per_group / 16;
min_inodes = avefreei - inodes_per_group / 4;
min_blocks = avefreeb - EXT4_BLOCKS_PER_GROUP(sb) / 4;
max_debt = EXT4_BLOCKS_PER_GROUP(sb);
max_debt /= max_t(int, blocks_per_dir, BLOCK_COST);
if (max_debt * INODE_COST > inodes_per_group)
max_debt = inodes_per_group / INODE_COST;
if (max_debt > 255)
max_debt = 255;
if (max_debt == 0)
max_debt = 1;
for (i = 0; i < ngroups; i++) {
*group = (parent_group + i) % ngroups;
desc = ext4_get_group_desc(sb, *group, NULL);
if (!desc || !desc->bg_free_inodes_count)
continue;
if (le16_to_cpu(desc->bg_used_dirs_count) >= max_dirs)
continue;
if (le16_to_cpu(desc->bg_free_inodes_count) < min_inodes)
continue;
if (le16_to_cpu(desc->bg_free_blocks_count) < min_blocks)
continue;
return 0;
}
fallback:
for (i = 0; i < ngroups; i++) {
*group = (parent_group + i) % ngroups;
desc = ext4_get_group_desc(sb, *group, NULL);
if (desc && desc->bg_free_inodes_count &&
le16_to_cpu(desc->bg_free_inodes_count) >= avefreei)
return 0;
}
if (avefreei) {
/*
* The free-inodes counter is approximate, and for really small
* filesystems the above test can fail to find any blockgroups
*/
avefreei = 0;
goto fallback;
}
return -1;
}
static int find_group_other(struct super_block *sb, struct inode *parent,
ext4_group_t *group)
{
ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
struct ext4_group_desc *desc;
ext4_group_t i;
/*
* Try to place the inode in its parent directory
*/
*group = parent_group;
desc = ext4_get_group_desc(sb, *group, NULL);
if (desc && le16_to_cpu(desc->bg_free_inodes_count) &&
le16_to_cpu(desc->bg_free_blocks_count))
return 0;
/*
* We're going to place this inode in a different blockgroup from its
* parent. We want to cause files in a common directory to all land in
* the same blockgroup. But we want files which are in a different
* directory which shares a blockgroup with our parent to land in a
* different blockgroup.
*
* So add our directory's i_ino into the starting point for the hash.
*/
*group = (*group + parent->i_ino) % ngroups;
/*
* Use a quadratic hash to find a group with a free inode and some free
* blocks.
*/
for (i = 1; i < ngroups; i <<= 1) {
*group += i;
if (*group >= ngroups)
*group -= ngroups;
desc = ext4_get_group_desc(sb, *group, NULL);
if (desc && le16_to_cpu(desc->bg_free_inodes_count) &&
le16_to_cpu(desc->bg_free_blocks_count))
return 0;
}
/*
* That failed: try linear search for a free inode, even if that group
* has no free blocks.
*/
*group = parent_group;
for (i = 0; i < ngroups; i++) {
if (++*group >= ngroups)
*group = 0;
desc = ext4_get_group_desc(sb, *group, NULL);
if (desc && le16_to_cpu(desc->bg_free_inodes_count))
return 0;
}
return -1;
}
/*
* There are two policies for allocating an inode. If the new inode is
* a directory, then a forward search is made for a block group with both
* free space and a low directory-to-inode ratio; if that fails, then of
* the groups with above-average free space, that group with the fewest
* directories already is chosen.
*
* For other inodes, search forward from the parent directory's block
* group to find a free inode.
*/
struct inode *ext4_new_inode(handle_t *handle, struct inode * dir, int mode)
{
struct super_block *sb;
struct buffer_head *bitmap_bh = NULL;
struct buffer_head *bh2;
ext4_group_t group = 0;
unsigned long ino = 0;
struct inode * inode;
struct ext4_group_desc * gdp = NULL;
struct ext4_super_block * es;
struct ext4_inode_info *ei;
struct ext4_sb_info *sbi;
int ret2, err = 0;
struct inode *ret;
ext4_group_t i;
int free = 0;
/* Cannot create files in a deleted directory */
if (!dir || !dir->i_nlink)
return ERR_PTR(-EPERM);
sb = dir->i_sb;
inode = new_inode(sb);
if (!inode)
return ERR_PTR(-ENOMEM);
ei = EXT4_I(inode);
sbi = EXT4_SB(sb);
es = sbi->s_es;
if (S_ISDIR(mode)) {
if (test_opt (sb, OLDALLOC))
ret2 = find_group_dir(sb, dir, &group);
else
ret2 = find_group_orlov(sb, dir, &group);
} else
ret2 = find_group_other(sb, dir, &group);
err = -ENOSPC;
if (ret2 == -1)
goto out;
for (i = 0; i < sbi->s_groups_count; i++) {
err = -EIO;
gdp = ext4_get_group_desc(sb, group, &bh2);
if (!gdp)
goto fail;
brelse(bitmap_bh);
bitmap_bh = read_inode_bitmap(sb, group);
if (!bitmap_bh)
goto fail;
ino = 0;
repeat_in_this_group:
ino = ext4_find_next_zero_bit((unsigned long *)
bitmap_bh->b_data, EXT4_INODES_PER_GROUP(sb), ino);
if (ino < EXT4_INODES_PER_GROUP(sb)) {
BUFFER_TRACE(bitmap_bh, "get_write_access");
err = ext4_journal_get_write_access(handle, bitmap_bh);
if (err)
goto fail;
if (!ext4_set_bit_atomic(sb_bgl_lock(sbi, group),
ino, bitmap_bh->b_data)) {
/* we won it */
BUFFER_TRACE(bitmap_bh,
"call ext4_journal_dirty_metadata");
err = ext4_journal_dirty_metadata(handle,
bitmap_bh);
if (err)
goto fail;
goto got;
}
/* we lost it */
jbd2_journal_release_buffer(handle, bitmap_bh);
if (++ino < EXT4_INODES_PER_GROUP(sb))
goto repeat_in_this_group;
}
/*
* This case is possible in concurrent environment. It is very
* rare. We cannot repeat the find_group_xxx() call because
* that will simply return the same blockgroup, because the
* group descriptor metadata has not yet been updated.
* So we just go onto the next blockgroup.
*/
if (++group == sbi->s_groups_count)
group = 0;
}
err = -ENOSPC;
goto out;
got:
ino++;
if ((group == 0 && ino < EXT4_FIRST_INO(sb)) ||
ino > EXT4_INODES_PER_GROUP(sb)) {
ext4_error(sb, __func__,
"reserved inode or inode > inodes count - "
"block_group = %lu, inode=%lu", group,
ino + group * EXT4_INODES_PER_GROUP(sb));
err = -EIO;
goto fail;
}
BUFFER_TRACE(bh2, "get_write_access");
err = ext4_journal_get_write_access(handle, bh2);
if (err) goto fail;
/* We may have to initialize the block bitmap if it isn't already */
if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM) &&
gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
struct buffer_head *block_bh = read_block_bitmap(sb, group);
BUFFER_TRACE(block_bh, "get block bitmap access");
err = ext4_journal_get_write_access(handle, block_bh);
if (err) {
brelse(block_bh);
goto fail;
}
free = 0;
spin_lock(sb_bgl_lock(sbi, group));
/* recheck and clear flag under lock if we still need to */
if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
free = ext4_free_blocks_after_init(sb, group, gdp);
gdp->bg_free_blocks_count = cpu_to_le16(free);
}
spin_unlock(sb_bgl_lock(sbi, group));
/* Don't need to dirty bitmap block if we didn't change it */
if (free) {
BUFFER_TRACE(block_bh, "dirty block bitmap");
err = ext4_journal_dirty_metadata(handle, block_bh);
}
brelse(block_bh);
if (err)
goto fail;
}
spin_lock(sb_bgl_lock(sbi, group));
/* If we didn't allocate from within the initialized part of the inode
* table then we need to initialize up to this inode. */
if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
/* When marking the block group with
* ~EXT4_BG_INODE_UNINIT we don't want to depend
* on the value of bg_itable_unsed even though
* mke2fs could have initialized the same for us.
* Instead we calculated the value below
*/
free = 0;
} else {
free = EXT4_INODES_PER_GROUP(sb) -
le16_to_cpu(gdp->bg_itable_unused);
}
/*
* Check the relative inode number against the last used
* relative inode number in this group. if it is greater
* we need to update the bg_itable_unused count
*
*/
if (ino > free)
gdp->bg_itable_unused =
cpu_to_le16(EXT4_INODES_PER_GROUP(sb) - ino);
}
le16_add_cpu(&gdp->bg_free_inodes_count, -1);
if (S_ISDIR(mode)) {
le16_add_cpu(&gdp->bg_used_dirs_count, 1);
}
gdp->bg_checksum = ext4_group_desc_csum(sbi, group, gdp);
spin_unlock(sb_bgl_lock(sbi, group));
BUFFER_TRACE(bh2, "call ext4_journal_dirty_metadata");
err = ext4_journal_dirty_metadata(handle, bh2);
if (err) goto fail;
percpu_counter_dec(&sbi->s_freeinodes_counter);
if (S_ISDIR(mode))
percpu_counter_inc(&sbi->s_dirs_counter);
sb->s_dirt = 1;
inode->i_uid = current->fsuid;
if (test_opt (sb, GRPID))
inode->i_gid = dir->i_gid;
else if (dir->i_mode & S_ISGID) {
inode->i_gid = dir->i_gid;
if (S_ISDIR(mode))
mode |= S_ISGID;
} else
inode->i_gid = current->fsgid;
inode->i_mode = mode;
inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
/* This is the optimal IO size (for stat), not the fs block size */
inode->i_blocks = 0;
inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
ext4_current_time(inode);
memset(ei->i_data, 0, sizeof(ei->i_data));
ei->i_dir_start_lookup = 0;
ei->i_disksize = 0;
/*
* Don't inherit extent flag from directory. We set extent flag on
* newly created directory and file only if -o extent mount option is
* specified
*/
ei->i_flags = EXT4_I(dir)->i_flags & ~(EXT4_INDEX_FL|EXT4_EXTENTS_FL);
if (S_ISLNK(mode))
ei->i_flags &= ~(EXT4_IMMUTABLE_FL|EXT4_APPEND_FL);
/* dirsync only applies to directories */
if (!S_ISDIR(mode))
ei->i_flags &= ~EXT4_DIRSYNC_FL;
ei->i_file_acl = 0;
ei->i_dtime = 0;
ei->i_block_alloc_info = NULL;
ei->i_block_group = group;
ext4_set_inode_flags(inode);
if (IS_DIRSYNC(inode))
handle->h_sync = 1;
insert_inode_hash(inode);
spin_lock(&sbi->s_next_gen_lock);
inode->i_generation = sbi->s_next_generation++;
spin_unlock(&sbi->s_next_gen_lock);
ei->i_state = EXT4_STATE_NEW;
ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
ret = inode;
if(DQUOT_ALLOC_INODE(inode)) {
err = -EDQUOT;
goto fail_drop;
}
err = ext4_init_acl(handle, inode, dir);
if (err)
goto fail_free_drop;
err = ext4_init_security(handle,inode, dir);
if (err)
goto fail_free_drop;
if (test_opt(sb, EXTENTS)) {
/* set extent flag only for diretory, file and normal symlink*/
if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
EXT4_I(inode)->i_flags |= EXT4_EXTENTS_FL;
ext4_ext_tree_init(handle, inode);
err = ext4_update_incompat_feature(handle, sb,
EXT4_FEATURE_INCOMPAT_EXTENTS);
if (err)
goto fail_free_drop;
}
}
err = ext4_mark_inode_dirty(handle, inode);
if (err) {
ext4_std_error(sb, err);
goto fail_free_drop;
}
ext4_debug("allocating inode %lu\n", inode->i_ino);
goto really_out;
fail:
ext4_std_error(sb, err);
out:
iput(inode);
ret = ERR_PTR(err);
really_out:
brelse(bitmap_bh);
return ret;
fail_free_drop:
DQUOT_FREE_INODE(inode);
fail_drop:
DQUOT_DROP(inode);
inode->i_flags |= S_NOQUOTA;
inode->i_nlink = 0;
iput(inode);
brelse(bitmap_bh);
return ERR_PTR(err);
}
/* Verify that we are loading a valid orphan from disk */
struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
{
unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
ext4_group_t block_group;
int bit;
struct buffer_head *bitmap_bh;
struct inode *inode = NULL;
long err = -EIO;
/* Error cases - e2fsck has already cleaned up for us */
if (ino > max_ino) {
ext4_warning(sb, __func__,
"bad orphan ino %lu! e2fsck was run?", ino);
goto error;
}
block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
bitmap_bh = read_inode_bitmap(sb, block_group);
if (!bitmap_bh) {
ext4_warning(sb, __func__,
"inode bitmap error for orphan %lu", ino);
goto error;
}
/* Having the inode bit set should be a 100% indicator that this
* is a valid orphan (no e2fsck run on fs). Orphans also include
* inodes that were being truncated, so we can't check i_nlink==0.
*/
if (!ext4_test_bit(bit, bitmap_bh->b_data))
goto bad_orphan;
inode = ext4_iget(sb, ino);
if (IS_ERR(inode))
goto iget_failed;
if (NEXT_ORPHAN(inode) > max_ino)
goto bad_orphan;
brelse(bitmap_bh);
return inode;
iget_failed:
err = PTR_ERR(inode);
inode = NULL;
bad_orphan:
ext4_warning(sb, __func__,
"bad orphan inode %lu! e2fsck was run?", ino);
printk(KERN_NOTICE "ext4_test_bit(bit=%d, block=%llu) = %d\n",
bit, (unsigned long long)bitmap_bh->b_blocknr,
ext4_test_bit(bit, bitmap_bh->b_data));
printk(KERN_NOTICE "inode=%p\n", inode);
if (inode) {
printk(KERN_NOTICE "is_bad_inode(inode)=%d\n",
is_bad_inode(inode));
printk(KERN_NOTICE "NEXT_ORPHAN(inode)=%u\n",
NEXT_ORPHAN(inode));
printk(KERN_NOTICE "max_ino=%lu\n", max_ino);
/* Avoid freeing blocks if we got a bad deleted inode */
if (inode->i_nlink == 0)
inode->i_blocks = 0;
iput(inode);
}
brelse(bitmap_bh);
error:
return ERR_PTR(err);
}
unsigned long ext4_count_free_inodes (struct super_block * sb)
{
unsigned long desc_count;
struct ext4_group_desc *gdp;
ext4_group_t i;
#ifdef EXT4FS_DEBUG
struct ext4_super_block *es;
unsigned long bitmap_count, x;
struct buffer_head *bitmap_bh = NULL;
es = EXT4_SB(sb)->s_es;
desc_count = 0;
bitmap_count = 0;
gdp = NULL;
for (i = 0; i < EXT4_SB(sb)->s_groups_count; i++) {
gdp = ext4_get_group_desc (sb, i, NULL);
if (!gdp)
continue;
desc_count += le16_to_cpu(gdp->bg_free_inodes_count);
brelse(bitmap_bh);
bitmap_bh = read_inode_bitmap(sb, i);
if (!bitmap_bh)
continue;
x = ext4_count_free(bitmap_bh, EXT4_INODES_PER_GROUP(sb) / 8);
printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
i, le16_to_cpu(gdp->bg_free_inodes_count), x);
bitmap_count += x;
}
brelse(bitmap_bh);
printk("ext4_count_free_inodes: stored = %u, computed = %lu, %lu\n",
le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
return desc_count;
#else
desc_count = 0;
for (i = 0; i < EXT4_SB(sb)->s_groups_count; i++) {
gdp = ext4_get_group_desc (sb, i, NULL);
if (!gdp)
continue;
desc_count += le16_to_cpu(gdp->bg_free_inodes_count);
cond_resched();
}
return desc_count;
#endif
}
/* Called at mount-time, super-block is locked */
unsigned long ext4_count_dirs (struct super_block * sb)
{
unsigned long count = 0;
ext4_group_t i;
for (i = 0; i < EXT4_SB(sb)->s_groups_count; i++) {
struct ext4_group_desc *gdp = ext4_get_group_desc (sb, i, NULL);
if (!gdp)
continue;
count += le16_to_cpu(gdp->bg_used_dirs_count);
}
return count;
}