mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-19 15:28:26 +07:00
5e374fb626
create proper stackframe. Signed-off-by: Ingo Molnar <mingo@elte.hu>
227 lines
6.3 KiB
C
227 lines
6.3 KiB
C
/*
|
|
* Intel SMP support routines.
|
|
*
|
|
* (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
|
|
* (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
|
|
* (c) 2002,2003 Andi Kleen, SuSE Labs.
|
|
*
|
|
* i386 and x86_64 integration by Glauber Costa <gcosta@redhat.com>
|
|
*
|
|
* This code is released under the GNU General Public License version 2 or
|
|
* later.
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/mc146818rtc.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/cpu.h>
|
|
|
|
#include <asm/mtrr.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/proto.h>
|
|
#include <mach_ipi.h>
|
|
#include <mach_apic.h>
|
|
/*
|
|
* Some notes on x86 processor bugs affecting SMP operation:
|
|
*
|
|
* Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
|
|
* The Linux implications for SMP are handled as follows:
|
|
*
|
|
* Pentium III / [Xeon]
|
|
* None of the E1AP-E3AP errata are visible to the user.
|
|
*
|
|
* E1AP. see PII A1AP
|
|
* E2AP. see PII A2AP
|
|
* E3AP. see PII A3AP
|
|
*
|
|
* Pentium II / [Xeon]
|
|
* None of the A1AP-A3AP errata are visible to the user.
|
|
*
|
|
* A1AP. see PPro 1AP
|
|
* A2AP. see PPro 2AP
|
|
* A3AP. see PPro 7AP
|
|
*
|
|
* Pentium Pro
|
|
* None of 1AP-9AP errata are visible to the normal user,
|
|
* except occasional delivery of 'spurious interrupt' as trap #15.
|
|
* This is very rare and a non-problem.
|
|
*
|
|
* 1AP. Linux maps APIC as non-cacheable
|
|
* 2AP. worked around in hardware
|
|
* 3AP. fixed in C0 and above steppings microcode update.
|
|
* Linux does not use excessive STARTUP_IPIs.
|
|
* 4AP. worked around in hardware
|
|
* 5AP. symmetric IO mode (normal Linux operation) not affected.
|
|
* 'noapic' mode has vector 0xf filled out properly.
|
|
* 6AP. 'noapic' mode might be affected - fixed in later steppings
|
|
* 7AP. We do not assume writes to the LVT deassering IRQs
|
|
* 8AP. We do not enable low power mode (deep sleep) during MP bootup
|
|
* 9AP. We do not use mixed mode
|
|
*
|
|
* Pentium
|
|
* There is a marginal case where REP MOVS on 100MHz SMP
|
|
* machines with B stepping processors can fail. XXX should provide
|
|
* an L1cache=Writethrough or L1cache=off option.
|
|
*
|
|
* B stepping CPUs may hang. There are hardware work arounds
|
|
* for this. We warn about it in case your board doesn't have the work
|
|
* arounds. Basically that's so I can tell anyone with a B stepping
|
|
* CPU and SMP problems "tough".
|
|
*
|
|
* Specific items [From Pentium Processor Specification Update]
|
|
*
|
|
* 1AP. Linux doesn't use remote read
|
|
* 2AP. Linux doesn't trust APIC errors
|
|
* 3AP. We work around this
|
|
* 4AP. Linux never generated 3 interrupts of the same priority
|
|
* to cause a lost local interrupt.
|
|
* 5AP. Remote read is never used
|
|
* 6AP. not affected - worked around in hardware
|
|
* 7AP. not affected - worked around in hardware
|
|
* 8AP. worked around in hardware - we get explicit CS errors if not
|
|
* 9AP. only 'noapic' mode affected. Might generate spurious
|
|
* interrupts, we log only the first one and count the
|
|
* rest silently.
|
|
* 10AP. not affected - worked around in hardware
|
|
* 11AP. Linux reads the APIC between writes to avoid this, as per
|
|
* the documentation. Make sure you preserve this as it affects
|
|
* the C stepping chips too.
|
|
* 12AP. not affected - worked around in hardware
|
|
* 13AP. not affected - worked around in hardware
|
|
* 14AP. we always deassert INIT during bootup
|
|
* 15AP. not affected - worked around in hardware
|
|
* 16AP. not affected - worked around in hardware
|
|
* 17AP. not affected - worked around in hardware
|
|
* 18AP. not affected - worked around in hardware
|
|
* 19AP. not affected - worked around in BIOS
|
|
*
|
|
* If this sounds worrying believe me these bugs are either ___RARE___,
|
|
* or are signal timing bugs worked around in hardware and there's
|
|
* about nothing of note with C stepping upwards.
|
|
*/
|
|
|
|
/*
|
|
* this function sends a 'reschedule' IPI to another CPU.
|
|
* it goes straight through and wastes no time serializing
|
|
* anything. Worst case is that we lose a reschedule ...
|
|
*/
|
|
static void native_smp_send_reschedule(int cpu)
|
|
{
|
|
if (unlikely(cpu_is_offline(cpu))) {
|
|
WARN_ON(1);
|
|
return;
|
|
}
|
|
send_IPI_mask(cpumask_of_cpu(cpu), RESCHEDULE_VECTOR);
|
|
}
|
|
|
|
void native_send_call_func_single_ipi(int cpu)
|
|
{
|
|
send_IPI_mask(cpumask_of_cpu(cpu), CALL_FUNCTION_SINGLE_VECTOR);
|
|
}
|
|
|
|
void native_send_call_func_ipi(cpumask_t mask)
|
|
{
|
|
cpumask_t allbutself;
|
|
|
|
allbutself = cpu_online_map;
|
|
cpu_clear(smp_processor_id(), allbutself);
|
|
|
|
if (cpus_equal(mask, allbutself) &&
|
|
cpus_equal(cpu_online_map, cpu_callout_map))
|
|
send_IPI_allbutself(CALL_FUNCTION_VECTOR);
|
|
else
|
|
send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
|
|
}
|
|
|
|
static void stop_this_cpu(void *dummy)
|
|
{
|
|
local_irq_disable();
|
|
/*
|
|
* Remove this CPU:
|
|
*/
|
|
cpu_clear(smp_processor_id(), cpu_online_map);
|
|
disable_local_APIC();
|
|
if (hlt_works(smp_processor_id()))
|
|
for (;;) halt();
|
|
for (;;);
|
|
}
|
|
|
|
/*
|
|
* this function calls the 'stop' function on all other CPUs in the system.
|
|
*/
|
|
|
|
static void native_smp_send_stop(void)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (reboot_force)
|
|
return;
|
|
|
|
smp_call_function(stop_this_cpu, NULL, 0);
|
|
local_irq_save(flags);
|
|
disable_local_APIC();
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/*
|
|
* Reschedule call back. Nothing to do,
|
|
* all the work is done automatically when
|
|
* we return from the interrupt.
|
|
*/
|
|
void smp_reschedule_interrupt(struct pt_regs *regs)
|
|
{
|
|
ack_APIC_irq();
|
|
#ifdef CONFIG_X86_32
|
|
__get_cpu_var(irq_stat).irq_resched_count++;
|
|
#else
|
|
add_pda(irq_resched_count, 1);
|
|
#endif
|
|
}
|
|
|
|
void smp_call_function_interrupt(struct pt_regs *regs)
|
|
{
|
|
ack_APIC_irq();
|
|
irq_enter();
|
|
generic_smp_call_function_interrupt();
|
|
#ifdef CONFIG_X86_32
|
|
__get_cpu_var(irq_stat).irq_call_count++;
|
|
#else
|
|
add_pda(irq_call_count, 1);
|
|
#endif
|
|
irq_exit();
|
|
}
|
|
|
|
void smp_call_function_single_interrupt(struct pt_regs *regs)
|
|
{
|
|
ack_APIC_irq();
|
|
irq_enter();
|
|
generic_smp_call_function_single_interrupt();
|
|
#ifdef CONFIG_X86_32
|
|
__get_cpu_var(irq_stat).irq_call_count++;
|
|
#else
|
|
add_pda(irq_call_count, 1);
|
|
#endif
|
|
irq_exit();
|
|
}
|
|
|
|
struct smp_ops smp_ops = {
|
|
.smp_prepare_boot_cpu = native_smp_prepare_boot_cpu,
|
|
.smp_prepare_cpus = native_smp_prepare_cpus,
|
|
.cpu_up = native_cpu_up,
|
|
.smp_cpus_done = native_smp_cpus_done,
|
|
|
|
.smp_send_stop = native_smp_send_stop,
|
|
.smp_send_reschedule = native_smp_send_reschedule,
|
|
|
|
.send_call_func_ipi = native_send_call_func_ipi,
|
|
.send_call_func_single_ipi = native_send_call_func_single_ipi,
|
|
};
|
|
EXPORT_SYMBOL_GPL(smp_ops);
|