mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-23 13:22:55 +07:00
0b24becc81
Kernel Address sanitizer (KASan) is a dynamic memory error detector. It provides fast and comprehensive solution for finding use-after-free and out-of-bounds bugs. KASAN uses compile-time instrumentation for checking every memory access, therefore GCC > v4.9.2 required. v4.9.2 almost works, but has issues with putting symbol aliases into the wrong section, which breaks kasan instrumentation of globals. This patch only adds infrastructure for kernel address sanitizer. It's not available for use yet. The idea and some code was borrowed from [1]. Basic idea: The main idea of KASAN is to use shadow memory to record whether each byte of memory is safe to access or not, and use compiler's instrumentation to check the shadow memory on each memory access. Address sanitizer uses 1/8 of the memory addressable in kernel for shadow memory and uses direct mapping with a scale and offset to translate a memory address to its corresponding shadow address. Here is function to translate address to corresponding shadow address: unsigned long kasan_mem_to_shadow(unsigned long addr) { return (addr >> KASAN_SHADOW_SCALE_SHIFT) + KASAN_SHADOW_OFFSET; } where KASAN_SHADOW_SCALE_SHIFT = 3. So for every 8 bytes there is one corresponding byte of shadow memory. The following encoding used for each shadow byte: 0 means that all 8 bytes of the corresponding memory region are valid for access; k (1 <= k <= 7) means that the first k bytes are valid for access, and other (8 - k) bytes are not; Any negative value indicates that the entire 8-bytes are inaccessible. Different negative values used to distinguish between different kinds of inaccessible memory (redzones, freed memory) (see mm/kasan/kasan.h). To be able to detect accesses to bad memory we need a special compiler. Such compiler inserts a specific function calls (__asan_load*(addr), __asan_store*(addr)) before each memory access of size 1, 2, 4, 8 or 16. These functions check whether memory region is valid to access or not by checking corresponding shadow memory. If access is not valid an error printed. Historical background of the address sanitizer from Dmitry Vyukov: "We've developed the set of tools, AddressSanitizer (Asan), ThreadSanitizer and MemorySanitizer, for user space. We actively use them for testing inside of Google (continuous testing, fuzzing, running prod services). To date the tools have found more than 10'000 scary bugs in Chromium, Google internal codebase and various open-source projects (Firefox, OpenSSL, gcc, clang, ffmpeg, MySQL and lots of others): [2] [3] [4]. The tools are part of both gcc and clang compilers. We have not yet done massive testing under the Kernel AddressSanitizer (it's kind of chicken and egg problem, you need it to be upstream to start applying it extensively). To date it has found about 50 bugs. Bugs that we've found in upstream kernel are listed in [5]. We've also found ~20 bugs in out internal version of the kernel. Also people from Samsung and Oracle have found some. [...] As others noted, the main feature of AddressSanitizer is its performance due to inline compiler instrumentation and simple linear shadow memory. User-space Asan has ~2x slowdown on computational programs and ~2x memory consumption increase. Taking into account that kernel usually consumes only small fraction of CPU and memory when running real user-space programs, I would expect that kernel Asan will have ~10-30% slowdown and similar memory consumption increase (when we finish all tuning). I agree that Asan can well replace kmemcheck. We have plans to start working on Kernel MemorySanitizer that finds uses of unitialized memory. Asan+Msan will provide feature-parity with kmemcheck. As others noted, Asan will unlikely replace debug slab and pagealloc that can be enabled at runtime. Asan uses compiler instrumentation, so even if it is disabled, it still incurs visible overheads. Asan technology is easily portable to other architectures. Compiler instrumentation is fully portable. Runtime has some arch-dependent parts like shadow mapping and atomic operation interception. They are relatively easy to port." Comparison with other debugging features: ======================================== KMEMCHECK: - KASan can do almost everything that kmemcheck can. KASan uses compile-time instrumentation, which makes it significantly faster than kmemcheck. The only advantage of kmemcheck over KASan is detection of uninitialized memory reads. Some brief performance testing showed that kasan could be x500-x600 times faster than kmemcheck: $ netperf -l 30 MIGRATED TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to localhost (127.0.0.1) port 0 AF_INET Recv Send Send Socket Socket Message Elapsed Size Size Size Time Throughput bytes bytes bytes secs. 10^6bits/sec no debug: 87380 16384 16384 30.00 41624.72 kasan inline: 87380 16384 16384 30.00 12870.54 kasan outline: 87380 16384 16384 30.00 10586.39 kmemcheck: 87380 16384 16384 30.03 20.23 - Also kmemcheck couldn't work on several CPUs. It always sets number of CPUs to 1. KASan doesn't have such limitation. DEBUG_PAGEALLOC: - KASan is slower than DEBUG_PAGEALLOC, but KASan works on sub-page granularity level, so it able to find more bugs. SLUB_DEBUG (poisoning, redzones): - SLUB_DEBUG has lower overhead than KASan. - SLUB_DEBUG in most cases are not able to detect bad reads, KASan able to detect both reads and writes. - In some cases (e.g. redzone overwritten) SLUB_DEBUG detect bugs only on allocation/freeing of object. KASan catch bugs right before it will happen, so we always know exact place of first bad read/write. [1] https://code.google.com/p/address-sanitizer/wiki/AddressSanitizerForKernel [2] https://code.google.com/p/address-sanitizer/wiki/FoundBugs [3] https://code.google.com/p/thread-sanitizer/wiki/FoundBugs [4] https://code.google.com/p/memory-sanitizer/wiki/FoundBugs [5] https://code.google.com/p/address-sanitizer/wiki/AddressSanitizerForKernel#Trophies Based on work by Andrey Konovalov. Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com> Acked-by: Michal Marek <mmarek@suse.cz> Signed-off-by: Andrey Konovalov <adech.fo@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Konstantin Serebryany <kcc@google.com> Cc: Dmitry Chernenkov <dmitryc@google.com> Cc: Yuri Gribov <tetra2005@gmail.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
390 lines
14 KiB
Makefile
390 lines
14 KiB
Makefile
# Backward compatibility
|
|
asflags-y += $(EXTRA_AFLAGS)
|
|
ccflags-y += $(EXTRA_CFLAGS)
|
|
cppflags-y += $(EXTRA_CPPFLAGS)
|
|
ldflags-y += $(EXTRA_LDFLAGS)
|
|
|
|
#
|
|
# flags that take effect in sub directories
|
|
export KBUILD_SUBDIR_ASFLAGS := $(KBUILD_SUBDIR_ASFLAGS) $(subdir-asflags-y)
|
|
export KBUILD_SUBDIR_CCFLAGS := $(KBUILD_SUBDIR_CCFLAGS) $(subdir-ccflags-y)
|
|
|
|
# Figure out what we need to build from the various variables
|
|
# ===========================================================================
|
|
|
|
# When an object is listed to be built compiled-in and modular,
|
|
# only build the compiled-in version
|
|
|
|
obj-m := $(filter-out $(obj-y),$(obj-m))
|
|
|
|
# Libraries are always collected in one lib file.
|
|
# Filter out objects already built-in
|
|
|
|
lib-y := $(filter-out $(obj-y), $(sort $(lib-y) $(lib-m)))
|
|
|
|
|
|
# Handle objects in subdirs
|
|
# ---------------------------------------------------------------------------
|
|
# o if we encounter foo/ in $(obj-y), replace it by foo/built-in.o
|
|
# and add the directory to the list of dirs to descend into: $(subdir-y)
|
|
# o if we encounter foo/ in $(obj-m), remove it from $(obj-m)
|
|
# and add the directory to the list of dirs to descend into: $(subdir-m)
|
|
|
|
# Determine modorder.
|
|
# Unfortunately, we don't have information about ordering between -y
|
|
# and -m subdirs. Just put -y's first.
|
|
modorder := $(patsubst %/,%/modules.order, $(filter %/, $(obj-y)) $(obj-m:.o=.ko))
|
|
|
|
__subdir-y := $(patsubst %/,%,$(filter %/, $(obj-y)))
|
|
subdir-y += $(__subdir-y)
|
|
__subdir-m := $(patsubst %/,%,$(filter %/, $(obj-m)))
|
|
subdir-m += $(__subdir-m)
|
|
obj-y := $(patsubst %/, %/built-in.o, $(obj-y))
|
|
obj-m := $(filter-out %/, $(obj-m))
|
|
|
|
# Subdirectories we need to descend into
|
|
|
|
subdir-ym := $(sort $(subdir-y) $(subdir-m))
|
|
|
|
# if $(foo-objs) exists, foo.o is a composite object
|
|
multi-used-y := $(sort $(foreach m,$(obj-y), $(if $(strip $($(m:.o=-objs)) $($(m:.o=-y))), $(m))))
|
|
multi-used-m := $(sort $(foreach m,$(obj-m), $(if $(strip $($(m:.o=-objs)) $($(m:.o=-y))), $(m))))
|
|
multi-used := $(multi-used-y) $(multi-used-m)
|
|
single-used-m := $(sort $(filter-out $(multi-used-m),$(obj-m)))
|
|
|
|
# Build list of the parts of our composite objects, our composite
|
|
# objects depend on those (obviously)
|
|
multi-objs-y := $(foreach m, $(multi-used-y), $($(m:.o=-objs)) $($(m:.o=-y)))
|
|
multi-objs-m := $(foreach m, $(multi-used-m), $($(m:.o=-objs)) $($(m:.o=-y)))
|
|
multi-objs := $(multi-objs-y) $(multi-objs-m)
|
|
|
|
# $(subdir-obj-y) is the list of objects in $(obj-y) which uses dir/ to
|
|
# tell kbuild to descend
|
|
subdir-obj-y := $(filter %/built-in.o, $(obj-y))
|
|
|
|
# $(obj-dirs) is a list of directories that contain object files
|
|
obj-dirs := $(dir $(multi-objs) $(obj-y))
|
|
|
|
# Replace multi-part objects by their individual parts, look at local dir only
|
|
real-objs-y := $(foreach m, $(filter-out $(subdir-obj-y), $(obj-y)), $(if $(strip $($(m:.o=-objs)) $($(m:.o=-y))),$($(m:.o=-objs)) $($(m:.o=-y)),$(m))) $(extra-y)
|
|
real-objs-m := $(foreach m, $(obj-m), $(if $(strip $($(m:.o=-objs)) $($(m:.o=-y))),$($(m:.o=-objs)) $($(m:.o=-y)),$(m)))
|
|
|
|
# Add subdir path
|
|
|
|
extra-y := $(addprefix $(obj)/,$(extra-y))
|
|
always := $(addprefix $(obj)/,$(always))
|
|
targets := $(addprefix $(obj)/,$(targets))
|
|
modorder := $(addprefix $(obj)/,$(modorder))
|
|
obj-y := $(addprefix $(obj)/,$(obj-y))
|
|
obj-m := $(addprefix $(obj)/,$(obj-m))
|
|
lib-y := $(addprefix $(obj)/,$(lib-y))
|
|
subdir-obj-y := $(addprefix $(obj)/,$(subdir-obj-y))
|
|
real-objs-y := $(addprefix $(obj)/,$(real-objs-y))
|
|
real-objs-m := $(addprefix $(obj)/,$(real-objs-m))
|
|
single-used-m := $(addprefix $(obj)/,$(single-used-m))
|
|
multi-used-y := $(addprefix $(obj)/,$(multi-used-y))
|
|
multi-used-m := $(addprefix $(obj)/,$(multi-used-m))
|
|
multi-objs-y := $(addprefix $(obj)/,$(multi-objs-y))
|
|
multi-objs-m := $(addprefix $(obj)/,$(multi-objs-m))
|
|
subdir-ym := $(addprefix $(obj)/,$(subdir-ym))
|
|
obj-dirs := $(addprefix $(obj)/,$(obj-dirs))
|
|
|
|
# These flags are needed for modversions and compiling, so we define them here
|
|
# already
|
|
# $(modname_flags) #defines KBUILD_MODNAME as the name of the module it will
|
|
# end up in (or would, if it gets compiled in)
|
|
# Note: Files that end up in two or more modules are compiled without the
|
|
# KBUILD_MODNAME definition. The reason is that any made-up name would
|
|
# differ in different configs.
|
|
name-fix = $(subst $(comma),_,$(subst -,_,$1))
|
|
basename_flags = -D"KBUILD_BASENAME=KBUILD_STR($(call name-fix,$(basetarget)))"
|
|
modname_flags = $(if $(filter 1,$(words $(modname))),\
|
|
-D"KBUILD_MODNAME=KBUILD_STR($(call name-fix,$(modname)))")
|
|
|
|
orig_c_flags = $(KBUILD_CPPFLAGS) $(KBUILD_CFLAGS) $(KBUILD_SUBDIR_CCFLAGS) \
|
|
$(ccflags-y) $(CFLAGS_$(basetarget).o)
|
|
_c_flags = $(filter-out $(CFLAGS_REMOVE_$(basetarget).o), $(orig_c_flags))
|
|
_a_flags = $(KBUILD_CPPFLAGS) $(KBUILD_AFLAGS) $(KBUILD_SUBDIR_ASFLAGS) \
|
|
$(asflags-y) $(AFLAGS_$(basetarget).o)
|
|
_cpp_flags = $(KBUILD_CPPFLAGS) $(cppflags-y) $(CPPFLAGS_$(@F))
|
|
|
|
#
|
|
# Enable gcov profiling flags for a file, directory or for all files depending
|
|
# on variables GCOV_PROFILE_obj.o, GCOV_PROFILE and CONFIG_GCOV_PROFILE_ALL
|
|
# (in this order)
|
|
#
|
|
ifeq ($(CONFIG_GCOV_KERNEL),y)
|
|
_c_flags += $(if $(patsubst n%,, \
|
|
$(GCOV_PROFILE_$(basetarget).o)$(GCOV_PROFILE)$(CONFIG_GCOV_PROFILE_ALL)), \
|
|
$(CFLAGS_GCOV))
|
|
endif
|
|
|
|
#
|
|
# Enable address sanitizer flags for kernel except some files or directories
|
|
# we don't want to check (depends on variables KASAN_SANITIZE_obj.o, KASAN_SANITIZE)
|
|
#
|
|
ifeq ($(CONFIG_KASAN),y)
|
|
_c_flags += $(if $(patsubst n%,, \
|
|
$(KASAN_SANITIZE_$(basetarget).o)$(KASAN_SANITIZE)y), \
|
|
$(CFLAGS_KASAN))
|
|
endif
|
|
|
|
# If building the kernel in a separate objtree expand all occurrences
|
|
# of -Idir to -I$(srctree)/dir except for absolute paths (starting with '/').
|
|
|
|
ifeq ($(KBUILD_SRC),)
|
|
__c_flags = $(_c_flags)
|
|
__a_flags = $(_a_flags)
|
|
__cpp_flags = $(_cpp_flags)
|
|
else
|
|
|
|
# -I$(obj) locates generated .h files
|
|
# $(call addtree,-I$(obj)) locates .h files in srctree, from generated .c files
|
|
# and locates generated .h files
|
|
# FIXME: Replace both with specific CFLAGS* statements in the makefiles
|
|
__c_flags = $(call addtree,-I$(obj)) $(call flags,_c_flags)
|
|
__a_flags = $(call flags,_a_flags)
|
|
__cpp_flags = $(call flags,_cpp_flags)
|
|
endif
|
|
|
|
c_flags = -Wp,-MD,$(depfile) $(NOSTDINC_FLAGS) $(LINUXINCLUDE) \
|
|
$(__c_flags) $(modkern_cflags) \
|
|
-D"KBUILD_STR(s)=\#s" $(basename_flags) $(modname_flags)
|
|
|
|
a_flags = -Wp,-MD,$(depfile) $(NOSTDINC_FLAGS) $(LINUXINCLUDE) \
|
|
$(__a_flags) $(modkern_aflags)
|
|
|
|
cpp_flags = -Wp,-MD,$(depfile) $(NOSTDINC_FLAGS) $(LINUXINCLUDE) \
|
|
$(__cpp_flags)
|
|
|
|
ld_flags = $(LDFLAGS) $(ldflags-y)
|
|
|
|
dtc_cpp_flags = -Wp,-MD,$(depfile).pre.tmp -nostdinc \
|
|
-I$(srctree)/arch/$(SRCARCH)/boot/dts \
|
|
-I$(srctree)/arch/$(SRCARCH)/boot/dts/include \
|
|
-I$(srctree)/drivers/of/testcase-data \
|
|
-undef -D__DTS__
|
|
|
|
# Finds the multi-part object the current object will be linked into
|
|
modname-multi = $(sort $(foreach m,$(multi-used),\
|
|
$(if $(filter $(subst $(obj)/,,$*.o), $($(m:.o=-objs)) $($(m:.o=-y))),$(m:.o=))))
|
|
|
|
# Useful for describing the dependency of composite objects
|
|
# Usage:
|
|
# $(call multi_depend, multi_used_targets, suffix_to_remove, suffix_to_add)
|
|
define multi_depend
|
|
$(foreach m, $(notdir $1), \
|
|
$(eval $(obj)/$m: \
|
|
$(addprefix $(obj)/, $(foreach s, $3, $($(m:%$(strip $2)=%$(s)))))))
|
|
endef
|
|
|
|
ifdef REGENERATE_PARSERS
|
|
|
|
# GPERF
|
|
# ---------------------------------------------------------------------------
|
|
quiet_cmd_gperf = GPERF $@
|
|
cmd_gperf = gperf -t --output-file $@ -a -C -E -g -k 1,3,$$ -p -t $<
|
|
|
|
.PRECIOUS: $(src)/%.hash.c_shipped
|
|
$(src)/%.hash.c_shipped: $(src)/%.gperf
|
|
$(call cmd,gperf)
|
|
|
|
# LEX
|
|
# ---------------------------------------------------------------------------
|
|
LEX_PREFIX = $(if $(LEX_PREFIX_${baseprereq}),$(LEX_PREFIX_${baseprereq}),yy)
|
|
|
|
quiet_cmd_flex = LEX $@
|
|
cmd_flex = flex -o$@ -L -P $(LEX_PREFIX) $<
|
|
|
|
.PRECIOUS: $(src)/%.lex.c_shipped
|
|
$(src)/%.lex.c_shipped: $(src)/%.l
|
|
$(call cmd,flex)
|
|
|
|
# YACC
|
|
# ---------------------------------------------------------------------------
|
|
YACC_PREFIX = $(if $(YACC_PREFIX_${baseprereq}),$(YACC_PREFIX_${baseprereq}),yy)
|
|
|
|
quiet_cmd_bison = YACC $@
|
|
cmd_bison = bison -o$@ -t -l -p $(YACC_PREFIX) $<
|
|
|
|
.PRECIOUS: $(src)/%.tab.c_shipped
|
|
$(src)/%.tab.c_shipped: $(src)/%.y
|
|
$(call cmd,bison)
|
|
|
|
quiet_cmd_bison_h = YACC $@
|
|
cmd_bison_h = bison -o/dev/null --defines=$@ -t -l -p $(YACC_PREFIX) $<
|
|
|
|
.PRECIOUS: $(src)/%.tab.h_shipped
|
|
$(src)/%.tab.h_shipped: $(src)/%.y
|
|
$(call cmd,bison_h)
|
|
|
|
endif
|
|
|
|
# Shipped files
|
|
# ===========================================================================
|
|
|
|
quiet_cmd_shipped = SHIPPED $@
|
|
cmd_shipped = cat $< > $@
|
|
|
|
$(obj)/%: $(src)/%_shipped
|
|
$(call cmd,shipped)
|
|
|
|
# Commands useful for building a boot image
|
|
# ===========================================================================
|
|
#
|
|
# Use as following:
|
|
#
|
|
# target: source(s) FORCE
|
|
# $(if_changed,ld/objcopy/gzip)
|
|
#
|
|
# and add target to extra-y so that we know we have to
|
|
# read in the saved command line
|
|
|
|
# Linking
|
|
# ---------------------------------------------------------------------------
|
|
|
|
quiet_cmd_ld = LD $@
|
|
cmd_ld = $(LD) $(LDFLAGS) $(ldflags-y) $(LDFLAGS_$(@F)) \
|
|
$(filter-out FORCE,$^) -o $@
|
|
|
|
# Objcopy
|
|
# ---------------------------------------------------------------------------
|
|
|
|
quiet_cmd_objcopy = OBJCOPY $@
|
|
cmd_objcopy = $(OBJCOPY) $(OBJCOPYFLAGS) $(OBJCOPYFLAGS_$(@F)) $< $@
|
|
|
|
# Gzip
|
|
# ---------------------------------------------------------------------------
|
|
|
|
quiet_cmd_gzip = GZIP $@
|
|
cmd_gzip = (cat $(filter-out FORCE,$^) | gzip -n -f -9 > $@) || \
|
|
(rm -f $@ ; false)
|
|
|
|
# DTC
|
|
# ---------------------------------------------------------------------------
|
|
|
|
# Generate an assembly file to wrap the output of the device tree compiler
|
|
quiet_cmd_dt_S_dtb= DTB $@
|
|
cmd_dt_S_dtb= \
|
|
( \
|
|
echo '\#include <asm-generic/vmlinux.lds.h>'; \
|
|
echo '.section .dtb.init.rodata,"a"'; \
|
|
echo '.balign STRUCT_ALIGNMENT'; \
|
|
echo '.global __dtb_$(*F)_begin'; \
|
|
echo '__dtb_$(*F)_begin:'; \
|
|
echo '.incbin "$<" '; \
|
|
echo '__dtb_$(*F)_end:'; \
|
|
echo '.global __dtb_$(*F)_end'; \
|
|
echo '.balign STRUCT_ALIGNMENT'; \
|
|
) > $@
|
|
|
|
$(obj)/%.dtb.S: $(obj)/%.dtb
|
|
$(call cmd,dt_S_dtb)
|
|
|
|
quiet_cmd_dtc = DTC $@
|
|
cmd_dtc = $(CPP) $(dtc_cpp_flags) -x assembler-with-cpp -o $(dtc-tmp) $< ; \
|
|
$(objtree)/scripts/dtc/dtc -O dtb -o $@ -b 0 \
|
|
-i $(dir $<) $(DTC_FLAGS) \
|
|
-d $(depfile).dtc.tmp $(dtc-tmp) ; \
|
|
cat $(depfile).pre.tmp $(depfile).dtc.tmp > $(depfile)
|
|
|
|
$(obj)/%.dtb: $(src)/%.dts FORCE
|
|
$(call if_changed_dep,dtc)
|
|
|
|
dtc-tmp = $(subst $(comma),_,$(dot-target).dts.tmp)
|
|
|
|
# Bzip2
|
|
# ---------------------------------------------------------------------------
|
|
|
|
# Bzip2 and LZMA do not include size in file... so we have to fake that;
|
|
# append the size as a 32-bit littleendian number as gzip does.
|
|
size_append = printf $(shell \
|
|
dec_size=0; \
|
|
for F in $1; do \
|
|
fsize=$$(stat -c "%s" $$F); \
|
|
dec_size=$$(expr $$dec_size + $$fsize); \
|
|
done; \
|
|
printf "%08x\n" $$dec_size | \
|
|
sed 's/\(..\)/\1 /g' | { \
|
|
read ch0 ch1 ch2 ch3; \
|
|
for ch in $$ch3 $$ch2 $$ch1 $$ch0; do \
|
|
printf '%s%03o' '\\' $$((0x$$ch)); \
|
|
done; \
|
|
} \
|
|
)
|
|
|
|
quiet_cmd_bzip2 = BZIP2 $@
|
|
cmd_bzip2 = (cat $(filter-out FORCE,$^) | \
|
|
bzip2 -9 && $(call size_append, $(filter-out FORCE,$^))) > $@ || \
|
|
(rm -f $@ ; false)
|
|
|
|
# Lzma
|
|
# ---------------------------------------------------------------------------
|
|
|
|
quiet_cmd_lzma = LZMA $@
|
|
cmd_lzma = (cat $(filter-out FORCE,$^) | \
|
|
lzma -9 && $(call size_append, $(filter-out FORCE,$^))) > $@ || \
|
|
(rm -f $@ ; false)
|
|
|
|
quiet_cmd_lzo = LZO $@
|
|
cmd_lzo = (cat $(filter-out FORCE,$^) | \
|
|
lzop -9 && $(call size_append, $(filter-out FORCE,$^))) > $@ || \
|
|
(rm -f $@ ; false)
|
|
|
|
quiet_cmd_lz4 = LZ4 $@
|
|
cmd_lz4 = (cat $(filter-out FORCE,$^) | \
|
|
lz4c -l -c1 stdin stdout && $(call size_append, $(filter-out FORCE,$^))) > $@ || \
|
|
(rm -f $@ ; false)
|
|
|
|
# U-Boot mkimage
|
|
# ---------------------------------------------------------------------------
|
|
|
|
MKIMAGE := $(srctree)/scripts/mkuboot.sh
|
|
|
|
# SRCARCH just happens to match slightly more than ARCH (on sparc), so reduces
|
|
# the number of overrides in arch makefiles
|
|
UIMAGE_ARCH ?= $(SRCARCH)
|
|
UIMAGE_COMPRESSION ?= $(if $(2),$(2),none)
|
|
UIMAGE_OPTS-y ?=
|
|
UIMAGE_TYPE ?= kernel
|
|
UIMAGE_LOADADDR ?= arch_must_set_this
|
|
UIMAGE_ENTRYADDR ?= $(UIMAGE_LOADADDR)
|
|
UIMAGE_NAME ?= 'Linux-$(KERNELRELEASE)'
|
|
UIMAGE_IN ?= $<
|
|
UIMAGE_OUT ?= $@
|
|
|
|
quiet_cmd_uimage = UIMAGE $(UIMAGE_OUT)
|
|
cmd_uimage = $(CONFIG_SHELL) $(MKIMAGE) -A $(UIMAGE_ARCH) -O linux \
|
|
-C $(UIMAGE_COMPRESSION) $(UIMAGE_OPTS-y) \
|
|
-T $(UIMAGE_TYPE) \
|
|
-a $(UIMAGE_LOADADDR) -e $(UIMAGE_ENTRYADDR) \
|
|
-n $(UIMAGE_NAME) -d $(UIMAGE_IN) $(UIMAGE_OUT)
|
|
|
|
# XZ
|
|
# ---------------------------------------------------------------------------
|
|
# Use xzkern to compress the kernel image and xzmisc to compress other things.
|
|
#
|
|
# xzkern uses a big LZMA2 dictionary since it doesn't increase memory usage
|
|
# of the kernel decompressor. A BCJ filter is used if it is available for
|
|
# the target architecture. xzkern also appends uncompressed size of the data
|
|
# using size_append. The .xz format has the size information available at
|
|
# the end of the file too, but it's in more complex format and it's good to
|
|
# avoid changing the part of the boot code that reads the uncompressed size.
|
|
# Note that the bytes added by size_append will make the xz tool think that
|
|
# the file is corrupt. This is expected.
|
|
#
|
|
# xzmisc doesn't use size_append, so it can be used to create normal .xz
|
|
# files. xzmisc uses smaller LZMA2 dictionary than xzkern, because a very
|
|
# big dictionary would increase the memory usage too much in the multi-call
|
|
# decompression mode. A BCJ filter isn't used either.
|
|
quiet_cmd_xzkern = XZKERN $@
|
|
cmd_xzkern = (cat $(filter-out FORCE,$^) | \
|
|
sh $(srctree)/scripts/xz_wrap.sh && \
|
|
$(call size_append, $(filter-out FORCE,$^))) > $@ || \
|
|
(rm -f $@ ; false)
|
|
|
|
quiet_cmd_xzmisc = XZMISC $@
|
|
cmd_xzmisc = (cat $(filter-out FORCE,$^) | \
|
|
xz --check=crc32 --lzma2=dict=1MiB) > $@ || \
|
|
(rm -f $@ ; false)
|