mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-13 03:46:32 +07:00
008913dbeb
When running in software cyclic mode the driver currently does not go back to the first segment once the last segment has been reached. Effectively making the transfer non-cyclic. Fix this by going back to the first segment once the last segment has been reached for cyclic transfers. Special care need to be taken to avoid a segment from being submitted multiple times concurrently, which could happen for transfers with a number of segments that is smaller than the DMA controller's internal queue. Signed-off-by: Lars-Peter Clausen <lars@metafoo.de> Signed-off-by: Vinod Koul <vinod.koul@intel.com>
741 lines
19 KiB
C
741 lines
19 KiB
C
/*
|
|
* Driver for the Analog Devices AXI-DMAC core
|
|
*
|
|
* Copyright 2013-2015 Analog Devices Inc.
|
|
* Author: Lars-Peter Clausen <lars@metafoo.de>
|
|
*
|
|
* Licensed under the GPL-2.
|
|
*/
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/device.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/err.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_dma.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <dt-bindings/dma/axi-dmac.h>
|
|
|
|
#include "dmaengine.h"
|
|
#include "virt-dma.h"
|
|
|
|
/*
|
|
* The AXI-DMAC is a soft IP core that is used in FPGA designs. The core has
|
|
* various instantiation parameters which decided the exact feature set support
|
|
* by the core.
|
|
*
|
|
* Each channel of the core has a source interface and a destination interface.
|
|
* The number of channels and the type of the channel interfaces is selected at
|
|
* configuration time. A interface can either be a connected to a central memory
|
|
* interconnect, which allows access to system memory, or it can be connected to
|
|
* a dedicated bus which is directly connected to a data port on a peripheral.
|
|
* Given that those are configuration options of the core that are selected when
|
|
* it is instantiated this means that they can not be changed by software at
|
|
* runtime. By extension this means that each channel is uni-directional. It can
|
|
* either be device to memory or memory to device, but not both. Also since the
|
|
* device side is a dedicated data bus only connected to a single peripheral
|
|
* there is no address than can or needs to be configured for the device side.
|
|
*/
|
|
|
|
#define AXI_DMAC_REG_IRQ_MASK 0x80
|
|
#define AXI_DMAC_REG_IRQ_PENDING 0x84
|
|
#define AXI_DMAC_REG_IRQ_SOURCE 0x88
|
|
|
|
#define AXI_DMAC_REG_CTRL 0x400
|
|
#define AXI_DMAC_REG_TRANSFER_ID 0x404
|
|
#define AXI_DMAC_REG_START_TRANSFER 0x408
|
|
#define AXI_DMAC_REG_FLAGS 0x40c
|
|
#define AXI_DMAC_REG_DEST_ADDRESS 0x410
|
|
#define AXI_DMAC_REG_SRC_ADDRESS 0x414
|
|
#define AXI_DMAC_REG_X_LENGTH 0x418
|
|
#define AXI_DMAC_REG_Y_LENGTH 0x41c
|
|
#define AXI_DMAC_REG_DEST_STRIDE 0x420
|
|
#define AXI_DMAC_REG_SRC_STRIDE 0x424
|
|
#define AXI_DMAC_REG_TRANSFER_DONE 0x428
|
|
#define AXI_DMAC_REG_ACTIVE_TRANSFER_ID 0x42c
|
|
#define AXI_DMAC_REG_STATUS 0x430
|
|
#define AXI_DMAC_REG_CURRENT_SRC_ADDR 0x434
|
|
#define AXI_DMAC_REG_CURRENT_DEST_ADDR 0x438
|
|
|
|
#define AXI_DMAC_CTRL_ENABLE BIT(0)
|
|
#define AXI_DMAC_CTRL_PAUSE BIT(1)
|
|
|
|
#define AXI_DMAC_IRQ_SOT BIT(0)
|
|
#define AXI_DMAC_IRQ_EOT BIT(1)
|
|
|
|
#define AXI_DMAC_FLAG_CYCLIC BIT(0)
|
|
|
|
/* The maximum ID allocated by the hardware is 31 */
|
|
#define AXI_DMAC_SG_UNUSED 32U
|
|
|
|
struct axi_dmac_sg {
|
|
dma_addr_t src_addr;
|
|
dma_addr_t dest_addr;
|
|
unsigned int x_len;
|
|
unsigned int y_len;
|
|
unsigned int dest_stride;
|
|
unsigned int src_stride;
|
|
unsigned int id;
|
|
bool schedule_when_free;
|
|
};
|
|
|
|
struct axi_dmac_desc {
|
|
struct virt_dma_desc vdesc;
|
|
bool cyclic;
|
|
|
|
unsigned int num_submitted;
|
|
unsigned int num_completed;
|
|
unsigned int num_sgs;
|
|
struct axi_dmac_sg sg[];
|
|
};
|
|
|
|
struct axi_dmac_chan {
|
|
struct virt_dma_chan vchan;
|
|
|
|
struct axi_dmac_desc *next_desc;
|
|
struct list_head active_descs;
|
|
enum dma_transfer_direction direction;
|
|
|
|
unsigned int src_width;
|
|
unsigned int dest_width;
|
|
unsigned int src_type;
|
|
unsigned int dest_type;
|
|
|
|
unsigned int max_length;
|
|
unsigned int align_mask;
|
|
|
|
bool hw_cyclic;
|
|
bool hw_2d;
|
|
};
|
|
|
|
struct axi_dmac {
|
|
void __iomem *base;
|
|
int irq;
|
|
|
|
struct clk *clk;
|
|
|
|
struct dma_device dma_dev;
|
|
struct axi_dmac_chan chan;
|
|
|
|
struct device_dma_parameters dma_parms;
|
|
};
|
|
|
|
static struct axi_dmac *chan_to_axi_dmac(struct axi_dmac_chan *chan)
|
|
{
|
|
return container_of(chan->vchan.chan.device, struct axi_dmac,
|
|
dma_dev);
|
|
}
|
|
|
|
static struct axi_dmac_chan *to_axi_dmac_chan(struct dma_chan *c)
|
|
{
|
|
return container_of(c, struct axi_dmac_chan, vchan.chan);
|
|
}
|
|
|
|
static struct axi_dmac_desc *to_axi_dmac_desc(struct virt_dma_desc *vdesc)
|
|
{
|
|
return container_of(vdesc, struct axi_dmac_desc, vdesc);
|
|
}
|
|
|
|
static void axi_dmac_write(struct axi_dmac *axi_dmac, unsigned int reg,
|
|
unsigned int val)
|
|
{
|
|
writel(val, axi_dmac->base + reg);
|
|
}
|
|
|
|
static int axi_dmac_read(struct axi_dmac *axi_dmac, unsigned int reg)
|
|
{
|
|
return readl(axi_dmac->base + reg);
|
|
}
|
|
|
|
static int axi_dmac_src_is_mem(struct axi_dmac_chan *chan)
|
|
{
|
|
return chan->src_type == AXI_DMAC_BUS_TYPE_AXI_MM;
|
|
}
|
|
|
|
static int axi_dmac_dest_is_mem(struct axi_dmac_chan *chan)
|
|
{
|
|
return chan->dest_type == AXI_DMAC_BUS_TYPE_AXI_MM;
|
|
}
|
|
|
|
static bool axi_dmac_check_len(struct axi_dmac_chan *chan, unsigned int len)
|
|
{
|
|
if (len == 0 || len > chan->max_length)
|
|
return false;
|
|
if ((len & chan->align_mask) != 0) /* Not aligned */
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static bool axi_dmac_check_addr(struct axi_dmac_chan *chan, dma_addr_t addr)
|
|
{
|
|
if ((addr & chan->align_mask) != 0) /* Not aligned */
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static void axi_dmac_start_transfer(struct axi_dmac_chan *chan)
|
|
{
|
|
struct axi_dmac *dmac = chan_to_axi_dmac(chan);
|
|
struct virt_dma_desc *vdesc;
|
|
struct axi_dmac_desc *desc;
|
|
struct axi_dmac_sg *sg;
|
|
unsigned int flags = 0;
|
|
unsigned int val;
|
|
|
|
val = axi_dmac_read(dmac, AXI_DMAC_REG_START_TRANSFER);
|
|
if (val) /* Queue is full, wait for the next SOT IRQ */
|
|
return;
|
|
|
|
desc = chan->next_desc;
|
|
|
|
if (!desc) {
|
|
vdesc = vchan_next_desc(&chan->vchan);
|
|
if (!vdesc)
|
|
return;
|
|
list_move_tail(&vdesc->node, &chan->active_descs);
|
|
desc = to_axi_dmac_desc(vdesc);
|
|
}
|
|
sg = &desc->sg[desc->num_submitted];
|
|
|
|
/* Already queued in cyclic mode. Wait for it to finish */
|
|
if (sg->id != AXI_DMAC_SG_UNUSED) {
|
|
sg->schedule_when_free = true;
|
|
return;
|
|
}
|
|
|
|
desc->num_submitted++;
|
|
if (desc->num_submitted == desc->num_sgs) {
|
|
if (desc->cyclic)
|
|
desc->num_submitted = 0; /* Start again */
|
|
else
|
|
chan->next_desc = NULL;
|
|
} else {
|
|
chan->next_desc = desc;
|
|
}
|
|
|
|
sg->id = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_ID);
|
|
|
|
if (axi_dmac_dest_is_mem(chan)) {
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_DEST_ADDRESS, sg->dest_addr);
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_DEST_STRIDE, sg->dest_stride);
|
|
}
|
|
|
|
if (axi_dmac_src_is_mem(chan)) {
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_SRC_ADDRESS, sg->src_addr);
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_SRC_STRIDE, sg->src_stride);
|
|
}
|
|
|
|
/*
|
|
* If the hardware supports cyclic transfers and there is no callback to
|
|
* call and only a single segment, enable hw cyclic mode to avoid
|
|
* unnecessary interrupts.
|
|
*/
|
|
if (chan->hw_cyclic && desc->cyclic && !desc->vdesc.tx.callback &&
|
|
desc->num_sgs == 1)
|
|
flags |= AXI_DMAC_FLAG_CYCLIC;
|
|
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, sg->x_len - 1);
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_Y_LENGTH, sg->y_len - 1);
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_FLAGS, flags);
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_START_TRANSFER, 1);
|
|
}
|
|
|
|
static struct axi_dmac_desc *axi_dmac_active_desc(struct axi_dmac_chan *chan)
|
|
{
|
|
return list_first_entry_or_null(&chan->active_descs,
|
|
struct axi_dmac_desc, vdesc.node);
|
|
}
|
|
|
|
static bool axi_dmac_transfer_done(struct axi_dmac_chan *chan,
|
|
unsigned int completed_transfers)
|
|
{
|
|
struct axi_dmac_desc *active;
|
|
struct axi_dmac_sg *sg;
|
|
bool start_next = false;
|
|
|
|
active = axi_dmac_active_desc(chan);
|
|
if (!active)
|
|
return false;
|
|
|
|
do {
|
|
sg = &active->sg[active->num_completed];
|
|
if (sg->id == AXI_DMAC_SG_UNUSED) /* Not yet submitted */
|
|
break;
|
|
if (!(BIT(sg->id) & completed_transfers))
|
|
break;
|
|
active->num_completed++;
|
|
sg->id = AXI_DMAC_SG_UNUSED;
|
|
if (sg->schedule_when_free) {
|
|
sg->schedule_when_free = false;
|
|
start_next = true;
|
|
}
|
|
|
|
if (active->cyclic)
|
|
vchan_cyclic_callback(&active->vdesc);
|
|
|
|
if (active->num_completed == active->num_sgs) {
|
|
if (active->cyclic) {
|
|
active->num_completed = 0; /* wrap around */
|
|
} else {
|
|
list_del(&active->vdesc.node);
|
|
vchan_cookie_complete(&active->vdesc);
|
|
active = axi_dmac_active_desc(chan);
|
|
}
|
|
}
|
|
} while (active);
|
|
|
|
return start_next;
|
|
}
|
|
|
|
static irqreturn_t axi_dmac_interrupt_handler(int irq, void *devid)
|
|
{
|
|
struct axi_dmac *dmac = devid;
|
|
unsigned int pending;
|
|
bool start_next = false;
|
|
|
|
pending = axi_dmac_read(dmac, AXI_DMAC_REG_IRQ_PENDING);
|
|
if (!pending)
|
|
return IRQ_NONE;
|
|
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_PENDING, pending);
|
|
|
|
spin_lock(&dmac->chan.vchan.lock);
|
|
/* One or more transfers have finished */
|
|
if (pending & AXI_DMAC_IRQ_EOT) {
|
|
unsigned int completed;
|
|
|
|
completed = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_DONE);
|
|
start_next = axi_dmac_transfer_done(&dmac->chan, completed);
|
|
}
|
|
/* Space has become available in the descriptor queue */
|
|
if ((pending & AXI_DMAC_IRQ_SOT) || start_next)
|
|
axi_dmac_start_transfer(&dmac->chan);
|
|
spin_unlock(&dmac->chan.vchan.lock);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int axi_dmac_terminate_all(struct dma_chan *c)
|
|
{
|
|
struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
|
|
struct axi_dmac *dmac = chan_to_axi_dmac(chan);
|
|
unsigned long flags;
|
|
LIST_HEAD(head);
|
|
|
|
spin_lock_irqsave(&chan->vchan.lock, flags);
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, 0);
|
|
chan->next_desc = NULL;
|
|
vchan_get_all_descriptors(&chan->vchan, &head);
|
|
list_splice_tail_init(&chan->active_descs, &head);
|
|
spin_unlock_irqrestore(&chan->vchan.lock, flags);
|
|
|
|
vchan_dma_desc_free_list(&chan->vchan, &head);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void axi_dmac_synchronize(struct dma_chan *c)
|
|
{
|
|
struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
|
|
|
|
vchan_synchronize(&chan->vchan);
|
|
}
|
|
|
|
static void axi_dmac_issue_pending(struct dma_chan *c)
|
|
{
|
|
struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
|
|
struct axi_dmac *dmac = chan_to_axi_dmac(chan);
|
|
unsigned long flags;
|
|
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, AXI_DMAC_CTRL_ENABLE);
|
|
|
|
spin_lock_irqsave(&chan->vchan.lock, flags);
|
|
if (vchan_issue_pending(&chan->vchan))
|
|
axi_dmac_start_transfer(chan);
|
|
spin_unlock_irqrestore(&chan->vchan.lock, flags);
|
|
}
|
|
|
|
static struct axi_dmac_desc *axi_dmac_alloc_desc(unsigned int num_sgs)
|
|
{
|
|
struct axi_dmac_desc *desc;
|
|
unsigned int i;
|
|
|
|
desc = kzalloc(sizeof(struct axi_dmac_desc) +
|
|
sizeof(struct axi_dmac_sg) * num_sgs, GFP_NOWAIT);
|
|
if (!desc)
|
|
return NULL;
|
|
|
|
for (i = 0; i < num_sgs; i++)
|
|
desc->sg[i].id = AXI_DMAC_SG_UNUSED;
|
|
|
|
desc->num_sgs = num_sgs;
|
|
|
|
return desc;
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *axi_dmac_prep_slave_sg(
|
|
struct dma_chan *c, struct scatterlist *sgl,
|
|
unsigned int sg_len, enum dma_transfer_direction direction,
|
|
unsigned long flags, void *context)
|
|
{
|
|
struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
|
|
struct axi_dmac_desc *desc;
|
|
struct scatterlist *sg;
|
|
unsigned int i;
|
|
|
|
if (direction != chan->direction)
|
|
return NULL;
|
|
|
|
desc = axi_dmac_alloc_desc(sg_len);
|
|
if (!desc)
|
|
return NULL;
|
|
|
|
for_each_sg(sgl, sg, sg_len, i) {
|
|
if (!axi_dmac_check_addr(chan, sg_dma_address(sg)) ||
|
|
!axi_dmac_check_len(chan, sg_dma_len(sg))) {
|
|
kfree(desc);
|
|
return NULL;
|
|
}
|
|
|
|
if (direction == DMA_DEV_TO_MEM)
|
|
desc->sg[i].dest_addr = sg_dma_address(sg);
|
|
else
|
|
desc->sg[i].src_addr = sg_dma_address(sg);
|
|
desc->sg[i].x_len = sg_dma_len(sg);
|
|
desc->sg[i].y_len = 1;
|
|
}
|
|
|
|
desc->cyclic = false;
|
|
|
|
return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *axi_dmac_prep_dma_cyclic(
|
|
struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
|
|
size_t period_len, enum dma_transfer_direction direction,
|
|
unsigned long flags)
|
|
{
|
|
struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
|
|
struct axi_dmac_desc *desc;
|
|
unsigned int num_periods, i;
|
|
|
|
if (direction != chan->direction)
|
|
return NULL;
|
|
|
|
if (!axi_dmac_check_len(chan, buf_len) ||
|
|
!axi_dmac_check_addr(chan, buf_addr))
|
|
return NULL;
|
|
|
|
if (period_len == 0 || buf_len % period_len)
|
|
return NULL;
|
|
|
|
num_periods = buf_len / period_len;
|
|
|
|
desc = axi_dmac_alloc_desc(num_periods);
|
|
if (!desc)
|
|
return NULL;
|
|
|
|
for (i = 0; i < num_periods; i++) {
|
|
if (direction == DMA_DEV_TO_MEM)
|
|
desc->sg[i].dest_addr = buf_addr;
|
|
else
|
|
desc->sg[i].src_addr = buf_addr;
|
|
desc->sg[i].x_len = period_len;
|
|
desc->sg[i].y_len = 1;
|
|
buf_addr += period_len;
|
|
}
|
|
|
|
desc->cyclic = true;
|
|
|
|
return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *axi_dmac_prep_interleaved(
|
|
struct dma_chan *c, struct dma_interleaved_template *xt,
|
|
unsigned long flags)
|
|
{
|
|
struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
|
|
struct axi_dmac_desc *desc;
|
|
size_t dst_icg, src_icg;
|
|
|
|
if (xt->frame_size != 1)
|
|
return NULL;
|
|
|
|
if (xt->dir != chan->direction)
|
|
return NULL;
|
|
|
|
if (axi_dmac_src_is_mem(chan)) {
|
|
if (!xt->src_inc || !axi_dmac_check_addr(chan, xt->src_start))
|
|
return NULL;
|
|
}
|
|
|
|
if (axi_dmac_dest_is_mem(chan)) {
|
|
if (!xt->dst_inc || !axi_dmac_check_addr(chan, xt->dst_start))
|
|
return NULL;
|
|
}
|
|
|
|
dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
|
|
src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
|
|
|
|
if (chan->hw_2d) {
|
|
if (!axi_dmac_check_len(chan, xt->sgl[0].size) ||
|
|
!axi_dmac_check_len(chan, xt->numf))
|
|
return NULL;
|
|
if (xt->sgl[0].size + dst_icg > chan->max_length ||
|
|
xt->sgl[0].size + src_icg > chan->max_length)
|
|
return NULL;
|
|
} else {
|
|
if (dst_icg != 0 || src_icg != 0)
|
|
return NULL;
|
|
if (chan->max_length / xt->sgl[0].size < xt->numf)
|
|
return NULL;
|
|
if (!axi_dmac_check_len(chan, xt->sgl[0].size * xt->numf))
|
|
return NULL;
|
|
}
|
|
|
|
desc = axi_dmac_alloc_desc(1);
|
|
if (!desc)
|
|
return NULL;
|
|
|
|
if (axi_dmac_src_is_mem(chan)) {
|
|
desc->sg[0].src_addr = xt->src_start;
|
|
desc->sg[0].src_stride = xt->sgl[0].size + src_icg;
|
|
}
|
|
|
|
if (axi_dmac_dest_is_mem(chan)) {
|
|
desc->sg[0].dest_addr = xt->dst_start;
|
|
desc->sg[0].dest_stride = xt->sgl[0].size + dst_icg;
|
|
}
|
|
|
|
if (chan->hw_2d) {
|
|
desc->sg[0].x_len = xt->sgl[0].size;
|
|
desc->sg[0].y_len = xt->numf;
|
|
} else {
|
|
desc->sg[0].x_len = xt->sgl[0].size * xt->numf;
|
|
desc->sg[0].y_len = 1;
|
|
}
|
|
|
|
return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
|
|
}
|
|
|
|
static void axi_dmac_free_chan_resources(struct dma_chan *c)
|
|
{
|
|
vchan_free_chan_resources(to_virt_chan(c));
|
|
}
|
|
|
|
static void axi_dmac_desc_free(struct virt_dma_desc *vdesc)
|
|
{
|
|
kfree(container_of(vdesc, struct axi_dmac_desc, vdesc));
|
|
}
|
|
|
|
/*
|
|
* The configuration stored in the devicetree matches the configuration
|
|
* parameters of the peripheral instance and allows the driver to know which
|
|
* features are implemented and how it should behave.
|
|
*/
|
|
static int axi_dmac_parse_chan_dt(struct device_node *of_chan,
|
|
struct axi_dmac_chan *chan)
|
|
{
|
|
u32 val;
|
|
int ret;
|
|
|
|
ret = of_property_read_u32(of_chan, "reg", &val);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* We only support 1 channel for now */
|
|
if (val != 0)
|
|
return -EINVAL;
|
|
|
|
ret = of_property_read_u32(of_chan, "adi,source-bus-type", &val);
|
|
if (ret)
|
|
return ret;
|
|
if (val > AXI_DMAC_BUS_TYPE_FIFO)
|
|
return -EINVAL;
|
|
chan->src_type = val;
|
|
|
|
ret = of_property_read_u32(of_chan, "adi,destination-bus-type", &val);
|
|
if (ret)
|
|
return ret;
|
|
if (val > AXI_DMAC_BUS_TYPE_FIFO)
|
|
return -EINVAL;
|
|
chan->dest_type = val;
|
|
|
|
ret = of_property_read_u32(of_chan, "adi,source-bus-width", &val);
|
|
if (ret)
|
|
return ret;
|
|
chan->src_width = val / 8;
|
|
|
|
ret = of_property_read_u32(of_chan, "adi,destination-bus-width", &val);
|
|
if (ret)
|
|
return ret;
|
|
chan->dest_width = val / 8;
|
|
|
|
ret = of_property_read_u32(of_chan, "adi,length-width", &val);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (val >= 32)
|
|
chan->max_length = UINT_MAX;
|
|
else
|
|
chan->max_length = (1ULL << val) - 1;
|
|
|
|
chan->align_mask = max(chan->dest_width, chan->src_width) - 1;
|
|
|
|
if (axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan))
|
|
chan->direction = DMA_MEM_TO_MEM;
|
|
else if (!axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan))
|
|
chan->direction = DMA_MEM_TO_DEV;
|
|
else if (axi_dmac_dest_is_mem(chan) && !axi_dmac_src_is_mem(chan))
|
|
chan->direction = DMA_DEV_TO_MEM;
|
|
else
|
|
chan->direction = DMA_DEV_TO_DEV;
|
|
|
|
chan->hw_cyclic = of_property_read_bool(of_chan, "adi,cyclic");
|
|
chan->hw_2d = of_property_read_bool(of_chan, "adi,2d");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int axi_dmac_probe(struct platform_device *pdev)
|
|
{
|
|
struct device_node *of_channels, *of_chan;
|
|
struct dma_device *dma_dev;
|
|
struct axi_dmac *dmac;
|
|
struct resource *res;
|
|
int ret;
|
|
|
|
dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
|
|
if (!dmac)
|
|
return -ENOMEM;
|
|
|
|
dmac->irq = platform_get_irq(pdev, 0);
|
|
if (dmac->irq < 0)
|
|
return dmac->irq;
|
|
if (dmac->irq == 0)
|
|
return -EINVAL;
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
dmac->base = devm_ioremap_resource(&pdev->dev, res);
|
|
if (IS_ERR(dmac->base))
|
|
return PTR_ERR(dmac->base);
|
|
|
|
dmac->clk = devm_clk_get(&pdev->dev, NULL);
|
|
if (IS_ERR(dmac->clk))
|
|
return PTR_ERR(dmac->clk);
|
|
|
|
INIT_LIST_HEAD(&dmac->chan.active_descs);
|
|
|
|
of_channels = of_get_child_by_name(pdev->dev.of_node, "adi,channels");
|
|
if (of_channels == NULL)
|
|
return -ENODEV;
|
|
|
|
for_each_child_of_node(of_channels, of_chan) {
|
|
ret = axi_dmac_parse_chan_dt(of_chan, &dmac->chan);
|
|
if (ret) {
|
|
of_node_put(of_chan);
|
|
of_node_put(of_channels);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
of_node_put(of_channels);
|
|
|
|
pdev->dev.dma_parms = &dmac->dma_parms;
|
|
dma_set_max_seg_size(&pdev->dev, dmac->chan.max_length);
|
|
|
|
dma_dev = &dmac->dma_dev;
|
|
dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
|
|
dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
|
|
dma_dev->device_free_chan_resources = axi_dmac_free_chan_resources;
|
|
dma_dev->device_tx_status = dma_cookie_status;
|
|
dma_dev->device_issue_pending = axi_dmac_issue_pending;
|
|
dma_dev->device_prep_slave_sg = axi_dmac_prep_slave_sg;
|
|
dma_dev->device_prep_dma_cyclic = axi_dmac_prep_dma_cyclic;
|
|
dma_dev->device_prep_interleaved_dma = axi_dmac_prep_interleaved;
|
|
dma_dev->device_terminate_all = axi_dmac_terminate_all;
|
|
dma_dev->device_synchronize = axi_dmac_synchronize;
|
|
dma_dev->dev = &pdev->dev;
|
|
dma_dev->chancnt = 1;
|
|
dma_dev->src_addr_widths = BIT(dmac->chan.src_width);
|
|
dma_dev->dst_addr_widths = BIT(dmac->chan.dest_width);
|
|
dma_dev->directions = BIT(dmac->chan.direction);
|
|
dma_dev->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
|
|
INIT_LIST_HEAD(&dma_dev->channels);
|
|
|
|
dmac->chan.vchan.desc_free = axi_dmac_desc_free;
|
|
vchan_init(&dmac->chan.vchan, dma_dev);
|
|
|
|
ret = clk_prepare_enable(dmac->clk);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_MASK, 0x00);
|
|
|
|
ret = dma_async_device_register(dma_dev);
|
|
if (ret)
|
|
goto err_clk_disable;
|
|
|
|
ret = of_dma_controller_register(pdev->dev.of_node,
|
|
of_dma_xlate_by_chan_id, dma_dev);
|
|
if (ret)
|
|
goto err_unregister_device;
|
|
|
|
ret = request_irq(dmac->irq, axi_dmac_interrupt_handler, 0,
|
|
dev_name(&pdev->dev), dmac);
|
|
if (ret)
|
|
goto err_unregister_of;
|
|
|
|
platform_set_drvdata(pdev, dmac);
|
|
|
|
return 0;
|
|
|
|
err_unregister_of:
|
|
of_dma_controller_free(pdev->dev.of_node);
|
|
err_unregister_device:
|
|
dma_async_device_unregister(&dmac->dma_dev);
|
|
err_clk_disable:
|
|
clk_disable_unprepare(dmac->clk);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int axi_dmac_remove(struct platform_device *pdev)
|
|
{
|
|
struct axi_dmac *dmac = platform_get_drvdata(pdev);
|
|
|
|
of_dma_controller_free(pdev->dev.of_node);
|
|
free_irq(dmac->irq, dmac);
|
|
tasklet_kill(&dmac->chan.vchan.task);
|
|
dma_async_device_unregister(&dmac->dma_dev);
|
|
clk_disable_unprepare(dmac->clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct of_device_id axi_dmac_of_match_table[] = {
|
|
{ .compatible = "adi,axi-dmac-1.00.a" },
|
|
{ },
|
|
};
|
|
MODULE_DEVICE_TABLE(of, axi_dmac_of_match_table);
|
|
|
|
static struct platform_driver axi_dmac_driver = {
|
|
.driver = {
|
|
.name = "dma-axi-dmac",
|
|
.of_match_table = axi_dmac_of_match_table,
|
|
},
|
|
.probe = axi_dmac_probe,
|
|
.remove = axi_dmac_remove,
|
|
};
|
|
module_platform_driver(axi_dmac_driver);
|
|
|
|
MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
|
|
MODULE_DESCRIPTION("DMA controller driver for the AXI-DMAC controller");
|
|
MODULE_LICENSE("GPL v2");
|