mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
660662f857
Based on 1 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 or at your option any later version this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details you should have received a copy of the gnu general public license along with this program if not write to the free software foundation inc 59 temple place suite 330 boston ma 02111 1307 usa extracted by the scancode license scanner the SPDX license identifier GPL-2.0-or-later has been chosen to replace the boilerplate/reference in 42 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Richard Fontana <rfontana@redhat.com> Reviewed-by: Allison Randal <allison@lohutok.net> Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190524100845.259718220@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
1431 lines
38 KiB
C
1431 lines
38 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Linux/PA-RISC Project (http://www.parisc-linux.org/)
|
|
*
|
|
* Floating-point emulation code
|
|
* Copyright (C) 2001 Hewlett-Packard (Paul Bame) <bame@debian.org>
|
|
*/
|
|
/*
|
|
* BEGIN_DESC
|
|
*
|
|
* File:
|
|
* @(#) pa/fp/fpudispatch.c $Revision: 1.1 $
|
|
*
|
|
* Purpose:
|
|
* <<please update with a synopsis of the functionality provided by this file>>
|
|
*
|
|
* External Interfaces:
|
|
* <<the following list was autogenerated, please review>>
|
|
* emfpudispatch(ir, dummy1, dummy2, fpregs)
|
|
* fpudispatch(ir, excp_code, holder, fpregs)
|
|
*
|
|
* Internal Interfaces:
|
|
* <<the following list was autogenerated, please review>>
|
|
* static u_int decode_06(u_int, u_int *)
|
|
* static u_int decode_0c(u_int, u_int, u_int, u_int *)
|
|
* static u_int decode_0e(u_int, u_int, u_int, u_int *)
|
|
* static u_int decode_26(u_int, u_int *)
|
|
* static u_int decode_2e(u_int, u_int *)
|
|
* static void update_status_cbit(u_int *, u_int, u_int, u_int)
|
|
*
|
|
* Theory:
|
|
* <<please update with a overview of the operation of this file>>
|
|
*
|
|
* END_DESC
|
|
*/
|
|
|
|
#define FPUDEBUG 0
|
|
|
|
#include "float.h"
|
|
#include <linux/bug.h>
|
|
#include <linux/kernel.h>
|
|
#include <asm/processor.h>
|
|
/* #include <sys/debug.h> */
|
|
/* #include <machine/sys/mdep_private.h> */
|
|
|
|
#define COPR_INST 0x30000000
|
|
|
|
/*
|
|
* definition of extru macro. If pos and len are constants, the compiler
|
|
* will generate an extru instruction when optimized
|
|
*/
|
|
#define extru(r,pos,len) (((r) >> (31-(pos))) & (( 1 << (len)) - 1))
|
|
/* definitions of bit field locations in the instruction */
|
|
#define fpmajorpos 5
|
|
#define fpr1pos 10
|
|
#define fpr2pos 15
|
|
#define fptpos 31
|
|
#define fpsubpos 18
|
|
#define fpclass1subpos 16
|
|
#define fpclasspos 22
|
|
#define fpfmtpos 20
|
|
#define fpdfpos 18
|
|
#define fpnulpos 26
|
|
/*
|
|
* the following are the extra bits for the 0E major op
|
|
*/
|
|
#define fpxr1pos 24
|
|
#define fpxr2pos 19
|
|
#define fpxtpos 25
|
|
#define fpxpos 23
|
|
#define fp0efmtpos 20
|
|
/*
|
|
* the following are for the multi-ops
|
|
*/
|
|
#define fprm1pos 10
|
|
#define fprm2pos 15
|
|
#define fptmpos 31
|
|
#define fprapos 25
|
|
#define fptapos 20
|
|
#define fpmultifmt 26
|
|
/*
|
|
* the following are for the fused FP instructions
|
|
*/
|
|
/* fprm1pos 10 */
|
|
/* fprm2pos 15 */
|
|
#define fpraupos 18
|
|
#define fpxrm2pos 19
|
|
/* fpfmtpos 20 */
|
|
#define fpralpos 23
|
|
#define fpxrm1pos 24
|
|
/* fpxtpos 25 */
|
|
#define fpfusedsubop 26
|
|
/* fptpos 31 */
|
|
|
|
/*
|
|
* offset to constant zero in the FP emulation registers
|
|
*/
|
|
#define fpzeroreg (32*sizeof(double)/sizeof(u_int))
|
|
|
|
/*
|
|
* extract the major opcode from the instruction
|
|
*/
|
|
#define get_major(op) extru(op,fpmajorpos,6)
|
|
/*
|
|
* extract the two bit class field from the FP instruction. The class is at bit
|
|
* positions 21-22
|
|
*/
|
|
#define get_class(op) extru(op,fpclasspos,2)
|
|
/*
|
|
* extract the 3 bit subop field. For all but class 1 instructions, it is
|
|
* located at bit positions 16-18
|
|
*/
|
|
#define get_subop(op) extru(op,fpsubpos,3)
|
|
/*
|
|
* extract the 2 or 3 bit subop field from class 1 instructions. It is located
|
|
* at bit positions 15-16 (PA1.1) or 14-16 (PA2.0)
|
|
*/
|
|
#define get_subop1_PA1_1(op) extru(op,fpclass1subpos,2) /* PA89 (1.1) fmt */
|
|
#define get_subop1_PA2_0(op) extru(op,fpclass1subpos,3) /* PA 2.0 fmt */
|
|
|
|
/* definitions of unimplemented exceptions */
|
|
#define MAJOR_0C_EXCP 0x09
|
|
#define MAJOR_0E_EXCP 0x0b
|
|
#define MAJOR_06_EXCP 0x03
|
|
#define MAJOR_26_EXCP 0x23
|
|
#define MAJOR_2E_EXCP 0x2b
|
|
#define PA83_UNIMP_EXCP 0x01
|
|
|
|
/*
|
|
* Special Defines for TIMEX specific code
|
|
*/
|
|
|
|
#define FPU_TYPE_FLAG_POS (EM_FPU_TYPE_OFFSET>>2)
|
|
#define TIMEX_ROLEX_FPU_MASK (TIMEX_EXTEN_FLAG|ROLEX_EXTEN_FLAG)
|
|
|
|
/*
|
|
* Static function definitions
|
|
*/
|
|
#define _PROTOTYPES
|
|
#if defined(_PROTOTYPES) || defined(_lint)
|
|
static u_int decode_0c(u_int, u_int, u_int, u_int *);
|
|
static u_int decode_0e(u_int, u_int, u_int, u_int *);
|
|
static u_int decode_06(u_int, u_int *);
|
|
static u_int decode_26(u_int, u_int *);
|
|
static u_int decode_2e(u_int, u_int *);
|
|
static void update_status_cbit(u_int *, u_int, u_int, u_int);
|
|
#else /* !_PROTOTYPES&&!_lint */
|
|
static u_int decode_0c();
|
|
static u_int decode_0e();
|
|
static u_int decode_06();
|
|
static u_int decode_26();
|
|
static u_int decode_2e();
|
|
static void update_status_cbit();
|
|
#endif /* _PROTOTYPES&&!_lint */
|
|
|
|
#define VASSERT(x)
|
|
|
|
static void parisc_linux_get_fpu_type(u_int fpregs[])
|
|
{
|
|
/* on pa-linux the fpu type is not filled in by the
|
|
* caller; it is constructed here
|
|
*/
|
|
if (boot_cpu_data.cpu_type == pcxs)
|
|
fpregs[FPU_TYPE_FLAG_POS] = TIMEX_EXTEN_FLAG;
|
|
else if (boot_cpu_data.cpu_type == pcxt ||
|
|
boot_cpu_data.cpu_type == pcxt_)
|
|
fpregs[FPU_TYPE_FLAG_POS] = ROLEX_EXTEN_FLAG;
|
|
else if (boot_cpu_data.cpu_type >= pcxu)
|
|
fpregs[FPU_TYPE_FLAG_POS] = PA2_0_FPU_FLAG;
|
|
}
|
|
|
|
/*
|
|
* this routine will decode the excepting floating point instruction and
|
|
* call the appropriate emulation routine.
|
|
* It is called by decode_fpu with the following parameters:
|
|
* fpudispatch(current_ir, unimplemented_code, 0, &Fpu_register)
|
|
* where current_ir is the instruction to be emulated,
|
|
* unimplemented_code is the exception_code that the hardware generated
|
|
* and &Fpu_register is the address of emulated FP reg 0.
|
|
*/
|
|
u_int
|
|
fpudispatch(u_int ir, u_int excp_code, u_int holder, u_int fpregs[])
|
|
{
|
|
u_int class, subop;
|
|
u_int fpu_type_flags;
|
|
|
|
/* All FP emulation code assumes that ints are 4-bytes in length */
|
|
VASSERT(sizeof(int) == 4);
|
|
|
|
parisc_linux_get_fpu_type(fpregs);
|
|
|
|
fpu_type_flags=fpregs[FPU_TYPE_FLAG_POS]; /* get fpu type flags */
|
|
|
|
class = get_class(ir);
|
|
if (class == 1) {
|
|
if (fpu_type_flags & PA2_0_FPU_FLAG)
|
|
subop = get_subop1_PA2_0(ir);
|
|
else
|
|
subop = get_subop1_PA1_1(ir);
|
|
}
|
|
else
|
|
subop = get_subop(ir);
|
|
|
|
if (FPUDEBUG) printk("class %d subop %d\n", class, subop);
|
|
|
|
switch (excp_code) {
|
|
case MAJOR_0C_EXCP:
|
|
case PA83_UNIMP_EXCP:
|
|
return(decode_0c(ir,class,subop,fpregs));
|
|
case MAJOR_0E_EXCP:
|
|
return(decode_0e(ir,class,subop,fpregs));
|
|
case MAJOR_06_EXCP:
|
|
return(decode_06(ir,fpregs));
|
|
case MAJOR_26_EXCP:
|
|
return(decode_26(ir,fpregs));
|
|
case MAJOR_2E_EXCP:
|
|
return(decode_2e(ir,fpregs));
|
|
default:
|
|
/* "crashme Night Gallery painting nr 2. (asm_crash.s).
|
|
* This was fixed for multi-user kernels, but
|
|
* workstation kernels had a panic here. This allowed
|
|
* any arbitrary user to panic the kernel by executing
|
|
* setting the FP exception registers to strange values
|
|
* and generating an emulation trap. The emulation and
|
|
* exception code must never be able to panic the
|
|
* kernel.
|
|
*/
|
|
return(UNIMPLEMENTEDEXCEPTION);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* this routine is called by $emulation_trap to emulate a coprocessor
|
|
* instruction if one doesn't exist
|
|
*/
|
|
u_int
|
|
emfpudispatch(u_int ir, u_int dummy1, u_int dummy2, u_int fpregs[])
|
|
{
|
|
u_int class, subop, major;
|
|
u_int fpu_type_flags;
|
|
|
|
/* All FP emulation code assumes that ints are 4-bytes in length */
|
|
VASSERT(sizeof(int) == 4);
|
|
|
|
fpu_type_flags=fpregs[FPU_TYPE_FLAG_POS]; /* get fpu type flags */
|
|
|
|
major = get_major(ir);
|
|
class = get_class(ir);
|
|
if (class == 1) {
|
|
if (fpu_type_flags & PA2_0_FPU_FLAG)
|
|
subop = get_subop1_PA2_0(ir);
|
|
else
|
|
subop = get_subop1_PA1_1(ir);
|
|
}
|
|
else
|
|
subop = get_subop(ir);
|
|
switch (major) {
|
|
case 0x0C:
|
|
return(decode_0c(ir,class,subop,fpregs));
|
|
case 0x0E:
|
|
return(decode_0e(ir,class,subop,fpregs));
|
|
case 0x06:
|
|
return(decode_06(ir,fpregs));
|
|
case 0x26:
|
|
return(decode_26(ir,fpregs));
|
|
case 0x2E:
|
|
return(decode_2e(ir,fpregs));
|
|
default:
|
|
return(PA83_UNIMP_EXCP);
|
|
}
|
|
}
|
|
|
|
|
|
static u_int
|
|
decode_0c(u_int ir, u_int class, u_int subop, u_int fpregs[])
|
|
{
|
|
u_int r1,r2,t; /* operand register offsets */
|
|
u_int fmt; /* also sf for class 1 conversions */
|
|
u_int df; /* for class 1 conversions */
|
|
u_int *status;
|
|
u_int retval, local_status;
|
|
u_int fpu_type_flags;
|
|
|
|
if (ir == COPR_INST) {
|
|
fpregs[0] = EMULATION_VERSION << 11;
|
|
return(NOEXCEPTION);
|
|
}
|
|
status = &fpregs[0]; /* fp status register */
|
|
local_status = fpregs[0]; /* and local copy */
|
|
r1 = extru(ir,fpr1pos,5) * sizeof(double)/sizeof(u_int);
|
|
if (r1 == 0) /* map fr0 source to constant zero */
|
|
r1 = fpzeroreg;
|
|
t = extru(ir,fptpos,5) * sizeof(double)/sizeof(u_int);
|
|
if (t == 0 && class != 2) /* don't allow fr0 as a dest */
|
|
return(MAJOR_0C_EXCP);
|
|
fmt = extru(ir,fpfmtpos,2); /* get fmt completer */
|
|
|
|
switch (class) {
|
|
case 0:
|
|
switch (subop) {
|
|
case 0: /* COPR 0,0 emulated above*/
|
|
case 1:
|
|
return(MAJOR_0C_EXCP);
|
|
case 2: /* FCPY */
|
|
switch (fmt) {
|
|
case 2: /* illegal */
|
|
return(MAJOR_0C_EXCP);
|
|
case 3: /* quad */
|
|
t &= ~3; /* force to even reg #s */
|
|
r1 &= ~3;
|
|
fpregs[t+3] = fpregs[r1+3];
|
|
fpregs[t+2] = fpregs[r1+2];
|
|
case 1: /* double */
|
|
fpregs[t+1] = fpregs[r1+1];
|
|
case 0: /* single */
|
|
fpregs[t] = fpregs[r1];
|
|
return(NOEXCEPTION);
|
|
}
|
|
case 3: /* FABS */
|
|
switch (fmt) {
|
|
case 2: /* illegal */
|
|
return(MAJOR_0C_EXCP);
|
|
case 3: /* quad */
|
|
t &= ~3; /* force to even reg #s */
|
|
r1 &= ~3;
|
|
fpregs[t+3] = fpregs[r1+3];
|
|
fpregs[t+2] = fpregs[r1+2];
|
|
case 1: /* double */
|
|
fpregs[t+1] = fpregs[r1+1];
|
|
case 0: /* single */
|
|
/* copy and clear sign bit */
|
|
fpregs[t] = fpregs[r1] & 0x7fffffff;
|
|
return(NOEXCEPTION);
|
|
}
|
|
case 6: /* FNEG */
|
|
switch (fmt) {
|
|
case 2: /* illegal */
|
|
return(MAJOR_0C_EXCP);
|
|
case 3: /* quad */
|
|
t &= ~3; /* force to even reg #s */
|
|
r1 &= ~3;
|
|
fpregs[t+3] = fpregs[r1+3];
|
|
fpregs[t+2] = fpregs[r1+2];
|
|
case 1: /* double */
|
|
fpregs[t+1] = fpregs[r1+1];
|
|
case 0: /* single */
|
|
/* copy and invert sign bit */
|
|
fpregs[t] = fpregs[r1] ^ 0x80000000;
|
|
return(NOEXCEPTION);
|
|
}
|
|
case 7: /* FNEGABS */
|
|
switch (fmt) {
|
|
case 2: /* illegal */
|
|
return(MAJOR_0C_EXCP);
|
|
case 3: /* quad */
|
|
t &= ~3; /* force to even reg #s */
|
|
r1 &= ~3;
|
|
fpregs[t+3] = fpregs[r1+3];
|
|
fpregs[t+2] = fpregs[r1+2];
|
|
case 1: /* double */
|
|
fpregs[t+1] = fpregs[r1+1];
|
|
case 0: /* single */
|
|
/* copy and set sign bit */
|
|
fpregs[t] = fpregs[r1] | 0x80000000;
|
|
return(NOEXCEPTION);
|
|
}
|
|
case 4: /* FSQRT */
|
|
switch (fmt) {
|
|
case 0:
|
|
return(sgl_fsqrt(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 1:
|
|
return(dbl_fsqrt(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 2:
|
|
case 3: /* quad not implemented */
|
|
return(MAJOR_0C_EXCP);
|
|
}
|
|
case 5: /* FRND */
|
|
switch (fmt) {
|
|
case 0:
|
|
return(sgl_frnd(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 1:
|
|
return(dbl_frnd(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 2:
|
|
case 3: /* quad not implemented */
|
|
return(MAJOR_0C_EXCP);
|
|
}
|
|
} /* end of switch (subop) */
|
|
|
|
case 1: /* class 1 */
|
|
df = extru(ir,fpdfpos,2); /* get dest format */
|
|
if ((df & 2) || (fmt & 2)) {
|
|
/*
|
|
* fmt's 2 and 3 are illegal of not implemented
|
|
* quad conversions
|
|
*/
|
|
return(MAJOR_0C_EXCP);
|
|
}
|
|
/*
|
|
* encode source and dest formats into 2 bits.
|
|
* high bit is source, low bit is dest.
|
|
* bit = 1 --> double precision
|
|
*/
|
|
fmt = (fmt << 1) | df;
|
|
switch (subop) {
|
|
case 0: /* FCNVFF */
|
|
switch(fmt) {
|
|
case 0: /* sgl/sgl */
|
|
return(MAJOR_0C_EXCP);
|
|
case 1: /* sgl/dbl */
|
|
return(sgl_to_dbl_fcnvff(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 2: /* dbl/sgl */
|
|
return(dbl_to_sgl_fcnvff(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 3: /* dbl/dbl */
|
|
return(MAJOR_0C_EXCP);
|
|
}
|
|
case 1: /* FCNVXF */
|
|
switch(fmt) {
|
|
case 0: /* sgl/sgl */
|
|
return(sgl_to_sgl_fcnvxf(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 1: /* sgl/dbl */
|
|
return(sgl_to_dbl_fcnvxf(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 2: /* dbl/sgl */
|
|
return(dbl_to_sgl_fcnvxf(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 3: /* dbl/dbl */
|
|
return(dbl_to_dbl_fcnvxf(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
}
|
|
case 2: /* FCNVFX */
|
|
switch(fmt) {
|
|
case 0: /* sgl/sgl */
|
|
return(sgl_to_sgl_fcnvfx(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 1: /* sgl/dbl */
|
|
return(sgl_to_dbl_fcnvfx(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 2: /* dbl/sgl */
|
|
return(dbl_to_sgl_fcnvfx(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 3: /* dbl/dbl */
|
|
return(dbl_to_dbl_fcnvfx(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
}
|
|
case 3: /* FCNVFXT */
|
|
switch(fmt) {
|
|
case 0: /* sgl/sgl */
|
|
return(sgl_to_sgl_fcnvfxt(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 1: /* sgl/dbl */
|
|
return(sgl_to_dbl_fcnvfxt(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 2: /* dbl/sgl */
|
|
return(dbl_to_sgl_fcnvfxt(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 3: /* dbl/dbl */
|
|
return(dbl_to_dbl_fcnvfxt(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
}
|
|
case 5: /* FCNVUF (PA2.0 only) */
|
|
switch(fmt) {
|
|
case 0: /* sgl/sgl */
|
|
return(sgl_to_sgl_fcnvuf(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 1: /* sgl/dbl */
|
|
return(sgl_to_dbl_fcnvuf(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 2: /* dbl/sgl */
|
|
return(dbl_to_sgl_fcnvuf(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 3: /* dbl/dbl */
|
|
return(dbl_to_dbl_fcnvuf(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
}
|
|
case 6: /* FCNVFU (PA2.0 only) */
|
|
switch(fmt) {
|
|
case 0: /* sgl/sgl */
|
|
return(sgl_to_sgl_fcnvfu(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 1: /* sgl/dbl */
|
|
return(sgl_to_dbl_fcnvfu(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 2: /* dbl/sgl */
|
|
return(dbl_to_sgl_fcnvfu(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 3: /* dbl/dbl */
|
|
return(dbl_to_dbl_fcnvfu(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
}
|
|
case 7: /* FCNVFUT (PA2.0 only) */
|
|
switch(fmt) {
|
|
case 0: /* sgl/sgl */
|
|
return(sgl_to_sgl_fcnvfut(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 1: /* sgl/dbl */
|
|
return(sgl_to_dbl_fcnvfut(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 2: /* dbl/sgl */
|
|
return(dbl_to_sgl_fcnvfut(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 3: /* dbl/dbl */
|
|
return(dbl_to_dbl_fcnvfut(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
}
|
|
case 4: /* undefined */
|
|
return(MAJOR_0C_EXCP);
|
|
} /* end of switch subop */
|
|
|
|
case 2: /* class 2 */
|
|
fpu_type_flags=fpregs[FPU_TYPE_FLAG_POS];
|
|
r2 = extru(ir, fpr2pos, 5) * sizeof(double)/sizeof(u_int);
|
|
if (r2 == 0)
|
|
r2 = fpzeroreg;
|
|
if (fpu_type_flags & PA2_0_FPU_FLAG) {
|
|
/* FTEST if nullify bit set, otherwise FCMP */
|
|
if (extru(ir, fpnulpos, 1)) { /* FTEST */
|
|
switch (fmt) {
|
|
case 0:
|
|
/*
|
|
* arg0 is not used
|
|
* second param is the t field used for
|
|
* ftest,acc and ftest,rej
|
|
* third param is the subop (y-field)
|
|
*/
|
|
BUG();
|
|
/* Unsupported
|
|
* return(ftest(0L,extru(ir,fptpos,5),
|
|
* &fpregs[0],subop));
|
|
*/
|
|
case 1:
|
|
case 2:
|
|
case 3:
|
|
return(MAJOR_0C_EXCP);
|
|
}
|
|
} else { /* FCMP */
|
|
switch (fmt) {
|
|
case 0:
|
|
retval = sgl_fcmp(&fpregs[r1],
|
|
&fpregs[r2],extru(ir,fptpos,5),
|
|
&local_status);
|
|
update_status_cbit(status,local_status,
|
|
fpu_type_flags, subop);
|
|
return(retval);
|
|
case 1:
|
|
retval = dbl_fcmp(&fpregs[r1],
|
|
&fpregs[r2],extru(ir,fptpos,5),
|
|
&local_status);
|
|
update_status_cbit(status,local_status,
|
|
fpu_type_flags, subop);
|
|
return(retval);
|
|
case 2: /* illegal */
|
|
case 3: /* quad not implemented */
|
|
return(MAJOR_0C_EXCP);
|
|
}
|
|
}
|
|
} /* end of if for PA2.0 */
|
|
else { /* PA1.0 & PA1.1 */
|
|
switch (subop) {
|
|
case 2:
|
|
case 3:
|
|
case 4:
|
|
case 5:
|
|
case 6:
|
|
case 7:
|
|
return(MAJOR_0C_EXCP);
|
|
case 0: /* FCMP */
|
|
switch (fmt) {
|
|
case 0:
|
|
retval = sgl_fcmp(&fpregs[r1],
|
|
&fpregs[r2],extru(ir,fptpos,5),
|
|
&local_status);
|
|
update_status_cbit(status,local_status,
|
|
fpu_type_flags, subop);
|
|
return(retval);
|
|
case 1:
|
|
retval = dbl_fcmp(&fpregs[r1],
|
|
&fpregs[r2],extru(ir,fptpos,5),
|
|
&local_status);
|
|
update_status_cbit(status,local_status,
|
|
fpu_type_flags, subop);
|
|
return(retval);
|
|
case 2: /* illegal */
|
|
case 3: /* quad not implemented */
|
|
return(MAJOR_0C_EXCP);
|
|
}
|
|
case 1: /* FTEST */
|
|
switch (fmt) {
|
|
case 0:
|
|
/*
|
|
* arg0 is not used
|
|
* second param is the t field used for
|
|
* ftest,acc and ftest,rej
|
|
* third param is the subop (y-field)
|
|
*/
|
|
BUG();
|
|
/* unsupported
|
|
* return(ftest(0L,extru(ir,fptpos,5),
|
|
* &fpregs[0],subop));
|
|
*/
|
|
case 1:
|
|
case 2:
|
|
case 3:
|
|
return(MAJOR_0C_EXCP);
|
|
}
|
|
} /* end of switch subop */
|
|
} /* end of else for PA1.0 & PA1.1 */
|
|
case 3: /* class 3 */
|
|
r2 = extru(ir,fpr2pos,5) * sizeof(double)/sizeof(u_int);
|
|
if (r2 == 0)
|
|
r2 = fpzeroreg;
|
|
switch (subop) {
|
|
case 5:
|
|
case 6:
|
|
case 7:
|
|
return(MAJOR_0C_EXCP);
|
|
|
|
case 0: /* FADD */
|
|
switch (fmt) {
|
|
case 0:
|
|
return(sgl_fadd(&fpregs[r1],&fpregs[r2],
|
|
&fpregs[t],status));
|
|
case 1:
|
|
return(dbl_fadd(&fpregs[r1],&fpregs[r2],
|
|
&fpregs[t],status));
|
|
case 2: /* illegal */
|
|
case 3: /* quad not implemented */
|
|
return(MAJOR_0C_EXCP);
|
|
}
|
|
case 1: /* FSUB */
|
|
switch (fmt) {
|
|
case 0:
|
|
return(sgl_fsub(&fpregs[r1],&fpregs[r2],
|
|
&fpregs[t],status));
|
|
case 1:
|
|
return(dbl_fsub(&fpregs[r1],&fpregs[r2],
|
|
&fpregs[t],status));
|
|
case 2: /* illegal */
|
|
case 3: /* quad not implemented */
|
|
return(MAJOR_0C_EXCP);
|
|
}
|
|
case 2: /* FMPY */
|
|
switch (fmt) {
|
|
case 0:
|
|
return(sgl_fmpy(&fpregs[r1],&fpregs[r2],
|
|
&fpregs[t],status));
|
|
case 1:
|
|
return(dbl_fmpy(&fpregs[r1],&fpregs[r2],
|
|
&fpregs[t],status));
|
|
case 2: /* illegal */
|
|
case 3: /* quad not implemented */
|
|
return(MAJOR_0C_EXCP);
|
|
}
|
|
case 3: /* FDIV */
|
|
switch (fmt) {
|
|
case 0:
|
|
return(sgl_fdiv(&fpregs[r1],&fpregs[r2],
|
|
&fpregs[t],status));
|
|
case 1:
|
|
return(dbl_fdiv(&fpregs[r1],&fpregs[r2],
|
|
&fpregs[t],status));
|
|
case 2: /* illegal */
|
|
case 3: /* quad not implemented */
|
|
return(MAJOR_0C_EXCP);
|
|
}
|
|
case 4: /* FREM */
|
|
switch (fmt) {
|
|
case 0:
|
|
return(sgl_frem(&fpregs[r1],&fpregs[r2],
|
|
&fpregs[t],status));
|
|
case 1:
|
|
return(dbl_frem(&fpregs[r1],&fpregs[r2],
|
|
&fpregs[t],status));
|
|
case 2: /* illegal */
|
|
case 3: /* quad not implemented */
|
|
return(MAJOR_0C_EXCP);
|
|
}
|
|
} /* end of class 3 switch */
|
|
} /* end of switch(class) */
|
|
|
|
/* If we get here, something is really wrong! */
|
|
return(MAJOR_0C_EXCP);
|
|
}
|
|
|
|
static u_int
|
|
decode_0e(ir,class,subop,fpregs)
|
|
u_int ir,class,subop;
|
|
u_int fpregs[];
|
|
{
|
|
u_int r1,r2,t; /* operand register offsets */
|
|
u_int fmt; /* also sf for class 1 conversions */
|
|
u_int df; /* dest format for class 1 conversions */
|
|
u_int *status;
|
|
u_int retval, local_status;
|
|
u_int fpu_type_flags;
|
|
|
|
status = &fpregs[0];
|
|
local_status = fpregs[0];
|
|
r1 = ((extru(ir,fpr1pos,5)<<1)|(extru(ir,fpxr1pos,1)));
|
|
if (r1 == 0)
|
|
r1 = fpzeroreg;
|
|
t = ((extru(ir,fptpos,5)<<1)|(extru(ir,fpxtpos,1)));
|
|
if (t == 0 && class != 2)
|
|
return(MAJOR_0E_EXCP);
|
|
if (class < 2) /* class 0 or 1 has 2 bit fmt */
|
|
fmt = extru(ir,fpfmtpos,2);
|
|
else /* class 2 and 3 have 1 bit fmt */
|
|
fmt = extru(ir,fp0efmtpos,1);
|
|
/*
|
|
* An undefined combination, double precision accessing the
|
|
* right half of a FPR, can get us into trouble.
|
|
* Let's just force proper alignment on it.
|
|
*/
|
|
if (fmt == DBL) {
|
|
r1 &= ~1;
|
|
if (class != 1)
|
|
t &= ~1;
|
|
}
|
|
|
|
switch (class) {
|
|
case 0:
|
|
switch (subop) {
|
|
case 0: /* unimplemented */
|
|
case 1:
|
|
return(MAJOR_0E_EXCP);
|
|
case 2: /* FCPY */
|
|
switch (fmt) {
|
|
case 2:
|
|
case 3:
|
|
return(MAJOR_0E_EXCP);
|
|
case 1: /* double */
|
|
fpregs[t+1] = fpregs[r1+1];
|
|
case 0: /* single */
|
|
fpregs[t] = fpregs[r1];
|
|
return(NOEXCEPTION);
|
|
}
|
|
case 3: /* FABS */
|
|
switch (fmt) {
|
|
case 2:
|
|
case 3:
|
|
return(MAJOR_0E_EXCP);
|
|
case 1: /* double */
|
|
fpregs[t+1] = fpregs[r1+1];
|
|
case 0: /* single */
|
|
fpregs[t] = fpregs[r1] & 0x7fffffff;
|
|
return(NOEXCEPTION);
|
|
}
|
|
case 6: /* FNEG */
|
|
switch (fmt) {
|
|
case 2:
|
|
case 3:
|
|
return(MAJOR_0E_EXCP);
|
|
case 1: /* double */
|
|
fpregs[t+1] = fpregs[r1+1];
|
|
case 0: /* single */
|
|
fpregs[t] = fpregs[r1] ^ 0x80000000;
|
|
return(NOEXCEPTION);
|
|
}
|
|
case 7: /* FNEGABS */
|
|
switch (fmt) {
|
|
case 2:
|
|
case 3:
|
|
return(MAJOR_0E_EXCP);
|
|
case 1: /* double */
|
|
fpregs[t+1] = fpregs[r1+1];
|
|
case 0: /* single */
|
|
fpregs[t] = fpregs[r1] | 0x80000000;
|
|
return(NOEXCEPTION);
|
|
}
|
|
case 4: /* FSQRT */
|
|
switch (fmt) {
|
|
case 0:
|
|
return(sgl_fsqrt(&fpregs[r1],0,
|
|
&fpregs[t], status));
|
|
case 1:
|
|
return(dbl_fsqrt(&fpregs[r1],0,
|
|
&fpregs[t], status));
|
|
case 2:
|
|
case 3:
|
|
return(MAJOR_0E_EXCP);
|
|
}
|
|
case 5: /* FRMD */
|
|
switch (fmt) {
|
|
case 0:
|
|
return(sgl_frnd(&fpregs[r1],0,
|
|
&fpregs[t], status));
|
|
case 1:
|
|
return(dbl_frnd(&fpregs[r1],0,
|
|
&fpregs[t], status));
|
|
case 2:
|
|
case 3:
|
|
return(MAJOR_0E_EXCP);
|
|
}
|
|
} /* end of switch (subop */
|
|
|
|
case 1: /* class 1 */
|
|
df = extru(ir,fpdfpos,2); /* get dest format */
|
|
/*
|
|
* Fix Crashme problem (writing to 31R in double precision)
|
|
* here too.
|
|
*/
|
|
if (df == DBL) {
|
|
t &= ~1;
|
|
}
|
|
if ((df & 2) || (fmt & 2))
|
|
return(MAJOR_0E_EXCP);
|
|
|
|
fmt = (fmt << 1) | df;
|
|
switch (subop) {
|
|
case 0: /* FCNVFF */
|
|
switch(fmt) {
|
|
case 0: /* sgl/sgl */
|
|
return(MAJOR_0E_EXCP);
|
|
case 1: /* sgl/dbl */
|
|
return(sgl_to_dbl_fcnvff(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 2: /* dbl/sgl */
|
|
return(dbl_to_sgl_fcnvff(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 3: /* dbl/dbl */
|
|
return(MAJOR_0E_EXCP);
|
|
}
|
|
case 1: /* FCNVXF */
|
|
switch(fmt) {
|
|
case 0: /* sgl/sgl */
|
|
return(sgl_to_sgl_fcnvxf(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 1: /* sgl/dbl */
|
|
return(sgl_to_dbl_fcnvxf(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 2: /* dbl/sgl */
|
|
return(dbl_to_sgl_fcnvxf(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 3: /* dbl/dbl */
|
|
return(dbl_to_dbl_fcnvxf(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
}
|
|
case 2: /* FCNVFX */
|
|
switch(fmt) {
|
|
case 0: /* sgl/sgl */
|
|
return(sgl_to_sgl_fcnvfx(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 1: /* sgl/dbl */
|
|
return(sgl_to_dbl_fcnvfx(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 2: /* dbl/sgl */
|
|
return(dbl_to_sgl_fcnvfx(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 3: /* dbl/dbl */
|
|
return(dbl_to_dbl_fcnvfx(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
}
|
|
case 3: /* FCNVFXT */
|
|
switch(fmt) {
|
|
case 0: /* sgl/sgl */
|
|
return(sgl_to_sgl_fcnvfxt(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 1: /* sgl/dbl */
|
|
return(sgl_to_dbl_fcnvfxt(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 2: /* dbl/sgl */
|
|
return(dbl_to_sgl_fcnvfxt(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 3: /* dbl/dbl */
|
|
return(dbl_to_dbl_fcnvfxt(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
}
|
|
case 5: /* FCNVUF (PA2.0 only) */
|
|
switch(fmt) {
|
|
case 0: /* sgl/sgl */
|
|
return(sgl_to_sgl_fcnvuf(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 1: /* sgl/dbl */
|
|
return(sgl_to_dbl_fcnvuf(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 2: /* dbl/sgl */
|
|
return(dbl_to_sgl_fcnvuf(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 3: /* dbl/dbl */
|
|
return(dbl_to_dbl_fcnvuf(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
}
|
|
case 6: /* FCNVFU (PA2.0 only) */
|
|
switch(fmt) {
|
|
case 0: /* sgl/sgl */
|
|
return(sgl_to_sgl_fcnvfu(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 1: /* sgl/dbl */
|
|
return(sgl_to_dbl_fcnvfu(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 2: /* dbl/sgl */
|
|
return(dbl_to_sgl_fcnvfu(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 3: /* dbl/dbl */
|
|
return(dbl_to_dbl_fcnvfu(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
}
|
|
case 7: /* FCNVFUT (PA2.0 only) */
|
|
switch(fmt) {
|
|
case 0: /* sgl/sgl */
|
|
return(sgl_to_sgl_fcnvfut(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 1: /* sgl/dbl */
|
|
return(sgl_to_dbl_fcnvfut(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 2: /* dbl/sgl */
|
|
return(dbl_to_sgl_fcnvfut(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 3: /* dbl/dbl */
|
|
return(dbl_to_dbl_fcnvfut(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
}
|
|
case 4: /* undefined */
|
|
return(MAJOR_0C_EXCP);
|
|
} /* end of switch subop */
|
|
case 2: /* class 2 */
|
|
/*
|
|
* Be careful out there.
|
|
* Crashme can generate cases where FR31R is specified
|
|
* as the source or target of a double precision operation.
|
|
* Since we just pass the address of the floating-point
|
|
* register to the emulation routines, this can cause
|
|
* corruption of fpzeroreg.
|
|
*/
|
|
if (fmt == DBL)
|
|
r2 = (extru(ir,fpr2pos,5)<<1);
|
|
else
|
|
r2 = ((extru(ir,fpr2pos,5)<<1)|(extru(ir,fpxr2pos,1)));
|
|
fpu_type_flags=fpregs[FPU_TYPE_FLAG_POS];
|
|
if (r2 == 0)
|
|
r2 = fpzeroreg;
|
|
if (fpu_type_flags & PA2_0_FPU_FLAG) {
|
|
/* FTEST if nullify bit set, otherwise FCMP */
|
|
if (extru(ir, fpnulpos, 1)) { /* FTEST */
|
|
/* not legal */
|
|
return(MAJOR_0E_EXCP);
|
|
} else { /* FCMP */
|
|
switch (fmt) {
|
|
/*
|
|
* fmt is only 1 bit long
|
|
*/
|
|
case 0:
|
|
retval = sgl_fcmp(&fpregs[r1],
|
|
&fpregs[r2],extru(ir,fptpos,5),
|
|
&local_status);
|
|
update_status_cbit(status,local_status,
|
|
fpu_type_flags, subop);
|
|
return(retval);
|
|
case 1:
|
|
retval = dbl_fcmp(&fpregs[r1],
|
|
&fpregs[r2],extru(ir,fptpos,5),
|
|
&local_status);
|
|
update_status_cbit(status,local_status,
|
|
fpu_type_flags, subop);
|
|
return(retval);
|
|
}
|
|
}
|
|
} /* end of if for PA2.0 */
|
|
else { /* PA1.0 & PA1.1 */
|
|
switch (subop) {
|
|
case 1:
|
|
case 2:
|
|
case 3:
|
|
case 4:
|
|
case 5:
|
|
case 6:
|
|
case 7:
|
|
return(MAJOR_0E_EXCP);
|
|
case 0: /* FCMP */
|
|
switch (fmt) {
|
|
/*
|
|
* fmt is only 1 bit long
|
|
*/
|
|
case 0:
|
|
retval = sgl_fcmp(&fpregs[r1],
|
|
&fpregs[r2],extru(ir,fptpos,5),
|
|
&local_status);
|
|
update_status_cbit(status,local_status,
|
|
fpu_type_flags, subop);
|
|
return(retval);
|
|
case 1:
|
|
retval = dbl_fcmp(&fpregs[r1],
|
|
&fpregs[r2],extru(ir,fptpos,5),
|
|
&local_status);
|
|
update_status_cbit(status,local_status,
|
|
fpu_type_flags, subop);
|
|
return(retval);
|
|
}
|
|
} /* end of switch subop */
|
|
} /* end of else for PA1.0 & PA1.1 */
|
|
case 3: /* class 3 */
|
|
/*
|
|
* Be careful out there.
|
|
* Crashme can generate cases where FR31R is specified
|
|
* as the source or target of a double precision operation.
|
|
* Since we just pass the address of the floating-point
|
|
* register to the emulation routines, this can cause
|
|
* corruption of fpzeroreg.
|
|
*/
|
|
if (fmt == DBL)
|
|
r2 = (extru(ir,fpr2pos,5)<<1);
|
|
else
|
|
r2 = ((extru(ir,fpr2pos,5)<<1)|(extru(ir,fpxr2pos,1)));
|
|
if (r2 == 0)
|
|
r2 = fpzeroreg;
|
|
switch (subop) {
|
|
case 5:
|
|
case 6:
|
|
case 7:
|
|
return(MAJOR_0E_EXCP);
|
|
|
|
/*
|
|
* Note that fmt is only 1 bit for class 3 */
|
|
case 0: /* FADD */
|
|
switch (fmt) {
|
|
case 0:
|
|
return(sgl_fadd(&fpregs[r1],&fpregs[r2],
|
|
&fpregs[t],status));
|
|
case 1:
|
|
return(dbl_fadd(&fpregs[r1],&fpregs[r2],
|
|
&fpregs[t],status));
|
|
}
|
|
case 1: /* FSUB */
|
|
switch (fmt) {
|
|
case 0:
|
|
return(sgl_fsub(&fpregs[r1],&fpregs[r2],
|
|
&fpregs[t],status));
|
|
case 1:
|
|
return(dbl_fsub(&fpregs[r1],&fpregs[r2],
|
|
&fpregs[t],status));
|
|
}
|
|
case 2: /* FMPY or XMPYU */
|
|
/*
|
|
* check for integer multiply (x bit set)
|
|
*/
|
|
if (extru(ir,fpxpos,1)) {
|
|
/*
|
|
* emulate XMPYU
|
|
*/
|
|
switch (fmt) {
|
|
case 0:
|
|
/*
|
|
* bad instruction if t specifies
|
|
* the right half of a register
|
|
*/
|
|
if (t & 1)
|
|
return(MAJOR_0E_EXCP);
|
|
BUG();
|
|
/* unsupported
|
|
* impyu(&fpregs[r1],&fpregs[r2],
|
|
* &fpregs[t]);
|
|
*/
|
|
return(NOEXCEPTION);
|
|
case 1:
|
|
return(MAJOR_0E_EXCP);
|
|
}
|
|
}
|
|
else { /* FMPY */
|
|
switch (fmt) {
|
|
case 0:
|
|
return(sgl_fmpy(&fpregs[r1],
|
|
&fpregs[r2],&fpregs[t],status));
|
|
case 1:
|
|
return(dbl_fmpy(&fpregs[r1],
|
|
&fpregs[r2],&fpregs[t],status));
|
|
}
|
|
}
|
|
case 3: /* FDIV */
|
|
switch (fmt) {
|
|
case 0:
|
|
return(sgl_fdiv(&fpregs[r1],&fpregs[r2],
|
|
&fpregs[t],status));
|
|
case 1:
|
|
return(dbl_fdiv(&fpregs[r1],&fpregs[r2],
|
|
&fpregs[t],status));
|
|
}
|
|
case 4: /* FREM */
|
|
switch (fmt) {
|
|
case 0:
|
|
return(sgl_frem(&fpregs[r1],&fpregs[r2],
|
|
&fpregs[t],status));
|
|
case 1:
|
|
return(dbl_frem(&fpregs[r1],&fpregs[r2],
|
|
&fpregs[t],status));
|
|
}
|
|
} /* end of class 3 switch */
|
|
} /* end of switch(class) */
|
|
|
|
/* If we get here, something is really wrong! */
|
|
return(MAJOR_0E_EXCP);
|
|
}
|
|
|
|
|
|
/*
|
|
* routine to decode the 06 (FMPYADD and FMPYCFXT) instruction
|
|
*/
|
|
static u_int
|
|
decode_06(ir,fpregs)
|
|
u_int ir;
|
|
u_int fpregs[];
|
|
{
|
|
u_int rm1, rm2, tm, ra, ta; /* operands */
|
|
u_int fmt;
|
|
u_int error = 0;
|
|
u_int status;
|
|
u_int fpu_type_flags;
|
|
union {
|
|
double dbl;
|
|
float flt;
|
|
struct { u_int i1; u_int i2; } ints;
|
|
} mtmp, atmp;
|
|
|
|
|
|
status = fpregs[0]; /* use a local copy of status reg */
|
|
fpu_type_flags=fpregs[FPU_TYPE_FLAG_POS]; /* get fpu type flags */
|
|
fmt = extru(ir, fpmultifmt, 1); /* get sgl/dbl flag */
|
|
if (fmt == 0) { /* DBL */
|
|
rm1 = extru(ir, fprm1pos, 5) * sizeof(double)/sizeof(u_int);
|
|
if (rm1 == 0)
|
|
rm1 = fpzeroreg;
|
|
rm2 = extru(ir, fprm2pos, 5) * sizeof(double)/sizeof(u_int);
|
|
if (rm2 == 0)
|
|
rm2 = fpzeroreg;
|
|
tm = extru(ir, fptmpos, 5) * sizeof(double)/sizeof(u_int);
|
|
if (tm == 0)
|
|
return(MAJOR_06_EXCP);
|
|
ra = extru(ir, fprapos, 5) * sizeof(double)/sizeof(u_int);
|
|
ta = extru(ir, fptapos, 5) * sizeof(double)/sizeof(u_int);
|
|
if (ta == 0)
|
|
return(MAJOR_06_EXCP);
|
|
|
|
if (fpu_type_flags & TIMEX_ROLEX_FPU_MASK) {
|
|
|
|
if (ra == 0) {
|
|
/* special case FMPYCFXT, see sgl case below */
|
|
if (dbl_fmpy(&fpregs[rm1],&fpregs[rm2],
|
|
&mtmp.ints.i1,&status))
|
|
error = 1;
|
|
if (dbl_to_sgl_fcnvfxt(&fpregs[ta],
|
|
&atmp.ints.i1,&atmp.ints.i1,&status))
|
|
error = 1;
|
|
}
|
|
else {
|
|
|
|
if (dbl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1,
|
|
&status))
|
|
error = 1;
|
|
if (dbl_fadd(&fpregs[ta], &fpregs[ra], &atmp.ints.i1,
|
|
&status))
|
|
error = 1;
|
|
}
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
if (ra == 0)
|
|
ra = fpzeroreg;
|
|
|
|
if (dbl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1,
|
|
&status))
|
|
error = 1;
|
|
if (dbl_fadd(&fpregs[ta], &fpregs[ra], &atmp.ints.i1,
|
|
&status))
|
|
error = 1;
|
|
|
|
}
|
|
|
|
if (error)
|
|
return(MAJOR_06_EXCP);
|
|
else {
|
|
/* copy results */
|
|
fpregs[tm] = mtmp.ints.i1;
|
|
fpregs[tm+1] = mtmp.ints.i2;
|
|
fpregs[ta] = atmp.ints.i1;
|
|
fpregs[ta+1] = atmp.ints.i2;
|
|
fpregs[0] = status;
|
|
return(NOEXCEPTION);
|
|
}
|
|
}
|
|
else { /* SGL */
|
|
/*
|
|
* calculate offsets for single precision numbers
|
|
* See table 6-14 in PA-89 architecture for mapping
|
|
*/
|
|
rm1 = (extru(ir,fprm1pos,4) | 0x10 ) << 1; /* get offset */
|
|
rm1 |= extru(ir,fprm1pos-4,1); /* add right word offset */
|
|
|
|
rm2 = (extru(ir,fprm2pos,4) | 0x10 ) << 1; /* get offset */
|
|
rm2 |= extru(ir,fprm2pos-4,1); /* add right word offset */
|
|
|
|
tm = (extru(ir,fptmpos,4) | 0x10 ) << 1; /* get offset */
|
|
tm |= extru(ir,fptmpos-4,1); /* add right word offset */
|
|
|
|
ra = (extru(ir,fprapos,4) | 0x10 ) << 1; /* get offset */
|
|
ra |= extru(ir,fprapos-4,1); /* add right word offset */
|
|
|
|
ta = (extru(ir,fptapos,4) | 0x10 ) << 1; /* get offset */
|
|
ta |= extru(ir,fptapos-4,1); /* add right word offset */
|
|
|
|
if (ra == 0x20 &&(fpu_type_flags & TIMEX_ROLEX_FPU_MASK)) {
|
|
/* special case FMPYCFXT (really 0)
|
|
* This instruction is only present on the Timex and
|
|
* Rolex fpu's in so if it is the special case and
|
|
* one of these fpu's we run the FMPYCFXT instruction
|
|
*/
|
|
if (sgl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1,
|
|
&status))
|
|
error = 1;
|
|
if (sgl_to_sgl_fcnvfxt(&fpregs[ta],&atmp.ints.i1,
|
|
&atmp.ints.i1,&status))
|
|
error = 1;
|
|
}
|
|
else {
|
|
if (sgl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1,
|
|
&status))
|
|
error = 1;
|
|
if (sgl_fadd(&fpregs[ta], &fpregs[ra], &atmp.ints.i1,
|
|
&status))
|
|
error = 1;
|
|
}
|
|
if (error)
|
|
return(MAJOR_06_EXCP);
|
|
else {
|
|
/* copy results */
|
|
fpregs[tm] = mtmp.ints.i1;
|
|
fpregs[ta] = atmp.ints.i1;
|
|
fpregs[0] = status;
|
|
return(NOEXCEPTION);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* routine to decode the 26 (FMPYSUB) instruction
|
|
*/
|
|
static u_int
|
|
decode_26(ir,fpregs)
|
|
u_int ir;
|
|
u_int fpregs[];
|
|
{
|
|
u_int rm1, rm2, tm, ra, ta; /* operands */
|
|
u_int fmt;
|
|
u_int error = 0;
|
|
u_int status;
|
|
union {
|
|
double dbl;
|
|
float flt;
|
|
struct { u_int i1; u_int i2; } ints;
|
|
} mtmp, atmp;
|
|
|
|
|
|
status = fpregs[0];
|
|
fmt = extru(ir, fpmultifmt, 1); /* get sgl/dbl flag */
|
|
if (fmt == 0) { /* DBL */
|
|
rm1 = extru(ir, fprm1pos, 5) * sizeof(double)/sizeof(u_int);
|
|
if (rm1 == 0)
|
|
rm1 = fpzeroreg;
|
|
rm2 = extru(ir, fprm2pos, 5) * sizeof(double)/sizeof(u_int);
|
|
if (rm2 == 0)
|
|
rm2 = fpzeroreg;
|
|
tm = extru(ir, fptmpos, 5) * sizeof(double)/sizeof(u_int);
|
|
if (tm == 0)
|
|
return(MAJOR_26_EXCP);
|
|
ra = extru(ir, fprapos, 5) * sizeof(double)/sizeof(u_int);
|
|
if (ra == 0)
|
|
return(MAJOR_26_EXCP);
|
|
ta = extru(ir, fptapos, 5) * sizeof(double)/sizeof(u_int);
|
|
if (ta == 0)
|
|
return(MAJOR_26_EXCP);
|
|
|
|
if (dbl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1,&status))
|
|
error = 1;
|
|
if (dbl_fsub(&fpregs[ta], &fpregs[ra], &atmp.ints.i1,&status))
|
|
error = 1;
|
|
if (error)
|
|
return(MAJOR_26_EXCP);
|
|
else {
|
|
/* copy results */
|
|
fpregs[tm] = mtmp.ints.i1;
|
|
fpregs[tm+1] = mtmp.ints.i2;
|
|
fpregs[ta] = atmp.ints.i1;
|
|
fpregs[ta+1] = atmp.ints.i2;
|
|
fpregs[0] = status;
|
|
return(NOEXCEPTION);
|
|
}
|
|
}
|
|
else { /* SGL */
|
|
/*
|
|
* calculate offsets for single precision numbers
|
|
* See table 6-14 in PA-89 architecture for mapping
|
|
*/
|
|
rm1 = (extru(ir,fprm1pos,4) | 0x10 ) << 1; /* get offset */
|
|
rm1 |= extru(ir,fprm1pos-4,1); /* add right word offset */
|
|
|
|
rm2 = (extru(ir,fprm2pos,4) | 0x10 ) << 1; /* get offset */
|
|
rm2 |= extru(ir,fprm2pos-4,1); /* add right word offset */
|
|
|
|
tm = (extru(ir,fptmpos,4) | 0x10 ) << 1; /* get offset */
|
|
tm |= extru(ir,fptmpos-4,1); /* add right word offset */
|
|
|
|
ra = (extru(ir,fprapos,4) | 0x10 ) << 1; /* get offset */
|
|
ra |= extru(ir,fprapos-4,1); /* add right word offset */
|
|
|
|
ta = (extru(ir,fptapos,4) | 0x10 ) << 1; /* get offset */
|
|
ta |= extru(ir,fptapos-4,1); /* add right word offset */
|
|
|
|
if (sgl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1,&status))
|
|
error = 1;
|
|
if (sgl_fsub(&fpregs[ta], &fpregs[ra], &atmp.ints.i1,&status))
|
|
error = 1;
|
|
if (error)
|
|
return(MAJOR_26_EXCP);
|
|
else {
|
|
/* copy results */
|
|
fpregs[tm] = mtmp.ints.i1;
|
|
fpregs[ta] = atmp.ints.i1;
|
|
fpregs[0] = status;
|
|
return(NOEXCEPTION);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* routine to decode the 2E (FMPYFADD,FMPYNFADD) instructions
|
|
*/
|
|
static u_int
|
|
decode_2e(ir,fpregs)
|
|
u_int ir;
|
|
u_int fpregs[];
|
|
{
|
|
u_int rm1, rm2, ra, t; /* operands */
|
|
u_int fmt;
|
|
|
|
fmt = extru(ir,fpfmtpos,1); /* get fmt completer */
|
|
if (fmt == DBL) { /* DBL */
|
|
rm1 = extru(ir,fprm1pos,5) * sizeof(double)/sizeof(u_int);
|
|
if (rm1 == 0)
|
|
rm1 = fpzeroreg;
|
|
rm2 = extru(ir,fprm2pos,5) * sizeof(double)/sizeof(u_int);
|
|
if (rm2 == 0)
|
|
rm2 = fpzeroreg;
|
|
ra = ((extru(ir,fpraupos,3)<<2)|(extru(ir,fpralpos,3)>>1)) *
|
|
sizeof(double)/sizeof(u_int);
|
|
if (ra == 0)
|
|
ra = fpzeroreg;
|
|
t = extru(ir,fptpos,5) * sizeof(double)/sizeof(u_int);
|
|
if (t == 0)
|
|
return(MAJOR_2E_EXCP);
|
|
|
|
if (extru(ir,fpfusedsubop,1)) { /* fmpyfadd or fmpynfadd? */
|
|
return(dbl_fmpynfadd(&fpregs[rm1], &fpregs[rm2],
|
|
&fpregs[ra], &fpregs[0], &fpregs[t]));
|
|
} else {
|
|
return(dbl_fmpyfadd(&fpregs[rm1], &fpregs[rm2],
|
|
&fpregs[ra], &fpregs[0], &fpregs[t]));
|
|
}
|
|
} /* end DBL */
|
|
else { /* SGL */
|
|
rm1 = (extru(ir,fprm1pos,5)<<1)|(extru(ir,fpxrm1pos,1));
|
|
if (rm1 == 0)
|
|
rm1 = fpzeroreg;
|
|
rm2 = (extru(ir,fprm2pos,5)<<1)|(extru(ir,fpxrm2pos,1));
|
|
if (rm2 == 0)
|
|
rm2 = fpzeroreg;
|
|
ra = (extru(ir,fpraupos,3)<<3)|extru(ir,fpralpos,3);
|
|
if (ra == 0)
|
|
ra = fpzeroreg;
|
|
t = ((extru(ir,fptpos,5)<<1)|(extru(ir,fpxtpos,1)));
|
|
if (t == 0)
|
|
return(MAJOR_2E_EXCP);
|
|
|
|
if (extru(ir,fpfusedsubop,1)) { /* fmpyfadd or fmpynfadd? */
|
|
return(sgl_fmpynfadd(&fpregs[rm1], &fpregs[rm2],
|
|
&fpregs[ra], &fpregs[0], &fpregs[t]));
|
|
} else {
|
|
return(sgl_fmpyfadd(&fpregs[rm1], &fpregs[rm2],
|
|
&fpregs[ra], &fpregs[0], &fpregs[t]));
|
|
}
|
|
} /* end SGL */
|
|
}
|
|
|
|
/*
|
|
* update_status_cbit
|
|
*
|
|
* This routine returns the correct FP status register value in
|
|
* *status, based on the C-bit & V-bit returned by the FCMP
|
|
* emulation routine in new_status. The architecture type
|
|
* (PA83, PA89 or PA2.0) is available in fpu_type. The y_field
|
|
* and the architecture type are used to determine what flavor
|
|
* of FCMP is being emulated.
|
|
*/
|
|
static void
|
|
update_status_cbit(status, new_status, fpu_type, y_field)
|
|
u_int *status, new_status;
|
|
u_int fpu_type;
|
|
u_int y_field;
|
|
{
|
|
/*
|
|
* For PA89 FPU's which implement the Compare Queue and
|
|
* for PA2.0 FPU's, update the Compare Queue if the y-field = 0,
|
|
* otherwise update the specified bit in the Compare Array.
|
|
* Note that the y-field will always be 0 for non-PA2.0 FPU's.
|
|
*/
|
|
if ((fpu_type & TIMEX_EXTEN_FLAG) ||
|
|
(fpu_type & ROLEX_EXTEN_FLAG) ||
|
|
(fpu_type & PA2_0_FPU_FLAG)) {
|
|
if (y_field == 0) {
|
|
*status = ((*status & 0x04000000) >> 5) | /* old Cbit */
|
|
((*status & 0x003ff000) >> 1) | /* old CQ */
|
|
(new_status & 0xffc007ff); /* all other bits*/
|
|
} else {
|
|
*status = (*status & 0x04000000) | /* old Cbit */
|
|
((new_status & 0x04000000) >> (y_field+4)) |
|
|
(new_status & ~0x04000000 & /* other bits */
|
|
~(0x04000000 >> (y_field+4)));
|
|
}
|
|
}
|
|
/* if PA83, just update the C-bit */
|
|
else {
|
|
*status = new_status;
|
|
}
|
|
}
|