mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-26 02:19:31 +07:00
793473c28a
Rename pr_efi to efi_info and pr_efi_err to efi_err to make it more obvious that they are part of the EFI stub and not generic printk infra. Suggested-by: Joe Perches <joe@perches.com> Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu> Link: https://lore.kernel.org/r/20200430182843.2510180-4-nivedita@alum.mit.edu Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
256 lines
7.3 KiB
C
256 lines
7.3 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2013 Linaro Ltd; <roy.franz@linaro.org>
|
|
*/
|
|
#include <linux/efi.h>
|
|
#include <asm/efi.h>
|
|
|
|
#include "efistub.h"
|
|
|
|
efi_status_t check_platform_features(void)
|
|
{
|
|
int block;
|
|
|
|
/* non-LPAE kernels can run anywhere */
|
|
if (!IS_ENABLED(CONFIG_ARM_LPAE))
|
|
return EFI_SUCCESS;
|
|
|
|
/* LPAE kernels need compatible hardware */
|
|
block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
|
|
if (block < 5) {
|
|
efi_err("This LPAE kernel is not supported by your CPU\n");
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
static efi_guid_t screen_info_guid = LINUX_EFI_ARM_SCREEN_INFO_TABLE_GUID;
|
|
|
|
struct screen_info *alloc_screen_info(void)
|
|
{
|
|
struct screen_info *si;
|
|
efi_status_t status;
|
|
|
|
/*
|
|
* Unlike on arm64, where we can directly fill out the screen_info
|
|
* structure from the stub, we need to allocate a buffer to hold
|
|
* its contents while we hand over to the kernel proper from the
|
|
* decompressor.
|
|
*/
|
|
status = efi_bs_call(allocate_pool, EFI_RUNTIME_SERVICES_DATA,
|
|
sizeof(*si), (void **)&si);
|
|
|
|
if (status != EFI_SUCCESS)
|
|
return NULL;
|
|
|
|
status = efi_bs_call(install_configuration_table,
|
|
&screen_info_guid, si);
|
|
if (status == EFI_SUCCESS)
|
|
return si;
|
|
|
|
efi_bs_call(free_pool, si);
|
|
return NULL;
|
|
}
|
|
|
|
void free_screen_info(struct screen_info *si)
|
|
{
|
|
if (!si)
|
|
return;
|
|
|
|
efi_bs_call(install_configuration_table, &screen_info_guid, NULL);
|
|
efi_bs_call(free_pool, si);
|
|
}
|
|
|
|
static efi_status_t reserve_kernel_base(unsigned long dram_base,
|
|
unsigned long *reserve_addr,
|
|
unsigned long *reserve_size)
|
|
{
|
|
efi_physical_addr_t alloc_addr;
|
|
efi_memory_desc_t *memory_map;
|
|
unsigned long nr_pages, map_size, desc_size, buff_size;
|
|
efi_status_t status;
|
|
unsigned long l;
|
|
|
|
struct efi_boot_memmap map = {
|
|
.map = &memory_map,
|
|
.map_size = &map_size,
|
|
.desc_size = &desc_size,
|
|
.desc_ver = NULL,
|
|
.key_ptr = NULL,
|
|
.buff_size = &buff_size,
|
|
};
|
|
|
|
/*
|
|
* Reserve memory for the uncompressed kernel image. This is
|
|
* all that prevents any future allocations from conflicting
|
|
* with the kernel. Since we can't tell from the compressed
|
|
* image how much DRAM the kernel actually uses (due to BSS
|
|
* size uncertainty) we allocate the maximum possible size.
|
|
* Do this very early, as prints can cause memory allocations
|
|
* that may conflict with this.
|
|
*/
|
|
alloc_addr = dram_base + MAX_UNCOMP_KERNEL_SIZE;
|
|
nr_pages = MAX_UNCOMP_KERNEL_SIZE / EFI_PAGE_SIZE;
|
|
status = efi_bs_call(allocate_pages, EFI_ALLOCATE_MAX_ADDRESS,
|
|
EFI_BOOT_SERVICES_DATA, nr_pages, &alloc_addr);
|
|
if (status == EFI_SUCCESS) {
|
|
if (alloc_addr == dram_base) {
|
|
*reserve_addr = alloc_addr;
|
|
*reserve_size = MAX_UNCOMP_KERNEL_SIZE;
|
|
return EFI_SUCCESS;
|
|
}
|
|
/*
|
|
* If we end up here, the allocation succeeded but starts below
|
|
* dram_base. This can only occur if the real base of DRAM is
|
|
* not a multiple of 128 MB, in which case dram_base will have
|
|
* been rounded up. Since this implies that a part of the region
|
|
* was already occupied, we need to fall through to the code
|
|
* below to ensure that the existing allocations don't conflict.
|
|
* For this reason, we use EFI_BOOT_SERVICES_DATA above and not
|
|
* EFI_LOADER_DATA, which we wouldn't able to distinguish from
|
|
* allocations that we want to disallow.
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* If the allocation above failed, we may still be able to proceed:
|
|
* if the only allocations in the region are of types that will be
|
|
* released to the OS after ExitBootServices(), the decompressor can
|
|
* safely overwrite them.
|
|
*/
|
|
status = efi_get_memory_map(&map);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("reserve_kernel_base(): Unable to retrieve memory map.\n");
|
|
return status;
|
|
}
|
|
|
|
for (l = 0; l < map_size; l += desc_size) {
|
|
efi_memory_desc_t *desc;
|
|
u64 start, end;
|
|
|
|
desc = (void *)memory_map + l;
|
|
start = desc->phys_addr;
|
|
end = start + desc->num_pages * EFI_PAGE_SIZE;
|
|
|
|
/* Skip if entry does not intersect with region */
|
|
if (start >= dram_base + MAX_UNCOMP_KERNEL_SIZE ||
|
|
end <= dram_base)
|
|
continue;
|
|
|
|
switch (desc->type) {
|
|
case EFI_BOOT_SERVICES_CODE:
|
|
case EFI_BOOT_SERVICES_DATA:
|
|
/* Ignore types that are released to the OS anyway */
|
|
continue;
|
|
|
|
case EFI_CONVENTIONAL_MEMORY:
|
|
/* Skip soft reserved conventional memory */
|
|
if (efi_soft_reserve_enabled() &&
|
|
(desc->attribute & EFI_MEMORY_SP))
|
|
continue;
|
|
|
|
/*
|
|
* Reserve the intersection between this entry and the
|
|
* region.
|
|
*/
|
|
start = max(start, (u64)dram_base);
|
|
end = min(end, (u64)dram_base + MAX_UNCOMP_KERNEL_SIZE);
|
|
|
|
status = efi_bs_call(allocate_pages,
|
|
EFI_ALLOCATE_ADDRESS,
|
|
EFI_LOADER_DATA,
|
|
(end - start) / EFI_PAGE_SIZE,
|
|
&start);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("reserve_kernel_base(): alloc failed.\n");
|
|
goto out;
|
|
}
|
|
break;
|
|
|
|
case EFI_LOADER_CODE:
|
|
case EFI_LOADER_DATA:
|
|
/*
|
|
* These regions may be released and reallocated for
|
|
* another purpose (including EFI_RUNTIME_SERVICE_DATA)
|
|
* at any time during the execution of the OS loader,
|
|
* so we cannot consider them as safe.
|
|
*/
|
|
default:
|
|
/*
|
|
* Treat any other allocation in the region as unsafe */
|
|
status = EFI_OUT_OF_RESOURCES;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
status = EFI_SUCCESS;
|
|
out:
|
|
efi_bs_call(free_pool, memory_map);
|
|
return status;
|
|
}
|
|
|
|
efi_status_t handle_kernel_image(unsigned long *image_addr,
|
|
unsigned long *image_size,
|
|
unsigned long *reserve_addr,
|
|
unsigned long *reserve_size,
|
|
unsigned long dram_base,
|
|
efi_loaded_image_t *image)
|
|
{
|
|
unsigned long kernel_base;
|
|
efi_status_t status;
|
|
|
|
/*
|
|
* Verify that the DRAM base address is compatible with the ARM
|
|
* boot protocol, which determines the base of DRAM by masking
|
|
* off the low 27 bits of the address at which the zImage is
|
|
* loaded. These assumptions are made by the decompressor,
|
|
* before any memory map is available.
|
|
*/
|
|
kernel_base = round_up(dram_base, SZ_128M);
|
|
|
|
/*
|
|
* Note that some platforms (notably, the Raspberry Pi 2) put
|
|
* spin-tables and other pieces of firmware at the base of RAM,
|
|
* abusing the fact that the window of TEXT_OFFSET bytes at the
|
|
* base of the kernel image is only partially used at the moment.
|
|
* (Up to 5 pages are used for the swapper page tables)
|
|
*/
|
|
kernel_base += TEXT_OFFSET - 5 * PAGE_SIZE;
|
|
|
|
status = reserve_kernel_base(kernel_base, reserve_addr, reserve_size);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("Unable to allocate memory for uncompressed kernel.\n");
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* Relocate the zImage, so that it appears in the lowest 128 MB
|
|
* memory window.
|
|
*/
|
|
*image_addr = (unsigned long)image->image_base;
|
|
*image_size = image->image_size;
|
|
status = efi_relocate_kernel(image_addr, *image_size, *image_size,
|
|
kernel_base + MAX_UNCOMP_KERNEL_SIZE, 0, 0);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("Failed to relocate kernel.\n");
|
|
efi_free(*reserve_size, *reserve_addr);
|
|
*reserve_size = 0;
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* Check to see if we were able to allocate memory low enough
|
|
* in memory. The kernel determines the base of DRAM from the
|
|
* address at which the zImage is loaded.
|
|
*/
|
|
if (*image_addr + *image_size > dram_base + ZIMAGE_OFFSET_LIMIT) {
|
|
efi_err("Failed to relocate kernel, no low memory available.\n");
|
|
efi_free(*reserve_size, *reserve_addr);
|
|
*reserve_size = 0;
|
|
efi_free(*image_size, *image_addr);
|
|
*image_size = 0;
|
|
return EFI_LOAD_ERROR;
|
|
}
|
|
return EFI_SUCCESS;
|
|
}
|