mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-14 23:46:46 +07:00
78c1d78488
A series of radix tree cleanups, and usage of them in the core pagecache
code.
Micro-benchmark:
lookup 14 slots (typical page-vector size)
in radix-tree there earch <step> slot filled and tagged
before/after - nsec per full scan through tree
* Intel Sandy Bridge i7-2620M 4Mb L3
New code always faster
* AMD Athlon 6000+ 2x1Mb L2, without L3
New code generally faster,
Minor degradation (marked with "*") for huge sparse trees
* i386 on Sandy Bridge
New code faster for common cases: tagged and dense trees.
Some degradations for non-tagged lookup on sparse trees.
Ideally, there might help __ffs() analog for searching first non-zero
long element in array, gcc sometimes cannot optimize this loop corretly.
Numbers:
CPU: Intel Sandy Bridge i7-2620M 4Mb L3
radix-tree with 1024 slots:
tagged lookup
step 1 before 7156 after 3613
step 2 before 5399 after 2696
step 3 before 4779 after 1928
step 4 before 4456 after 1429
step 5 before 4292 after 1213
step 6 before 4183 after 1052
step 7 before 4157 after 951
step 8 before 4016 after 812
step 9 before 3952 after 851
step 10 before 3937 after 732
step 11 before 4023 after 709
step 12 before 3872 after 657
step 13 before 3892 after 633
step 14 before 3720 after 591
step 15 before 3879 after 578
step 16 before 3561 after 513
normal lookup
step 1 before 4266 after 3301
step 2 before 2695 after 2129
step 3 before 2083 after 1712
step 4 before 1801 after 1534
step 5 before 1628 after 1313
step 6 before 1551 after 1263
step 7 before 1475 after 1185
step 8 before 1432 after 1167
step 9 before 1373 after 1092
step 10 before 1339 after 1134
step 11 before 1292 after 1056
step 12 before 1319 after 1030
step 13 before 1276 after 1004
step 14 before 1256 after 987
step 15 before 1228 after 992
step 16 before 1247 after 999
radix-tree with 1024*1024*128 slots:
tagged lookup
step 1 before 1086102841 after 674196409
step 2 before 816839155 after 498138306
step 7 before 599728907 after 240676762
step 15 before 555729253 after 185219677
step 63 before 606637748 after 128585664
step 64 before 608384432 after 102945089
step 65 before 596987114 after 123996019
step 128 before 304459225 after 56783056
step 256 before 158846855 after 31232481
step 512 before 86085652 after 18950595
step 12345 before 6517189 after 1674057
normal lookup
step 1 before 626064869 after 544418266
step 2 before 418809975 after 336321473
step 7 before 242303598 after 207755560
step 15 before 208380563 after 176496355
step 63 before 186854206 after 167283638
step 64 before 176188060 after 170143976
step 65 before 185139608 after 167487116
step 128 before 88181865 after 86913490
step 256 before 45733628 after 45143534
step 512 before 24506038 after 23859036
step 12345 before 2177425 after 2018662
* AMD Athlon 6000+ 2x1Mb L2, without L3
radix-tree with 1024 slots:
tag-lookup
step 1 before 8164 after 5379
step 2 before 5818 after 5581
step 3 before 4959 after 4213
step 4 before 4371 after 3386
step 5 before 4204 after 2997
step 6 before 4950 after 2744
step 7 before 4598 after 2480
step 8 before 4251 after 2288
step 9 before 4262 after 2243
step 10 before 4175 after 2131
step 11 before 3999 after 2024
step 12 before 3979 after 1994
step 13 before 3842 after 1929
step 14 before 3750 after 1810
step 15 before 3735 after 1810
step 16 before 3532 after 1660
normal-lookup
step 1 before 7875 after 5847
step 2 before 4808 after 4071
step 3 before 4073 after 3462
step 4 before 3677 after 3074
step 5 before 4308 after 2978
step 6 before 3911 after 3807
step 7 before 3635 after 3522
step 8 before 3313 after 3202
step 9 before 3280 after 3257
step 10 before 3166 after 3083
step 11 before 3066 after 3026
step 12 before 2985 after 2982
step 13 before 2925 after 2924
step 14 before 2834 after 2808
step 15 before 2805 after 2803
step 16 before 2647 after 2622
radix-tree with 1024*1024*128 slots:
tag-lookup
step 1 before 1288059720 after 951736580
step 2 before 961292300 after 884212140
step 7 before 768905140 after 547267580
step 15 before 771319480 after 456550640
step 63 before 504847640 after 242704304
step 64 before 392484800 after 177920786
step 65 before 491162160 after 246895264
step 128 before 208084064 after 97348392
step 256 before 112401035 after 51408126
step 512 before 75825834 after 29145070
step 12345 before 5603166 after 2847330
normal-lookup
step 1 before 1025677120 after 861375100
step 2 before 647220080 after 572258540
step 7 before 505518960 after 484041813
step 15 before 430483053 after 444815320 *
step 63 before 388113453 after 404250546 *
step 64 before 374154666 after 396027440 *
step 65 before 381423973 after 396704853 *
step 128 before 190078700 after 202619384 *
step 256 before 100886756 after 102829108 *
step 512 before 64074505 after 56158720
step 12345 before 4237289 after 4422299 *
* i686 on Sandy bridge
radix-tree with 1024 slots:
tagged lookup
step 1 before 7990 after 4019
step 2 before 5698 after 2897
step 3 before 5013 after 2475
step 4 before 4630 after 1721
step 5 before 4346 after 1759
step 6 before 4299 after 1556
step 7 before 4098 after 1513
step 8 before 4115 after 1222
step 9 before 3983 after 1390
step 10 before 4077 after 1207
step 11 before 3921 after 1231
step 12 before 3894 after 1116
step 13 before 3840 after 1147
step 14 before 3799 after 1090
step 15 before 3797 after 1059
step 16 before 3783 after 745
normal lookup
step 1 before 5103 after 3499
step 2 before 3299 after 2550
step 3 before 2489 after 2370
step 4 before 2034 after 2302 *
step 5 before 1846 after 2268 *
step 6 before 1752 after 2249 *
step 7 before 1679 after 2164 *
step 8 before 1627 after 2153 *
step 9 before 1542 after 2095 *
step 10 before 1479 after 2109 *
step 11 before 1469 after 2009 *
step 12 before 1445 after 2039 *
step 13 before 1411 after 2013 *
step 14 before 1374 after 2046 *
step 15 before 1340 after 1975 *
step 16 before 1331 after 2000 *
radix-tree with 1024*1024*128 slots:
tagged lookup
step 1 before 1225865377 after 667153553
step 2 before 842427423 after 471533007
step 7 before 609296153 after 276260116
step 15 before 544232060 after 226859105
step 63 before 519209199 after 141343043
step 64 before 588980279 after 141951339
step 65 before 521099710 after 138282060
step 128 before 298476778 after 83390628
step 256 before 149358342 after 43602609
step 512 before 76994713 after 22911077
step 12345 before 5328666
after 1472111
normal lookup
step 1 before 819284564 after 533635310
step 2 before 512421605 after 364956155
step 7 before 271443305 after 305721345 *
step 15 before 223591630 after 273960216 *
step 63 before 190320247 after 217770207 *
step 64 before 178538168 after 267411372 *
step 65 before 186400423 after 215347937 *
step 128 before 88106045 after 140540612 *
step 256 before 44812420 after 70660377 *
step 512 before 24435438 after 36328275 *
step 12345 before 2123924 after 2148062 *
bloat-o-meter delta for this patchset + patchset with related shmem cleanups
bloat-o-meter: x86_64
add/remove: 4/3 grow/shrink: 5/6 up/down: 928/-939 (-11)
function old new delta
radix_tree_next_chunk - 499 +499
shmem_unuse 428 554 +126
shmem_radix_tree_replace 131 227 +96
find_get_pages_tag 354 419 +65
find_get_pages_contig 345 407 +62
find_get_pages 362 396 +34
__kstrtab_radix_tree_next_chunk - 22 +22
__ksymtab_radix_tree_next_chunk - 16 +16
__kcrctab_radix_tree_next_chunk - 8 +8
radix_tree_gang_lookup_slot 204 203 -1
static.shmem_xattr_set 384 381 -3
radix_tree_gang_lookup_tag_slot 208 191 -17
radix_tree_gang_lookup 231 187 -44
radix_tree_gang_lookup_tag 247 199 -48
shmem_unlock_mapping 278 190 -88
__lookup 217 - -217
__lookup_tag 242 - -242
radix_tree_locate_item 279 - -279
bloat-o-meter: i386
add/remove: 3/3 grow/shrink: 8/9 up/down: 1075/-1275 (-200)
function old new delta
radix_tree_next_chunk - 757 +757
shmem_unuse 352 449 +97
find_get_pages_contig 269 322 +53
shmem_radix_tree_replace 113 154 +41
find_get_pages_tag 277 318 +41
dcache_dir_lseek 426 458 +32
__kstrtab_radix_tree_next_chunk - 22 +22
vc_do_resize 968 977 +9
snd_pcm_lib_read1 725 733 +8
__ksymtab_radix_tree_next_chunk - 8 +8
netlbl_cipsov4_list 1120 1127 +7
find_get_pages 293 291 -2
new_slab 467 459 -8
bitfill_unaligned_rev 425 417 -8
radix_tree_gang_lookup_tag_slot 177 146 -31
blk_dump_cmd 267 229 -38
radix_tree_gang_lookup_slot 212 134 -78
shmem_unlock_mapping 221 128 -93
radix_tree_gang_lookup_tag 275 162 -113
radix_tree_gang_lookup 255 126 -129
__lookup 227 - -227
__lookup_tag 271 - -271
radix_tree_locate_item 277 - -277
This patch:
Implement a clean, simple and effective radix-tree iteration routine.
Iterating divided into two phases:
* lookup next chunk in radix-tree leaf node
* iterating through slots in this chunk
Main iterator function radix_tree_next_chunk() returns pointer to first
slot, and stores in the struct radix_tree_iter index of next-to-last slot.
For tagged-iterating it also constuct bitmask of tags for retunted chunk.
All additional logic implemented as static-inline functions and macroses.
Also adds radix_tree_find_next_bit() static-inline variant of
find_next_bit() optimized for small constant size arrays, because
find_next_bit() too heavy for searching in an array with one/two long
elements.
[akpm@linux-foundation.org: rework comments a bit]
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Tested-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
457 lines
16 KiB
C
457 lines
16 KiB
C
/*
|
|
* Copyright (C) 2001 Momchil Velikov
|
|
* Portions Copyright (C) 2001 Christoph Hellwig
|
|
* Copyright (C) 2006 Nick Piggin
|
|
* Copyright (C) 2012 Konstantin Khlebnikov
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation; either version 2, or (at
|
|
* your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
#ifndef _LINUX_RADIX_TREE_H
|
|
#define _LINUX_RADIX_TREE_H
|
|
|
|
#include <linux/preempt.h>
|
|
#include <linux/types.h>
|
|
#include <linux/bug.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/rcupdate.h>
|
|
|
|
/*
|
|
* An indirect pointer (root->rnode pointing to a radix_tree_node, rather
|
|
* than a data item) is signalled by the low bit set in the root->rnode
|
|
* pointer.
|
|
*
|
|
* In this case root->height is > 0, but the indirect pointer tests are
|
|
* needed for RCU lookups (because root->height is unreliable). The only
|
|
* time callers need worry about this is when doing a lookup_slot under
|
|
* RCU.
|
|
*
|
|
* Indirect pointer in fact is also used to tag the last pointer of a node
|
|
* when it is shrunk, before we rcu free the node. See shrink code for
|
|
* details.
|
|
*/
|
|
#define RADIX_TREE_INDIRECT_PTR 1
|
|
/*
|
|
* A common use of the radix tree is to store pointers to struct pages;
|
|
* but shmem/tmpfs needs also to store swap entries in the same tree:
|
|
* those are marked as exceptional entries to distinguish them.
|
|
* EXCEPTIONAL_ENTRY tests the bit, EXCEPTIONAL_SHIFT shifts content past it.
|
|
*/
|
|
#define RADIX_TREE_EXCEPTIONAL_ENTRY 2
|
|
#define RADIX_TREE_EXCEPTIONAL_SHIFT 2
|
|
|
|
static inline int radix_tree_is_indirect_ptr(void *ptr)
|
|
{
|
|
return (int)((unsigned long)ptr & RADIX_TREE_INDIRECT_PTR);
|
|
}
|
|
|
|
/*** radix-tree API starts here ***/
|
|
|
|
#define RADIX_TREE_MAX_TAGS 3
|
|
|
|
/* root tags are stored in gfp_mask, shifted by __GFP_BITS_SHIFT */
|
|
struct radix_tree_root {
|
|
unsigned int height;
|
|
gfp_t gfp_mask;
|
|
struct radix_tree_node __rcu *rnode;
|
|
};
|
|
|
|
#define RADIX_TREE_INIT(mask) { \
|
|
.height = 0, \
|
|
.gfp_mask = (mask), \
|
|
.rnode = NULL, \
|
|
}
|
|
|
|
#define RADIX_TREE(name, mask) \
|
|
struct radix_tree_root name = RADIX_TREE_INIT(mask)
|
|
|
|
#define INIT_RADIX_TREE(root, mask) \
|
|
do { \
|
|
(root)->height = 0; \
|
|
(root)->gfp_mask = (mask); \
|
|
(root)->rnode = NULL; \
|
|
} while (0)
|
|
|
|
/**
|
|
* Radix-tree synchronization
|
|
*
|
|
* The radix-tree API requires that users provide all synchronisation (with
|
|
* specific exceptions, noted below).
|
|
*
|
|
* Synchronization of access to the data items being stored in the tree, and
|
|
* management of their lifetimes must be completely managed by API users.
|
|
*
|
|
* For API usage, in general,
|
|
* - any function _modifying_ the tree or tags (inserting or deleting
|
|
* items, setting or clearing tags) must exclude other modifications, and
|
|
* exclude any functions reading the tree.
|
|
* - any function _reading_ the tree or tags (looking up items or tags,
|
|
* gang lookups) must exclude modifications to the tree, but may occur
|
|
* concurrently with other readers.
|
|
*
|
|
* The notable exceptions to this rule are the following functions:
|
|
* radix_tree_lookup
|
|
* radix_tree_lookup_slot
|
|
* radix_tree_tag_get
|
|
* radix_tree_gang_lookup
|
|
* radix_tree_gang_lookup_slot
|
|
* radix_tree_gang_lookup_tag
|
|
* radix_tree_gang_lookup_tag_slot
|
|
* radix_tree_tagged
|
|
*
|
|
* The first 7 functions are able to be called locklessly, using RCU. The
|
|
* caller must ensure calls to these functions are made within rcu_read_lock()
|
|
* regions. Other readers (lock-free or otherwise) and modifications may be
|
|
* running concurrently.
|
|
*
|
|
* It is still required that the caller manage the synchronization and lifetimes
|
|
* of the items. So if RCU lock-free lookups are used, typically this would mean
|
|
* that the items have their own locks, or are amenable to lock-free access; and
|
|
* that the items are freed by RCU (or only freed after having been deleted from
|
|
* the radix tree *and* a synchronize_rcu() grace period).
|
|
*
|
|
* (Note, rcu_assign_pointer and rcu_dereference are not needed to control
|
|
* access to data items when inserting into or looking up from the radix tree)
|
|
*
|
|
* Note that the value returned by radix_tree_tag_get() may not be relied upon
|
|
* if only the RCU read lock is held. Functions to set/clear tags and to
|
|
* delete nodes running concurrently with it may affect its result such that
|
|
* two consecutive reads in the same locked section may return different
|
|
* values. If reliability is required, modification functions must also be
|
|
* excluded from concurrency.
|
|
*
|
|
* radix_tree_tagged is able to be called without locking or RCU.
|
|
*/
|
|
|
|
/**
|
|
* radix_tree_deref_slot - dereference a slot
|
|
* @pslot: pointer to slot, returned by radix_tree_lookup_slot
|
|
* Returns: item that was stored in that slot with any direct pointer flag
|
|
* removed.
|
|
*
|
|
* For use with radix_tree_lookup_slot(). Caller must hold tree at least read
|
|
* locked across slot lookup and dereference. Not required if write lock is
|
|
* held (ie. items cannot be concurrently inserted).
|
|
*
|
|
* radix_tree_deref_retry must be used to confirm validity of the pointer if
|
|
* only the read lock is held.
|
|
*/
|
|
static inline void *radix_tree_deref_slot(void **pslot)
|
|
{
|
|
return rcu_dereference(*pslot);
|
|
}
|
|
|
|
/**
|
|
* radix_tree_deref_slot_protected - dereference a slot without RCU lock but with tree lock held
|
|
* @pslot: pointer to slot, returned by radix_tree_lookup_slot
|
|
* Returns: item that was stored in that slot with any direct pointer flag
|
|
* removed.
|
|
*
|
|
* Similar to radix_tree_deref_slot but only used during migration when a pages
|
|
* mapping is being moved. The caller does not hold the RCU read lock but it
|
|
* must hold the tree lock to prevent parallel updates.
|
|
*/
|
|
static inline void *radix_tree_deref_slot_protected(void **pslot,
|
|
spinlock_t *treelock)
|
|
{
|
|
return rcu_dereference_protected(*pslot, lockdep_is_held(treelock));
|
|
}
|
|
|
|
/**
|
|
* radix_tree_deref_retry - check radix_tree_deref_slot
|
|
* @arg: pointer returned by radix_tree_deref_slot
|
|
* Returns: 0 if retry is not required, otherwise retry is required
|
|
*
|
|
* radix_tree_deref_retry must be used with radix_tree_deref_slot.
|
|
*/
|
|
static inline int radix_tree_deref_retry(void *arg)
|
|
{
|
|
return unlikely((unsigned long)arg & RADIX_TREE_INDIRECT_PTR);
|
|
}
|
|
|
|
/**
|
|
* radix_tree_exceptional_entry - radix_tree_deref_slot gave exceptional entry?
|
|
* @arg: value returned by radix_tree_deref_slot
|
|
* Returns: 0 if well-aligned pointer, non-0 if exceptional entry.
|
|
*/
|
|
static inline int radix_tree_exceptional_entry(void *arg)
|
|
{
|
|
/* Not unlikely because radix_tree_exception often tested first */
|
|
return (unsigned long)arg & RADIX_TREE_EXCEPTIONAL_ENTRY;
|
|
}
|
|
|
|
/**
|
|
* radix_tree_exception - radix_tree_deref_slot returned either exception?
|
|
* @arg: value returned by radix_tree_deref_slot
|
|
* Returns: 0 if well-aligned pointer, non-0 if either kind of exception.
|
|
*/
|
|
static inline int radix_tree_exception(void *arg)
|
|
{
|
|
return unlikely((unsigned long)arg &
|
|
(RADIX_TREE_INDIRECT_PTR | RADIX_TREE_EXCEPTIONAL_ENTRY));
|
|
}
|
|
|
|
/**
|
|
* radix_tree_replace_slot - replace item in a slot
|
|
* @pslot: pointer to slot, returned by radix_tree_lookup_slot
|
|
* @item: new item to store in the slot.
|
|
*
|
|
* For use with radix_tree_lookup_slot(). Caller must hold tree write locked
|
|
* across slot lookup and replacement.
|
|
*/
|
|
static inline void radix_tree_replace_slot(void **pslot, void *item)
|
|
{
|
|
BUG_ON(radix_tree_is_indirect_ptr(item));
|
|
rcu_assign_pointer(*pslot, item);
|
|
}
|
|
|
|
int radix_tree_insert(struct radix_tree_root *, unsigned long, void *);
|
|
void *radix_tree_lookup(struct radix_tree_root *, unsigned long);
|
|
void **radix_tree_lookup_slot(struct radix_tree_root *, unsigned long);
|
|
void *radix_tree_delete(struct radix_tree_root *, unsigned long);
|
|
unsigned int
|
|
radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
|
|
unsigned long first_index, unsigned int max_items);
|
|
unsigned int radix_tree_gang_lookup_slot(struct radix_tree_root *root,
|
|
void ***results, unsigned long *indices,
|
|
unsigned long first_index, unsigned int max_items);
|
|
unsigned long radix_tree_next_hole(struct radix_tree_root *root,
|
|
unsigned long index, unsigned long max_scan);
|
|
unsigned long radix_tree_prev_hole(struct radix_tree_root *root,
|
|
unsigned long index, unsigned long max_scan);
|
|
int radix_tree_preload(gfp_t gfp_mask);
|
|
void radix_tree_init(void);
|
|
void *radix_tree_tag_set(struct radix_tree_root *root,
|
|
unsigned long index, unsigned int tag);
|
|
void *radix_tree_tag_clear(struct radix_tree_root *root,
|
|
unsigned long index, unsigned int tag);
|
|
int radix_tree_tag_get(struct radix_tree_root *root,
|
|
unsigned long index, unsigned int tag);
|
|
unsigned int
|
|
radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
|
|
unsigned long first_index, unsigned int max_items,
|
|
unsigned int tag);
|
|
unsigned int
|
|
radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
|
|
unsigned long first_index, unsigned int max_items,
|
|
unsigned int tag);
|
|
unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
|
|
unsigned long *first_indexp, unsigned long last_index,
|
|
unsigned long nr_to_tag,
|
|
unsigned int fromtag, unsigned int totag);
|
|
int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag);
|
|
unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item);
|
|
|
|
static inline void radix_tree_preload_end(void)
|
|
{
|
|
preempt_enable();
|
|
}
|
|
|
|
/**
|
|
* struct radix_tree_iter - radix tree iterator state
|
|
*
|
|
* @index: index of current slot
|
|
* @next_index: next-to-last index for this chunk
|
|
* @tags: bit-mask for tag-iterating
|
|
*
|
|
* This radix tree iterator works in terms of "chunks" of slots. A chunk is a
|
|
* subinterval of slots contained within one radix tree leaf node. It is
|
|
* described by a pointer to its first slot and a struct radix_tree_iter
|
|
* which holds the chunk's position in the tree and its size. For tagged
|
|
* iteration radix_tree_iter also holds the slots' bit-mask for one chosen
|
|
* radix tree tag.
|
|
*/
|
|
struct radix_tree_iter {
|
|
unsigned long index;
|
|
unsigned long next_index;
|
|
unsigned long tags;
|
|
};
|
|
|
|
#define RADIX_TREE_ITER_TAG_MASK 0x00FF /* tag index in lower byte */
|
|
#define RADIX_TREE_ITER_TAGGED 0x0100 /* lookup tagged slots */
|
|
#define RADIX_TREE_ITER_CONTIG 0x0200 /* stop at first hole */
|
|
|
|
/**
|
|
* radix_tree_iter_init - initialize radix tree iterator
|
|
*
|
|
* @iter: pointer to iterator state
|
|
* @start: iteration starting index
|
|
* Returns: NULL
|
|
*/
|
|
static __always_inline void **
|
|
radix_tree_iter_init(struct radix_tree_iter *iter, unsigned long start)
|
|
{
|
|
/*
|
|
* Leave iter->tags uninitialized. radix_tree_next_chunk() will fill it
|
|
* in the case of a successful tagged chunk lookup. If the lookup was
|
|
* unsuccessful or non-tagged then nobody cares about ->tags.
|
|
*
|
|
* Set index to zero to bypass next_index overflow protection.
|
|
* See the comment in radix_tree_next_chunk() for details.
|
|
*/
|
|
iter->index = 0;
|
|
iter->next_index = start;
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* radix_tree_next_chunk - find next chunk of slots for iteration
|
|
*
|
|
* @root: radix tree root
|
|
* @iter: iterator state
|
|
* @flags: RADIX_TREE_ITER_* flags and tag index
|
|
* Returns: pointer to chunk first slot, or NULL if there no more left
|
|
*
|
|
* This function looks up the next chunk in the radix tree starting from
|
|
* @iter->next_index. It returns a pointer to the chunk's first slot.
|
|
* Also it fills @iter with data about chunk: position in the tree (index),
|
|
* its end (next_index), and constructs a bit mask for tagged iterating (tags).
|
|
*/
|
|
void **radix_tree_next_chunk(struct radix_tree_root *root,
|
|
struct radix_tree_iter *iter, unsigned flags);
|
|
|
|
/**
|
|
* radix_tree_chunk_size - get current chunk size
|
|
*
|
|
* @iter: pointer to radix tree iterator
|
|
* Returns: current chunk size
|
|
*/
|
|
static __always_inline unsigned
|
|
radix_tree_chunk_size(struct radix_tree_iter *iter)
|
|
{
|
|
return iter->next_index - iter->index;
|
|
}
|
|
|
|
/**
|
|
* radix_tree_next_slot - find next slot in chunk
|
|
*
|
|
* @slot: pointer to current slot
|
|
* @iter: pointer to interator state
|
|
* @flags: RADIX_TREE_ITER_*, should be constant
|
|
* Returns: pointer to next slot, or NULL if there no more left
|
|
*
|
|
* This function updates @iter->index in the case of a successful lookup.
|
|
* For tagged lookup it also eats @iter->tags.
|
|
*/
|
|
static __always_inline void **
|
|
radix_tree_next_slot(void **slot, struct radix_tree_iter *iter, unsigned flags)
|
|
{
|
|
if (flags & RADIX_TREE_ITER_TAGGED) {
|
|
iter->tags >>= 1;
|
|
if (likely(iter->tags & 1ul)) {
|
|
iter->index++;
|
|
return slot + 1;
|
|
}
|
|
if (!(flags & RADIX_TREE_ITER_CONTIG) && likely(iter->tags)) {
|
|
unsigned offset = __ffs(iter->tags);
|
|
|
|
iter->tags >>= offset;
|
|
iter->index += offset + 1;
|
|
return slot + offset + 1;
|
|
}
|
|
} else {
|
|
unsigned size = radix_tree_chunk_size(iter) - 1;
|
|
|
|
while (size--) {
|
|
slot++;
|
|
iter->index++;
|
|
if (likely(*slot))
|
|
return slot;
|
|
if (flags & RADIX_TREE_ITER_CONTIG)
|
|
break;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* radix_tree_for_each_chunk - iterate over chunks
|
|
*
|
|
* @slot: the void** variable for pointer to chunk first slot
|
|
* @root: the struct radix_tree_root pointer
|
|
* @iter: the struct radix_tree_iter pointer
|
|
* @start: iteration starting index
|
|
* @flags: RADIX_TREE_ITER_* and tag index
|
|
*
|
|
* Locks can be released and reacquired between iterations.
|
|
*/
|
|
#define radix_tree_for_each_chunk(slot, root, iter, start, flags) \
|
|
for (slot = radix_tree_iter_init(iter, start) ; \
|
|
(slot = radix_tree_next_chunk(root, iter, flags)) ;)
|
|
|
|
/**
|
|
* radix_tree_for_each_chunk_slot - iterate over slots in one chunk
|
|
*
|
|
* @slot: the void** variable, at the beginning points to chunk first slot
|
|
* @iter: the struct radix_tree_iter pointer
|
|
* @flags: RADIX_TREE_ITER_*, should be constant
|
|
*
|
|
* This macro is designed to be nested inside radix_tree_for_each_chunk().
|
|
* @slot points to the radix tree slot, @iter->index contains its index.
|
|
*/
|
|
#define radix_tree_for_each_chunk_slot(slot, iter, flags) \
|
|
for (; slot ; slot = radix_tree_next_slot(slot, iter, flags))
|
|
|
|
/**
|
|
* radix_tree_for_each_slot - iterate over non-empty slots
|
|
*
|
|
* @slot: the void** variable for pointer to slot
|
|
* @root: the struct radix_tree_root pointer
|
|
* @iter: the struct radix_tree_iter pointer
|
|
* @start: iteration starting index
|
|
*
|
|
* @slot points to radix tree slot, @iter->index contains its index.
|
|
*/
|
|
#define radix_tree_for_each_slot(slot, root, iter, start) \
|
|
for (slot = radix_tree_iter_init(iter, start) ; \
|
|
slot || (slot = radix_tree_next_chunk(root, iter, 0)) ; \
|
|
slot = radix_tree_next_slot(slot, iter, 0))
|
|
|
|
/**
|
|
* radix_tree_for_each_contig - iterate over contiguous slots
|
|
*
|
|
* @slot: the void** variable for pointer to slot
|
|
* @root: the struct radix_tree_root pointer
|
|
* @iter: the struct radix_tree_iter pointer
|
|
* @start: iteration starting index
|
|
*
|
|
* @slot points to radix tree slot, @iter->index contains its index.
|
|
*/
|
|
#define radix_tree_for_each_contig(slot, root, iter, start) \
|
|
for (slot = radix_tree_iter_init(iter, start) ; \
|
|
slot || (slot = radix_tree_next_chunk(root, iter, \
|
|
RADIX_TREE_ITER_CONTIG)) ; \
|
|
slot = radix_tree_next_slot(slot, iter, \
|
|
RADIX_TREE_ITER_CONTIG))
|
|
|
|
/**
|
|
* radix_tree_for_each_tagged - iterate over tagged slots
|
|
*
|
|
* @slot: the void** variable for pointer to slot
|
|
* @root: the struct radix_tree_root pointer
|
|
* @iter: the struct radix_tree_iter pointer
|
|
* @start: iteration starting index
|
|
* @tag: tag index
|
|
*
|
|
* @slot points to radix tree slot, @iter->index contains its index.
|
|
*/
|
|
#define radix_tree_for_each_tagged(slot, root, iter, start, tag) \
|
|
for (slot = radix_tree_iter_init(iter, start) ; \
|
|
slot || (slot = radix_tree_next_chunk(root, iter, \
|
|
RADIX_TREE_ITER_TAGGED | tag)) ; \
|
|
slot = radix_tree_next_slot(slot, iter, \
|
|
RADIX_TREE_ITER_TAGGED))
|
|
|
|
#endif /* _LINUX_RADIX_TREE_H */
|