mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
b103fb7653
Inline encryption hardware compliant with the UFS v2.1 standard or with the upcoming version of the eMMC standard has the following properties: (1) Per I/O request, the encryption key is specified by a previously loaded keyslot. There might be only a small number of keyslots. (2) Per I/O request, the starting IV is specified by a 64-bit "data unit number" (DUN). IV bits 64-127 are assumed to be 0. The hardware automatically increments the DUN for each "data unit" of configurable size in the request, e.g. for each filesystem block. Property (1) makes it inefficient to use the traditional fscrypt per-file keys. Property (2) precludes the use of the existing DIRECT_KEY fscrypt policy flag, which needs at least 192 IV bits. Therefore, add a new fscrypt policy flag IV_INO_LBLK_64 which causes the encryption to modified as follows: - The encryption keys are derived from the master key, encryption mode number, and filesystem UUID. - The IVs are chosen as (inode_number << 32) | file_logical_block_num. For filenames encryption, file_logical_block_num is 0. Since the file nonces aren't used in the key derivation, many files may share the same encryption key. This is much more efficient on the target hardware. Including the inode number in the IVs and mixing the filesystem UUID into the keys ensures that data in different files is nevertheless still encrypted differently. Additionally, limiting the inode and block numbers to 32 bits and placing the block number in the low bits maintains compatibility with the 64-bit DUN convention (property (2) above). Since this scheme assumes that inode numbers are stable (which may preclude filesystem shrinking) and that inode and file logical block numbers are at most 32-bit, IV_INO_LBLK_64 will only be allowed on filesystems that meet these constraints. These are acceptable limitations for the cases where this format would actually be used. Note that IV_INO_LBLK_64 is an on-disk format, not an implementation. This patch just adds support for it using the existing filesystem layer encryption. A later patch will add support for inline encryption. Reviewed-by: Paul Crowley <paulcrowley@google.com> Co-developed-by: Satya Tangirala <satyat@google.com> Signed-off-by: Satya Tangirala <satyat@google.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
431 lines
13 KiB
C
431 lines
13 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* This contains encryption functions for per-file encryption.
|
|
*
|
|
* Copyright (C) 2015, Google, Inc.
|
|
* Copyright (C) 2015, Motorola Mobility
|
|
*
|
|
* Written by Michael Halcrow, 2014.
|
|
*
|
|
* Filename encryption additions
|
|
* Uday Savagaonkar, 2014
|
|
* Encryption policy handling additions
|
|
* Ildar Muslukhov, 2014
|
|
* Add fscrypt_pullback_bio_page()
|
|
* Jaegeuk Kim, 2015.
|
|
*
|
|
* This has not yet undergone a rigorous security audit.
|
|
*
|
|
* The usage of AES-XTS should conform to recommendations in NIST
|
|
* Special Publication 800-38E and IEEE P1619/D16.
|
|
*/
|
|
|
|
#include <linux/pagemap.h>
|
|
#include <linux/mempool.h>
|
|
#include <linux/module.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/dcache.h>
|
|
#include <linux/namei.h>
|
|
#include <crypto/skcipher.h>
|
|
#include "fscrypt_private.h"
|
|
|
|
static unsigned int num_prealloc_crypto_pages = 32;
|
|
|
|
module_param(num_prealloc_crypto_pages, uint, 0444);
|
|
MODULE_PARM_DESC(num_prealloc_crypto_pages,
|
|
"Number of crypto pages to preallocate");
|
|
|
|
static mempool_t *fscrypt_bounce_page_pool = NULL;
|
|
|
|
static struct workqueue_struct *fscrypt_read_workqueue;
|
|
static DEFINE_MUTEX(fscrypt_init_mutex);
|
|
|
|
struct kmem_cache *fscrypt_info_cachep;
|
|
|
|
void fscrypt_enqueue_decrypt_work(struct work_struct *work)
|
|
{
|
|
queue_work(fscrypt_read_workqueue, work);
|
|
}
|
|
EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work);
|
|
|
|
struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags)
|
|
{
|
|
return mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
|
|
}
|
|
|
|
/**
|
|
* fscrypt_free_bounce_page() - free a ciphertext bounce page
|
|
*
|
|
* Free a bounce page that was allocated by fscrypt_encrypt_pagecache_blocks(),
|
|
* or by fscrypt_alloc_bounce_page() directly.
|
|
*/
|
|
void fscrypt_free_bounce_page(struct page *bounce_page)
|
|
{
|
|
if (!bounce_page)
|
|
return;
|
|
set_page_private(bounce_page, (unsigned long)NULL);
|
|
ClearPagePrivate(bounce_page);
|
|
mempool_free(bounce_page, fscrypt_bounce_page_pool);
|
|
}
|
|
EXPORT_SYMBOL(fscrypt_free_bounce_page);
|
|
|
|
void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
|
|
const struct fscrypt_info *ci)
|
|
{
|
|
u8 flags = fscrypt_policy_flags(&ci->ci_policy);
|
|
|
|
memset(iv, 0, ci->ci_mode->ivsize);
|
|
|
|
if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) {
|
|
WARN_ON_ONCE((u32)lblk_num != lblk_num);
|
|
lblk_num |= (u64)ci->ci_inode->i_ino << 32;
|
|
} else if (flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
|
|
memcpy(iv->nonce, ci->ci_nonce, FS_KEY_DERIVATION_NONCE_SIZE);
|
|
}
|
|
iv->lblk_num = cpu_to_le64(lblk_num);
|
|
}
|
|
|
|
/* Encrypt or decrypt a single filesystem block of file contents */
|
|
int fscrypt_crypt_block(const struct inode *inode, fscrypt_direction_t rw,
|
|
u64 lblk_num, struct page *src_page,
|
|
struct page *dest_page, unsigned int len,
|
|
unsigned int offs, gfp_t gfp_flags)
|
|
{
|
|
union fscrypt_iv iv;
|
|
struct skcipher_request *req = NULL;
|
|
DECLARE_CRYPTO_WAIT(wait);
|
|
struct scatterlist dst, src;
|
|
struct fscrypt_info *ci = inode->i_crypt_info;
|
|
struct crypto_skcipher *tfm = ci->ci_ctfm;
|
|
int res = 0;
|
|
|
|
if (WARN_ON_ONCE(len <= 0))
|
|
return -EINVAL;
|
|
if (WARN_ON_ONCE(len % FS_CRYPTO_BLOCK_SIZE != 0))
|
|
return -EINVAL;
|
|
|
|
fscrypt_generate_iv(&iv, lblk_num, ci);
|
|
|
|
req = skcipher_request_alloc(tfm, gfp_flags);
|
|
if (!req)
|
|
return -ENOMEM;
|
|
|
|
skcipher_request_set_callback(
|
|
req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
|
|
crypto_req_done, &wait);
|
|
|
|
sg_init_table(&dst, 1);
|
|
sg_set_page(&dst, dest_page, len, offs);
|
|
sg_init_table(&src, 1);
|
|
sg_set_page(&src, src_page, len, offs);
|
|
skcipher_request_set_crypt(req, &src, &dst, len, &iv);
|
|
if (rw == FS_DECRYPT)
|
|
res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
|
|
else
|
|
res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
|
|
skcipher_request_free(req);
|
|
if (res) {
|
|
fscrypt_err(inode, "%scryption failed for block %llu: %d",
|
|
(rw == FS_DECRYPT ? "De" : "En"), lblk_num, res);
|
|
return res;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* fscrypt_encrypt_pagecache_blocks() - Encrypt filesystem blocks from a pagecache page
|
|
* @page: The locked pagecache page containing the block(s) to encrypt
|
|
* @len: Total size of the block(s) to encrypt. Must be a nonzero
|
|
* multiple of the filesystem's block size.
|
|
* @offs: Byte offset within @page of the first block to encrypt. Must be
|
|
* a multiple of the filesystem's block size.
|
|
* @gfp_flags: Memory allocation flags
|
|
*
|
|
* A new bounce page is allocated, and the specified block(s) are encrypted into
|
|
* it. In the bounce page, the ciphertext block(s) will be located at the same
|
|
* offsets at which the plaintext block(s) were located in the source page; any
|
|
* other parts of the bounce page will be left uninitialized. However, normally
|
|
* blocksize == PAGE_SIZE and the whole page is encrypted at once.
|
|
*
|
|
* This is for use by the filesystem's ->writepages() method.
|
|
*
|
|
* Return: the new encrypted bounce page on success; an ERR_PTR() on failure
|
|
*/
|
|
struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
|
|
unsigned int len,
|
|
unsigned int offs,
|
|
gfp_t gfp_flags)
|
|
|
|
{
|
|
const struct inode *inode = page->mapping->host;
|
|
const unsigned int blockbits = inode->i_blkbits;
|
|
const unsigned int blocksize = 1 << blockbits;
|
|
struct page *ciphertext_page;
|
|
u64 lblk_num = ((u64)page->index << (PAGE_SHIFT - blockbits)) +
|
|
(offs >> blockbits);
|
|
unsigned int i;
|
|
int err;
|
|
|
|
if (WARN_ON_ONCE(!PageLocked(page)))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, blocksize)))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
ciphertext_page = fscrypt_alloc_bounce_page(gfp_flags);
|
|
if (!ciphertext_page)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
for (i = offs; i < offs + len; i += blocksize, lblk_num++) {
|
|
err = fscrypt_crypt_block(inode, FS_ENCRYPT, lblk_num,
|
|
page, ciphertext_page,
|
|
blocksize, i, gfp_flags);
|
|
if (err) {
|
|
fscrypt_free_bounce_page(ciphertext_page);
|
|
return ERR_PTR(err);
|
|
}
|
|
}
|
|
SetPagePrivate(ciphertext_page);
|
|
set_page_private(ciphertext_page, (unsigned long)page);
|
|
return ciphertext_page;
|
|
}
|
|
EXPORT_SYMBOL(fscrypt_encrypt_pagecache_blocks);
|
|
|
|
/**
|
|
* fscrypt_encrypt_block_inplace() - Encrypt a filesystem block in-place
|
|
* @inode: The inode to which this block belongs
|
|
* @page: The page containing the block to encrypt
|
|
* @len: Size of block to encrypt. Doesn't need to be a multiple of the
|
|
* fs block size, but must be a multiple of FS_CRYPTO_BLOCK_SIZE.
|
|
* @offs: Byte offset within @page at which the block to encrypt begins
|
|
* @lblk_num: Filesystem logical block number of the block, i.e. the 0-based
|
|
* number of the block within the file
|
|
* @gfp_flags: Memory allocation flags
|
|
*
|
|
* Encrypt a possibly-compressed filesystem block that is located in an
|
|
* arbitrary page, not necessarily in the original pagecache page. The @inode
|
|
* and @lblk_num must be specified, as they can't be determined from @page.
|
|
*
|
|
* Return: 0 on success; -errno on failure
|
|
*/
|
|
int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page,
|
|
unsigned int len, unsigned int offs,
|
|
u64 lblk_num, gfp_t gfp_flags)
|
|
{
|
|
return fscrypt_crypt_block(inode, FS_ENCRYPT, lblk_num, page, page,
|
|
len, offs, gfp_flags);
|
|
}
|
|
EXPORT_SYMBOL(fscrypt_encrypt_block_inplace);
|
|
|
|
/**
|
|
* fscrypt_decrypt_pagecache_blocks() - Decrypt filesystem blocks in a pagecache page
|
|
* @page: The locked pagecache page containing the block(s) to decrypt
|
|
* @len: Total size of the block(s) to decrypt. Must be a nonzero
|
|
* multiple of the filesystem's block size.
|
|
* @offs: Byte offset within @page of the first block to decrypt. Must be
|
|
* a multiple of the filesystem's block size.
|
|
*
|
|
* The specified block(s) are decrypted in-place within the pagecache page,
|
|
* which must still be locked and not uptodate. Normally, blocksize ==
|
|
* PAGE_SIZE and the whole page is decrypted at once.
|
|
*
|
|
* This is for use by the filesystem's ->readpages() method.
|
|
*
|
|
* Return: 0 on success; -errno on failure
|
|
*/
|
|
int fscrypt_decrypt_pagecache_blocks(struct page *page, unsigned int len,
|
|
unsigned int offs)
|
|
{
|
|
const struct inode *inode = page->mapping->host;
|
|
const unsigned int blockbits = inode->i_blkbits;
|
|
const unsigned int blocksize = 1 << blockbits;
|
|
u64 lblk_num = ((u64)page->index << (PAGE_SHIFT - blockbits)) +
|
|
(offs >> blockbits);
|
|
unsigned int i;
|
|
int err;
|
|
|
|
if (WARN_ON_ONCE(!PageLocked(page)))
|
|
return -EINVAL;
|
|
|
|
if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, blocksize)))
|
|
return -EINVAL;
|
|
|
|
for (i = offs; i < offs + len; i += blocksize, lblk_num++) {
|
|
err = fscrypt_crypt_block(inode, FS_DECRYPT, lblk_num, page,
|
|
page, blocksize, i, GFP_NOFS);
|
|
if (err)
|
|
return err;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(fscrypt_decrypt_pagecache_blocks);
|
|
|
|
/**
|
|
* fscrypt_decrypt_block_inplace() - Decrypt a filesystem block in-place
|
|
* @inode: The inode to which this block belongs
|
|
* @page: The page containing the block to decrypt
|
|
* @len: Size of block to decrypt. Doesn't need to be a multiple of the
|
|
* fs block size, but must be a multiple of FS_CRYPTO_BLOCK_SIZE.
|
|
* @offs: Byte offset within @page at which the block to decrypt begins
|
|
* @lblk_num: Filesystem logical block number of the block, i.e. the 0-based
|
|
* number of the block within the file
|
|
*
|
|
* Decrypt a possibly-compressed filesystem block that is located in an
|
|
* arbitrary page, not necessarily in the original pagecache page. The @inode
|
|
* and @lblk_num must be specified, as they can't be determined from @page.
|
|
*
|
|
* Return: 0 on success; -errno on failure
|
|
*/
|
|
int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page,
|
|
unsigned int len, unsigned int offs,
|
|
u64 lblk_num)
|
|
{
|
|
return fscrypt_crypt_block(inode, FS_DECRYPT, lblk_num, page, page,
|
|
len, offs, GFP_NOFS);
|
|
}
|
|
EXPORT_SYMBOL(fscrypt_decrypt_block_inplace);
|
|
|
|
/*
|
|
* Validate dentries in encrypted directories to make sure we aren't potentially
|
|
* caching stale dentries after a key has been added.
|
|
*/
|
|
static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
|
|
{
|
|
struct dentry *dir;
|
|
int err;
|
|
int valid;
|
|
|
|
/*
|
|
* Plaintext names are always valid, since fscrypt doesn't support
|
|
* reverting to ciphertext names without evicting the directory's inode
|
|
* -- which implies eviction of the dentries in the directory.
|
|
*/
|
|
if (!(dentry->d_flags & DCACHE_ENCRYPTED_NAME))
|
|
return 1;
|
|
|
|
/*
|
|
* Ciphertext name; valid if the directory's key is still unavailable.
|
|
*
|
|
* Although fscrypt forbids rename() on ciphertext names, we still must
|
|
* use dget_parent() here rather than use ->d_parent directly. That's
|
|
* because a corrupted fs image may contain directory hard links, which
|
|
* the VFS handles by moving the directory's dentry tree in the dcache
|
|
* each time ->lookup() finds the directory and it already has a dentry
|
|
* elsewhere. Thus ->d_parent can be changing, and we must safely grab
|
|
* a reference to some ->d_parent to prevent it from being freed.
|
|
*/
|
|
|
|
if (flags & LOOKUP_RCU)
|
|
return -ECHILD;
|
|
|
|
dir = dget_parent(dentry);
|
|
err = fscrypt_get_encryption_info(d_inode(dir));
|
|
valid = !fscrypt_has_encryption_key(d_inode(dir));
|
|
dput(dir);
|
|
|
|
if (err < 0)
|
|
return err;
|
|
|
|
return valid;
|
|
}
|
|
|
|
const struct dentry_operations fscrypt_d_ops = {
|
|
.d_revalidate = fscrypt_d_revalidate,
|
|
};
|
|
|
|
/**
|
|
* fscrypt_initialize() - allocate major buffers for fs encryption.
|
|
* @cop_flags: fscrypt operations flags
|
|
*
|
|
* We only call this when we start accessing encrypted files, since it
|
|
* results in memory getting allocated that wouldn't otherwise be used.
|
|
*
|
|
* Return: 0 on success; -errno on failure
|
|
*/
|
|
int fscrypt_initialize(unsigned int cop_flags)
|
|
{
|
|
int err = 0;
|
|
|
|
/* No need to allocate a bounce page pool if this FS won't use it. */
|
|
if (cop_flags & FS_CFLG_OWN_PAGES)
|
|
return 0;
|
|
|
|
mutex_lock(&fscrypt_init_mutex);
|
|
if (fscrypt_bounce_page_pool)
|
|
goto out_unlock;
|
|
|
|
err = -ENOMEM;
|
|
fscrypt_bounce_page_pool =
|
|
mempool_create_page_pool(num_prealloc_crypto_pages, 0);
|
|
if (!fscrypt_bounce_page_pool)
|
|
goto out_unlock;
|
|
|
|
err = 0;
|
|
out_unlock:
|
|
mutex_unlock(&fscrypt_init_mutex);
|
|
return err;
|
|
}
|
|
|
|
void fscrypt_msg(const struct inode *inode, const char *level,
|
|
const char *fmt, ...)
|
|
{
|
|
static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
|
|
DEFAULT_RATELIMIT_BURST);
|
|
struct va_format vaf;
|
|
va_list args;
|
|
|
|
if (!__ratelimit(&rs))
|
|
return;
|
|
|
|
va_start(args, fmt);
|
|
vaf.fmt = fmt;
|
|
vaf.va = &args;
|
|
if (inode)
|
|
printk("%sfscrypt (%s, inode %lu): %pV\n",
|
|
level, inode->i_sb->s_id, inode->i_ino, &vaf);
|
|
else
|
|
printk("%sfscrypt: %pV\n", level, &vaf);
|
|
va_end(args);
|
|
}
|
|
|
|
/**
|
|
* fscrypt_init() - Set up for fs encryption.
|
|
*/
|
|
static int __init fscrypt_init(void)
|
|
{
|
|
int err = -ENOMEM;
|
|
|
|
/*
|
|
* Use an unbound workqueue to allow bios to be decrypted in parallel
|
|
* even when they happen to complete on the same CPU. This sacrifices
|
|
* locality, but it's worthwhile since decryption is CPU-intensive.
|
|
*
|
|
* Also use a high-priority workqueue to prioritize decryption work,
|
|
* which blocks reads from completing, over regular application tasks.
|
|
*/
|
|
fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
|
|
WQ_UNBOUND | WQ_HIGHPRI,
|
|
num_online_cpus());
|
|
if (!fscrypt_read_workqueue)
|
|
goto fail;
|
|
|
|
fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
|
|
if (!fscrypt_info_cachep)
|
|
goto fail_free_queue;
|
|
|
|
err = fscrypt_init_keyring();
|
|
if (err)
|
|
goto fail_free_info;
|
|
|
|
return 0;
|
|
|
|
fail_free_info:
|
|
kmem_cache_destroy(fscrypt_info_cachep);
|
|
fail_free_queue:
|
|
destroy_workqueue(fscrypt_read_workqueue);
|
|
fail:
|
|
return err;
|
|
}
|
|
late_initcall(fscrypt_init)
|