linux_dsm_epyc7002/arch/powerpc/mm/book3s64/radix_tlb.c
Thomas Gleixner 2874c5fd28 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 152
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 3029 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-30 11:26:32 -07:00

1098 lines
28 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* TLB flush routines for radix kernels.
*
* Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
*/
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/memblock.h>
#include <linux/mmu_context.h>
#include <linux/sched/mm.h>
#include <asm/ppc-opcode.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>
#include <asm/trace.h>
#include <asm/cputhreads.h>
#define RIC_FLUSH_TLB 0
#define RIC_FLUSH_PWC 1
#define RIC_FLUSH_ALL 2
/*
* tlbiel instruction for radix, set invalidation
* i.e., r=1 and is=01 or is=10 or is=11
*/
static inline void tlbiel_radix_set_isa300(unsigned int set, unsigned int is,
unsigned int pid,
unsigned int ric, unsigned int prs)
{
unsigned long rb;
unsigned long rs;
rb = (set << PPC_BITLSHIFT(51)) | (is << PPC_BITLSHIFT(53));
rs = ((unsigned long)pid << PPC_BITLSHIFT(31));
asm volatile(PPC_TLBIEL(%0, %1, %2, %3, 1)
: : "r"(rb), "r"(rs), "i"(ric), "i"(prs)
: "memory");
}
static void tlbiel_all_isa300(unsigned int num_sets, unsigned int is)
{
unsigned int set;
asm volatile("ptesync": : :"memory");
/*
* Flush the first set of the TLB, and the entire Page Walk Cache
* and partition table entries. Then flush the remaining sets of the
* TLB.
*/
tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 0);
for (set = 1; set < num_sets; set++)
tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 0);
/* Do the same for process scoped entries. */
tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 1);
for (set = 1; set < num_sets; set++)
tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 1);
asm volatile("ptesync": : :"memory");
}
void radix__tlbiel_all(unsigned int action)
{
unsigned int is;
switch (action) {
case TLB_INVAL_SCOPE_GLOBAL:
is = 3;
break;
case TLB_INVAL_SCOPE_LPID:
is = 2;
break;
default:
BUG();
}
if (early_cpu_has_feature(CPU_FTR_ARCH_300))
tlbiel_all_isa300(POWER9_TLB_SETS_RADIX, is);
else
WARN(1, "%s called on pre-POWER9 CPU\n", __func__);
asm volatile(PPC_INVALIDATE_ERAT "; isync" : : :"memory");
}
static __always_inline void __tlbiel_pid(unsigned long pid, int set,
unsigned long ric)
{
unsigned long rb,rs,prs,r;
rb = PPC_BIT(53); /* IS = 1 */
rb |= set << PPC_BITLSHIFT(51);
rs = ((unsigned long)pid) << PPC_BITLSHIFT(31);
prs = 1; /* process scoped */
r = 1; /* radix format */
asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
: : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
trace_tlbie(0, 1, rb, rs, ric, prs, r);
}
static __always_inline void __tlbie_pid(unsigned long pid, unsigned long ric)
{
unsigned long rb,rs,prs,r;
rb = PPC_BIT(53); /* IS = 1 */
rs = pid << PPC_BITLSHIFT(31);
prs = 1; /* process scoped */
r = 1; /* radix format */
asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
: : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
trace_tlbie(0, 0, rb, rs, ric, prs, r);
}
static __always_inline void __tlbiel_lpid(unsigned long lpid, int set,
unsigned long ric)
{
unsigned long rb,rs,prs,r;
rb = PPC_BIT(52); /* IS = 2 */
rb |= set << PPC_BITLSHIFT(51);
rs = 0; /* LPID comes from LPIDR */
prs = 0; /* partition scoped */
r = 1; /* radix format */
asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
: : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
trace_tlbie(lpid, 1, rb, rs, ric, prs, r);
}
static __always_inline void __tlbie_lpid(unsigned long lpid, unsigned long ric)
{
unsigned long rb,rs,prs,r;
rb = PPC_BIT(52); /* IS = 2 */
rs = lpid;
prs = 0; /* partition scoped */
r = 1; /* radix format */
asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
: : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
trace_tlbie(lpid, 0, rb, rs, ric, prs, r);
}
static inline void __tlbiel_lpid_guest(unsigned long lpid, int set,
unsigned long ric)
{
unsigned long rb,rs,prs,r;
rb = PPC_BIT(52); /* IS = 2 */
rb |= set << PPC_BITLSHIFT(51);
rs = 0; /* LPID comes from LPIDR */
prs = 1; /* process scoped */
r = 1; /* radix format */
asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
: : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
trace_tlbie(lpid, 1, rb, rs, ric, prs, r);
}
static inline void __tlbiel_va(unsigned long va, unsigned long pid,
unsigned long ap, unsigned long ric)
{
unsigned long rb,rs,prs,r;
rb = va & ~(PPC_BITMASK(52, 63));
rb |= ap << PPC_BITLSHIFT(58);
rs = pid << PPC_BITLSHIFT(31);
prs = 1; /* process scoped */
r = 1; /* radix format */
asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
: : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
trace_tlbie(0, 1, rb, rs, ric, prs, r);
}
static inline void __tlbie_va(unsigned long va, unsigned long pid,
unsigned long ap, unsigned long ric)
{
unsigned long rb,rs,prs,r;
rb = va & ~(PPC_BITMASK(52, 63));
rb |= ap << PPC_BITLSHIFT(58);
rs = pid << PPC_BITLSHIFT(31);
prs = 1; /* process scoped */
r = 1; /* radix format */
asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
: : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
trace_tlbie(0, 0, rb, rs, ric, prs, r);
}
static inline void __tlbie_lpid_va(unsigned long va, unsigned long lpid,
unsigned long ap, unsigned long ric)
{
unsigned long rb,rs,prs,r;
rb = va & ~(PPC_BITMASK(52, 63));
rb |= ap << PPC_BITLSHIFT(58);
rs = lpid;
prs = 0; /* partition scoped */
r = 1; /* radix format */
asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
: : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
trace_tlbie(lpid, 0, rb, rs, ric, prs, r);
}
static inline void fixup_tlbie(void)
{
unsigned long pid = 0;
unsigned long va = ((1UL << 52) - 1);
if (cpu_has_feature(CPU_FTR_P9_TLBIE_BUG)) {
asm volatile("ptesync": : :"memory");
__tlbie_va(va, pid, mmu_get_ap(MMU_PAGE_64K), RIC_FLUSH_TLB);
}
}
static inline void fixup_tlbie_lpid(unsigned long lpid)
{
unsigned long va = ((1UL << 52) - 1);
if (cpu_has_feature(CPU_FTR_P9_TLBIE_BUG)) {
asm volatile("ptesync": : :"memory");
__tlbie_lpid_va(va, lpid, mmu_get_ap(MMU_PAGE_64K), RIC_FLUSH_TLB);
}
}
/*
* We use 128 set in radix mode and 256 set in hpt mode.
*/
static inline void _tlbiel_pid(unsigned long pid, unsigned long ric)
{
int set;
asm volatile("ptesync": : :"memory");
/*
* Flush the first set of the TLB, and if we're doing a RIC_FLUSH_ALL,
* also flush the entire Page Walk Cache.
*/
__tlbiel_pid(pid, 0, ric);
/* For PWC, only one flush is needed */
if (ric == RIC_FLUSH_PWC) {
asm volatile("ptesync": : :"memory");
return;
}
/* For the remaining sets, just flush the TLB */
for (set = 1; set < POWER9_TLB_SETS_RADIX ; set++)
__tlbiel_pid(pid, set, RIC_FLUSH_TLB);
asm volatile("ptesync": : :"memory");
asm volatile(PPC_INVALIDATE_ERAT "; isync" : : :"memory");
}
static inline void _tlbie_pid(unsigned long pid, unsigned long ric)
{
asm volatile("ptesync": : :"memory");
/*
* Workaround the fact that the "ric" argument to __tlbie_pid
* must be a compile-time contraint to match the "i" constraint
* in the asm statement.
*/
switch (ric) {
case RIC_FLUSH_TLB:
__tlbie_pid(pid, RIC_FLUSH_TLB);
break;
case RIC_FLUSH_PWC:
__tlbie_pid(pid, RIC_FLUSH_PWC);
break;
case RIC_FLUSH_ALL:
default:
__tlbie_pid(pid, RIC_FLUSH_ALL);
}
fixup_tlbie();
asm volatile("eieio; tlbsync; ptesync": : :"memory");
}
static inline void _tlbiel_lpid(unsigned long lpid, unsigned long ric)
{
int set;
VM_BUG_ON(mfspr(SPRN_LPID) != lpid);
asm volatile("ptesync": : :"memory");
/*
* Flush the first set of the TLB, and if we're doing a RIC_FLUSH_ALL,
* also flush the entire Page Walk Cache.
*/
__tlbiel_lpid(lpid, 0, ric);
/* For PWC, only one flush is needed */
if (ric == RIC_FLUSH_PWC) {
asm volatile("ptesync": : :"memory");
return;
}
/* For the remaining sets, just flush the TLB */
for (set = 1; set < POWER9_TLB_SETS_RADIX ; set++)
__tlbiel_lpid(lpid, set, RIC_FLUSH_TLB);
asm volatile("ptesync": : :"memory");
asm volatile(PPC_INVALIDATE_ERAT "; isync" : : :"memory");
}
static inline void _tlbie_lpid(unsigned long lpid, unsigned long ric)
{
asm volatile("ptesync": : :"memory");
/*
* Workaround the fact that the "ric" argument to __tlbie_pid
* must be a compile-time contraint to match the "i" constraint
* in the asm statement.
*/
switch (ric) {
case RIC_FLUSH_TLB:
__tlbie_lpid(lpid, RIC_FLUSH_TLB);
break;
case RIC_FLUSH_PWC:
__tlbie_lpid(lpid, RIC_FLUSH_PWC);
break;
case RIC_FLUSH_ALL:
default:
__tlbie_lpid(lpid, RIC_FLUSH_ALL);
}
fixup_tlbie_lpid(lpid);
asm volatile("eieio; tlbsync; ptesync": : :"memory");
}
static inline void _tlbiel_lpid_guest(unsigned long lpid, unsigned long ric)
{
int set;
VM_BUG_ON(mfspr(SPRN_LPID) != lpid);
asm volatile("ptesync": : :"memory");
/*
* Flush the first set of the TLB, and if we're doing a RIC_FLUSH_ALL,
* also flush the entire Page Walk Cache.
*/
__tlbiel_lpid_guest(lpid, 0, ric);
/* For PWC, only one flush is needed */
if (ric == RIC_FLUSH_PWC) {
asm volatile("ptesync": : :"memory");
return;
}
/* For the remaining sets, just flush the TLB */
for (set = 1; set < POWER9_TLB_SETS_RADIX ; set++)
__tlbiel_lpid_guest(lpid, set, RIC_FLUSH_TLB);
asm volatile("ptesync": : :"memory");
asm volatile(PPC_INVALIDATE_ERAT : : :"memory");
}
static inline void __tlbiel_va_range(unsigned long start, unsigned long end,
unsigned long pid, unsigned long page_size,
unsigned long psize)
{
unsigned long addr;
unsigned long ap = mmu_get_ap(psize);
for (addr = start; addr < end; addr += page_size)
__tlbiel_va(addr, pid, ap, RIC_FLUSH_TLB);
}
static inline void _tlbiel_va(unsigned long va, unsigned long pid,
unsigned long psize, unsigned long ric)
{
unsigned long ap = mmu_get_ap(psize);
asm volatile("ptesync": : :"memory");
__tlbiel_va(va, pid, ap, ric);
asm volatile("ptesync": : :"memory");
}
static inline void _tlbiel_va_range(unsigned long start, unsigned long end,
unsigned long pid, unsigned long page_size,
unsigned long psize, bool also_pwc)
{
asm volatile("ptesync": : :"memory");
if (also_pwc)
__tlbiel_pid(pid, 0, RIC_FLUSH_PWC);
__tlbiel_va_range(start, end, pid, page_size, psize);
asm volatile("ptesync": : :"memory");
}
static inline void __tlbie_va_range(unsigned long start, unsigned long end,
unsigned long pid, unsigned long page_size,
unsigned long psize)
{
unsigned long addr;
unsigned long ap = mmu_get_ap(psize);
for (addr = start; addr < end; addr += page_size)
__tlbie_va(addr, pid, ap, RIC_FLUSH_TLB);
}
static inline void _tlbie_va(unsigned long va, unsigned long pid,
unsigned long psize, unsigned long ric)
{
unsigned long ap = mmu_get_ap(psize);
asm volatile("ptesync": : :"memory");
__tlbie_va(va, pid, ap, ric);
fixup_tlbie();
asm volatile("eieio; tlbsync; ptesync": : :"memory");
}
static inline void _tlbie_lpid_va(unsigned long va, unsigned long lpid,
unsigned long psize, unsigned long ric)
{
unsigned long ap = mmu_get_ap(psize);
asm volatile("ptesync": : :"memory");
__tlbie_lpid_va(va, lpid, ap, ric);
fixup_tlbie_lpid(lpid);
asm volatile("eieio; tlbsync; ptesync": : :"memory");
}
static inline void _tlbie_va_range(unsigned long start, unsigned long end,
unsigned long pid, unsigned long page_size,
unsigned long psize, bool also_pwc)
{
asm volatile("ptesync": : :"memory");
if (also_pwc)
__tlbie_pid(pid, RIC_FLUSH_PWC);
__tlbie_va_range(start, end, pid, page_size, psize);
fixup_tlbie();
asm volatile("eieio; tlbsync; ptesync": : :"memory");
}
/*
* Base TLB flushing operations:
*
* - flush_tlb_mm(mm) flushes the specified mm context TLB's
* - flush_tlb_page(vma, vmaddr) flushes one page
* - flush_tlb_range(vma, start, end) flushes a range of pages
* - flush_tlb_kernel_range(start, end) flushes kernel pages
*
* - local_* variants of page and mm only apply to the current
* processor
*/
void radix__local_flush_tlb_mm(struct mm_struct *mm)
{
unsigned long pid;
preempt_disable();
pid = mm->context.id;
if (pid != MMU_NO_CONTEXT)
_tlbiel_pid(pid, RIC_FLUSH_TLB);
preempt_enable();
}
EXPORT_SYMBOL(radix__local_flush_tlb_mm);
#ifndef CONFIG_SMP
void radix__local_flush_all_mm(struct mm_struct *mm)
{
unsigned long pid;
preempt_disable();
pid = mm->context.id;
if (pid != MMU_NO_CONTEXT)
_tlbiel_pid(pid, RIC_FLUSH_ALL);
preempt_enable();
}
EXPORT_SYMBOL(radix__local_flush_all_mm);
#endif /* CONFIG_SMP */
void radix__local_flush_tlb_page_psize(struct mm_struct *mm, unsigned long vmaddr,
int psize)
{
unsigned long pid;
preempt_disable();
pid = mm->context.id;
if (pid != MMU_NO_CONTEXT)
_tlbiel_va(vmaddr, pid, psize, RIC_FLUSH_TLB);
preempt_enable();
}
void radix__local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
{
#ifdef CONFIG_HUGETLB_PAGE
/* need the return fix for nohash.c */
if (is_vm_hugetlb_page(vma))
return radix__local_flush_hugetlb_page(vma, vmaddr);
#endif
radix__local_flush_tlb_page_psize(vma->vm_mm, vmaddr, mmu_virtual_psize);
}
EXPORT_SYMBOL(radix__local_flush_tlb_page);
static bool mm_is_singlethreaded(struct mm_struct *mm)
{
if (atomic_read(&mm->context.copros) > 0)
return false;
if (atomic_read(&mm->mm_users) <= 1 && current->mm == mm)
return true;
return false;
}
static bool mm_needs_flush_escalation(struct mm_struct *mm)
{
/*
* P9 nest MMU has issues with the page walk cache
* caching PTEs and not flushing them properly when
* RIC = 0 for a PID/LPID invalidate
*/
if (atomic_read(&mm->context.copros) > 0)
return true;
return false;
}
#ifdef CONFIG_SMP
static void do_exit_flush_lazy_tlb(void *arg)
{
struct mm_struct *mm = arg;
unsigned long pid = mm->context.id;
if (current->mm == mm)
return; /* Local CPU */
if (current->active_mm == mm) {
/*
* Must be a kernel thread because sender is single-threaded.
*/
BUG_ON(current->mm);
mmgrab(&init_mm);
switch_mm(mm, &init_mm, current);
current->active_mm = &init_mm;
mmdrop(mm);
}
_tlbiel_pid(pid, RIC_FLUSH_ALL);
}
static void exit_flush_lazy_tlbs(struct mm_struct *mm)
{
/*
* Would be nice if this was async so it could be run in
* parallel with our local flush, but generic code does not
* give a good API for it. Could extend the generic code or
* make a special powerpc IPI for flushing TLBs.
* For now it's not too performance critical.
*/
smp_call_function_many(mm_cpumask(mm), do_exit_flush_lazy_tlb,
(void *)mm, 1);
mm_reset_thread_local(mm);
}
void radix__flush_tlb_mm(struct mm_struct *mm)
{
unsigned long pid;
pid = mm->context.id;
if (unlikely(pid == MMU_NO_CONTEXT))
return;
preempt_disable();
/*
* Order loads of mm_cpumask vs previous stores to clear ptes before
* the invalidate. See barrier in switch_mm_irqs_off
*/
smp_mb();
if (!mm_is_thread_local(mm)) {
if (unlikely(mm_is_singlethreaded(mm))) {
exit_flush_lazy_tlbs(mm);
goto local;
}
if (mm_needs_flush_escalation(mm))
_tlbie_pid(pid, RIC_FLUSH_ALL);
else
_tlbie_pid(pid, RIC_FLUSH_TLB);
} else {
local:
_tlbiel_pid(pid, RIC_FLUSH_TLB);
}
preempt_enable();
}
EXPORT_SYMBOL(radix__flush_tlb_mm);
static void __flush_all_mm(struct mm_struct *mm, bool fullmm)
{
unsigned long pid;
pid = mm->context.id;
if (unlikely(pid == MMU_NO_CONTEXT))
return;
preempt_disable();
smp_mb(); /* see radix__flush_tlb_mm */
if (!mm_is_thread_local(mm)) {
if (unlikely(mm_is_singlethreaded(mm))) {
if (!fullmm) {
exit_flush_lazy_tlbs(mm);
goto local;
}
}
_tlbie_pid(pid, RIC_FLUSH_ALL);
} else {
local:
_tlbiel_pid(pid, RIC_FLUSH_ALL);
}
preempt_enable();
}
void radix__flush_all_mm(struct mm_struct *mm)
{
__flush_all_mm(mm, false);
}
EXPORT_SYMBOL(radix__flush_all_mm);
void radix__flush_tlb_pwc(struct mmu_gather *tlb, unsigned long addr)
{
tlb->need_flush_all = 1;
}
EXPORT_SYMBOL(radix__flush_tlb_pwc);
void radix__flush_tlb_page_psize(struct mm_struct *mm, unsigned long vmaddr,
int psize)
{
unsigned long pid;
pid = mm->context.id;
if (unlikely(pid == MMU_NO_CONTEXT))
return;
preempt_disable();
smp_mb(); /* see radix__flush_tlb_mm */
if (!mm_is_thread_local(mm)) {
if (unlikely(mm_is_singlethreaded(mm))) {
exit_flush_lazy_tlbs(mm);
goto local;
}
_tlbie_va(vmaddr, pid, psize, RIC_FLUSH_TLB);
} else {
local:
_tlbiel_va(vmaddr, pid, psize, RIC_FLUSH_TLB);
}
preempt_enable();
}
void radix__flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
{
#ifdef CONFIG_HUGETLB_PAGE
if (is_vm_hugetlb_page(vma))
return radix__flush_hugetlb_page(vma, vmaddr);
#endif
radix__flush_tlb_page_psize(vma->vm_mm, vmaddr, mmu_virtual_psize);
}
EXPORT_SYMBOL(radix__flush_tlb_page);
#else /* CONFIG_SMP */
#define radix__flush_all_mm radix__local_flush_all_mm
#endif /* CONFIG_SMP */
void radix__flush_tlb_kernel_range(unsigned long start, unsigned long end)
{
_tlbie_pid(0, RIC_FLUSH_ALL);
}
EXPORT_SYMBOL(radix__flush_tlb_kernel_range);
#define TLB_FLUSH_ALL -1UL
/*
* Number of pages above which we invalidate the entire PID rather than
* flush individual pages, for local and global flushes respectively.
*
* tlbie goes out to the interconnect and individual ops are more costly.
* It also does not iterate over sets like the local tlbiel variant when
* invalidating a full PID, so it has a far lower threshold to change from
* individual page flushes to full-pid flushes.
*/
static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
static unsigned long tlb_local_single_page_flush_ceiling __read_mostly = POWER9_TLB_SETS_RADIX * 2;
static inline void __radix__flush_tlb_range(struct mm_struct *mm,
unsigned long start, unsigned long end,
bool flush_all_sizes)
{
unsigned long pid;
unsigned int page_shift = mmu_psize_defs[mmu_virtual_psize].shift;
unsigned long page_size = 1UL << page_shift;
unsigned long nr_pages = (end - start) >> page_shift;
bool local, full;
pid = mm->context.id;
if (unlikely(pid == MMU_NO_CONTEXT))
return;
preempt_disable();
smp_mb(); /* see radix__flush_tlb_mm */
if (!mm_is_thread_local(mm)) {
if (unlikely(mm_is_singlethreaded(mm))) {
if (end != TLB_FLUSH_ALL) {
exit_flush_lazy_tlbs(mm);
goto is_local;
}
}
local = false;
full = (end == TLB_FLUSH_ALL ||
nr_pages > tlb_single_page_flush_ceiling);
} else {
is_local:
local = true;
full = (end == TLB_FLUSH_ALL ||
nr_pages > tlb_local_single_page_flush_ceiling);
}
if (full) {
if (local) {
_tlbiel_pid(pid, RIC_FLUSH_TLB);
} else {
if (mm_needs_flush_escalation(mm))
_tlbie_pid(pid, RIC_FLUSH_ALL);
else
_tlbie_pid(pid, RIC_FLUSH_TLB);
}
} else {
bool hflush = flush_all_sizes;
bool gflush = flush_all_sizes;
unsigned long hstart, hend;
unsigned long gstart, gend;
if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
hflush = true;
if (hflush) {
hstart = (start + PMD_SIZE - 1) & PMD_MASK;
hend = end & PMD_MASK;
if (hstart == hend)
hflush = false;
}
if (gflush) {
gstart = (start + PUD_SIZE - 1) & PUD_MASK;
gend = end & PUD_MASK;
if (gstart == gend)
gflush = false;
}
asm volatile("ptesync": : :"memory");
if (local) {
__tlbiel_va_range(start, end, pid, page_size, mmu_virtual_psize);
if (hflush)
__tlbiel_va_range(hstart, hend, pid,
PMD_SIZE, MMU_PAGE_2M);
if (gflush)
__tlbiel_va_range(gstart, gend, pid,
PUD_SIZE, MMU_PAGE_1G);
asm volatile("ptesync": : :"memory");
} else {
__tlbie_va_range(start, end, pid, page_size, mmu_virtual_psize);
if (hflush)
__tlbie_va_range(hstart, hend, pid,
PMD_SIZE, MMU_PAGE_2M);
if (gflush)
__tlbie_va_range(gstart, gend, pid,
PUD_SIZE, MMU_PAGE_1G);
fixup_tlbie();
asm volatile("eieio; tlbsync; ptesync": : :"memory");
}
}
preempt_enable();
}
void radix__flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
unsigned long end)
{
#ifdef CONFIG_HUGETLB_PAGE
if (is_vm_hugetlb_page(vma))
return radix__flush_hugetlb_tlb_range(vma, start, end);
#endif
__radix__flush_tlb_range(vma->vm_mm, start, end, false);
}
EXPORT_SYMBOL(radix__flush_tlb_range);
static int radix_get_mmu_psize(int page_size)
{
int psize;
if (page_size == (1UL << mmu_psize_defs[mmu_virtual_psize].shift))
psize = mmu_virtual_psize;
else if (page_size == (1UL << mmu_psize_defs[MMU_PAGE_2M].shift))
psize = MMU_PAGE_2M;
else if (page_size == (1UL << mmu_psize_defs[MMU_PAGE_1G].shift))
psize = MMU_PAGE_1G;
else
return -1;
return psize;
}
/*
* Flush partition scoped LPID address translation for all CPUs.
*/
void radix__flush_tlb_lpid_page(unsigned int lpid,
unsigned long addr,
unsigned long page_size)
{
int psize = radix_get_mmu_psize(page_size);
_tlbie_lpid_va(addr, lpid, psize, RIC_FLUSH_TLB);
}
EXPORT_SYMBOL_GPL(radix__flush_tlb_lpid_page);
/*
* Flush partition scoped PWC from LPID for all CPUs.
*/
void radix__flush_pwc_lpid(unsigned int lpid)
{
_tlbie_lpid(lpid, RIC_FLUSH_PWC);
}
EXPORT_SYMBOL_GPL(radix__flush_pwc_lpid);
/*
* Flush partition scoped translations from LPID (=LPIDR)
*/
void radix__flush_tlb_lpid(unsigned int lpid)
{
_tlbie_lpid(lpid, RIC_FLUSH_ALL);
}
EXPORT_SYMBOL_GPL(radix__flush_tlb_lpid);
/*
* Flush partition scoped translations from LPID (=LPIDR)
*/
void radix__local_flush_tlb_lpid(unsigned int lpid)
{
_tlbiel_lpid(lpid, RIC_FLUSH_ALL);
}
EXPORT_SYMBOL_GPL(radix__local_flush_tlb_lpid);
/*
* Flush process scoped translations from LPID (=LPIDR).
* Important difference, the guest normally manages its own translations,
* but some cases e.g., vCPU CPU migration require KVM to flush.
*/
void radix__local_flush_tlb_lpid_guest(unsigned int lpid)
{
_tlbiel_lpid_guest(lpid, RIC_FLUSH_ALL);
}
EXPORT_SYMBOL_GPL(radix__local_flush_tlb_lpid_guest);
static void radix__flush_tlb_pwc_range_psize(struct mm_struct *mm, unsigned long start,
unsigned long end, int psize);
void radix__tlb_flush(struct mmu_gather *tlb)
{
int psize = 0;
struct mm_struct *mm = tlb->mm;
int page_size = tlb->page_size;
unsigned long start = tlb->start;
unsigned long end = tlb->end;
/*
* if page size is not something we understand, do a full mm flush
*
* A "fullmm" flush must always do a flush_all_mm (RIC=2) flush
* that flushes the process table entry cache upon process teardown.
* See the comment for radix in arch_exit_mmap().
*/
if (tlb->fullmm) {
__flush_all_mm(mm, true);
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
} else if (mm_tlb_flush_nested(mm)) {
/*
* If there is a concurrent invalidation that is clearing ptes,
* then it's possible this invalidation will miss one of those
* cleared ptes and miss flushing the TLB. If this invalidate
* returns before the other one flushes TLBs, that can result
* in it returning while there are still valid TLBs inside the
* range to be invalidated.
*
* See mm/memory.c:tlb_finish_mmu() for more details.
*
* The solution to this is ensure the entire range is always
* flushed here. The problem for powerpc is that the flushes
* are page size specific, so this "forced flush" would not
* do the right thing if there are a mix of page sizes in
* the range to be invalidated. So use __flush_tlb_range
* which invalidates all possible page sizes in the range.
*
* PWC flush probably is not be required because the core code
* shouldn't free page tables in this path, but accounting
* for the possibility makes us a bit more robust.
*
* need_flush_all is an uncommon case because page table
* teardown should be done with exclusive locks held (but
* after locks are dropped another invalidate could come
* in), it could be optimized further if necessary.
*/
if (!tlb->need_flush_all)
__radix__flush_tlb_range(mm, start, end, true);
else
radix__flush_all_mm(mm);
#endif
} else if ( (psize = radix_get_mmu_psize(page_size)) == -1) {
if (!tlb->need_flush_all)
radix__flush_tlb_mm(mm);
else
radix__flush_all_mm(mm);
} else {
if (!tlb->need_flush_all)
radix__flush_tlb_range_psize(mm, start, end, psize);
else
radix__flush_tlb_pwc_range_psize(mm, start, end, psize);
}
tlb->need_flush_all = 0;
}
static __always_inline void __radix__flush_tlb_range_psize(struct mm_struct *mm,
unsigned long start, unsigned long end,
int psize, bool also_pwc)
{
unsigned long pid;
unsigned int page_shift = mmu_psize_defs[psize].shift;
unsigned long page_size = 1UL << page_shift;
unsigned long nr_pages = (end - start) >> page_shift;
bool local, full;
pid = mm->context.id;
if (unlikely(pid == MMU_NO_CONTEXT))
return;
preempt_disable();
smp_mb(); /* see radix__flush_tlb_mm */
if (!mm_is_thread_local(mm)) {
if (unlikely(mm_is_singlethreaded(mm))) {
if (end != TLB_FLUSH_ALL) {
exit_flush_lazy_tlbs(mm);
goto is_local;
}
}
local = false;
full = (end == TLB_FLUSH_ALL ||
nr_pages > tlb_single_page_flush_ceiling);
} else {
is_local:
local = true;
full = (end == TLB_FLUSH_ALL ||
nr_pages > tlb_local_single_page_flush_ceiling);
}
if (full) {
if (local) {
_tlbiel_pid(pid, also_pwc ? RIC_FLUSH_ALL : RIC_FLUSH_TLB);
} else {
if (mm_needs_flush_escalation(mm))
also_pwc = true;
_tlbie_pid(pid, also_pwc ? RIC_FLUSH_ALL : RIC_FLUSH_TLB);
}
} else {
if (local)
_tlbiel_va_range(start, end, pid, page_size, psize, also_pwc);
else
_tlbie_va_range(start, end, pid, page_size, psize, also_pwc);
}
preempt_enable();
}
void radix__flush_tlb_range_psize(struct mm_struct *mm, unsigned long start,
unsigned long end, int psize)
{
return __radix__flush_tlb_range_psize(mm, start, end, psize, false);
}
static void radix__flush_tlb_pwc_range_psize(struct mm_struct *mm, unsigned long start,
unsigned long end, int psize)
{
__radix__flush_tlb_range_psize(mm, start, end, psize, true);
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
void radix__flush_tlb_collapsed_pmd(struct mm_struct *mm, unsigned long addr)
{
unsigned long pid, end;
pid = mm->context.id;
if (unlikely(pid == MMU_NO_CONTEXT))
return;
/* 4k page size, just blow the world */
if (PAGE_SIZE == 0x1000) {
radix__flush_all_mm(mm);
return;
}
end = addr + HPAGE_PMD_SIZE;
/* Otherwise first do the PWC, then iterate the pages. */
preempt_disable();
smp_mb(); /* see radix__flush_tlb_mm */
if (!mm_is_thread_local(mm)) {
if (unlikely(mm_is_singlethreaded(mm))) {
exit_flush_lazy_tlbs(mm);
goto local;
}
_tlbie_va_range(addr, end, pid, PAGE_SIZE, mmu_virtual_psize, true);
} else {
local:
_tlbiel_va_range(addr, end, pid, PAGE_SIZE, mmu_virtual_psize, true);
}
preempt_enable();
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
void radix__flush_pmd_tlb_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
radix__flush_tlb_range_psize(vma->vm_mm, start, end, MMU_PAGE_2M);
}
EXPORT_SYMBOL(radix__flush_pmd_tlb_range);
void radix__flush_tlb_all(void)
{
unsigned long rb,prs,r,rs;
unsigned long ric = RIC_FLUSH_ALL;
rb = 0x3 << PPC_BITLSHIFT(53); /* IS = 3 */
prs = 0; /* partition scoped */
r = 1; /* radix format */
rs = 1 & ((1UL << 32) - 1); /* any LPID value to flush guest mappings */
asm volatile("ptesync": : :"memory");
/*
* now flush guest entries by passing PRS = 1 and LPID != 0
*/
asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
: : "r"(rb), "i"(r), "i"(1), "i"(ric), "r"(rs) : "memory");
/*
* now flush host entires by passing PRS = 0 and LPID == 0
*/
asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
: : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(0) : "memory");
asm volatile("eieio; tlbsync; ptesync": : :"memory");
}
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
extern void radix_kvm_prefetch_workaround(struct mm_struct *mm)
{
unsigned long pid = mm->context.id;
if (unlikely(pid == MMU_NO_CONTEXT))
return;
/*
* If this context hasn't run on that CPU before and KVM is
* around, there's a slim chance that the guest on another
* CPU just brought in obsolete translation into the TLB of
* this CPU due to a bad prefetch using the guest PID on
* the way into the hypervisor.
*
* We work around this here. If KVM is possible, we check if
* any sibling thread is in KVM. If it is, the window may exist
* and thus we flush that PID from the core.
*
* A potential future improvement would be to mark which PIDs
* have never been used on the system and avoid it if the PID
* is new and the process has no other cpumask bit set.
*/
if (cpu_has_feature(CPU_FTR_HVMODE) && radix_enabled()) {
int cpu = smp_processor_id();
int sib = cpu_first_thread_sibling(cpu);
bool flush = false;
for (; sib <= cpu_last_thread_sibling(cpu) && !flush; sib++) {
if (sib == cpu)
continue;
if (!cpu_possible(sib))
continue;
if (paca_ptrs[sib]->kvm_hstate.kvm_vcpu)
flush = true;
}
if (flush)
_tlbiel_pid(pid, RIC_FLUSH_ALL);
}
}
EXPORT_SYMBOL_GPL(radix_kvm_prefetch_workaround);
#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */